JP4540091B2 - Conductive powder and method for producing the same - Google Patents
Conductive powder and method for producing the same Download PDFInfo
- Publication number
- JP4540091B2 JP4540091B2 JP2003342655A JP2003342655A JP4540091B2 JP 4540091 B2 JP4540091 B2 JP 4540091B2 JP 2003342655 A JP2003342655 A JP 2003342655A JP 2003342655 A JP2003342655 A JP 2003342655A JP 4540091 B2 JP4540091 B2 JP 4540091B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive powder
- slurry
- core material
- tin oxide
- neutralization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、導電性粉末及びその製造方法に関し、詳しくは、例えば、紙、プラスチック、ゴム、樹脂、塗料等に混入してこれらに導電性を付与する、酸化錫層が実質的にアンチモンを含まない導電性粉末及びその製造方法に関するものである。 The present invention relates to a conductive powder and a method for producing the same, and more specifically, for example, a tin oxide layer that substantially mixes antimony with paper, plastic, rubber, resin, paint, and the like and imparts conductivity thereto. The present invention relates to a nonconductive powder and a method for producing the same.
近年、用途により、プラスチックにも導電性が求められてきている。例えば、ハウジング内の電気部品を大きな電磁界から遮蔽したり、帯電した部品を放電させたりする場合、ハウジング等に用いられるプラスチックは導電性のものであることが好ましい。このようにプラスチックに導電性を付与する方法としてはポリマーに導電性粉末を添加する方法が知られており、導電性粉末としては、例えば、金属粉末、カーボンブラック、アンチモン等をドープした酸化錫粉末等が知られている。 In recent years, conductivity has been required for plastics depending on applications. For example, when shielding an electrical component in the housing from a large electromagnetic field or discharging a charged component, the plastic used for the housing or the like is preferably conductive. Thus, as a method for imparting conductivity to a plastic, a method of adding a conductive powder to a polymer is known. Examples of the conductive powder include tin oxide powder doped with metal powder, carbon black, antimony, and the like. Etc. are known.
しかし、金属粉末やカーボンブラックをポリマーに添加すると得られるプラスチックが黒色になり、プラスチックの用途が限定されるため好ましくない。また、アンチモン等をドープした酸化錫粉末をポリマーに添加したものを用いると、導電性が高いためこの点では好ましいが、プラスチックが青黒色に着色するためカーボンブラック等と同様にプラスチックの用途が限定されると共に、アンチモン自体に毒性が懸念されるため、使用することが好ましくない。 However, the addition of metal powder or carbon black to the polymer is not preferable because the resulting plastic becomes black and the use of the plastic is limited. In addition, it is preferable to use a tin oxide powder doped with antimony or the like added to the polymer because of its high conductivity. However, since the plastic is colored blue-black, the use of the plastic is limited like carbon black. At the same time, there is a concern about the toxicity of antimony itself, which is not preferable.
これに対し、特許文献1(特許第2994020号公報)には、二酸化チタン等の粒子表面に、酸化スズの水和物からなる被覆層を形成され、得られた被覆処理物を非酸化性雰囲気中250〜600℃で加熱処理する導電性二酸化チタン粉末の製造方法が開示されている。該方法によれば、得られる導電性二酸化チタン粉末は、白色度に優れ、毒性の危惧がないものとなる。 On the other hand, Patent Document 1 (Japanese Patent No. 2999420) discloses that a coating layer made of a hydrate of tin oxide is formed on the surface of particles of titanium dioxide or the like, and the resulting coating treatment is treated in a non-oxidizing atmosphere. The manufacturing method of the electroconductive titanium dioxide powder which heat-processes at 250-600 degreeC inside is disclosed. According to this method, the obtained conductive titanium dioxide powder is excellent in whiteness and has no risk of toxicity.
しかしながら、上記導電性二酸化チタン粉末は、粉体抵抗が低くてもせいぜい580Ω・cm程度であり、プラスチックの導電性を向上させるためには、粉体抵抗をさらに向上させることが望まれている現状では、導電性が十分に高いとはいえない。なお、導電性を向上させる方法としては、単に酸化スズ被覆層の被覆量を多くすることも考えられる。しかし、該被覆層を多くしようとすると、該被覆層は製造の際に軟質の酸化スズの水和物を生成するものであるため、酸化スズの水和物からなる被覆層同士が付着して導電性二酸化チタン粉末が凝集したり、また、酸化スズが単独で析出したりするため、分散性が悪くなり易いという問題があった。従って、本発明の目的は、導電性、白色度及び分散性に優れ、毒性の危惧がない導電性粉末を提供することにある。 However, the conductive titanium dioxide powder is at most about 580 Ω · cm even if the powder resistance is low, and in order to improve the conductivity of the plastic, it is desired to further improve the powder resistance. However, it cannot be said that the conductivity is sufficiently high. As a method for improving the conductivity, it is conceivable to simply increase the coating amount of the tin oxide coating layer. However, if the coating layer is to be increased, the coating layer generates soft tin oxide hydrates during production, and thus the coating layers composed of tin oxide hydrates adhere to each other. There is a problem that the dispersibility tends to deteriorate because the conductive titanium dioxide powder aggregates or tin oxide precipitates alone. Accordingly, an object of the present invention is to provide a conductive powder that is excellent in conductivity, whiteness and dispersibility, and has no fear of toxicity.
