JPH06234522A - Electrically conductive material and its production - Google Patents

Electrically conductive material and its production

Info

Publication number
JPH06234522A
JPH06234522A JP31508693A JP31508693A JPH06234522A JP H06234522 A JPH06234522 A JP H06234522A JP 31508693 A JP31508693 A JP 31508693A JP 31508693 A JP31508693 A JP 31508693A JP H06234522 A JPH06234522 A JP H06234522A
Authority
JP
Japan
Prior art keywords
conductive material
compound
precipitate
powder
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31508693A
Other languages
Japanese (ja)
Inventor
Masatoshi Shibata
雅敏 柴田
Akira Umigami
暁 海上
Masatsugu Oyama
正嗣 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP31508693A priority Critical patent/JPH06234522A/en
Publication of JPH06234522A publication Critical patent/JPH06234522A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To obtain an electrically conductive material made of an oxide containing In and Zn in a specific ratio and excellent in moisture resistance or the like by forming a precipitate from a solution containing an In compound and a Zn compound in a prescribed ratio, separating, firing and reduction treating the precipitate. CONSTITUTION:The solution containing the indium compound (e.g. indium nitrate) and the zinc compound (e.g. zinc nitrate) in a prescribed ratio is prepared. Next, the precipitate is formed by adding a precipitate forming agent (e.g. aqueous ammonia) into the solution. Then, the formed precipitate is subjected to solid-liquid separation and, if necessary, is fired and reduction-treated. As a result, the electrically conductive material mainly containing In and Zn and made of the amorphous oxide in 0.1-0.9 atomic ratio of In/(In+Zn) is obtained. The electrically conductive material containing In, Zn and a third element having positive >=3 valence can be produced by preparing a solution in which a compound of element having positive >=3 valence (e.g. stannic chloride) is dissolved in addition to the indium compound and the zinc compound and treating as the same way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂などの帯電防止剤
または静電制御剤、表面導電性付与剤、導電性塗料、ス
パッタリング用のターゲット又は表示装置の透明電極な
どに用いられる導電性材料およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic agent such as resin or an electrostatic control agent, a surface conductivity imparting agent, a conductive coating material, a sputtering target or a conductive material used for a transparent electrode of a display device. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】透明、白色または淡色の導電性材料とし
ては、酸化錫にアンチモンを添加したもの(ATO)、
酸化インジウムに錫を添加したもの(ITO)、酸化亜
鉛にアルミニウムを添加したもの等が知られている。こ
れらは、粉末の状態で帯電防止または静電制御のために
合成樹脂などに添加され、樹脂の電気抵抗値を調製する
ために用いられている。また、表面導電性を付与するた
めに用いられる導電性塗料等にも添加されている(例え
ば静電塗装用のプライマーとして)。
2. Description of the Related Art As transparent, white or light conductive materials, tin oxide added with antimony (ATO),
It is known that tin is added to indium oxide (ITO), aluminum is added to zinc oxide, and the like. These are added to a synthetic resin or the like in the powder state for antistatic or electrostatic control, and are used for adjusting the electric resistance value of the resin. It is also added to conductive paints and the like used to impart surface conductivity (for example, as a primer for electrostatic coating).

【0003】また粉末を所定形状に成形し焼結すること
により焼結体を作製し、ターゲット材を得ている。そし
てこの焼結体からなるターゲットを用いて、スパッタ
法、蒸着法、イオンプレーティング法等で表示装置用の
透明電極がガラスや樹脂基板の上に形成されている。
Further, a powder is formed into a predetermined shape and sintered to produce a sintered body, and a target material is obtained. A transparent electrode for a display device is formed on a glass or resin substrate by a sputtering method, a vapor deposition method, an ion plating method or the like using the target made of this sintered body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、IT
O、ATOは粉末の状態では耐湿性が比較的低く、湿気
により電気抵抗値が増大するという難点を有している。
またITO、ATO粉末は還元状態では黒化するため、
樹脂に添加すると樹脂製品の自由な着色が困難になると
いう欠点を有している。またITO、ATO焼結体から
なるターゲットも還元により黒化し易いため、その特性
の経時変化が問題となっている。
[Problems to be Solved by the Invention] However, IT
O and ATO have a relatively low moisture resistance in the powder state, and have the drawback that the electric resistance value increases due to moisture.
Also, since ITO and ATO powder turn black in the reduced state,
When it is added to a resin, it has a drawback that it is difficult to freely color a resin product. Further, a target made of a sintered body of ITO or ATO is also easily blackened by reduction, so that a change in its characteristics with time becomes a problem.

【0005】本発明の目的は、ITO、ATOよりも耐
湿性に優れ、黒化しにくいとともに、ITO、ATOと
同等の導電性を有する導電性材料およびその製造方法を
提供することにある。
An object of the present invention is to provide a conductive material which is superior in moisture resistance to ITO and ATO, is less likely to be blackened, and has the same conductivity as ITO and ATO, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の導電性材料は、InとZnを主成分とし、Inの原
子比In/(In+Zn)が0.1〜0.9である実質
的に非晶質の酸化物からなることを特徴とする導電性材
料(以下、この導電性材料を導電性材料Iという)であ
る。また、前記実質的に非晶質の酸化物が、正三価以上
の原子価を有する第3の元素の少なくとも1種を、第3
元素の原子比(全第3元素/(In+Zn+全第3元
素))が20原子%以下の範囲で含むものであることを
特徴とする導電性材料もまた、上記目的を達成する(以
下、この導電性材料を導電性材料IIという)。
A conductive material of the present invention which achieves the above object is composed mainly of In and Zn and has an atomic ratio In / In / (In + Zn) of 0.1 to 0.9. Is a conductive material (hereinafter, this conductive material is referred to as a conductive material I). Further, the substantially amorphous oxide contains at least one kind of a third element having a valence of positive trivalence or more, a third element
A conductive material characterized in that the atomic ratio of the elements (total third element / (In + Zn + total third element)) is contained in a range of 20 atomic% or less also achieves the above object (hereinafter, this conductivity Material is called conductive material II).

【0007】一方、上記目的を達成する本発明の導電性
材料の製造方法は、インジウム化合物および亜鉛化合物
を用い、これらの少なくとも1種を含む1種以上の溶液
から、沈澱形成剤により形成される沈澱を、固液分離
し、必要により焼成、還元処理して実質的に非晶質の酸
化物を得ることを特徴とする導電性材料の製造方法(以
下、この方法を方法Iという)である。さらに、インジ
ウム化合物、亜鉛化合物および正三価以上の原子価を有
する元素の少なくとも1種の化合物を用い、これらの少
なくとも1種を含む1種以上の溶液から、沈澱形成剤に
より形成される沈澱を、固液分離し、必要により焼成、
還元処理して実質的に非晶質の酸化物を得ることを特徴
とする導電性材料の製造方法もまた、上記目的を達成す
る(以下、この方法を方法IIという)。
On the other hand, the method for producing a conductive material according to the present invention, which achieves the above-mentioned object, uses an indium compound and a zinc compound and is formed from one or more solutions containing at least one of these by a precipitation forming agent. A method for producing a conductive material (hereinafter, this method is referred to as Method I), which comprises subjecting the precipitate to solid-liquid separation, and if necessary, firing and reduction treatment to obtain a substantially amorphous oxide. . Further, using at least one compound of an indium compound, a zinc compound and an element having a valence of positive trivalence or more, a precipitate formed by a precipitation forming agent is prepared from one or more solutions containing at least one of these compounds, Solid-liquid separation, firing if necessary,
A method for producing a conductive material, which is characterized in that a reduction treatment is performed to obtain a substantially amorphous oxide, also achieves the above object (hereinafter, this method is referred to as Method II).

【0008】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】まず、本発明の導電性材料Iは、上述した
ようにInとZnを主成分とし、Inの原子比In/
(In+Zn)が0.1〜0.9である実質的に非晶質
の酸化物からなることを特徴とする導電性材料からなる
ものである。
First, the conductive material I of the present invention is mainly composed of In and Zn as described above, and has an In atomic ratio of In / In.
(In + Zn) is a substantially amorphous oxide having a content of 0.1 to 0.9, and is made of a conductive material.

