JP4575656B2 - Conductive powder - Google Patents

Conductive powder Download PDF

Info

Publication number
JP4575656B2
JP4575656B2 JP2003342656A JP2003342656A JP4575656B2 JP 4575656 B2 JP4575656 B2 JP 4575656B2 JP 2003342656 A JP2003342656 A JP 2003342656A JP 2003342656 A JP2003342656 A JP 2003342656A JP 4575656 B2 JP4575656 B2 JP 4575656B2
Authority
JP
Japan
Prior art keywords
conductive powder
tin oxide
water
core material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003342656A
Other languages
Japanese (ja)
Other versions
JP2005108735A (en
Inventor
博 藤井
浩一 瓦谷
克彦 吉丸
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003342656A priority Critical patent/JP4575656B2/en
Publication of JP2005108735A publication Critical patent/JP2005108735A/en
Application granted granted Critical
Publication of JP4575656B2 publication Critical patent/JP4575656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、導電性粉末に関し、詳しくは、例えば、紙、プラスチック、ゴム、樹脂、塗料等に混入してこれらに導電性を付与する、酸化錫層が実質的にアンチモンを含まない導電性粉末に関するものである。   The present invention relates to a conductive powder, and more specifically, for example, a conductive powder that is mixed with paper, plastic, rubber, resin, paint, etc. and imparts conductivity thereto, and the tin oxide layer substantially does not contain antimony. It is about.

近年、用途により、プラスチックにも導電性が求められてきている。例えば、ハウジング内の電気部品を大きな電磁界から遮蔽したり、帯電した部品を放電させたりする場合、ハウジング等に用いられるプラスチックは導電性のものであることが好ましい。このようにプラスチックに導電性を付与する方法としてはポリマーに導電性粉末を添加する方法が知られており、導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等をドープした酸化錫粉末等が知られている。   In recent years, conductivity has been required for plastics depending on applications. For example, when shielding an electrical component in the housing from a large electromagnetic field or discharging a charged component, the plastic used for the housing or the like is preferably conductive. Thus, as a method for imparting conductivity to a plastic, a method of adding a conductive powder to a polymer is known. Examples of the conductive powder include tin oxide powder doped with metal powder, carbon black, antimony, and the like. Etc. are known.

しかし、金属粉末やカーボンブラックをポリマーに添加すると得られるプラスチックが黒色になり、プラスチックの用途が限定されるため好ましくない。また、アンチモン等をドープした酸化錫粉末をポリマーに添加したものを用いると、導電性が高いためこの点では好ましいが、プラスチックが青黒色に着色するためカーボンブラック等と同様にプラスチックの用途が限定されると共に、アンチモン自体に毒性が懸念されるため、使用することが好ましくない。   However, the addition of metal powder or carbon black to the polymer is not preferable because the resulting plastic becomes black and the use of the plastic is limited. In addition, it is preferable to use a tin oxide powder doped with antimony or the like added to the polymer because of its high conductivity. However, since the plastic is colored blue-black, the use of the plastic is limited like carbon black. At the same time, there is a concern about the toxicity of antimony itself, which is not preferable.

これに対し、特許文献1(特許第2994020号公報)には、二酸化チタン等の粒子表面に、酸化スズの水和物からなる被覆層を形成され、得られた被覆処理物を非酸化性雰囲気中250〜600℃で加熱処理する導電性二酸化チタン粉末の製造方法が開示されている。該方法によれば、得られる導電性二酸化チタン粉末は、白色度に優れ、毒性の危惧がないものとなる。   On the other hand, Patent Document 1 (Japanese Patent No. 2999420) discloses that a coating layer made of a hydrate of tin oxide is formed on the surface of particles of titanium dioxide or the like, and the resulting coating treatment is treated in a non-oxidizing atmosphere. The manufacturing method of the electroconductive titanium dioxide powder which heat-processes at 250-600 degreeC inside is disclosed. According to this method, the obtained conductive titanium dioxide powder is excellent in whiteness and has no risk of toxicity.

特許第2994020号公報(第1頁)Japanese Patent No. 2999420 (first page)

しかしながら、上記導電性二酸化チタン粉末は、粉体抵抗が低くてもせいぜい580Ω・cm程度であり、プラスチックの導電性を向上させるためには、粉体抵抗をさらに向上させることが望まれている現状では、導電性が十分に高いとはいえない。従って、本発明の目的は、導電性及び白色度に優れ、毒性の危惧がない導電性粉末を提供することにある。   However, the conductive titanium dioxide powder is at most about 580 Ω · cm even if the powder resistance is low, and in order to improve the conductivity of the plastic, it is desired to further improve the powder resistance. However, it cannot be said that the conductivity is sufficiently high. Accordingly, an object of the present invention is to provide a conductive powder which is excellent in conductivity and whiteness and has no fear of toxicity.

かかる実情において、本発明者は鋭意検討を行った結果、芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末は格子定数のaが4.74オングストローム以上であるもの、又は酸化錫からなる導電性粉末であって、実質的にアンチモンを含まず、且つ、格子定数のaが4.74オングストローム以上であるものは、導電性及び白色度に優れ、毒性の危惧がないことを見出し、本発明を完成するに至った。   In such a situation, the present inventor has conducted intensive studies, and as a result, is a conductive powder in which a tin oxide layer is formed on the surface of the core material, the tin oxide layer being substantially free of antimony, and The conductive powder is one having a lattice constant a of 4.74 angstroms or more, or a conductive powder made of tin oxide, substantially free of antimony, and having a lattice constant a of 4.74 angstroms or more. Was found to be excellent in electrical conductivity and whiteness, and has no fear of toxicity, and completed the present invention.

すなわち、本発明(1)は、硫酸バリウム、二酸化チタン、アルミナ又は二酸化珪素のいずれかからなる芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末は格子定数のaが4.74〜4.7518オングストロームであることを特徴とする導電性粉末を提供するものである。 That is, the present invention (1) is a conductive powder in which a tin oxide layer is formed on the surface of a core material made of barium sulfate, titanium dioxide, alumina, or silicon dioxide, and the tin oxide layer is substantially without the antimony and said conductive powder is to provide a conductive powder, wherein the a of the lattice constant is 4.74 to 4.7518 angstroms.

また、本発明(2)は、酸化錫からなる導電性粉末であって、実質的にアンチモンを含まず、且つ、格子定数のaが4.74〜4.7518オングストロームであることを特徴とする導電性粉末を提供するものである。 Further, the present invention (2) is characterized in that a conductive powder consisting of tin oxide, substantially free of antimony and, a lattice constant is 4.74 to 4.7518 angstroms An electrically conductive powder is provided.

また、本発明()は、本発明(1)又は(2)において、体積抵抗率が100Ω・cm未満であることを特徴とする導電性粉末を提供するものである。 Moreover, this invention ( 3 ) provides the electroconductive powder characterized by volume resistivity being less than 100 ohm * cm in this invention (1) or (2) .