かかる実情において、本発明者は鋭意検討を行った結果、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に、分散粒度D 50 が0.05〜0.45μmの範囲となるように強分散処理し、該処理液を前記スラリーに戻した後、前記スラリー中の導電性粉末前駆体を洗浄し、乾燥した後、非酸化性雰囲気中650〜800℃で焼成して得られる、前記芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末中における前記酸化錫層の含有量が30〜90重量%であるものは、導電性、白色度及び分散性に優れ、毒性の危惧がないことを見出し、本発明を完成するに至った。 In such a situation, as a result of intensive studies, the present inventors have added a water-soluble tin compound to a slurry in which the core material is dispersed in water, and then performed a neutralization reaction using an acid or an alkali. A conductive powder precursor having a coating layer made of tin oxide hydrate formed on the surface thereof is generated, and at least a part of the slurry containing the conductive powder precursor is subjected to the neutralization or after the neutralization. , dispersed particle size D 50 is strongly dispersed to be in the range of 0.05~0.45Myuemu, after returning the processing solution in the slurry, wash the conductive powder precursor of the slurry, and dried And a conductive powder having a tin oxide layer formed on the surface of the core obtained by firing at 650 to 800 ° C. in a non-oxidizing atmosphere, wherein the tin oxide layer substantially does not contain antimony. And inclusion of the tin oxide layer in the conductive powder The amount of 30 to 90% by weight was found to be excellent in conductivity, whiteness and dispersibility, and free from fear of toxicity, and completed the present invention.
すなわち、本発明(1)は、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に、分散粒度D50が0.05〜0.45μmの範囲となるように強分散処理し、該処理液を前記スラリーに戻した後、前記スラリー中の導電性粉末前駆体を洗浄し、乾燥した後、非酸化性雰囲気中650〜800℃で焼成して得られる、前記芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末中における前記酸化錫層の含有量が30〜90重量%であることを特徴とする導電性粉末を提供するものである。 That is, in the present invention (1), after adding a water-soluble tin compound to a slurry in which a core material is dispersed in water, a neutralization reaction is performed using an acid or an alkali, and the surface of the core material is hydrated with tin oxide. A conductive powder precursor in which a coating layer made of a material is formed is produced, and at least a part of the slurry containing the conductive powder precursor is dispersed at a particle size D 50 of 0 during or after the neutralization. The dispersion is strongly dispersed so as to be in the range of 0.05 to 0.45 μm, and after the treatment liquid is returned to the slurry, the conductive powder precursor in the slurry is washed and dried, and then in a non-oxidizing atmosphere. A conductive powder obtained by firing at 650 to 800 ° C., in which a tin oxide layer is formed on the surface of the core material, the tin oxide layer being substantially free of antimony, and the conductive powder The content of the tin oxide layer is 30 to 90% by weight The present invention provides a conductive powder characterized by the above.
また、本発明(2)は、本発明(1)において、前記芯材の材質が、硫酸バリウム、二酸化チタン、アルミナ又は二酸化珪素であることを特徴とする導電性粉末を提供するものである。 The present invention (2) provides the conductive powder according to the present invention (1), wherein the core material is barium sulfate, titanium dioxide, alumina, or silicon dioxide.
また、本発明(3)は、本発明(1)又は(2)において、体積抵抗率が100Ω・cm未満であることを特徴とする導電性粉末を提供するものである。 Moreover, this invention (3) provides the electroconductive powder characterized by volume resistivity being less than 100 ohm * cm in this invention (1) or (2).
また、本発明(4)は、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に、分散粒度D50が0.05〜0.45μmの範囲となるように強分散処理し、該処理液を前記スラリーに戻した後、前記スラリー中の導電性粉末前駆体を洗浄し、乾燥した後、非酸化性雰囲気中650〜800℃で焼成することを特徴とする導電性粉末の製造方法を提供するものである。 In the present invention (4), after adding a water-soluble tin compound to a slurry in which a core material is dispersed in water, a neutralization reaction is performed using an acid or an alkali, and the surface of the core material is hydrated with tin oxide. A conductive powder precursor in which a coating layer made of a material is formed is produced, and at least a part of the slurry containing the conductive powder precursor is dispersed at a particle size D 50 of 0 during or after the neutralization. The dispersion is strongly dispersed so as to be in the range of 0.05 to 0.45 μm, and after the treatment liquid is returned to the slurry, the conductive powder precursor in the slurry is washed and dried, and then in a non-oxidizing atmosphere. The present invention provides a method for producing a conductive powder characterized by firing at 650 to 800 ° C.
また、本発明(5)は、本発明(4)において、前記芯材の材質が、硫酸バリウム、二酸化チタン、アルミナ又は二酸化珪素であることを特徴とする導電性粉末の製造方法を提供するものである。 Moreover, this invention (5) provides the manufacturing method of the electroconductive powder characterized by the material of the said core material in this invention (4) being barium sulfate, titanium dioxide, an alumina, or silicon dioxide. It is.
本発明に係る導電性粉末は、白色度が高いため樹脂、塗料等に添加しても導電性粉末自体の色で着色し難く、分散性が高いため樹脂、塗料等に添加しても平滑な塗膜を形成することができ、アンチモンを実質的に含まないため毒性の危惧がなく、さらに、凝集粉へのコートを改善し粒子1個1個にコートするため、凝集粒子に被覆層を形成した場合のように凝集粒子が壊れて芯材が露出することにより抵抗が高くなってしまうようなことがなく、導電性が高い。本発明に係る導電性粉末の製造方法は、上記導電性粉末を製造することができる。 Since the conductive powder according to the present invention has high whiteness, it is difficult to be colored with the color of the conductive powder itself even when added to a resin, paint, etc., and since it is highly dispersible, it is smooth even when added to a resin, paint, etc. A coating film can be formed and there is no risk of toxicity because it does not contain antimony. Furthermore, a coating layer is formed on the aggregated particles to improve the coating on the aggregated powder and coat each particle individually. In this case, the aggregated particles are broken and the core material is exposed, so that the resistance is not increased and the conductivity is high. The method for producing a conductive powder according to the present invention can produce the conductive powder.