【0010】ここに、「実質的に非晶質」とは、X線回
折測定で、結晶性を示す物質の量を定量し、その残量を
非晶質物質であるとした場合に、所定量の非晶質物質を
含むものをいう。
Here, "substantially amorphous" means that when the amount of a substance exhibiting crystallinity is quantified by X-ray diffraction measurement and the remaining amount is an amorphous substance, It refers to a substance containing a fixed amount of an amorphous substance.

【0011】より具体的には、この実質的に非晶質の酸
化物は、非晶質酸化物を50重量%以上、より好ましく
は70重量%以上、特に好ましくは80重量%以上含
む。
More specifically, the substantially amorphous oxide contains 50% by weight or more of the amorphous oxide, more preferably 70% by weight or more, and particularly preferably 80% by weight or more.

【0012】本発明の導電性材料Iにおいて、InとZ
nの原子比(In/(In+Zn))は0.1〜0.9
であるのが好ましい。その理由は、0.1未満では導電
性材料の導電性が低くなり、0.9を超えると導電性材
料の耐湿、耐熱性が低下するからである。原子比(In
/(In+Zn))は0.5〜0.9がより好ましく、
0.6〜0.75が特に好ましい。
In the conductive material I of the present invention, In and Z
The atomic ratio of n (In / (In + Zn)) is 0.1 to 0.9.
Is preferred. The reason is that if it is less than 0.1, the conductivity of the conductive material is low, and if it exceeds 0.9, the moisture resistance and heat resistance of the conductive material are lowered. Atomic ratio (In
/ (In + Zn)) is more preferably 0.5 to 0.9,
0.6 to 0.75 is particularly preferable.

【0013】上記のInとZnの原子比は沈澱形成時の
インジウム化合物と亜鉛化合物の混合比を調整すること
により得られる。
The above atomic ratio of In and Zn can be obtained by adjusting the mixing ratio of the indium compound and the zinc compound during precipitation formation.

【0014】本発明の導電性材料Iは、ITO、ATO
よりも耐湿性に優れ、還元によっても黒化しにくいとと
もにITO、ATOと同等の導電性を有し、前記した各
種の用途(帯電防止剤、表面導電性付与剤、導電性塗
料、スパッタリング用のターゲット、表示装置の透明電
極など)に用いられる。
The conductive material I of the present invention is ITO or ATO.
It has more excellent moisture resistance than that, is less likely to be blackened by reduction, and has the same conductivity as ITO and ATO, and has the various applications described above (antistatic agent, surface conductivity imparting agent, conductive coating, sputtering target). , Transparent electrodes of display devices, etc.).

【0015】導電性材料Iは気相法(CVD法)、固相
法(物理混合法)などの種々の方法により製造すること
が可能であるが、後述する本発明の方法Iに従って液相
法(共沈法)により製造することが好ましい。
The conductive material I can be manufactured by various methods such as a vapor phase method (CVD method) and a solid phase method (physical mixing method), and the liquid phase method is carried out according to the method I of the present invention described later. It is preferable to manufacture by (coprecipitation method).

【0016】次に、本発明の導電性材料IIについて説明
する。
Next, the conductive material II of the present invention will be described.

【0017】この導電性材料IIは、InとZn以外に、
正三価以上の原子価を有する元素の少なくとも1種を、
第3元素の原子比(全第3元素/(In+Zn+全第3
元素))が20原子%以下の範囲で含む実質的に非晶質
の酸化物からなるものである。ここで、正三価以上の原
子価を有する元素としては、Al,Ga(正三価)、S
i,Ge,Sn(正四価)、Sb(正五価)の元素が挙
げられるが、導電性改良の効果が大きいSnが望まし
い。
This conductive material II is, in addition to In and Zn,
At least one element having a valence of positive trivalence or more,
Atomic ratio of third element (all third element / (In + Zn + all third
Element)) is a substantially amorphous oxide containing 20 atomic% or less. Here, as the element having a valence of positive trivalence or more, Al, Ga (positive trivalence), S
Examples of the element include i, Ge, Sn (positive tetravalent) and Sb (positive pentavalent), and Sn having a large effect of improving conductivity is preferable.

【0018】また、本発明の導電性材料IIにおいて、正
三価以上の原子価を有する元素、例えばSn,Al,G
a,Sb,Si,Ge元素を20原子%を超えて添加す
ると、導電性が低下することがある。
In the conductive material II of the present invention, an element having a valence of positive trivalence or more, such as Sn, Al, G
If the elements a, Sb, Si and Ge are added in an amount of more than 20 atomic%, the conductivity may decrease.

【0019】本発明の導電性材料IIは、ITO、ATO
よりも耐湿性に優れ、黒化しにくいとともにITO、A
TOと同等の導電性を有するので、前記した各種の用途
(帯電防止剤、表面導電性付与剤、導電性塗料、スパッ
タリング用のターゲット、表示装置の透明電極など)に
用いられる。
The conductive material II of the present invention is made of ITO or ATO.
Moisture resistance is superior to that of ITO, A
Since it has the same conductivity as TO, it is used for the various applications described above (antistatic agents, surface conductivity imparting agents, conductive coatings, targets for sputtering, transparent electrodes for display devices, etc.).

【0020】導電性材料IIも気相法(CVD法)、固相
法(物理混合法)などの種々の方法により製造すること
が可能であるが、後述する本発明の方法IIに従って溶液
法(共沈法)により製造することが好ましい。
The conductive material II can also be produced by various methods such as a vapor phase method (CVD method) and a solid phase method (physical mixing method). However, according to the method II of the present invention described later, the solution method ( Coprecipitation method) is preferred.

【0021】次に、本発明の方法Iおよび方法IIについ
て説明する。
Next, the method I and the method II of the present invention will be described.

【0022】まず本発明の方法Iは、前述したようにイ
ンジウム化合物および亜鉛化合物を用い、これらの少な
くとも1種を含む1種以上の溶液から、沈澱形成剤によ
り形成される沈澱を、固液分離し、必要により焼成、還
元処理して実質的に非晶質の酸化物からなる導電性材料
を得ることを特徴とする。
First, in the method I of the present invention, as described above, the indium compound and the zinc compound are used, and the precipitate formed by the precipitation forming agent is subjected to solid-liquid separation from one or more solutions containing at least one of them. Then, if necessary, firing and reduction treatments are performed to obtain a conductive material made of a substantially amorphous oxide.

【0023】方法Iで原料として用いるインジウム化合
物および亜鉛化合物は、酸化物または焼成後に酸化物に
なるもの(酸化物前駆体)であれば良い。インジウム酸
化物前駆体、亜鉛酸化物前駆体としては、インジウム、
亜鉛の硫化物、硫酸塩、硝酸塩、ハロゲン化物(塩化
物、臭化物等)、炭酸塩、有機酸塩(酢酸塩、プロピオ
ン酸塩、ナフテン酸塩等)、アルコキシド(メトキシ
ド、エトキシド等)、有機金属錯体(アセチルアセトナ
ート等)等が挙げられる。
The indium compound and the zinc compound used as raw materials in Method I may be oxides or compounds that become oxides after firing (oxide precursors). As an indium oxide precursor and a zinc oxide precursor, indium,
Zinc sulfide, sulfate, nitrate, halide (chloride, bromide, etc.), carbonate, organic acid salt (acetate, propionate, naphthenate, etc.), alkoxide (methoxide, ethoxide, etc.), organic metal Examples thereof include complexes (acetylacetonate, etc.).

【0024】特に、低温で完全に熱分解し、不純物が残
存しないようにするためには、この中でも、硝酸塩、有
機酸塩、アルコキシド、有機金属錯体を用いるのが好ま
しい。
Of these, nitrates, organic acid salts, alkoxides, and organic metal complexes are preferably used in order to completely decompose heat at low temperature and prevent impurities from remaining.

【0025】方法Iでは、先ず沈澱を形成するが、沈澱
の形成は、具体的には、以下に示す方法で行なうことが
できる。
In Method I, a precipitate is first formed, but the precipitation can be specifically formed by the following method.