本発明に係る導電性粉末は、白色度が高いため樹脂、塗料等に添加しても導電性粉末自体の色で着色し難く、アンチモンを実質的に含まないため毒性の危惧がなく、導電性が高い。   Since the conductive powder according to the present invention has high whiteness, it is difficult to be colored with the color of the conductive powder itself even when added to a resin, paint, etc., and since it does not substantially contain antimony, there is no risk of toxicity, and the conductive powder Is expensive.

本発明に係る導電性粉末は、第1の実施の形態が、硫酸バリウム、二酸化チタン、アルミナ又は二酸化珪素のいずれかからなる芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末は格子定数のaが4.74〜4.7518オングストロームであることを特徴とする導電性粉末であり、第2の実施の形態が、酸化錫からなる導電性粉末であって、実質的にアンチモンを含まず、且つ、格子定数のaが44.74〜4.7518オングストロームである導電性粉末である。 In the conductive powder according to the present invention, the first embodiment is a conductive powder in which a tin oxide layer is formed on the surface of a core material made of barium sulfate, titanium dioxide, alumina, or silicon dioxide. the tin oxide layer is substantially free from antimony, and, said conductive powder is conductive powder, wherein the a of the lattice constant is 4.74 to 4.7518 angstroms, the embodiment 2 is a conductive powder consisting of tin oxide, substantially free of antimony and, a lattice constant is a conductive powder which is 44.74 to 4.7518 angstroms .

(本発明に係る導電性粉末の第1の実施の形態)
まず、本発明に係る導電性粉末の第1の実施の形態について説明する。本形態で用いられる芯材は、その表面に酸化錫層を形成することが可能な実質的に粒状、フレーク状又は針状の芯材である。芯材の材質としては、硫酸バリウム、二酸化チタン、アルミナ、二酸化珪素が挙げられ、この他雲母、タルク、ホウ酸アルミニウム、酸化亜鉛(ZnO)及びチタン酸アルカリ金属塩等が挙げられる。
(First embodiment of conductive powder according to the present invention)
First, a first embodiment of the conductive powder according to the present invention will be described. The core material used in this embodiment is a substantially granular, flaky or needle-like core material capable of forming a tin oxide layer on the surface thereof. As the material of the core material, barium sulfate, include titanium dioxide, alumina, silicon dioxide, the other mica, talc, aluminum borate, zinc oxide (ZnO) and the alkaline metal titanate and the like.

芯材は、粒度D50が通常0.01〜100μm、好ましくは0.1〜10μmである。芯材の粒径が該範囲内にあると、酸化錫層を形成して得られる導電性粉末の粒度が樹脂等中に分散し易いものとなるため好ましい。本明細書において粒度D50とは、レーザー回折散乱法で求められる体積平均粒径をいう。 The core material, particle size D 50 is usually 0.01 to 100 [mu] m, preferably 0.1 to 10 [mu] m. It is preferable that the particle diameter of the core material be within this range since the particle diameter of the conductive powder obtained by forming the tin oxide layer is easily dispersed in the resin or the like. In the present specification, the particle size D 50 refers to a volume average particle size determined by a laser diffraction scattering method.

芯材は、比表面積が通常0.1〜150m/g、好ましくは10〜50m/gである。芯材の比表面積が該範囲内にあると、酸化錫層を形成して得られる導電性粉末の粒子が樹脂等中に分散し易いものとなるため好ましい。一方、該比表面積が0.1m/g未満であると、導電性粉末の粒子が大きいことから塗料化したときに均一な塗膜を得られ難いため好ましくない。また、該比表面積が150m/gを超えると、酸化錫の粒径と同じ大きさに近くなることから密着性の良いコート層を形成し難くなるため好ましくない。 The core material has a specific surface area of usually 0.1 to 150 m 2 / g, preferably 10 to 50 m 2 / g. It is preferable that the specific surface area of the core material is within the above range because the particles of the conductive powder obtained by forming the tin oxide layer are easily dispersed in the resin or the like. On the other hand, when the specific surface area is less than 0.1 m 2 / g, since the conductive powder particles are large, it is difficult to obtain a uniform coating film when formed into a paint, which is not preferable. On the other hand, if the specific surface area exceeds 150 m 2 / g, it becomes difficult to form a coat layer with good adhesion because it is close to the same size as the particle size of tin oxide.

本発明に係る導電性粉末の第1の実施の形態は、上記芯材の表面に酸化錫層が形成される。酸化錫層は、酸化錫SnOの微粒子が芯材の表面を実質的に隙間なく被覆して形成される表面が略平滑な層であって、実質的にアンチモンを含まないものである。なお、本明細書において実質的にアンチモンを含まないとは、アンチモンを不純物として含まないことを意味し、具体的には酸化錫層中のアンチモンの含有量が重量基準で1000ppm未満であることを意味する。第1の実施の形態の導電性粉末は、このように実質的にアンチモンを含まないため、毒性の危惧がないものとなる。 In the first embodiment of the conductive powder according to the present invention, a tin oxide layer is formed on the surface of the core material. The tin oxide layer is a layer having a substantially smooth surface formed by covering the surface of the core material with fine particles of tin oxide SnO 2 substantially without any gap, and is substantially free of antimony. In the present specification, “substantially free of antimony” means that antimony is not contained as an impurity. Specifically, the content of antimony in the tin oxide layer is less than 1000 ppm on a weight basis. means. Since the conductive powder of the first embodiment does not substantially contain antimony as described above, there is no risk of toxicity.

本発明に係る導電性粉末の第1の実施の形態は、導電性粉末中における前記酸化錫層の含有量が、通常10〜90重量%、好ましくは20〜80重量%である。上記含有量が該範囲内にあると、導電性粉末の導電性が高いと共に、芯材と酸化錫層との結合が比較的強く導電性粉末を樹脂等に混練しても酸化錫層が剥離し難いものとなるため好ましい。一方、上記含有量が10重量%未満であると、酸化錫の量が少なく、導電性粉末の導電性が不十分になり易いため好ましくない。また、上記含有量が90重量%を超えると、導電性粉末の凝集が強くなり、塗膜の平滑性が失われることによりコート粉のメリットがなくなり易いため好ましくない。   In the first embodiment of the conductive powder according to the present invention, the content of the tin oxide layer in the conductive powder is usually 10 to 90% by weight, preferably 20 to 80% by weight. When the above content is within the above range, the conductive powder has high conductivity, and the core and tin oxide layer have a relatively strong bond, and even if the conductive powder is kneaded with resin or the like, the tin oxide layer peels off. This is preferable because it is difficult to perform. On the other hand, if the content is less than 10% by weight, the amount of tin oxide is small and the conductivity of the conductive powder tends to be insufficient, such being undesirable. Moreover, when the said content exceeds 90 weight%, since aggregation of electroconductive powder will become strong and the smoothness of a coating film will be lost, since the merit of coat powder is easy to be lost, it is unpreferable.