本発明に係る導電性粉末は、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に、分散粒度D 50 が0.05〜0.45μmの範囲となるように強分散処理し、該処理液を前記スラリーに戻した後、前記スラリー中の導電性粉末前駆体を洗浄し、乾燥した後、非酸化性雰囲気中650〜800℃で焼成して得られる、前記芯材の表面に酸化錫層が形成された導電性粉末であって、前記酸化錫層が実質的にアンチモンを含まず、且つ、前記導電性粉末中における前記酸化錫層の含有量が30〜90重量%である導電性粉末である。 In the conductive powder according to the present invention, a water-soluble tin compound is added to a slurry in which a core material is dispersed in water, and then a neutralization reaction is performed using an acid or an alkali to hydrate tin oxide on the surface of the core material. A conductive powder precursor in which a coating layer made of a material is formed is produced, and at least a part of the slurry containing the conductive powder precursor is dispersed at a particle size D 50 of 0 during or after the neutralization. The dispersion is strongly dispersed so as to be in the range of 0.05 to 0.45 μm , and after the treatment liquid is returned to the slurry, the conductive powder precursor in the slurry is washed and dried, and then in a non-oxidizing atmosphere. A conductive powder obtained by firing at 650 to 800 ° C., in which a tin oxide layer is formed on the surface of the core material, the tin oxide layer being substantially free of antimony, and the conductive powder The content of the tin oxide layer is 30 to 90% by weight Conductive powder.
本発明で用いられる芯材は、その表面に酸化錫層を形成することが可能な実質的に粒状、フレーク状又は針状の芯材である。芯材の材質としては、例えば、硫酸バリウム、二酸化チタン、アルミナ、二酸化珪素、雲母、タルク、ホウ酸アルミニウム、酸化亜鉛(ZnO)及びチタン酸アルカリ金属塩等が挙げられる。 The core material used in the present invention is a substantially granular, flaky or needle-shaped core material capable of forming a tin oxide layer on the surface thereof. Examples of the core material include barium sulfate, titanium dioxide, alumina, silicon dioxide, mica, talc, aluminum borate, zinc oxide (ZnO), and alkali metal titanate.
芯材は、粒度D50が通常0.01〜100μm、好ましくは0.1〜10μmである。芯材の粒径が該範囲内にあると、酸化錫層を形成して得られる導電性粉末の粒度が樹脂等中に分散し易いものとなるため好ましい。本明細書において粒度D50とは、レーザー回折散乱法で求められる体積平均粒径をいう。 The core material, particle size D 50 is usually 0.01 to 100 [mu] m, preferably 0.1 to 10 [mu] m. It is preferable that the particle diameter of the core material be within this range since the particle diameter of the conductive powder obtained by forming the tin oxide layer is easily dispersed in the resin or the like. In the present specification, the particle size D 50 refers to a volume average particle size determined by a laser diffraction scattering method.
芯材は、比表面積が通常0.1〜150m2/g、好ましくは10〜50m2/gである。芯材の比表面積が該範囲内にあると、酸化錫層を形成して得られる導電性粉末の粒度が樹脂等中に分散し易いものとなるため好ましい。一方、該比表面積が0.1m2/g未満であると、導電性粉末の粒子が大きいことから塗料化したときに均一な塗膜を得られ難いため好ましくない。また、該比表面積が150m2/gを超えると、酸化錫の粒径と同じ大きさに近くなることから密着性の良いコート層を形成し難くなるため好ましくない。 The core material has a specific surface area of usually 0.1 to 150 m 2 / g, preferably 10 to 50 m 2 / g. It is preferable that the specific surface area of the core material be within this range because the particle size of the conductive powder obtained by forming the tin oxide layer is easily dispersed in the resin or the like. On the other hand, when the specific surface area is less than 0.1 m 2 / g, since the conductive powder particles are large, it is difficult to obtain a uniform coating film when formed into a paint, which is not preferable. On the other hand, if the specific surface area exceeds 150 m 2 / g, it becomes difficult to form a coat layer with good adhesion because it is close to the same size as the particle size of tin oxide.
本発明に係る導電性粉末の第1の実施の形態は、上記芯材の表面に酸化錫層が形成される。酸化錫層は、酸化錫SnO2の微粒子が芯材の表面を実質的に隙間なく被覆して形成される表面が略平滑な層であって、実質的にアンチモンを含まないものである。なお、本明細書において実質的にアンチモンを含まないとは、アンチモンを不純物として含まないことを意味し、具体的には酸化錫層中のアンチモンの含有量が重量基準で1000ppm未満であることを意味する。第1の実施の形態の導電性粉末は、このように実質的にアンチモンを含まないため、毒性の危惧がないものとなる。 In the first embodiment of the conductive powder according to the present invention, a tin oxide layer is formed on the surface of the core material. The tin oxide layer is a layer having a substantially smooth surface formed by covering the surface of the core material with fine particles of tin oxide SnO 2 substantially without any gap, and is substantially free of antimony. In the present specification, “substantially free of antimony” means that antimony is not contained as an impurity. Specifically, the content of antimony in the tin oxide layer is less than 1000 ppm on a weight basis. means. Since the conductive powder of the first embodiment does not substantially contain antimony as described above, there is no risk of toxicity.