【0026】まず、インジウム化合物と亜鉛化合物を溶
解した溶液、もしくは少なくともインジウム化合物を溶
解した溶液と少なくとも亜鉛化合物を溶解した溶液、お
よび沈澱形成剤を溶解した溶液をそれぞれ調製し、別個
に用意した容器(必要により溶媒を入れておいてもよ
い)に必要により撹拌しながら前述の溶液を同時にある
いは順次添加混合して沈澱を形成することができる。
First, a solution in which an indium compound and a zinc compound are dissolved, or a solution in which at least an indium compound is dissolved and a solution in which at least a zinc compound is dissolved, and a solution in which a precipitation-forming agent is dissolved are prepared and prepared separately. A precipitate can be formed by adding and mixing the above-mentioned solutions at the same time or sequentially while stirring (if necessary, a solvent may be added).

【0027】また、インジウム化合物と亜鉛化合物を溶
解した溶液に沈澱形成剤を溶解した溶液を添加してもよ
いし、またその逆であってもよい。
Further, the solution in which the precipitation forming agent is dissolved may be added to the solution in which the indium compound and the zinc compound are dissolved, and vice versa.

【0028】例えば、インジウム化合物と亜鉛化合物を
溶解した溶液と沈澱形成剤を溶解した溶液をそれぞれ調
製し、別個に溶媒を入れた容器に撹拌しながら両者の溶
液を同時に添加混合して沈澱を形成する場合について以
下詳細に説明する。
For example, a solution in which an indium compound and a zinc compound are dissolved and a solution in which a precipitation forming agent is dissolved are prepared, and both solutions are simultaneously added and mixed while stirring in a container containing a solvent to form a precipitate. The case will be described in detail below.

【0029】先ず、上記インジウム化合物および亜鉛化
合物を、適当な溶媒に溶解させた溶液(以下、溶液Aと
いう)を準備する。溶媒は、用いるインジウム化合物ま
たは亜鉛化合物の溶解性に応じて適宜選択すればよく、
例えば、水、アルコール、非プロトン性極性溶媒(DM
SO、NMP、スルホラン、THFなど)を用いること
ができ、生成する沈澱の溶解度が低いことから、特に炭
素数1〜5のアルコール(メタノール、エタノール、イ
ソプロパノール、メトキシエタノール、エチレングリコ
ールなど)が好ましい。溶液A中の各金属の濃度は0.
01〜10mol/リットルが好ましい。その理由は
0.01mol/リットル未満では生産性が劣り、10
mol/リットルを超えると不均一な沈澱が生成するか
らである。さらに、原料の溶解を促進するため、各種溶
媒により適宜、酸(硝酸、塩酸等)やアセチルアセトン
類、多価アルコール(エチレングリコール等)、エタノ
ールアミン類(モノエタノールアミン、ジエタノールア
ミン等)を溶液中の金属量の0.01〜10倍程度添加
してもよい。
First, a solution (hereinafter referred to as solution A) in which the above indium compound and zinc compound are dissolved in a suitable solvent is prepared. The solvent may be appropriately selected depending on the solubility of the indium compound or zinc compound used,
For example, water, alcohol, aprotic polar solvent (DM
SO, NMP, sulfolane, THF, etc. can be used, and alcohols having 1 to 5 carbon atoms (methanol, ethanol, isopropanol, methoxyethanol, ethylene glycol, etc.) are particularly preferable because of low solubility of the formed precipitate. The concentration of each metal in solution A was 0.
01 to 10 mol / liter is preferable. The reason is that if the amount is less than 0.01 mol / liter, the productivity is inferior, and 10
This is because if it exceeds mol / liter, a non-uniform precipitate is formed. Furthermore, in order to accelerate the dissolution of the raw materials, an acid (nitric acid, hydrochloric acid, etc.), acetylacetones, polyhydric alcohol (ethylene glycol, etc.), ethanolamines (monoethanolamine, diethanolamine, etc.) are appropriately added to the solution by various solvents. You may add about 0.01-10 times the metal amount.

【0030】方法Iにおいて、上記溶液Aとともに、沈
澱形成剤を溶解させた溶液(以下、溶液Bという)をも
準備する。溶液Bに溶解させる沈澱形成剤としては、ア
ルカリ(水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリ
ウム、水酸化アンモニウム、炭酸アンモニウム、重炭酸
アンモニウム等)、有機酸(ギ酸、しゅう酸、クエン酸
等)等が用いられるが、不純物の混入を避けるため、有
機酸(特にしゅう酸)を用いることが好ましい。
In Method I, a solution in which a precipitation forming agent is dissolved (hereinafter referred to as solution B) is also prepared together with the above solution A. As the precipitation forming agent to be dissolved in the solution B, alkali (sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium hydroxide, ammonium carbonate, ammonium bicarbonate, etc.), organic acid (Formic acid, oxalic acid, citric acid, etc.) is used, but it is preferable to use an organic acid (particularly oxalic acid) in order to avoid mixing of impurities.

【0031】沈澱は沈澱形成剤により水酸化物、無機酸
塩、有機酸塩となる。
The precipitate is converted into a hydroxide, an inorganic acid salt or an organic acid salt by the precipitation forming agent.

【0032】また沈澱形成剤を溶解するための溶媒及び
沈澱を形成させる容器に入れる溶媒としては、原料を溶
解するために用いる上記した溶媒を用いることができ
る。
As the solvent for dissolving the precipitate forming agent and the solvent put in the container for forming the precipitate, the above-mentioned solvents used for dissolving the raw materials can be used.

【0033】また、各種溶液に用いる溶媒は、操作上同
じものを用いた方がよいが、異なる溶媒を用いてもよ
い。
The solvents used for the various solutions should be the same in operation, but different solvents may be used.

【0034】方法Iにおいては、上述のいずれかの手段
で沈澱物を形成させるが、沈澱形成時の温度は、溶媒の
融点以上沸点以下であればよい。また、形成後に熟成を
1〜50時間行ってもよい。
In Method I, a precipitate is formed by any of the above means, and the temperature at the time of forming the precipitate may be above the melting point of the solvent and below its boiling point. Further, aging may be performed for 1 to 50 hours after formation.

【0035】方法Iによれば、上記のようにして得られ
た沈澱物を次に固液分離、乾燥する。沈澱物の固液分離
は、遠心分離、濾過等の常法により行なわれる。固液分
離後、沈澱物から陰イオンやアルカリ金属イオン等を除
去する目的で、溶液A、Bに用いた溶媒またはその他の
溶媒で濾別物を十分に洗浄することが望ましい。濾別後
の乾燥は、40〜200℃で0.1〜100時間行うの
が好ましい。低温では、乾燥に時間がかかり過ぎ、高温
では粒子の凝集が起きやすくなる。
According to method I, the precipitate obtained as described above is then solid-liquid separated and dried. Solid-liquid separation of the precipitate is carried out by a conventional method such as centrifugation or filtration. After the solid-liquid separation, it is desirable to thoroughly wash the filtered material with the solvent used in the solutions A and B or another solvent for the purpose of removing anions, alkali metal ions and the like from the precipitate. Drying after filtration is preferably carried out at 40 to 200 ° C. for 0.1 to 100 hours. At low temperatures, it takes too long to dry, and at high temperatures, particles tend to agglomerate.

【0036】方法Iによれば、上記固液分離、乾燥後に
焼成、粉砕、還元処理を行なう。
According to the method I, the solid-liquid separation and the drying are followed by firing, pulverization and reduction treatment.

【0037】焼成は、用いるインジウム化合物および亜
鉛化合物にもよるが200〜600℃で1〜100時間
行なうのが好ましい。低温、短時間では、インジウム又
は亜鉛の酸化物前駆体の酸化物への分解が不十分とな
り、また高温、長時間では酸化物が結晶化してくること
がある。
The firing is preferably carried out at 200 to 600 ° C. for 1 to 100 hours, depending on the indium compound and zinc compound used. The decomposition of the oxide precursor of indium or zinc into an oxide becomes insufficient at a low temperature for a short time, and the oxide may crystallize at a high temperature for a long time.