本発明に係る導電性粉末の第1の実施の形態は、格子定数のaが通常4.74オングストローム以上、好ましくは4.74〜4.7518オングストロームである。また、格子定数のcが通常3.18オングストローム以上、好ましくは3.183オングストローム以上である。格子定数のa及びcが上記範囲内にあると、導電性粉末の体積抵抗率が小さくなるため好ましい。本発明において、格子定数a及びcは、リートベルト法により求められる格子定数を示す。 The first embodiment of conductive powder according to the present invention, a lattice constant is usually 4.74 Å or more, preferably from 4.74 to 4.7518 angstroms. The lattice constant c is usually 3.18 angstroms or more, preferably 3.183 angstroms or more. It is preferable that the lattice constants a and c are in the above-mentioned range since the volume resistivity of the conductive powder becomes small. In the present invention, the lattice constants a and c are lattice constants determined by the Rietveld method.

本発明に係る導電性粉末の第1の実施の形態は、粒度D50が通常0.01〜100μm、好ましくは0.05〜50μm、さらに好ましくは0.1〜10μm、特に好ましくは0.2〜3.5μmである。導電性粉末の粒径が該範囲内にあると、樹脂等中に分散し易いものとなるため好ましい。 In the first embodiment of the conductive powder according to the present invention, the particle size D50 is usually 0.01 to 100 μm, preferably 0.05 to 50 μm, more preferably 0.1 to 10 μm, and particularly preferably 0.2. ~ 3.5 μm. It is preferable for the particle size of the conductive powder to fall within this range because it becomes easy to disperse in a resin or the like.

本発明に係る導電性粉末の第1の実施の形態は、比表面積が通常1〜300m/g、好ましくは5〜200m/g、さらに好ましくは10〜100m/gである。導電性粉末の比表面積が該範囲内にあると、樹脂等中に分散し易いものとなるため好ましい。一方、該比表面積が1m/g未満であると、導電性粉末の粒子が大きいことから塗料化したときに均一な塗膜を得られ難いため好ましくない。また、該比表面積が300m/gを超えると、酸化錫の粒径と同じ大きさに近くなることから密着性の良いコート層を形成し難くなるため好ましくない。第1の実施の形態の導電性粉末は、体積抵抗率が通常100Ω・cm未満、好ましくは50Ω・cm未満にあり、導電性が高い。上記本発明に係る導電性粉末の第1の実施の形態は、例えば、下記の導電性粉末の製造方法の第1又は第2の実施の形態により、製造することができる。 In the first embodiment of the conductive powder according to the present invention, the specific surface area is usually 1 to 300 m 2 / g, preferably 5 to 200 m 2 / g, and more preferably 10 to 100 m 2 / g. It is preferable that the specific surface area of the conductive powder is within this range because it becomes easy to disperse in a resin or the like. On the other hand, if the specific surface area is less than 1 m 2 / g, the conductive powder particles are large, so that it is difficult to obtain a uniform coating film when made into a paint, which is not preferable. On the other hand, when the specific surface area exceeds 300 m 2 / g, it becomes difficult to form a coat layer with good adhesion because it is close to the same particle size as that of tin oxide. The conductive powder of the first embodiment has a volume resistivity of generally less than 100 Ω · cm, preferably less than 50 Ω · cm, and has high conductivity. The first embodiment of the conductive powder according to the present invention can be manufactured by, for example, the first or second embodiment of the following method for manufacturing a conductive powder.

(導電性粉末の製造方法の第1の実施の形態)
導電性粉末の製造方法の第1の実施の形態は、芯材と非酸化性雰囲気中で生成した錫化合物とを接触させて、前記芯材の表面に酸化錫層が形成された導電性粉末前駆体を生成し、該前駆体を、非酸化性雰囲気中100〜1200℃で加熱析出するものである。
(First Embodiment of Manufacturing Method of Conductive Powder)
1st Embodiment of the manufacturing method of electroconductive powder is the conductive powder with which the tin oxide layer was formed in the surface of the said core material by making the core material and the tin compound produced | generated in non-oxidizing atmosphere contacted A precursor is produced, and the precursor is heat-deposited at 100 to 1200 ° C. in a non-oxidizing atmosphere.

本形態では、芯材と非酸化性雰囲気中で生成した錫化合物とを接触させる。ここで、芯材としては、本発明に係る導電性粉末の第1の実施の形態で説明したものを用いることができる。また、本発明において錫化合物とは、芯材の表面に酸化錫からなる被覆層を形成することができるものであり、特に限定されない。該錫化合物は、例えば、四塩化錫等が挙げられる。四塩化錫は蒸気化が容易であるため好ましい。非酸化性雰囲気としては、例えば、窒素雰囲気、アルゴンガス雰囲気等が挙げられる。   In this embodiment, the core material is brought into contact with the tin compound generated in the non-oxidizing atmosphere. Here, as a core material, what was demonstrated in 1st Embodiment of the electroconductive powder which concerns on this invention can be used. Moreover, in this invention, a tin compound can form the coating layer which consists of a tin oxide on the surface of a core material, and is not specifically limited. Examples of the tin compound include tin tetrachloride. Tin tetrachloride is preferred because it is easily vaporized. Examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon gas atmosphere.

本形態で非酸化性雰囲気中で酸化錫を生成する方法としては、例えば、CVD法において酸化錫を生成する方法、スパッタリング法等を用いることができる。このうち、CVD法において酸化錫を生成する方法は、緻密な被覆層を形成し易いため好ましい。ここでCVD法を用いて酸化錫を生成する具体例としては、例えば、四塩化錫を加熱して該四塩化錫から発生した錫原子と雰囲気中の水蒸気とからチャンバー内で酸化錫を生成する方法が挙げられる。   As a method of generating tin oxide in a non-oxidizing atmosphere in this embodiment, for example, a method of generating tin oxide in a CVD method, a sputtering method, or the like can be used. Among these, the method of producing tin oxide in the CVD method is preferable because a dense coating layer can be easily formed. Here, as a specific example of producing tin oxide using the CVD method, for example, tin tetrachloride is heated to produce tin oxide in the chamber from tin atoms generated from the tin tetrachloride and water vapor in the atmosphere. A method is mentioned.

また、芯材と上記非酸化性雰囲気中で生成した錫化合物とを接触させる方法としては特に限定されるものでないが、例えば、CVD法、スパッタリング法等を用いることができる。CVD法を用いる接触方法の具体例としては、例えば、硫酸バリウムを、水酸化ナトリウム溶液中で予備処理し、ろ過、洗浄し、乾燥した後、邪魔板を持つ回転式反応容器中に入れ、窒素雰囲気下で、該反応容器に四塩化錫蒸気を導入し反応させて、硫酸バリウム上に非晶質の酸化錫層を形成した後、焼成する方法が挙げられる。上記のように芯材と錫化合物とを接触させると、芯材の表面に酸化錫層が形成された導電性粉末前駆体が得られる。   Further, the method for bringing the core material into contact with the tin compound produced in the non-oxidizing atmosphere is not particularly limited, and for example, a CVD method, a sputtering method, or the like can be used. As a specific example of the contact method using the CVD method, for example, barium sulfate is pretreated in a sodium hydroxide solution, filtered, washed, dried, put into a rotary reaction vessel having a baffle plate, and nitrogen. There may be mentioned a method in which tin tetrachloride vapor is introduced into the reaction vessel and allowed to react under an atmosphere to form an amorphous tin oxide layer on barium sulfate, followed by firing. When the core material and the tin compound are brought into contact with each other as described above, a conductive powder precursor in which a tin oxide layer is formed on the surface of the core material is obtained.