本発明に係る導電性粉末は、導電性粉末中における前記酸化錫層の含有量が、通常30〜90重量%、好ましくは40〜80重量%である。上記含有量が該範囲内にあると、導電性粉末の導電性が高いと共に、芯材と酸化錫層との結合が比較的強く導電性粉末を樹脂等に混練しても酸化錫層が剥離し難いものとなるため好ましい。一方、上記含有量が30重量%未満であると、酸化錫の量が少なく、導電性粉末の導電性が不十分になり易いため好ましくない。また、上記含有量が90重量%を超えると、導電性粉末の凝集が強くなり、塗膜の平滑性が失われることによりコート粉のメリットがなくなり易いため好ましくない。 In the conductive powder according to the present invention, the content of the tin oxide layer in the conductive powder is usually 30 to 90% by weight, preferably 40 to 80% by weight. When the above content is within the above range, the conductive powder has high conductivity, and the core and tin oxide layer have a relatively strong bond, and even if the conductive powder is kneaded with resin or the like, the tin oxide layer peels off. This is preferable because it is difficult to perform. On the other hand, if the content is less than 30% by weight, the amount of tin oxide is small and the conductivity of the conductive powder tends to be insufficient, such being undesirable. Moreover, when the said content exceeds 90 weight%, since aggregation of electroconductive powder will become strong and the smoothness of a coating film will be lost, since the merit of coat powder is easy to be lost, it is unpreferable.
本発明に係る導電性粉末は、粒度D50が通常0.01〜100μm、好ましくは0.05〜50μm、さらに好ましくは0.1〜10μm、特に好ましくは0.2〜3.0μmである。導電性粉末の粒径が該範囲内にあると、樹脂等中に分散し易いものとなるため好ましい。 The conductive powder according to the present invention has a particle size D50 of usually 0.01 to 100 μm, preferably 0.05 to 50 μm, more preferably 0.1 to 10 μm, and particularly preferably 0.2 to 3.0 μm. It is preferable for the particle size of the conductive powder to fall within this range because it becomes easy to disperse in a resin or the like.
本発明に係る導電性粉末は、比表面積が通常1〜300m2/g、好ましくは5〜200m2/g、さらに好ましくは10〜100m2/gである。導電性粉末の比表面積が該範囲内にあると、樹脂等中に分散し易いものとなるため好ましい。一方、該比表面積が1m2/g未満であると、導電性粉末の粒子が大きいことから塗料化したときに均一な塗膜を得られ難いため好ましくない。また、該比表面積が300m2/gを超えると、酸化錫の粒径と同じ大きさに近くなることから密着性の良いコート層を形成し難くなるため好ましくない。本発明に係る導電性粉末は、体積抵抗率が通常100Ω・cm未満、好ましくは50Ω・cm未満にあり、導電性が高い。 The conductive powder according to the present invention has a specific surface area of usually 1 to 300 m 2 / g, preferably 5 to 200 m 2 / g, more preferably 10 to 100 m 2 / g. It is preferable that the specific surface area of the conductive powder is within this range because it becomes easy to disperse in a resin or the like. On the other hand, if the specific surface area is less than 1 m 2 / g, the conductive powder particles are large, so that it is difficult to obtain a uniform coating film when made into a paint, which is not preferable. On the other hand, when the specific surface area exceeds 300 m 2 / g, it becomes difficult to form a coat layer with good adhesion because it is close to the same particle size as that of tin oxide. The conductive powder according to the present invention has a volume resistivity of generally less than 100 Ω · cm, preferably less than 50 Ω · cm, and has high conductivity.
本発明に係る導電性粉末は、塗膜抵抗が低い。具体的には、塗膜抵抗が、通常1.0×108Ω/□未満、好ましくは6.0×107Ω/□未満である。ここで、塗膜抵抗は、試料粉体を三菱レイヨン株式会社製アクリル樹脂LR167に固形分重量で70重量%混合し、これをペイントシェーカーにて1時間分散した後、バーコーターを用いてPETフィルムの上に塗布し、乾燥して厚さ1μmの塗膜を形成し、該塗膜の表面抵抗を三菱化学株式会社製ロレスタHPを用いて測定した値である。上記本発明に係る導電性粉末は、例えば、下記の本発明に係る導電性粉末の製造方法により、製造することができる。 The conductive powder according to the present invention has low coating film resistance. Specifically, the coating film resistance is usually less than 1.0 × 10 8 Ω / □, preferably less than 6.0 × 10 7 Ω / □. Here, the coating film resistance was obtained by mixing the sample powder with acrylic resin LR167 manufactured by Mitsubishi Rayon Co., Ltd. at 70% by weight in solid content, and dispersing this with a paint shaker for 1 hour, and then using a bar coater. This is a value obtained by applying a coating film on the substrate and drying to form a 1 μm-thick coating film, and measuring the surface resistance of the coating film using Loresta HP manufactured by Mitsubishi Chemical Corporation. The conductive powder according to the present invention can be manufactured, for example, by the following method for manufacturing a conductive powder according to the present invention.
本発明に係る導電性粉末の製造方法は、芯材を水中に分散させたスラリーに、水溶性錫化合物を添加後、酸又はアルカリを用いて中和反応を行い、前記芯材の表面に酸化錫水和物からなる被覆層が形成された導電性粉末前駆体を生成し、該導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に、分散粒度D 50 が0.05〜0.45μmの範囲となるように強分散処理し、該処理液を前記スラリーに戻した後、前記スラリー中の導電性粉末前駆体を洗浄し、乾燥した後、非酸化性雰囲気中650〜800℃で焼成することを特徴とするものである。 In the method for producing conductive powder according to the present invention, after adding a water-soluble tin compound to a slurry in which a core material is dispersed in water, a neutralization reaction is performed using an acid or an alkali to oxidize the surface of the core material. A conductive powder precursor in which a coating layer made of tin hydrate is formed is generated, and at least a part of the slurry containing the conductive powder precursor is dispersed at the time of the neutralization or after the neutralization. After strongly dispersing the D 50 to be in the range of 0.05 to 0.45 μm and returning the treatment liquid to the slurry, the conductive powder precursor in the slurry is washed and dried, It is characterized by firing at 650 to 800 ° C. in an oxidizing atmosphere.