【0038】焼成後の粉砕はボールミル、ロールミル、
ジェットミル、パールミル等によって、粒子径が0.0
1〜10μmになるまで行なうのが好ましい。粉砕時間
は、通常1分〜500時間である。
The crushing after firing is performed by a ball mill, a roll mill,
The particle size is 0.0 with a jet mill, pearl mill, etc.
It is preferable to carry out until it becomes 1 to 10 μm. The crushing time is usually 1 minute to 500 hours.

【0039】還元処理は、還元性ガス(水素、CO
等)、真空、不活性ガス(窒素、アルゴン)等の雰囲気
で、温度100〜800℃で1分〜100時間行なうの
が好ましい。低温、短時間では、還元が不十分であり、
高温、長時間では粒子の凝集や成分の飛散が起きやす
い。この還元処理は、焼成工程又は粉砕工程の後に行う
ことが好ましい。
The reducing treatment is performed by using a reducing gas (hydrogen, CO
Etc.), vacuum, an atmosphere of an inert gas (nitrogen, argon), etc., preferably at a temperature of 100 to 800 ° C. for 1 minute to 100 hours. At low temperature and short time, reduction is insufficient,
Agglomeration of particles and scattering of components easily occur at high temperature for a long time. This reduction treatment is preferably performed after the firing step or the crushing step.

【0040】方法Iによれば、上記の諸工程を行なうこ
とにより、InとZnを主成分とし、実質的に非晶質の
酸化物からなる導電性材料が得られる。この導電性粉末
Iは、ITO、ATOよりも耐湿性が優れ、黒化しにく
いとともにITO、ATOと同等の導電性を有してい
る。この粉末の体積固体抵抗(一般に「粉体抵抗」と表
現されることもある)は例えば40Ω・cm以下であ
る。
According to Method I, by carrying out the above-mentioned steps, a conductive material containing In and Zn as main components and consisting of a substantially amorphous oxide can be obtained. The conductive powder I has a higher moisture resistance than ITO and ATO, is less likely to be blackened, and has the same conductivity as ITO and ATO. The volume solid resistance (generally referred to as “powder resistance”) of this powder is, for example, 40 Ω · cm or less.

【0041】次に、本発明の方法IIについて説明する。Next, the method II of the present invention will be described.

【0042】この方法IIは前述したように、インジウム
化合物および亜鉛化合物に正三価以上の原子価を有する
元素(例えば錫化合物,アルミニウム化合物,ガリウム
化合物、アンチモン化合物、ケイ素化合物およびゲルマ
ニウム化合物)から選択される少なくとも1種を加えた
ものを原料として用いる点でのみ上記方法Iと異なり、
他は上記方法Iと同様に行うものである。
As described above, this method II is selected from indium compounds and zinc compounds having elements having a valence of positive trivalence or more (for example, tin compounds, aluminum compounds, gallium compounds, antimony compounds, silicon compounds and germanium compounds). Which differs from the above method I only in that at least one of
Others are the same as in the above method I.

【0043】方法IIで用いる正三価以上の原子価を有す
る元素(例えば錫化合物、アルミニウム化合物、ガリウ
ム化合物、アンチモン化合物、ケイ素化合物およびゲル
マニウム化合物)は、酸化物または焼成後に酸化物にな
るもの(酸化物前駆体)であれば良い。これらの酸化物
前駆体としては、それぞれの元素(例えばSn,Al,
Ga,Ab,SiおよびGe)の硫化物、硫酸塩、硝酸
塩、ハロゲン化物(塩化物、臭化物等)、炭酸塩、有機
酸塩(酢酸塩、プロピオン酸塩、ナフテン酸塩等)、ア
ルコキシド(メトキシド、エトキシド等)、有機金属錯
体(アセチルアセトナート等)が挙げられる。
The element having a valence of positive trivalence or more (for example, tin compound, aluminum compound, gallium compound, antimony compound, silicon compound and germanium compound) used in the method II is an oxide or one which becomes an oxide after firing (oxidation). Precursor). As these oxide precursors, each element (for example, Sn, Al,
Ga, Ab, Si and Ge) sulfide, sulfate, nitrate, halide (chloride, bromide, etc.), carbonate, organic acid salt (acetate, propionate, naphthenate, etc.), alkoxide (methoxide) , Ethoxide, etc.), and organometallic complexes (acetylacetonate, etc.).

【0044】低温で完全に熱分解し、不純物が残存しな
いようにするためには、この中でも、硝酸塩、有機酸
塩、アルコキシド、有機金属錯体を用いるのが好まし
い。
Of these, nitrates, organic acid salts, alkoxides, and organometallic complexes are preferably used in order to completely decompose thermally at low temperature and prevent impurities from remaining.

【0045】得られた導電性材料IIはITO、ATOよ
りも耐湿性に優れ、還元によっても黒化しにくく、かつ
ITO、ATOと同等の導電性を有する。
The obtained conductive material II is superior in moisture resistance to ITO and ATO, hard to be blackened by reduction, and has the same conductivity as ITO and ATO.

【0046】本発明の導電性粉末は各種の樹脂と混合す
ることにより帯電防止樹脂組成物として利用することが
できる。
The conductive powder of the present invention can be used as an antistatic resin composition by mixing with various resins.

【0047】使用できる樹脂としては、ポリエチレン、
ポリプロピレン、ポリスチレン、塩化ビニール、酢酸ビ
ニール、ポリビニルアルコール、塩化ビニリデン、AB
S樹脂、ポリエステル、メタクリル酸メチル、ポリウレ
タン、ポリアミド、ポリアセタール、ポリカーボネー
ト、ケイ素樹脂、フッ素樹脂などの熱可塑性樹脂;フェ
ノール樹脂、ユリア樹脂、メラミン樹脂、キシレン樹
脂、フラン樹脂、アルキッド樹脂、エポキシ樹脂、ポリ
イミド樹脂などの熱硬化性樹脂が挙げられる。
Resins that can be used include polyethylene,
Polypropylene, polystyrene, vinyl chloride, vinyl acetate, polyvinyl alcohol, vinylidene chloride, AB
Thermoplastic resins such as S resin, polyester, methyl methacrylate, polyurethane, polyamide, polyacetal, polycarbonate, silicon resin, fluororesin; phenol resin, urea resin, melamine resin, xylene resin, furan resin, alkyd resin, epoxy resin, polyimide Thermosetting resins such as resins may be mentioned.

【0048】また導電性粉末は樹脂100重量部に対し
て1〜600重量部添加するのが好ましい。添加量が少
ないと導電性が不十分となり、多いと樹脂の物性を損な
うことがある。導電性粉末の分散性を改良するため、導
電性粉末の表面を表面処理剤(シラン系カップリング
剤、チタン系カップリング剤、アルミネート系カップリ
ング剤など)で処理してもよい。
Further, it is preferable to add 1 to 600 parts by weight of the conductive powder to 100 parts by weight of the resin. If the added amount is small, the conductivity becomes insufficient, and if the added amount is large, the physical properties of the resin may be impaired. In order to improve the dispersibility of the conductive powder, the surface of the conductive powder may be treated with a surface treatment agent (silane coupling agent, titanium coupling agent, aluminate coupling agent, etc.).

【0049】またその他各種の添加剤(可塑剤、安定
剤、滑剤、無機フィラー(炭酸カルシウム、マイカ、ガ
ラス、タルクなど)、無機繊維(ガラス繊維、炭素繊維
など)、ウィスカー(チタン酸カリウム、酸化亜鉛ウィ
スカーなど)、界面活性剤などを添加してもよい。
Various other additives (plasticizer, stabilizer, lubricant, inorganic filler (calcium carbonate, mica, glass, talc, etc.), inorganic fiber (glass fiber, carbon fiber, etc.), whiskers (potassium titanate, oxidation) Zinc whiskers, etc.), surfactants, etc. may be added.