次に、該導電性粉末前駆体を、継続して非酸化性雰囲気中100〜1200℃で加熱しながら目的とする被覆量の酸化錫層を形成させる。ここで、非酸化性雰囲気としては、例えば、窒素雰囲気、アルゴン雰囲気等が挙げられる。このうち、水素を含有した窒素雰囲気は、安価であるため好ましい。また、水素を含有した窒素雰囲気の場合、水素の含有量は、通常0.1〜10体積%、好ましくは1〜3体積%である。水素の含有量が該範囲内にあると、酸化錫層について還元によるメタル化をさせずに酸素欠損を形成させ易いため好ましい。 Next, the conductive powder precursor, heating Shinano in a non-oxidizing atmosphere 100 to 1200 ° C. is continuously to form a tin oxide layer of the coating amount of the al Purpose. Here, examples of the non-oxidizing atmosphere include a nitrogen atmosphere and an argon atmosphere. Among these, a nitrogen atmosphere containing hydrogen is preferable because it is inexpensive. In the case of a nitrogen atmosphere containing hydrogen, the hydrogen content is usually 0.1 to 10% by volume, preferably 1 to 3% by volume. It is preferable for the hydrogen content to fall within this range because it is easy to form oxygen vacancies without metallizing the tin oxide layer by reduction.

加熱析出温度としては、通常100〜1200℃、好ましくは200〜400℃である。上記の工程を行うことにより、本発明に係る導電性粉末の第1の実施の形態を製造することができる。   As heating precipitation temperature, it is 100-1200 degreeC normally, Preferably it is 200-400 degreeC. By performing the above steps, the first embodiment of the conductive powder according to the present invention can be manufactured.

(導電性粉末の製造方法の第2の実施の形態)
導電性粉末の製造方法の第2の実施の形態は、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該前駆体を洗浄し、乾燥した後、非酸化性雰囲気中600℃を超え且つ1200℃以下で5〜60分焼成するものである。
(Second Embodiment of Manufacturing Method of Conductive Powder)
In the second embodiment of the method for producing a conductive powder, a water-soluble tin compound is added to a slurry in which a core material is dispersed in water, and then a neutralization reaction is performed using an acid or an alkali. After producing a conductive powder precursor having a coating layer made of tin oxide hydrate formed on the surface, and washing and drying the precursor, the temperature is higher than 600 ° C. and less than 1200 ° C. in a non-oxidizing atmosphere. Firing for ~ 60 minutes.

本形態では、まず、芯材を水中に分散させてスラリーを調製する。ここで、芯材としては、本発明に係る導電性粉末の第1の実施の形態で用いたものと同様のものを用いることができる。   In this embodiment, first, a core material is dispersed in water to prepare a slurry. Here, as a core material, the thing similar to what was used in 1st Embodiment of the electroconductive powder which concerns on this invention can be used.

上記スラリーは、例えば、芯材を水に芯材の粗粒がなくなるまで分散させる方法により得られる。該スラリーの生成に用いる水としては、特に限定されないが、純水等を用いると、不純物含有量の少ない酸化錫水和物を生成することにより、最終的に得られる導電性粉末の塗料分散性が良くなるため好ましい。   The slurry is obtained, for example, by a method in which the core material is dispersed in water until there are no coarse core material particles. The water used for the production of the slurry is not particularly limited. However, when pure water or the like is used, it is possible to produce tin oxide hydrate having a low impurity content, thereby finally obtaining a paint dispersibility of the conductive powder obtained. Is preferable.

上記スラリー中における水と芯材との配合比率は、水1lに対して芯材が、通常10〜100g、好ましくは30〜80gである。上記配合比率が該範囲内にあると、均一な酸化錫被覆層が得られ易いため好ましい。   The mixing ratio of water and the core material in the slurry is usually 10 to 100 g, preferably 30 to 80 g, of the core material with respect to 1 l of water. It is preferable for the blending ratio to fall within this range because a uniform tin oxide coating layer can be easily obtained.

次に、該スラリーに、水溶性錫化合物を添加する。本形態で用いられる水溶性錫化合物としては、芯材の表面に酸化錫水和物からなる被覆層を形成することができるものであればよく特に限定されないが、例えば、錫酸ナトリウム、四塩化錫等が挙げられる。このうち、錫酸ナトリウム及び四塩化錫は水への溶解が容易であるため好ましい。   Next, a water-soluble tin compound is added to the slurry. The water-soluble tin compound used in the present embodiment is not particularly limited as long as it can form a coating layer made of tin oxide hydrate on the surface of the core material. For example, sodium stannate, tetrachloride Tin etc. are mentioned. Of these, sodium stannate and tin tetrachloride are preferable because they are easily dissolved in water.

また、上記スラリー中における水と水溶性錫化合物との配合比率は、水に対する水溶性錫化合物中のSn濃度が、通常1〜20重量%、好ましくは3〜10重量%である。上記配合比率が該範囲内にあると、均一な酸化錫被覆層が得られ易いため好ましい。   The mixing ratio of water and the water-soluble tin compound in the slurry is such that the Sn concentration in the water-soluble tin compound relative to water is usually 1 to 20% by weight, preferably 3 to 10% by weight. It is preferable for the blending ratio to fall within this range because a uniform tin oxide coating layer can be easily obtained.

次に、水溶性錫化合物を添加したスラリーに、酸又はアルカリを用いて中和反応を行う。中和反応を行う方法としては、該スラリーに酸性物質やアルカリ性物質を添加する方法が挙げられる。ここで、酸性物質としては、例えば、硫酸、硝酸、酢酸等が挙げられる。硫酸は、希硫酸であると均一な酸化錫被覆層が得られ易いため好ましい。希硫酸の濃度は、通常10〜50容量%である。また、アルカリ性物質としては、例えば、水酸化ナトリウム、アンモニア水等が挙げられる。このうち、水酸化ナトリウムは濃度を管理し易いため好ましい。   Next, a neutralization reaction is performed on the slurry to which the water-soluble tin compound is added using an acid or an alkali. Examples of a method for performing the neutralization reaction include a method of adding an acidic substance or an alkaline substance to the slurry. Here, examples of the acidic substance include sulfuric acid, nitric acid, acetic acid and the like. Sulfuric acid is preferably dilute sulfuric acid because a uniform tin oxide coating layer is easily obtained. The concentration of dilute sulfuric acid is usually 10-50% by volume. Examples of the alkaline substance include sodium hydroxide and aqueous ammonia. Among these, sodium hydroxide is preferable because the concentration can be easily controlled.