本発明では、まず、芯材を水中に分散させてスラリーを調製する。ここで、芯材としては、本発明に係る導電性粉末で用いたものと同様のものを用いることができる。 In the present invention, first, a core material is dispersed in water to prepare a slurry. Here, as a core material, the thing similar to what was used with the electroconductive powder which concerns on this invention can be used.
上記スラリーは、例えば、芯材を水に芯材の粗粒がなくなるまで分散させる方法により得られる。該スラリーの生成に用いる水としては、特に限定されないが、純水等を用いると、不純物含有量の少ない酸化錫水和物を生成することにより、最終的に得られる導電性粉末の塗料分散性が良くなるため好ましい。 The slurry is obtained, for example, by a method in which the core material is dispersed in water until there are no coarse core material particles. The water used for the production of the slurry is not particularly limited. However, when pure water or the like is used, it is possible to produce tin oxide hydrate having a low impurity content, thereby finally obtaining a paint dispersibility of the conductive powder obtained. Is preferable.
上記スラリー中における水と芯材との配合比率は、水1lに対して芯材が、通常10〜100g、好ましくは30〜80gである。上記配合比率が該範囲内にあると、均一な酸化錫被覆層が得られ易いため好ましい。 The mixing ratio of water and the core material in the slurry is usually 10 to 100 g, preferably 30 to 80 g, of the core material with respect to 1 l of water. It is preferable for the blending ratio to fall within this range because a uniform tin oxide coating layer can be easily obtained.
次に、該スラリーに、水溶性錫化合物を添加する。本形態で用いられる水溶性錫化合物としては、芯材の表面に酸化錫水和物からなる被覆層を形成することができるものであればよく特に限定されないが、例えば、錫酸ナトリウム、四塩化錫等が挙げられる。このうち、錫酸ナトリウム及び四塩化錫は水への溶解が容易であるため好ましい。 Next, a water-soluble tin compound is added to the slurry. The water-soluble tin compound used in the present embodiment is not particularly limited as long as it can form a coating layer made of tin oxide hydrate on the surface of the core material. For example, sodium stannate, tetrachloride Tin etc. are mentioned. Of these, sodium stannate and tin tetrachloride are preferable because they are easily dissolved in water.
また、上記スラリー中における水と水溶性錫化合物との配合比率は、水に対する水溶性錫化合物中のSn濃度が、通常1〜20重量%、好ましくは3〜10重量%である。上記配合比率が該範囲内にあると、均一な酸化錫被覆層が得られ易いため好ましい。 The mixing ratio of water and the water-soluble tin compound in the slurry is such that the Sn concentration in the water-soluble tin compound relative to water is usually 1 to 20% by weight, preferably 3 to 10% by weight. It is preferable for the blending ratio to fall within this range because a uniform tin oxide coating layer can be easily obtained.
次に、水溶性錫化合物を添加したスラリーに、酸又はアルカリを用いて中和反応を行う。中和反応を行う方法としては、該スラリーに酸性物質やアルカリ性物質を添加する方法が挙げられる。ここで、酸性物質としては、例えば、硫酸、硝酸、酢酸等が挙げられる。硫酸は、希硫酸であると均一な酸化錫被覆層が得られ易いため好ましい。希硫酸の濃度は、通常10〜50容量%である。また、アルカリ性物質としては、例えば、水酸化ナトリウム、アンモニア水等が挙げられる。このうち、水酸化ナトリウムは濃度を管理し易いため好ましい。 Next, a neutralization reaction is performed on the slurry to which the water-soluble tin compound is added using an acid or an alkali. Examples of a method for performing the neutralization reaction include a method of adding an acidic substance or an alkaline substance to the slurry. Here, examples of the acidic substance include sulfuric acid, nitric acid, acetic acid and the like. Sulfuric acid is preferably dilute sulfuric acid because a uniform tin oxide coating layer is easily obtained. The concentration of dilute sulfuric acid is usually 10-50% by volume. Examples of the alkaline substance include sodium hydroxide and aqueous ammonia. Among these, sodium hydroxide is preferable because the concentration can be easily controlled.
中和を行う際、スラリーのpHは、通常pH0.5〜5、好ましくはpH2.0〜4.0、さらに好ましくはpH2.0〜3.0とする。中和の際のpHを該範囲内にすることにより、水溶性錫化合物をスラリーに溶解して得られた錫酸が酸化錫水和物を生成し、芯材の表面に酸化錫水和物(SnO2・nH2O)からなる被覆層が形成された導電性粉末前駆体が生成する。 When neutralization is performed, the pH of the slurry is usually 0.5 to 5, preferably 2.0 to 4.0, and more preferably 2.0 to 3.0. By making the pH during neutralization within this range, stannic acid obtained by dissolving the water-soluble tin compound in the slurry produces tin oxide hydrate, and tin oxide hydrate is formed on the surface of the core material. A conductive powder precursor having a coating layer made of (SnO 2 · nH 2 O) is generated.
次に、該導電性粉末前駆体を洗浄する。洗浄した導電性粉末前駆体は、脱水濾過後、乾燥させる。乾燥方法としては特に限定されない。 Next, the conductive powder precursor is washed. The washed conductive powder precursor is dried after dehydration filtration. It does not specifically limit as a drying method.
本方法では、前記導電性粉末前駆体を含むスラリーの少なくとも一部を前記中和の際又は前記中和の後に強分散処理し、該処理液を前記スラリーに戻す。ここで、強分散処理とは、強い剪断力を伴って攪拌する処理をいい、具体的には、以下に示す強分散処理手段を用いる処理をいう。強分散処理手段としては、例えば、ホモジナイザー、ビーズミル等が挙げられる。このうち、ホモジナイザーは、低コストで実設備に組み込み易いため好ましい。 In this method, at least a part of the slurry containing the conductive powder precursor is strongly dispersed during or after the neutralization, and the treatment liquid is returned to the slurry. Here, the strong dispersion process refers to a process of stirring with a strong shearing force, and specifically refers to a process using the strong dispersion process means described below. Examples of the strong dispersion treatment means include a homogenizer and a bead mill. Among these, a homogenizer is preferable because it is low-cost and easy to be incorporated into actual equipment.