【0050】導電性粉末と樹脂の混合方法としては、2
本ロール、3本ロール又は射出成形機を用いて加熱状態
または常温下で練り込む方法、または、樹脂を溶かした
溶液と粉末を混合する方法などの通常の手段を用いるこ
とができる。
The method for mixing the conductive powder and the resin is 2
It is possible to use an ordinary means such as a method of kneading using a main roll, a three roll or an injection molding machine in a heated state or at room temperature, or a method of mixing a solution in which a resin is dissolved and a powder.

【0051】[0051]

【実施例】以下、本発明の実施例について説明するが、
先ず、実施例で得られた物質の物性の測定方法について
説明しておく。
EXAMPLES Examples of the present invention will be described below.
First, the method for measuring the physical properties of the substances obtained in the examples will be described.

【0052】[測定方法] (1)粒子径と組成の測定 粒子径はSEM(走査型電子顕微鏡)で、組成はXMA
(X線マイクロアナライザー)で測定した。
[Measurement method] (1) Measurement of particle size and composition Particle size is SEM (scanning electron microscope), composition is XMA
(X-ray micro analyzer).

【0053】(2)非晶質酸化物の定量 粉末X線回折装置を用いて、「セラミックスのキャラク
タリゼーション技術」,社団法人窯業協会発行、198
7年、44〜45頁に記載の方法により、結晶質物質の
含有量を定量した。次に、その残量を非晶質酸化物であ
るとして非晶質酸化物量を定量した。
(2) Quantification of Amorphous Oxide Using a powder X-ray diffractometer, "Ceramics characterization technology", published by The Ceramic Society of Japan, 198
The content of the crystalline substance was quantified by the method described on pages 44 to 45 for 7 years. Next, the amount of the amorphous oxide was quantified assuming that the remaining amount was the amorphous oxide.

【0054】(3)体積固体抵抗の測定 体積固体抵抗(一般に「粉体抵抗」と表現されることも
ある)は試料1gを内径10mmの樹脂の円筒に入れ、
100kg/cm2 の加圧を行い、テスターで抵抗を測
定し、下記の式により求めた。
(3) Measurement of volume solid resistance For volume solid resistance (generally referred to as "powder resistance"), 1 g of a sample is put in a resin cylinder having an inner diameter of 10 mm,
The pressure was applied at 100 kg / cm 2 , the resistance was measured with a tester, and the resistance was determined by the following formula.

【0055】体積固体抵抗(Ω・cm)=[(全抵抗
(Ω)×シリンダーの内面積(cm2 )]/試料の厚さ
(cm)
Volume solid resistance (Ω · cm) = [(total resistance (Ω) × inner area of cylinder (cm 2 )] / thickness of sample (cm)

【0056】実施例1 まず、硝酸インジウム118.28gと硝酸亜鉛49.
58gとを1リットルのイオン交換水に溶解させて、イ
ンジウム塩と亜鉛塩とが溶解した水溶液を調製した。ま
た、アンモニア水(濃度28%)78.0gを750c
cのイオン交換水に溶解させて、アルカリ性水溶液を調
製した。
Example 1 First, 118.28 g of indium nitrate and 49.
58 g was dissolved in 1 liter of ion-exchanged water to prepare an aqueous solution in which an indium salt and a zinc salt were dissolved. Also, 78.0 g of ammonia water (concentration 28%) is added to 750 c
It was dissolved in ion-exchanged water of c to prepare an alkaline aqueous solution.

【0057】次いで、イオン交換水100ccが入った
容積5リットルの容器に、上で得られた水溶液とアルカ
リ性水溶液とを室温下で激しく攪拌しながら同時に滴下
して、両液を反応させた。このとき、反応系のpHが
9.0に保たれるように滴下速度を調節した。そして、
滴下終了後も更に1時間攪拌した。このようにして上記
水溶液とアルカリ性水溶液とを反応させることにより沈
殿物が生じ、スラリーが得られた。なお、この反応系に
おける金属(InおよびZn)濃度は0.32 mol/リ
ットルであった。
Next, the aqueous solution obtained above and the alkaline aqueous solution were simultaneously added dropwise at room temperature to a container having a volume of 5 liters containing 100 cc of ion-exchanged water with vigorous stirring to react the two solutions. At this time, the dropping rate was adjusted so that the pH of the reaction system was maintained at 9.0. And
After the dropping was completed, the mixture was further stirred for 1 hour. In this way, a precipitate was generated by reacting the aqueous solution with the alkaline aqueous solution, and a slurry was obtained. The metal (In and Zn) concentration in this reaction system was 0.32 mol / liter.

【0058】次に、得られたスラリーを十分に水洗した
後、沈殿物を濾取した。そして、濾取した沈殿物を12
0℃で一晩乾燥した。
Next, the obtained slurry was thoroughly washed with water and the precipitate was collected by filtration. Then, the precipitate collected by filtration is 12
Dry overnight at 0 ° C.

【0059】この後、得られた乾燥物を600℃で5時
間焼成した後、焼成物を直径2mmのアルミナボールと
ともに容積80ccのポリイミド製ポットに入れ、エタ
ノールを加えて、遊星ボールミルで2時間粉砕して粉末
を得た。
Thereafter, the dried product obtained was calcined at 600 ° C. for 5 hours, and then the calcined product was put together with alumina balls having a diameter of 2 mm in a polyimide pot having a volume of 80 cc, ethanol was added, and the mixture was pulverized for 2 hours by a planetary ball mill. To obtain a powder.

【0060】このようにして得られた粉末はX線回折測
定の結果から、60wt%の非晶質部分を含むこと及び
XMA組成分析の結果からInとZnの原子比がIn/
(In+Zn)=0.66の導電性材料Iであることが
確認され、その組成は実質的に均一であった。また、S
EM(走査型電子顕微鏡)観察の結果、得られた粉末は
平均粒子径が0.15μmで、実質的に均一粒径である
ことが確認された。
The powder thus obtained was found to contain 60 wt% of an amorphous part from the result of X-ray diffraction measurement, and the atomic ratio of In to Zn was In / Zn from the result of XMA composition analysis.
It was confirmed that the conductive material I was (In + Zn) = 0.66, and its composition was substantially uniform. Also, S
As a result of EM (scanning electron microscope) observation, it was confirmed that the obtained powder had an average particle diameter of 0.15 μm and had a substantially uniform particle diameter.

【0061】また、得られた粉末の体積固体抵抗は10
0Ωcmであった。そして、この体積固体抵抗は、40
℃、90%RH(相対湿度)の条件での耐湿性試験10
00時間後でも105Ωcmと低く、得られた粉末は耐
湿性に優れていることが確認された。
The volume solid resistance of the obtained powder is 10
It was 0 Ωcm. And this volume solid resistance is 40
Moisture resistance test under conditions of 90 ° C and 90% RH (relative humidity) 10
Even after 00 hours, it was as low as 105 Ωcm, and it was confirmed that the obtained powder had excellent moisture resistance.

【0062】実施例2 まず、硝酸インジウム59.14gと硝酸亜鉛99.1
6gとを1リットルのイオン交換水に溶解させて、イン
ジウム塩と亜鉛塩とが溶解した水溶液を調製し、この水
溶液と実施例1と同様にして調製したアルカリ性水溶液
とを実施例1と同様にして反応させて、スラリーを得
た。なお、この反応系における金属(InおよびZn)
濃度は0.3 mol/リットルであった。
Example 2 First, 59.14 g of indium nitrate and 99.1 of zinc nitrate
6 g was dissolved in 1 liter of ion-exchanged water to prepare an aqueous solution in which an indium salt and a zinc salt were dissolved, and this aqueous solution and an alkaline aqueous solution prepared in the same manner as in Example 1 were treated in the same manner as in Example 1. And reacted to obtain a slurry. The metals (In and Zn) in this reaction system
The concentration was 0.3 mol / liter.

【0063】次に、得られたスラリーを十分に水洗した
後、沈殿物を濾取した。そして、濾取した沈殿物を12
0℃で一晩乾燥した。
Next, the obtained slurry was thoroughly washed with water and the precipitate was collected by filtration. Then, the precipitate collected by filtration is 12
Dry overnight at 0 ° C.