中和を行う際、スラリーのpHは、通常pH0.5〜5、好ましくはpH2.0〜4.0、さらに好ましくはpH2.0〜3.0とする。中和の際のpHを該範囲内にすることにより、水溶性錫化合物をスラリーに溶解して得られた錫酸が酸化錫水和物を生成し、芯材の表面に酸化錫水和物(SnO・nHO)からなる被覆層が形成された導電性粉末前駆体が生成する。 When neutralization is performed, the pH of the slurry is usually 0.5 to 5, preferably 2.0 to 4.0, and more preferably 2.0 to 3.0. By making the pH during neutralization within this range, stannic acid obtained by dissolving the water-soluble tin compound in the slurry produces tin oxide hydrate, and tin oxide hydrate is formed on the surface of the core material. A conductive powder precursor having a coating layer made of (SnO 2 · nH 2 O) is generated.

次に、該導電性粉末前駆体を、洗浄水の伝導度が、通常3000μS以下、好ましくは100〜2000μS、さらに好ましくは300〜1000μS、特に好ましくは400〜1000μSになるまで洗浄する。導電性粉末前駆体をこの程度まで洗浄することにより、導電性粉末の体積抵抗率が低くなり易いため好ましい。洗浄した導電性粉末前駆体は、脱水濾過後、乾燥させる。乾燥方法としては特に限定されない。   Next, the conductive powder precursor is washed until the conductivity of the washing water is usually 3000 μS or less, preferably 100 to 2000 μS, more preferably 300 to 1000 μS, and particularly preferably 400 to 1000 μS. It is preferable to wash the conductive powder precursor to this extent because the volume resistivity of the conductive powder tends to be low. The washed conductive powder precursor is dried after dehydration filtration. It does not specifically limit as a drying method.

次に、乾燥した導電性粉末前駆体を非酸化性雰囲気中で焼成する。焼成温度としては、通常600℃を超え且つ1200℃以下、好ましくは700〜900℃であり、焼成時間としては、通常5〜60分、好ましくは10〜30分である。焼成条件が、上記範囲内にあると、酸化錫層が焼結することなく、酸化錫層に効率的に酸素欠損を形成させ易いため好ましい。上記の工程を行うことにより、本発明に係る導電性粉末の第1の実施の形態を製造することができる。   Next, the dried conductive powder precursor is fired in a non-oxidizing atmosphere. The firing temperature is usually over 600 ° C. and 1200 ° C. or less, preferably 700 to 900 ° C., and the firing time is usually 5 to 60 minutes, preferably 10 to 30 minutes. It is preferable for the firing conditions to be in the above-mentioned range since the tin oxide layer is not sintered and oxygen vacancies are easily formed efficiently. By performing the above steps, the first embodiment of the conductive powder according to the present invention can be manufactured.

(本発明に係る導電性粉末の第2の実施の形態)
次に、本発明に係る導電性粉末の第2の実施の形態について説明する。本発明に係る導電性粉末は、酸化錫(SnO)からなる導電性粉末であって、実質的にアンチモンを含まないものである。
(Second Embodiment of Conductive Powder According to the Present Invention)
Next, a second embodiment of the conductive powder according to the present invention will be described. The conductive powder according to the present invention is a conductive powder made of tin oxide (SnO 2 ) and does not substantially contain antimony.

本発明に係る導電性粉末の第2の実施の形態は、粒度D50、比表面積及び格子定数が、本発明に係る導電性粉末の第1の実施の形態と同様の理由により同様の範囲内にある。 In the second embodiment of the conductive powder according to the present invention, the particle size D 50 , specific surface area and lattice constant are within the same range for the same reason as in the first embodiment of the conductive powder according to the present invention. It is in.

本発明に係る導電性粉末の第2の実施の形態は、第1の実施の形態の導電性粉末と同様に、体積抵抗率が通常100Ω・cm未満、好ましくは50Ω・cm未満にあり、導電性が高い。上記本発明に係る導電性粉末の第2の実施の形態は、例えば、下記の導電性粉末の製造方法の第3の実施の形態により、製造することができる。   In the second embodiment of the conductive powder according to the present invention, the volume resistivity is usually less than 100 Ω · cm, preferably less than 50 Ω · cm, as in the case of the conductive powder of the first embodiment. High nature. The second embodiment of the conductive powder according to the present invention can be manufactured by, for example, the third embodiment of the following method for manufacturing a conductive powder.

(導電性粉末の製造方法の第3の実施の形態)
導電性粉末の製造方法の第3の実施の形態は、水中に溶解させた水溶性錫化合物について、酸又はアルカリを用いて中和反応を行い、酸化錫水和物からなる導電性粉末前駆体を生成し、該前駆体を洗浄し、乾燥した後、非酸化性雰囲気中600℃を超え且つ1200℃以下で5〜60分焼成するものである。
(3rd Embodiment of the manufacturing method of electroconductive powder)
In the third embodiment of the method for producing a conductive powder, a water-soluble tin compound dissolved in water is subjected to a neutralization reaction using an acid or an alkali, and a conductive powder precursor comprising a tin oxide hydrate is used. After the precursor is washed and dried, it is calcined at a temperature exceeding 600 ° C. and 1200 ° C. or less for 5 to 60 minutes in a non-oxidizing atmosphere.

本形態では、最初に水溶性錫化合物を水中に溶解させる。ここで用いる水溶性錫化合物及び水としては、上記導電性粉末の製造方法の第2の実施の形態と同様の理由により同様のものを用いることができる。   In this embodiment, the water-soluble tin compound is first dissolved in water. As the water-soluble tin compound and water used here, the same compounds can be used for the same reason as in the second embodiment of the method for producing conductive powder.

上記水溶液中における水と水溶性錫化合物との配合比率は、水に対する水溶性錫化合物中のSn濃度を、上記導電性粉末の製造方法の第2の実施の形態と同様の理由により同様の範囲内とする。   The mixing ratio of water and the water-soluble tin compound in the aqueous solution is the same as the Sn concentration in the water-soluble tin compound with respect to water for the same reason as in the second embodiment of the method for producing the conductive powder. Within.

次に、水溶性錫化合物の水溶液について、酸又はアルカリを用いて中和反応を行う。ここで中和反応を行う方法、酸性物質及びアルカリ性物質としては、上記導電性粉末の製造方法の第2の実施の形態と同様の理由により同様のものを用いることができる。 Next, the aqueous solution of the water-soluble tin compound is neutralized using an acid or an alkali. Here, as the method for carrying out the neutralization reaction, the acidic substance and the alkaline substance, the same ones can be used for the same reason as in the second embodiment of the method for producing the conductive powder.