強分散処理は、芯材と水溶性錫化合物とを接触させ中和する反応槽を用い、反応槽全体又はその一部で行う方法(第1の方法)の他、該反応槽とは別に強分散処理を行う強分散処理槽を設け、該強分散処理槽で行う方法(第2の方法)を用いることもできる。このうち、第2の方法の方法は、強分散処理を確実に行え、且つ該処理の制御が容易であるため好ましい。 The strong dispersion treatment uses a reaction tank in which the core material and the water-soluble tin compound are brought into contact with each other for neutralization. It is also possible to use a method (second method) in which a strong dispersion treatment tank for performing dispersion treatment is provided and the strong dispersion treatment tank is used. Among these, the method of the second method is preferable because it can surely perform strong dispersion processing and is easy to control the processing.
また、第2の方法を用いる場合、反応槽と強分散処理槽とはポンプを介して連通すると送液の制御が容易であるため好ましい。このように反応槽と強分散処理槽とを連通する方法としては、これらの間にポンプを組み込んだ配管を少なくとも1系統設けて両者を連通する方法を用いることができる。この場合、該連通する配管を、反応槽内のスラリーを強分散処理槽に送液する配管と、強分散処理槽内の処理液を反応槽に送液する配管との2系統設け、反応槽、強分散処理槽、反応槽の順にスラリーが循環できるようにすると、強分散処理を連続して行うことができるため好ましい。 In the case of using the second method, it is preferable that the reaction tank and the strong dispersion treatment tank communicate with each other via a pump because the liquid feeding can be easily controlled. As a method of communicating the reaction tank and the strongly dispersed treatment tank in this way, a method of providing at least one system of piping having a pump installed between them and communicating them can be used. In this case, the communication pipe is provided with two systems, a pipe for feeding the slurry in the reaction tank to the strong dispersion treatment tank and a pipe for feeding the treatment liquid in the strong dispersion treatment tank to the reaction tank. It is preferable to allow the slurry to circulate in the order of the strong dispersion treatment tank and the reaction tank because the strong dispersion treatment can be continuously performed.
強分散処理は、前記中和の際又は前記中和の後に行うが、強分散処理を中和の際に行う方法としては、例えば、反応槽内で中和しつつ同時に強分散処理を行う方法、反応槽と強分散処理槽とを反応槽、強分散処理槽、反応槽の順に配管等で連通してスラリーが循環できるように構成し、反応槽内で中和しつつ、強分散処理槽内で強分散処理を行う方法が挙げられる。 The strong dispersion treatment is performed at the time of neutralization or after the neutralization. As a method of performing the strong dispersion treatment at the time of neutralization, for example, a method of performing strong dispersion treatment simultaneously while neutralizing in a reaction vessel. The reaction tank and the strong dispersion treatment tank are connected to each other in the order of the reaction tank, the strong dispersion treatment tank, and the reaction tank through a pipe or the like so that the slurry can be circulated. Among them, a method of performing strong dispersion processing is mentioned.
また、強分散処理を中和の後に行う方法としては、例えば、中和処理を終了した反応槽内で引き続いて強分散処理を行う方法(バッチ処理)、反応槽と強分散処理槽とを反応槽、強分散処理槽、反応槽の順にスラリーが循環できるように構成し、中和処理中は反応槽内で強分散処理を行わずにおき、反応槽内で中和処理が終了した後に強分散手段を稼動して強分散処理槽内で強分散処理を行う方法(連続処理)等が挙げられる。中和の際又は中和の後に行う強分散処理のうちでは、中和の際に行う方法のほうが、スラリー中における導電性粉末前駆体の凝集を抑制する効果が高いため好ましい。 Moreover, as a method of performing strong dispersion treatment after neutralization, for example, a method of performing strong dispersion treatment (batch treatment) in a reaction tank after completion of neutralization treatment, a reaction between the reaction tank and the strong dispersion treatment tank. The slurry can be circulated in the order of the tank, the strong dispersion treatment tank, and the reaction tank. During the neutralization treatment, the strong dispersion treatment is not performed in the reaction tank, and after the neutralization treatment is completed in the reaction tank, Examples include a method (continuous treatment) in which the dispersion means is operated to perform the strong dispersion treatment in the strong dispersion treatment tank. Among the strong dispersion treatments performed at the time of neutralization or after neutralization, the method performed at the time of neutralization is preferable because it has a higher effect of suppressing aggregation of the conductive powder precursor in the slurry.
次に、該導電性粉末前駆体を洗浄する。洗浄した導電性粉末前駆体は、脱水濾過後、乾燥させる。乾燥方法としては特に限定されない。 Next, the conductive powder precursor is washed. The washed conductive powder precursor is dried after dehydration filtration. It does not specifically limit as a drying method.