【0064】この後、得られた乾燥物を500℃で5時
間焼成した後、焼成物を実施例1と同様にして粉砕し
て、粉末を得た。
Thereafter, the obtained dried product was fired at 500 ° C. for 5 hours, and then the fired product was pulverized in the same manner as in Example 1 to obtain a powder.

【0065】このようにして得られた粉末はX線回折測
定の結果から、70wt%の非晶質部分を含むこと及び
XMA組成分析の結果からInとZnの原子比がIn/
(In+Zn)=0.33の導電性材料Iであることが
確認され、その組成は実質的に均一であった。また、S
EM観察の結果、得られた粉末は平均粒子径が0.23
μmで、実質的に均一粒径であることが確認された。
The powder thus obtained was found to contain 70 wt% of an amorphous portion from the result of X-ray diffraction measurement, and the atomic ratio of In to Zn was In / Zn from the result of XMA composition analysis.
It was confirmed that the conductive material I was (In + Zn) = 0.33, and its composition was substantially uniform. Also, S
As a result of EM observation, the obtained powder had an average particle size of 0.23.
It was confirmed that the particle size was substantially uniform at μm.

【0066】また、得られた粉末の体積固体抵抗は55
0Ωcmであった。そして、この体積固体抵抗は、40
℃、90%RHの条件での耐湿性試験1000時間後で
も560Ωcmと低く、得られた粉末は耐湿性に優れて
いることが確認された。
The volume solid resistance of the obtained powder is 55.
It was 0 Ωcm. And this volume solid resistance is 40
Even after 1000 hours of humidity resistance test under conditions of ° C and 90% RH, it was as low as 560 Ωcm, and it was confirmed that the obtained powder has excellent humidity resistance.

【0067】実施例3 実施例1と同様にしてインジウムと亜鉛の金属塩を溶解
した水溶液を調製した後、更に塩化第二錫7.7gを添
加して得た水溶液と、実施例1と同様にして調製したア
ルカリ性水溶液とを実施例1と同様にして反応させてス
ラリーを得た。
Example 3 Similar to Example 1, an aqueous solution prepared by dissolving metal salts of indium and zinc was prepared in the same manner as in Example 1, and then 7.7 g of stannic chloride was added, and the same solution as in Example 1. The alkaline aqueous solution prepared as described above was reacted in the same manner as in Example 1 to obtain a slurry.

【0068】次に、得られたスラリーを十分に水洗した
後、沈殿物を濾取した。そして、濾取した沈殿物を12
0℃で乾燥した後、600℃で5時間焼成した。ボール
ミルとともに容積80ccのポリイミド製のポットに入
れ、エタノールを加えて遊星ボールミルで2時間粉砕し
た。
Next, the obtained slurry was thoroughly washed with water and the precipitate was collected by filtration. Then, the precipitate collected by filtration is 12
After drying at 0 ° C, it was baked at 600 ° C for 5 hours. It was put in a polyimide pot having a volume of 80 cc together with a ball mill, ethanol was added, and the mixture was pulverized for 2 hours in a planetary ball mill.

【0069】この後、得られた焼成物を実施例1と同様
にして粉砕して、粉末を得た。このようにして得られた
粉末はX線回折測定の結果から、60wt%の非晶質部
分を含むことがわかった。また組成分析からInとZn
の原子比[In/(In+Zn)]=0.63であり、
Snを6原子%含むことがわかった。粉末の体積固体抵
抗は90Ωcmであった。そして、この体積固体抵抗
は、40℃、90%RHの条件での耐湿性試験1000
時間後でも100Ωcmと低く、得られた粉末は耐湿性
に優れていることが確認された。
Thereafter, the obtained fired product was pulverized in the same manner as in Example 1 to obtain a powder. From the result of X-ray diffraction measurement, it was found that the powder thus obtained contains 60 wt% of an amorphous part. Moreover, from the composition analysis, In and Zn
The atomic ratio [In / (In + Zn)] = 0.63,
It was found to contain 6 atomic% of Sn. The volume solid resistance of the powder was 90 Ωcm. And this volume solid resistance is measured by the humidity resistance test 1000 under the conditions of 40 ° C. and 90% RH.
Even after the lapse of time, it was as low as 100 Ωcm, and it was confirmed that the obtained powder had excellent moisture resistance.

【0070】実施例4 まず、硝酸インジウム6水和物682gと硝酸亜鉛6水
和物248gとを5リットルのエタノールに溶解させ
て、インジウム塩と亜鉛塩とが溶解した溶液を調製し
た。また、しゅう酸2水和物462gを5リットルのエ
タノールに溶解させて、しゅう酸水溶液を調製した。
Example 4 First, 682 g of indium nitrate hexahydrate and 248 g of zinc nitrate hexahydrate were dissolved in 5 liters of ethanol to prepare a solution in which an indium salt and a zinc salt were dissolved. Further, 462 g of oxalic acid dihydrate was dissolved in 5 liters of ethanol to prepare an oxalic acid aqueous solution.

【0071】室温下、別途容器にエタノール1リットル
をいれてよく撹拌しておき、そこへ同じ流量に制御した
2種の溶液を同時に滴下した。滴下終了後、温度を40
℃に上げて、4時間熟成した。その後、ろ過し、エタノ
ールでよく洗浄し、110℃で12時間乾燥した。さら
に、300℃で2時間焼成した。
At room temperature, 1 liter of ethanol was separately placed in a separate container and well stirred, and two kinds of solutions controlled to the same flow rate were simultaneously added dropwise thereto. After the dropping is completed, the temperature is set to 40.
The temperature was raised to ℃ and aged for 4 hours. Then, it was filtered, washed well with ethanol, and dried at 110 ° C. for 12 hours. Furthermore, it baked at 300 degreeC for 2 hours.

【0072】ボールミルでの粉砕(20時間)の後、粉
末を真空中で200℃、2時間還元処理したところ、淡
黄色の粉末を得た。
After crushing with a ball mill (20 hours), the powder was subjected to reduction treatment in vacuum at 200 ° C. for 2 hours to obtain a pale yellow powder.

【0073】このようにして得られた粉末のX線回折測
定を実施例1と同様に行ったところ、非晶質部分は90
%であり、実質的に非晶質であることが確認された。ま
た組成分析から、InとZnの原子比[In/(In+
Zn)]=0.67であった。さらに粉末の体積固体抵
抗を測定したところ、5Ωcmであった。そして、この
体積固体抵抗は、60℃、95%RHの条件での耐湿性
試験1000時間後にも6Ωcmであり、ほとんど変化
がなく、耐湿性に優れていることがわかった。また、S
EMとXMAの分析によりこの粉末は平均粒径0.20
μmで均一な組成を持つことがわかった。
The powder thus obtained was subjected to X-ray diffraction measurement in the same manner as in Example 1. As a result, 90
%, And it was confirmed to be substantially amorphous. From the composition analysis, the atomic ratio of In and Zn [In / (In +
Zn)] = 0.67. Further, the volume solid resistance of the powder was measured and found to be 5 Ωcm. The volume solid resistance was 6 Ωcm even after 1000 hours of the humidity resistance test under the conditions of 60 ° C. and 95% RH, and it was found that there was almost no change and the humidity resistance was excellent. Also, S
EM and XMA analysis showed that the powder had an average particle size of 0.20
It was found to have a uniform composition in μm.

【0074】実施例5 まず、塩化インジウム4水和物623gと酢酸亜鉛2水
和物82gとを1リットルのメトキシエタノールに溶解
させて、インジウム塩と亜鉛塩とが溶解した溶液を調製
した。また、しゅう酸2水和物494gを5リットルの
メトキシエタノールに溶解させて、しゅう酸水溶液を調
製した。
Example 5 First, 623 g of indium chloride tetrahydrate and 82 g of zinc acetate dihydrate were dissolved in 1 liter of methoxyethanol to prepare a solution in which an indium salt and a zinc salt were dissolved. Further, 494 g of oxalic acid dihydrate was dissolved in 5 liters of methoxyethanol to prepare an oxalic acid aqueous solution.