また、上記水溶液を中和する際の水溶液のpHは、上記導電性粉末の製造方法の第2の実施の形態のスラリーと同様の理由により、同様の範囲内とする。上記工程を行うと、上記水溶性錫化合物の水溶液中に、酸化錫水和物(SnO・nHO)からなる導電性粉末前駆体が生成する。 Moreover, the pH of the aqueous solution at the time of neutralizing the aqueous solution is set in the same range for the same reason as the slurry of the second embodiment of the method for producing the conductive powder. When performing the above step, in an aqueous solution of the water-soluble tin compound, conductive powder precursor consisting of tin oxide hydrate (SnO 2 · nH 2 O) is produced.

上記工程の後、上記導電性粉末前駆体を、洗浄し、乾燥した後、非酸化性雰囲気中で焼成するが、これらの工程は、上記導電性粉末の製造方法の第2の実施の形態と同様であるため、その説明を省略する。   After the step, the conductive powder precursor is washed, dried, and then fired in a non-oxidizing atmosphere. These steps are the same as the second embodiment of the method for producing the conductive powder. Since it is the same, the description is abbreviate | omitted.

上記本発明に係る導電性粉末は、例えば、紙、プラスチック、ゴム、樹脂、塗料等に混入してこれらに導電性を付与する導電性フィラーとして、また、電池等の電極改質剤として使用することができる。また、上記導電性粉末の製造方法は、上記本発明に係る導電性粉末の製造に使用することができる。   The conductive powder according to the present invention is used, for example, as a conductive filler that imparts conductivity to paper, plastic, rubber, resin, paint, etc., and as an electrode modifier for batteries and the like. be able to. Moreover, the manufacturing method of the said electroconductive powder can be used for manufacture of the electroconductive powder which concerns on the said this invention.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。   Examples are shown below, but the present invention is not construed as being limited thereto.

(導電性粉末の製造方法の第1の実施の形態)
硫酸バリウム10gを、1mol/lの濃度の水酸化ナトリウム溶液中で70℃で10時間予備処理し、ろ過、洗浄した後、乾燥した。その後、該予備処理された硫酸バリウム0.5gを4枚の邪魔板を持つ回転式反応容器中に入れ、窒素雰囲気下で100℃に加熱し、それぞれ別の導入管を通して四塩化錫蒸気を4×10−5mol/min、脱イオン水の水蒸気を2×10−4mol/minの流量で反応容器中に導入し、1時間反応させ、該硫酸バリウム表面上に非晶質状の酸化錫の核を析出形成させた。続いて、300℃で2時間焼成を行い、該硫酸バリウム表面上に導電性の結晶質酸化錫層を形成した。排出された粉体を洗浄水の伝導度が560μSになるまで洗浄した。得られた粉末について、被覆率(導電性粉末中における酸化錫層の含有量)、体積抵抗率、粒度D50、比表面積及び格子定数を下記の方法により測定した。測定結果を表1に示す。
(First Embodiment of Manufacturing Method of Conductive Powder)
10 g of barium sulfate was pretreated in a 1 mol / l sodium hydroxide solution at 70 ° C. for 10 hours, filtered, washed and dried. Thereafter, 0.5 g of the pretreated barium sulfate was placed in a rotary reaction vessel having four baffle plates, heated to 100 ° C. under a nitrogen atmosphere, and tin tetrachloride vapor was supplied through a separate inlet tube. Introducing water vapor of deionized water at a flow rate of × 10 −5 mol / min and 2 × 10 −4 mol / min into the reaction vessel and reacting for 1 hour, amorphous tin oxide on the barium sulfate surface The nuclei were precipitated and formed. Then, it baked at 300 degreeC for 2 hours, and formed the electroconductive crystalline tin oxide layer on this barium sulfate surface. The discharged powder was washed until the conductivity of the washing water reached 560 μS. About the obtained powder, the covering rate (content of the tin oxide layer in the conductive powder), volume resistivity, particle size D 50 , specific surface area, and lattice constant were measured by the following methods. The measurement results are shown in Table 1.

(体積抵抗率):試料粉体を三菱化学株式会社製ロレスタPAPD−41を用いて500kgf/cmに加圧した状態で、三菱化学株式会社製ロレスタAPを用いた測定値を体積抵抗率として求めた。
(粒度D50):200ccのサンプル容器に試料約0.1gを採り、0.2g/lのヘキサメタリン酸ソーダを10ml添加混合後、純水90mlを添加し、超音波分散機日本精機株式会社製US−300Tにより10分間分散しサンプル液を調整した。日機装株式会社製マイクロトラックHRAを用いて測定した。
(比表面積):ユアサアイオニクス株式会社製モノソーブを用いて測定したBET比表面積を用いた。
(格子定数):ブルカーAXS株式会社製M21X−X線回折装置を用い、連続スキャン法で、測定範囲2θ=15〜120deg、管電圧45kV、管電流350mA、線源Cu、サンプリング幅0.02deg、操作速度4deg/minの条件で測定し、リートベルト法を用いて格子定数a及びcを求めた。
(Volume resistivity): In a state where the sample powder was pressurized to 500 kgf / cm 2 using Loresta PAPD-41 manufactured by Mitsubishi Chemical Corporation, the measured value using Loresta AP manufactured by Mitsubishi Chemical Corporation was used as volume resistivity. Asked.
(Particle size D 50 ): About 0.1 g of a sample is put in a 200 cc sample container, 10 ml of 0.2 g / l sodium hexametaphosphate is added and mixed, and then 90 ml of pure water is added, and an ultrasonic dispersing machine manufactured by Nippon Seiki A sample solution was prepared by dispersing for 10 minutes with US-300T. Measurement was performed using Microtrack HRA manufactured by Nikkiso Co., Ltd.
(Specific surface area): The BET specific surface area measured using the monosorb by Yuasa Ionics Co., Ltd. was used.
(Lattice constant): Using a Bruker AXS Co., Ltd. M21X-X-ray diffractometer, measurement range 2θ = 15 to 120 deg, tube voltage 45 kV, tube current 350 mA, radiation source Cu, sampling width 0.02 deg. The measurement was performed under the condition of an operation speed of 4 deg / min, and the lattice constants a and c were determined using the Rietveld method.

(導電性粉末の製造方法の第2の実施の形態)
水3.5lに硫酸バリウム200gを硫酸バリウムの粗粒がなくなるまで分散させてスラリーを生成した。該スラリーにSn含有量41重量%の錫酸ナトリウム576gを投入し、錫酸ナトリウムを溶解させた。該スラリーに20%希硫酸をスラリーのpHが2.5になるまで98分間かけて添加して中和し、導電性粉末前駆体を析出させた。該導電性粉末前駆体を含む反応液を温水を用いて洗浄した。洗浄は、洗浄水の伝導度が450μSになるまで繰り返した。洗浄終了後は、脱水濾過を行い、濾滓(ケーキ)を回収した。
(Second Embodiment of Manufacturing Method of Conductive Powder)
200 g of barium sulfate was dispersed in 3.5 l of water until no coarse particles of barium sulfate disappeared to form a slurry. To the slurry, 576 g of sodium stannate having a Sn content of 41% by weight was added to dissolve sodium stannate. The slurry was neutralized by adding 20% dilute sulfuric acid over 98 minutes until the pH of the slurry reached 2.5, thereby precipitating a conductive powder precursor . The reaction solution containing the conductive powder precursor was washed with warm water. The washing was repeated until the washing water conductivity reached 450 μS. After the completion of washing, dehydration filtration was performed, and a filter cake (cake) was collected.