次に、乾燥した導電性粉末前駆体を非酸化性雰囲気中で焼成する。ここで、非酸化性雰囲気としては、例えば、窒素雰囲気、水素を含有した窒素雰囲気、アルゴン雰囲気等が挙げられる。このうち、水素を含有した窒素雰囲気は、安価であるため好ましい。また、水素を含有した窒素雰囲気の場合、水素の含有量は、通常0.1〜10体積%、好ましくは1〜3体積%である。水素の含有量が該範囲内にあると、酸化錫層について還元によるメタル化をさせずに酸素欠損を形成させ易いため好ましい。 Next, the dried conductive powder precursor is fired in a non-oxidizing atmosphere. Here, examples of the non-oxidizing atmosphere include a nitrogen atmosphere, a nitrogen atmosphere containing hydrogen, and an argon atmosphere. Among these, a nitrogen atmosphere containing hydrogen is preferable because it is inexpensive. In the case of a nitrogen atmosphere containing hydrogen, the hydrogen content is usually 0.1 to 10% by volume, preferably 1 to 3% by volume. It is preferable that the hydrogen content be within the above range because oxygen vacancies can be easily formed without metallizing the tin oxide layer by reduction.
焼成温度は、通常650〜〜800℃であり、焼成時間としては、通常5〜180分、好ましくは10〜120分である。焼成条件が、上記範囲内にあると、酸素欠損を生じさせるのに十分であり、且つ凝集を起こし難いため好ましい。上記の工程を行うことにより、本発明に係る導電性粉末を製造することができる。 Calcination temperature is usually 650 ° C., as the firing time is usually 5 to 180 minutes, preferably 10 to 120 minutes. It is preferable for the firing conditions to be in the above-mentioned range because it is sufficient to cause oxygen deficiency and hardly causes aggregation. By performing the above steps, the conductive powder according to the present invention can be produced.
なお、導電性及び分散性に優れる導電性粉末を製造する方法としては、酸化性雰囲気中300℃程度の低温で仮焼し、さらに非酸化性雰囲気中200℃程度の低温で焼成する方法も考えられるが、本発明によれば、このように低温で2度焼成することなく、導電性及び分散性に優れる導電性粉末を得ることができる。 As a method for producing a conductive powder having excellent conductivity and dispersibility, a method of calcining at a low temperature of about 300 ° C. in an oxidizing atmosphere and a method of baking at a low temperature of about 200 ° C. in a non-oxidizing atmosphere is also considered. However, according to the present invention, a conductive powder having excellent conductivity and dispersibility can be obtained without firing twice at a low temperature.
上記本発明に係る導電性粉末は、例えば、紙、プラスチック、ゴム、樹脂、塗料等に混入してこれらに導電性を付与する導電性フィラーとして、また、電池等の電極改質剤として使用することができる。また、本発明に係る導電性粉末の製造方法は、上記本発明に係る導電性粉末の製造に使用することができる。上記樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル等が挙げられる。 The conductive powder according to the present invention is used, for example, as a conductive filler that imparts conductivity to paper, plastic, rubber, resin, paint, etc., and as an electrode modifier for batteries and the like. be able to. Moreover, the manufacturing method of the electroconductive powder which concerns on this invention can be used for manufacture of the electroconductive powder which concerns on the said this invention. As said resin, an acrylic resin, an epoxy resin, polyester etc. are mentioned, for example.
本発明に係る導電性粉末は、上記樹脂や水等の液状媒体に対する分散性が良好であり、その指標として、導電性粉末を純水に70重量%分散し、ペイントシェーカーを用いて分散処理した場合の分散粒度D50が、通常0.05〜0.45μm、好ましくは0.1〜0.4μmである。分散粒度D50が該範囲内にあると、平滑であり透明性の高い膜が得られ易いため好ましい。また、本発明に係る導電性粉末は、上記樹脂に分散させたときの塗膜抵抗が低くなる。 The conductive powder according to the present invention has good dispersibility in the liquid medium such as the resin and water, and as an index thereof, the conductive powder is dispersed in 70% by weight in pure water and dispersed using a paint shaker. In this case, the dispersed particle size D 50 is usually 0.05 to 0.45 μm, preferably 0.1 to 0.4 μm. It is preferable that the dispersed particle size D 50 is in this range because a smooth and highly transparent film can be easily obtained. In addition, the conductive powder according to the present invention has low coating film resistance when dispersed in the resin.
以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not construed as being limited thereto.
本例に用いる製造装置として、攪拌機を備えた反応槽と、ホモジナイザー(IKAジャパン株式会社製T50)を備えた強分散処理槽と、反応槽中のスラリーを第1ポンプを介して強分散処理槽に送液可能な第1循環配管と、強分散処理槽中のスラリーを第2ポンプを介して反応槽に送液可能な第2循環配管とを有し、反応槽、強分散処理槽、反応槽の順にスラリーが循環できるように構成したものを用いた。
反応槽において、水3.5lに硫酸バリウム200gを硫酸バリウムの粗粒がなくなるまで分散させてスラリーを生成した。該スラリーに錫酸ナトリウム576gを投入し、錫酸ナトリウムを溶解させた。スラリー中のSn濃度は41重量%であった。該スラリーに20%希硫酸をスラリーのpHが2.5になるまで添加して中和し、一方、反応槽における中和の開始と同時に、第1ポンプ、ホモジナイザー及び第2ポンプを順次稼動して反応槽中のスラリーを強分散処理槽に送液してホモジナイザーで強分散処理を行い、強分散処理後の処理液を反応槽に戻すようにした。ホモジナイザーは、4500RPMで攪拌させた。中和を開始してから終了するまで98分間かけて行い、この間強分散処理を行い続けた。
該反応液を温水を用いて洗浄した。洗浄終了後は、脱水濾過を行い、濾滓(ケーキ)を回収した。
次に、得られた濾滓を150℃の雰囲気中に15時間放置して、乾燥させた。得られた乾燥ケーキをアトマイザーを用いて解砕し、該解砕物について水素を2体積%含有した窒素ガスを流通させながら、700℃で30分間焼成を行った。
得られた粉末について、被覆率(導電性粉末中における酸化錫層の含有量)、体積抵抗率、粒度D50、比表面積、分散粒度D50及び塗膜抵抗を下記の方法により測定した。測定結果を表1に示す。
As a manufacturing apparatus used in this example, a reaction vessel equipped with a stirrer, a strong dispersion treatment vessel equipped with a homogenizer (T50 manufactured by IKA Japan Co., Ltd.), and a slurry in the reaction vessel through a first pump, a strong dispersion treatment vessel And a second circulation pipe capable of feeding the slurry in the strong dispersion treatment tank to the reaction tank via the second pump, the reaction tank, the strong dispersion treatment tank, the reaction What was comprised so that a slurry could circulate in the order of a tank was used.