【0075】これらの溶液を用いて、実施例4と同様に
粉末を調製した。但し、焼成温度は350℃とした。こ
の粉末も淡黄色であった。
Powders were prepared in the same manner as in Example 4 using these solutions. However, the firing temperature was 350 ° C. This powder was also pale yellow.

【0076】粉末のX線回折測定を実施例1と同様に行
ったところ、非晶質部分は80%であり、実質的に非晶
質であることが確認された。また組成分析からInとZ
nの原子比[In/(In+Zn)]=0.85であっ
た。さらに粉末の体積固体抵抗を測定したところ、4Ω
cmであった。そして、この体積固体抵抗は、60℃、
95%RHの条件での耐湿性試験1000時間後にも6
Ωcmであり、ほとんど変化がなく、耐湿性に優れてい
ることがわかった。
When the X-ray diffraction measurement of the powder was carried out in the same manner as in Example 1, it was confirmed that the amorphous portion was 80% and was substantially amorphous. Moreover, from the composition analysis, In and Z
The atomic ratio of n was [In / (In + Zn)] = 0.85. Furthermore, when the volume solid resistance of the powder was measured, it was 4Ω.
It was cm. And this volume solid resistance is 60 ° C,
Moisture resistance test under conditions of 95% RH 6 after 1000 hours
It was found to be excellent in moisture resistance, with almost no change.

【0077】また、SEMとXMAの分析によりこの粉
末は平均粒径0.15μmで均一な組成を持つことがわ
かった。
Further, by SEM and XMA analysis, it was found that this powder had an average particle size of 0.15 μm and a uniform composition.

【0078】実施例6 まず、硝酸インジウム6水和物682gと硝酸亜鉛6水
和物248gとナーセム錫108gを5リットルのイソ
プロパノールに溶解させて、インジウム塩と亜鉛塩と錫
塩とが溶解した溶液を調製した。また、しゅう酸2水和
物532gを5リットルのエタノールに溶解させて、し
ゅう酸水溶液を調製した。
Example 6 First, a solution in which 682 g of indium nitrate hexahydrate, 248 g of zinc nitrate hexahydrate and 108 g of nasem tin were dissolved in 5 liters of isopropanol to dissolve indium salt, zinc salt and tin salt Was prepared. Also, 532 g of oxalic acid dihydrate was dissolved in 5 liters of ethanol to prepare an oxalic acid aqueous solution.

【0079】これらの溶液を用いて、実施例4と同様に
粉末を調製した。この粉末も淡黄色であった。
Powders were prepared in the same manner as in Example 4 using these solutions. This powder was also pale yellow.

【0080】粉末のX線回折測定を行ったところ、非晶
質部分は90%であり、実質的に非晶質であることが確
認された。また組成分析から、InとZnの原子比[I
n/(In+Zn)]=0.67であり、錫の含有量は
9原子%であった。
When X-ray diffraction measurement of the powder was carried out, it was confirmed that the amorphous portion was 90% and was substantially amorphous. From the composition analysis, the atomic ratio of In and Zn [I
n / (In + Zn)] = 0.67, and the tin content was 9 atom%.

【0081】さらに粉末の体積固体抵抗を測定したとこ
ろ、4Ωcmであった。そして、この体積固体抵抗は、
60℃、95%RHの条件での耐湿性試験1000時間
後にも6Ωcmであり、ほとんど変化がなく、耐湿性に
優れていることがわかった。また、SEMとXMAの分
析によりこの粉末は平均粒径0.17μmで均一な組成
を持つことがわかった。
Further, the volume solid resistance of the powder was measured and found to be 4 Ωcm. And this volume solid resistance is
It was found that even after 1000 hours of humidity resistance test under conditions of 60 ° C. and 95% RH, it was 6 Ωcm, and there was almost no change, and the humidity resistance was excellent. Further, it was found by SEM and XMA analysis that this powder had a uniform composition with an average particle size of 0.17 μm.

【0082】実施例7 まず、硝酸インジウム6水和物613gと硝酸亜鉛6水
和物298gとを5リットルのブタノールに溶解させ
て、インジウム塩と亜鉛塩とが溶解した溶液を調製し
た。また、しゅう酸2水和物451gを5リットルのブ
タノールに溶解させて、しゅう酸水溶液を調製した。
Example 7 First, 613 g of indium nitrate hexahydrate and 298 g of zinc nitrate hexahydrate were dissolved in 5 liters of butanol to prepare a solution in which an indium salt and a zinc salt were dissolved. Further, 451 g of oxalic acid dihydrate was dissolved in 5 liters of butanol to prepare an oxalic acid aqueous solution.

【0083】これらの溶液を用いて、実施例5と同様に
粉末を調製した。この粉末も淡黄色であった。
Powders were prepared in the same manner as in Example 5 using these solutions. This powder was also pale yellow.

【0084】粉末のX線回折測定を行ったところ、非晶
質部分は80%であり、実質的に非晶質であることが確
認された。また組成分析から、InとZnの原子比[I
n/(In+Zn)]=0.60であった。
When X-ray diffraction measurement of the powder was carried out, it was confirmed that the amorphous portion was 80% and was substantially amorphous. From the composition analysis, the atomic ratio of In and Zn [I
n / (In + Zn)] = 0.60.

【0085】さらに粉末の体積固体抵抗を測定したとこ
ろ、20Ωcmであった。そして、この体積固体抵抗
は、60℃、95%RHの条件での耐湿性試験1000
時間後にも22Ωcmであり、ほとんど変化がなく、耐
湿性に優れていることがわかった。
Further, the volume solid resistance of the powder was measured and found to be 20 Ωcm. And this volume solid resistance is measured by the humidity resistance test 1000 under the conditions of 60 ° C. and 95% RH.
It was 22 Ωcm even after the lapse of time, and it was found that there was almost no change and the moisture resistance was excellent.

【0086】また、SEMとXMAの分析によりこの粉
末は平均粒径0.19μmで均一な組成を持つことがわ
かった。
Further, by SEM and XMA analysis, it was found that this powder had an average particle size of 0.19 μm and a uniform composition.

【0087】実施例8 まず、酢酸インジウム6水和物102gと酢酸亜鉛42
gとを140ミリリットルのモノエタノールアミンと8
60ミリリットルのエタノールの混合物に溶解させて、
溶液を調製した。
Example 8 First, 102 g of indium acetate hexahydrate and zinc acetate 42
g and 140 ml of monoethanolamine and 8
Dissolve in a mixture of 60 ml of ethanol,
A solution was prepared.

【0088】この溶液を、減圧下、80℃で溶媒を除去
し、400℃で1時間、焼成し、熱分解させた。次に、
粉末を真空中で200℃、2時間還元処理したところ、
淡黄色の粉末を得た。
The solution was pyrolyzed by removing the solvent at 80 ° C. under reduced pressure and baking at 400 ° C. for 1 hour. next,
When the powder was reduced in a vacuum at 200 ° C. for 2 hours,
A pale yellow powder was obtained.

【0089】粉末のX線回折測定を行ったところ、非晶
質部分は80%であり、実質的に非晶質であることが確
認された。また組成分析から、InとZnの原子比[I
n/(In+Zn)]=0.70であった。さらに粉末
の体積固体抵抗を測定したところ、7Ωcmであった。
そして、この体積固体抵抗は、60℃、95%RHの条
件での耐湿性試験1000時間後にも8Ωcmであり、
ほとんど変化がなく、耐湿性に優れていることがわかっ
た。
When X-ray diffraction measurement of the powder was carried out, it was confirmed that the amorphous portion was 80% and was substantially amorphous. From the composition analysis, the atomic ratio of In and Zn [I
n / (In + Zn)] = 0.70. Further, the volume solid resistance of the powder was measured and found to be 7 Ωcm.
And this volume solid resistance is 8 Ωcm even after 1000 hours of the humidity resistance test under the conditions of 60 ° C. and 95% RH,
It was found that there was almost no change and the moisture resistance was excellent.