次に、得られた濾滓を150℃の雰囲気中に15時間放置して、乾燥させた。得られた乾燥ケーキをアトマイザーを用いて解砕し、該解砕物について水素を2体積%含有した窒素ガスを流通させながら、700℃で20分間焼成を行った。得られた粉末について、実施例1と同様にして、被覆率(導電性粉末中における酸化錫層の含有量)、体積抵抗率、粒度D50、比表面積及び格子定数を下記の方法により測定した。測定結果を表1に示す。 Next, the obtained filter cake was left in an atmosphere of 150 ° C. for 15 hours to be dried. The obtained dried cake was crushed using an atomizer, and the crushed product was baked at 700 ° C. for 20 minutes while flowing nitrogen gas containing 2% by volume of hydrogen. The resulting powder, in the same manner as in Example 1, (the content of the tin oxide layer in the conductive powder) coverage, volume resistivity, grain size D 50, the specific surface area and lattice constants were measured by the following methods . The measurement results are shown in Table 1.

導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が860μSになるまで繰り返し、被覆率が40重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 Washing of the reaction solution containing the conductive powder precursor was repeated until the conductivity of the washing water reached 860 μS, and the conductive powder was obtained in the same manner as in Example 2 except that the coverage was 40% by weight. . The measurement results are shown in Table 1.

中和する際のpHを3.0とし、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が2680μSになるまで繰り返し、被覆率が80重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 Except that the pH at the time of neutralization was set to 3.0 and the reaction solution containing the conductive powder precursor was repeatedly washed until the conductivity of the washing water reached 2680 μS, so that the coverage was 80% by weight. A conductive powder was obtained in the same manner as in Example 2. The measurement results are shown in Table 1.

硫酸バリウム200gに代えて二酸化珪素200gを用い、中和する際のpHを2.0とし、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が740μSになるまで繰り返し、被覆率が40重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 200 g of silicon dioxide was used instead of 200 g of barium sulfate, the pH at the time of neutralization was set to 2.0, and washing of the reaction solution containing the conductive powder precursor was repeated until the conductivity of the washing water reached 740 μS. A conductive powder was obtained in the same manner as in Example 2 except that the amount was 40% by weight. The measurement results are shown in Table 1.

硫酸バリウム200gに代えて二酸化チタン200gを用い、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が1060μSになるまで繰り返し、被覆率が40重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 Implemented except that 200 g of titanium dioxide was used in place of 200 g of barium sulfate, and the reaction solution containing the conductive powder precursor was repeatedly washed until the conductivity of the washing water reached 1060 μS, so that the coverage was 40% by weight. A conductive powder was obtained in the same manner as in Example 2. The measurement results are shown in Table 1.

(導電性粉末の製造方法の第2の実施の形態)
水3.5lにSn含有量41重量%の錫酸ナトリウム576gを投入し、錫酸ナトリウムを溶解させた。該溶解液に20%希硫酸を溶解液のpHが2.5になるまで98分間かけて添加して中和し、導電性粉末前駆体を析出させた。該導電性粉末前駆体を含む反応液を温水を用いて洗浄した。洗浄は、洗浄水の伝導度が750μSになるまで繰り返した。洗浄終了後は、脱水濾過を行い、濾滓(ケーキ)を回収した。
(Second Embodiment of Manufacturing Method of Conductive Powder)
576 g of sodium stannate having a Sn content of 41% by weight was added to 3.5 l of water to dissolve the sodium stannate. 20% dilute sulfuric acid was added to the solution over 98 minutes until the pH of the solution reached 2.5, and neutralized to precipitate a conductive powder precursor . The reaction solution containing the conductive powder precursor was washed with warm water. The washing was repeated until the washing water conductivity reached 750 μS. After the completion of washing, dehydration filtration was performed, and a filter cake (cake) was collected.

次に、得られた濾滓を150℃の雰囲気中に15時間放置して、乾燥させた。得られた乾燥ケーキをアトマイザーを用いて解砕し、該解砕物について水素を2体積%含有した窒素ガスを流通させながら、700℃で20分間焼成を行った。得られた粉末について、実施例2と同様にして、被覆率(導電性粉末中における酸化錫層の含有量)、体積抵抗率、粒度D50、比表面積及び格子定数を下記の方法により測定した。測定結果を表1に示す。 Next, the obtained filter cake was left in an atmosphere of 150 ° C. for 15 hours to be dried. The obtained dried cake was crushed using an atomizer, and the crushed product was baked at 700 ° C. for 20 minutes while flowing nitrogen gas containing 2% by volume of hydrogen. The resulting powder, in the same manner as in Example 2, (the content of the tin oxide layer in the conductive powder) coverage, volume resistivity, grain size D 50, the specific surface area and lattice constants were measured by the following methods . The measurement results are shown in Table 1.

錫酸ナトリウム576gに代えて四塩化錫518gを用い、20%希硫酸に代えて水酸化ナトリウム水溶液を用い、中和する際のpHを3.0とした以外は実施例7と同様にして導電性粉末を得た。測定結果を表1に示す。   Conductivity was the same as in Example 7, except that 518 g of tin tetrachloride was used instead of 576 g of sodium stannate, an aqueous sodium hydroxide solution was used instead of 20% dilute sulfuric acid, and the pH at the time of neutralization was set to 3.0. Powder was obtained. The measurement results are shown in Table 1.

比較例1Comparative Example 1

中和する際のpHを4.0とし、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が140μSになるまで繰り返し、焼成温度を300℃とし、被覆率が40重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 The pH at the time of neutralization was set to 4.0, and washing of the reaction solution containing the conductive powder precursor was repeated until the conductivity of the washing water reached 140 μS, the firing temperature was set to 300 ° C., and the coverage was 40% by weight. A conductive powder was obtained in the same manner as in Example 2 except that this was achieved. The measurement results are shown in Table 1.

比較例2Comparative Example 2

硫酸バリウム200gに代えて二酸化珪素200gを用い、中和する際のpHを4.0とし、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が90μSになるまで繰り返し、焼成温度を400℃とし、被覆率が40重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 200 g of silicon dioxide was used instead of 200 g of barium sulfate, the pH at the time of neutralization was set to 4.0, and washing of the reaction liquid containing the conductive powder precursor was repeated until the conductivity of the washing water reached 90 μS. Was set to 400 ° C., and a conductive powder was obtained in the same manner as in Example 2 except that the coverage was 40% by weight. The measurement results are shown in Table 1.

比較例3Comparative Example 3

硫酸バリウム200gに代えて二酸化チタン200gを用い、中和する際のpHを3.0とし、導電性粉末前駆体を含む反応液の洗浄を洗浄水の伝導度が180μSになるまで繰り返し、焼成温度を300℃とし、被覆率が80重量%となるようにした以外は実施例2と同様にして導電性粉末を得た。測定結果を表1に示す。 200 g of titanium dioxide was used instead of 200 g of barium sulfate, the pH at the time of neutralization was set to 3.0, and washing of the reaction solution containing the conductive powder precursor was repeated until the conductivity of the washing water reached 180 μS, and the firing temperature Was set to 300 ° C., and a conductive powder was obtained in the same manner as in Example 2 except that the coverage was 80% by weight. The measurement results are shown in Table 1.

比較例4Comparative Example 4

中和する際のpHを4.0とし、洗浄を洗浄水の伝導度が130μSになるまで繰り返し、焼成温度を300℃とした以外は実施例7と同様にして導電性粉末を得た。測定結果を表1に示す。   Conductive powder was obtained in the same manner as in Example 7 except that the pH during neutralization was 4.0, washing was repeated until the conductivity of the washing water became 130 μS, and the firing temperature was 300 ° C. The measurement results are shown in Table 1.

Figure 0004575656
Figure 0004575656

表1より格子定数が格子定数のaが4.74オングストローム未満の比較例の導電性粉末は、体積抵抗が高く、導電性が悪いことが判る。   From Table 1, it can be seen that the conductive powder of the comparative example having a lattice constant a of less than 4.74 angstroms has high volume resistance and poor conductivity.

本発明に係る導電性粉末及びその製造方法は、精密電子機器の静電気障害防止、静電気災害の発生防止、防塵等のためのハウジング、建材、繊維、機械部品;電池等の用途に用いることができる。 The conductive powder and the method for producing the same according to the present invention can be used for housings, building materials, fibers, mechanical parts, batteries, and the like for preventing electrostatic failure of precision electronic devices, preventing occurrence of electrostatic disasters, and dust prevention. .

Claims (3)

硫酸バリウム、二酸化チタン、アルミナ又は二酸化珪素のいずれかからなる芯材の表面に酸化錫層が形成された導電性粉末であって、
前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末は格子定数のaが4.74〜4.7518オングストロームであることを特徴とする導電性粉末。
A conductive powder in which a tin oxide layer is formed on the surface of a core material made of barium sulfate, titanium dioxide, alumina, or silicon dioxide,
The tin oxide layer is substantially free from antimony, and the conductive powder, wherein the conductive powder is a is 4.74 to 4.7518 angstroms of lattice constants.
酸化錫からなる導電性粉末であって、
実質的にアンチモンを含まず、且つ、格子定数のaが4.74〜4.7518オングストロームであることを特徴とする導電性粉末。
A conductive powder made of tin oxide,
Substantially free of antimony, and the conductive powder, wherein the a of the lattice constant is 4.74 to 4.7518 angstroms.
体積抵抗率が100Ω・cm未満であることを特徴とする請求項1又は請求項2に記載の導電性粉末。   The conductive powder according to claim 1 or 2, wherein the volume resistivity is less than 100 Ω · cm.
JP2003342656A 2003-09-30 2003-09-30 Conductive powder Expired - Lifetime JP4575656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342656A JP4575656B2 (en) 2003-09-30 2003-09-30 Conductive powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342656A JP4575656B2 (en) 2003-09-30 2003-09-30 Conductive powder

Publications (2)

Publication Number Publication Date
JP2005108735A JP2005108735A (en) 2005-04-21
JP4575656B2 true JP4575656B2 (en) 2010-11-04

Family

ID=34536861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342656A Expired - Lifetime JP4575656B2 (en) 2003-09-30 2003-09-30 Conductive powder

Country Status (1)

Country Link
JP (1) JP4575656B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771666B2 (en) * 2004-02-06 2011-09-14 三井金属鉱業株式会社 Conductive tin oxide powder and method for producing the same
JP4830393B2 (en) * 2005-08-03 2011-12-07 三菱マテリアル株式会社 Method and apparatus for producing conductive tin oxide powder
JP5335328B2 (en) * 2008-08-29 2013-11-06 三菱マテリアル株式会社 Method for producing conductive tin oxide powder
JP6071360B2 (en) * 2012-09-14 2017-02-01 三井金属鉱業株式会社 Conductive particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046925A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPH08329735A (en) * 1995-06-05 1996-12-13 Mitsui Mining & Smelting Co Ltd Conductive powder and its manufacture
JP2005108734A (en) * 2003-09-30 2005-04-21 Mitsui Mining & Smelting Co Ltd Conductive powder and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046925A (en) * 1983-08-25 1985-03-14 Mitsubishi Metal Corp Production of fine powder of tin oxide having low electrical resistance
JPH08329735A (en) * 1995-06-05 1996-12-13 Mitsui Mining & Smelting Co Ltd Conductive powder and its manufacture
JP2005108734A (en) * 2003-09-30 2005-04-21 Mitsui Mining & Smelting Co Ltd Conductive powder and its producing method

Also Published As

Publication number Publication date
JP2005108735A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
TWI523813B (en) Tin oxide particles and the method for preparing the same
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
KR100394889B1 (en) Needle-shaped electrically conductive tin oxide fine particles and preparation method thereof
JP2013139589A (en) Silver fine particles, method for producing the same, and conductive paste, conductive film, and electronic device containing the silver fine particles
JP5142891B2 (en) Cuprous oxide powder and method for producing the same
KR100444142B1 (en) ITO fine powder and method for producing the same
JP4765051B2 (en) Tin-doped indium oxide powder
JP2008230915A (en) Electrically conductive zinc oxide particle and method for manufacturing the same
JP2011198518A (en) Conductive particulate and method for manufacturing the same, and visible light transmission type particle dispersion conductor
TWI759635B (en) Silver powder and manufacturing method thereof
JP4540091B2 (en) Conductive powder and method for producing the same
JP4575656B2 (en) Conductive powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
KR20200093657A (en) Spherical silver powder and its manufacturing method
US10119036B2 (en) Process for the formation of metal oxide nanoparticles coating of a solid substrate
JP4718111B2 (en) Conductive powder and method for producing the same
JP4553345B2 (en) Conductive powder
JP4722412B2 (en) Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint
JP5285725B2 (en) Conductive powder
JP4493966B2 (en) Conductive powder and method for producing the same
JP2016013953A (en) Method for producing conductive inorganic oxide particles, and conductive inorganic oxide powder composed of conductive inorganic oxide particles obtained by the production method
JPH06234522A (en) Electrically conductive material and its production
JP3590646B2 (en) Conductive material and method of manufacturing the same
JP5136904B2 (en) Method for producing nickel powder
JPH02302327A (en) Production of lead ruthenate fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Ref document number: 4575656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250