【0090】また、SEMとXMAの分析によりこの粉
末は平均粒径0.15μmで均一な組成を持つことがわ
かった。
Further, it was found by SEM and XMA analysis that this powder had an average particle size of 0.15 μm and a uniform composition.

【0091】[0091]

【発明の効果】本発明によれば、ITO、ATOよりも
耐湿性に優れ、黒化しにくく、かつITO、ATOと同
等の導電性を有する導電性材料およびその製造方法が提
供された。
According to the present invention, there is provided a conductive material which is superior in moisture resistance to ITO and ATO, is less likely to be blackened, and has the same conductivity as ITO and ATO, and a method for producing the same.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 InとZnを主成分とし、Inの原子比
In/(In+Zn)が0.1〜0.9である実質的に
非晶質の酸化物からなることを特徴とする導電性材料。
1. A conductive material comprising In and Zn as a main component and a substantially amorphous oxide having an atomic ratio In / In / (In + Zn) of 0.1 to 0.9. material.
【請求項2】 非晶質酸化物が、実質的にIn及びZn
のみからなる請求項1に記載の導電性材料。
2. The amorphous oxide is substantially In and Zn.
The conductive material according to claim 1, which is composed of only.
【請求項3】 実質的に非晶質の酸化物が、InとZn
の他に正三価以上の原子価を有する第3の元素の少なく
とも1種を、全第3元素の原子比(全第3元素/(In
+Zn+全第3元素))が20原子%以下となる割合で
含むものである請求項1に記載の導電性材料。
3. The substantially amorphous oxide is In and Zn.
In addition, at least one kind of the third element having a valence of positive trivalence or more is added to the atomic ratio of all the third elements (total third element / (In
The conductive material according to claim 1, wherein the content of + Zn + all third elements) is 20 atomic% or less.
【請求項4】 請求項1〜3のいずれか一項に記載の実
質的に非晶質の酸化物を還元処理してなる導電性材料。
4. A conductive material obtained by subjecting the substantially amorphous oxide according to claim 1 to a reduction treatment.
【請求項5】 実質的に非晶質の酸化物の体積固体抵抗
が40Ω・cm以下である、請求項1〜4のいずれか一
項に記載の導電性材料。
5. The conductive material according to claim 1, wherein the volume solid resistance of the substantially amorphous oxide is 40 Ω · cm or less.
【請求項6】 インジウム化合物および亜鉛化合物を用
い、これらの少なくとも1種を含む1種以上の溶液か
ら、沈澱形成剤により形成される沈澱を、固液分離し、
必要により焼成、還元処理して実質的に非晶質の酸化物
を得ることを特徴とする請求項1または2に記載の導電
性材料の製造方法。
6. An indium compound and a zinc compound are used to perform solid-liquid separation of a precipitate formed by a precipitation forming agent from one or more solutions containing at least one of these compounds,
The method for producing a conductive material according to claim 1 or 2, wherein a substantially amorphous oxide is obtained by firing and reduction treatment if necessary.
【請求項7】 インジウム化合物、亜鉛化合物および正
三価以上の原子価を有する元素の少なくとも1種の化合
物を用い、これらの少なくとも1種を含む1種以上の溶
液から、沈澱形成剤により形成される沈澱を、固液分離
し、必要により、焼成、還元処理して実質的に非晶質の
酸化物を得ることを特徴とする請求項3に記載の導電性
材料の製造方法。
7. A precipitation-forming agent is formed from at least one compound of an indium compound, a zinc compound and an element having a valence of positive trivalence or more, and from at least one solution containing at least one of these compounds. The method for producing a conductive material according to claim 3, wherein the precipitate is subjected to solid-liquid separation, and if necessary, subjected to firing and reduction treatment to obtain a substantially amorphous oxide.
JP31508693A 1992-12-16 1993-12-15 Electrically conductive material and its production Withdrawn JPH06234522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31508693A JPH06234522A (en) 1992-12-16 1993-12-15 Electrically conductive material and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33640692 1992-12-16
JP4-336406 1992-12-16
JP31508693A JPH06234522A (en) 1992-12-16 1993-12-15 Electrically conductive material and its production

Publications (1)

Publication Number Publication Date
JPH06234522A true JPH06234522A (en) 1994-08-23

Family

ID=26568175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31508693A Withdrawn JPH06234522A (en) 1992-12-16 1993-12-15 Electrically conductive material and its production

Country Status (1)

Country Link
JP (1) JPH06234522A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707320A1 (en) * 1994-10-13 1996-04-17 AT&T Corp. Transparent conductors comprising zinc-indium-oxide and methods for making films
US6221520B1 (en) 1996-07-26 2001-04-24 Asahi Glass Company Ltd. Transparent conductive film and process for forming a transparent electrode
WO2013039039A1 (en) 2011-09-17 2013-03-21 日本化薬株式会社 Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet, and method for producing same
JP2014005165A (en) * 2012-06-22 2014-01-16 Solar Applied Materials Technology Corp Indium gallium zinc oxide, production method and application thereof
WO2014061279A1 (en) 2012-10-19 2014-04-24 日本化薬株式会社 Heat-ray-shielding sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707320A1 (en) * 1994-10-13 1996-04-17 AT&T Corp. Transparent conductors comprising zinc-indium-oxide and methods for making films
US6221520B1 (en) 1996-07-26 2001-04-24 Asahi Glass Company Ltd. Transparent conductive film and process for forming a transparent electrode
US6465117B2 (en) 1996-07-26 2002-10-15 Asahi Glass Company Ltd. Transparent conductive film and process for forming a transparent electrode
WO2013039039A1 (en) 2011-09-17 2013-03-21 日本化薬株式会社 Heat ray shielding adhesive composition, heat ray shielding transparent adhesive sheet, and method for producing same
EP3460012A2 (en) 2011-09-17 2019-03-27 Nippon Kayaku Kabushiki Kaisha Heat-ray-shielding-adhesive composition, heat ray shielding transparent adhesive sheet, and method for manufacturing same
JP2014005165A (en) * 2012-06-22 2014-01-16 Solar Applied Materials Technology Corp Indium gallium zinc oxide, production method and application thereof
WO2014061279A1 (en) 2012-10-19 2014-04-24 日本化薬株式会社 Heat-ray-shielding sheet

Similar Documents

Publication Publication Date Title
JP2695605B2 (en) Target and manufacturing method thereof
JP4992003B2 (en) Method for producing metal oxide fine particles
TWI523813B (en) Tin oxide particles and the method for preparing the same
KR20080078864A (en) Methods for production of metal oxide nano particles, and nano particles and preparations produced thereby
JP4018974B2 (en) Tin oxide powder, method for producing the same, and method for producing high-density indium tin oxide target using the same
JP2008513324A (en) Fine-grained alkaline earth metal titanate and its production method under the use of titanium oxide particles
JP2007070188A (en) Method for producing zinc oxide fine particle and aggregate and dispersion solution of the same
KR20080080350A (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparations produced thereby
KR100444142B1 (en) ITO fine powder and method for producing the same
JP5726728B2 (en) ITO powder, ITO paint, and transparent conductive film formed using ITO paint
JPH06234522A (en) Electrically conductive material and its production
KR101512359B1 (en) Manufacturing Methods of Colloidal Cerium Oxides
JP3590646B2 (en) Conductive material and method of manufacturing the same
Srisombat et al. Chemical synthesis of magnesium niobate powders
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH06236710A (en) Conductive material and manufacture and manufacture thereof
JP4575656B2 (en) Conductive powder
JP2012216550A (en) Fluid dispersion for forming transparent conductive film, transparent conductive film and method for manufacturing transparent conductive film
JP2001302240A (en) Electroconductive oxide powder and method for producing the same
JPH0769631A (en) Flaky electric conductive zinc oxide and production thereof
CN109896541A (en) A kind of preparation method of ultrafine cuprous oxide powder
KR101514945B1 (en) Manufacturing method of gallium oxide nano particle using diethylene glycol and gallium oxide therefrom
WO2023277127A1 (en) Titanium oxide particles and method for producing same
KR101117309B1 (en) Method for producing indium tin oxides fine powder
KR100716124B1 (en) Coated barium titanate particle and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306