In a reaction vessel, 200 g of barium sulfate was dispersed in 3.5 l of water until no coarse particles of barium sulfate disappeared to produce a slurry. 576 g of sodium stannate was added to the slurry to dissolve sodium stannate. The Sn concentration in the slurry was 41% by weight. The slurry was neutralized by adding 20% dilute sulfuric acid until the pH of the slurry reached 2.5. On the other hand, simultaneously with the start of neutralization in the reaction vessel, the first pump, the homogenizer and the second pump were operated in sequence. Then, the slurry in the reaction tank was fed to the strong dispersion treatment tank and subjected to strong dispersion treatment with a homogenizer, and the treatment liquid after the strong dispersion treatment was returned to the reaction tank. The homogenizer was stirred at 4500 RPM. It was carried out over 98 minutes from the start to the end of neutralization, and the strong dispersion treatment was continued during this period.
The reaction solution was washed with warm water. After the completion of washing, dehydration filtration was performed, and a filter cake (cake) was collected.
Next, the obtained filter cake was left in an atmosphere of 150 ° C. for 15 hours to be dried. The obtained dried cake was crushed using an atomizer, and the crushed product was baked at 700 ° C. for 30 minutes while supplying nitrogen gas containing 2% by volume of hydrogen.
About the obtained powder, the coverage (content of the tin oxide layer in the conductive powder), volume resistivity, particle size D 50 , specific surface area, dispersed particle size D 50 and coating film resistance were measured by the following methods. The measurement results are shown in Table 1.
(体積抵抗率):試料粉体を三菱化学株式会社製ロレスタPAPD−41を用いて500kgf/cm2に加圧した状態で、三菱化学株式会社製ロレスタAPを用いた測定値を体積抵抗率として求めた。
(粒度D50):200ccのサンプル容器に試料約0.1gを採り、0.2g/lのヘキサメタリン酸ソーダを10ml添加混合後、純水90mlを添加し、超音波分散機日本精機株式会社製US−300Tにより10分間分散しサンプル液を調整した。日機装株式会社製マイクロトラックHRAを用いて測定した。
(比表面積):ユアサアイオニクス株式会社製モノソーブを用いて測定したBET比表面積を用いた。
(分散粒度D50):試料粉体を純水に30重量%分散した後、ペイントシェーカーを用いて分散処理を30分間行い、得られたスラリーの分散粒度D50を日機装株式会社製マイクロトラックHRAを用いて測定した。
(塗膜抵抗):試料粉体を三菱レイヨン株式会社製アクリル樹脂LR167に固形分重量で70重量%混合し、これをペイントシェーカーにて1時間分散した後、バーコーターを用いてPETフィルムの上に塗布し、乾燥して厚さ1μmの塗膜を形成し、該塗膜の表面抵抗を三菱化学株式会社製ロレスタHPを用いて測定した。
(Volume resistivity): In a state where the sample powder was pressurized to 500 kgf / cm 2 using Loresta PAPD-41 manufactured by Mitsubishi Chemical Corporation, the measured value using Loresta AP manufactured by Mitsubishi Chemical Corporation was used as volume resistivity. Asked.
(Particle size D 50 ): About 0.1 g of a sample is put in a 200 cc sample container, 10 ml of 0.2 g / l sodium hexametaphosphate is added and mixed, and then 90 ml of pure water is added, and an ultrasonic dispersing machine manufactured by Nippon Seiki A sample solution was prepared by dispersing for 10 minutes with US-300T. Measurement was performed using Microtrack HRA manufactured by Nikkiso Co., Ltd.
(Specific surface area): The BET specific surface area measured using the monosorb by Yuasa Ionics Co., Ltd. was used.
(Dispersion particle size D 50 ): After 30% by weight of the sample powder was dispersed in pure water, dispersion treatment was performed for 30 minutes using a paint shaker, and the dispersion particle size D 50 of the resulting slurry was changed to Microtrack HRA manufactured by Nikkiso Co., Ltd. It measured using.
(Film resistance): The sample powder was mixed with acrylic resin LR167 manufactured by Mitsubishi Rayon Co., Ltd. at a solid weight of 70% by weight and dispersed for 1 hour with a paint shaker. The film was dried to form a coating film having a thickness of 1 μm, and the surface resistance of the coating film was measured using Loresta HP manufactured by Mitsubishi Chemical Corporation.
被覆率が40重量%となるようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that the coverage was 40% by weight. The measurement results are shown in Table 1.
被覆率が80重量%となるようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that the coverage was 80% by weight. The measurement results are shown in Table 1.
硫酸バリウム200gに代えて二酸化珪素200gを用い、被覆率が60重量%となるようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that 200 g of silicon dioxide was used instead of 200 g of barium sulfate and the coverage was 60% by weight. The measurement results are shown in Table 1.
硫酸バリウム200gに代えて二酸化チタン200gを用い、被覆率が60重量%となるようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that 200 g of titanium dioxide was used instead of 200 g of barium sulfate and the coverage was 60% by weight. The measurement results are shown in Table 1.
被覆率が9重量%となるようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that the coverage was 9% by weight. The measurement results are shown in Table 1.
強分散処理を行わないようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that the strong dispersion treatment was not performed. The measurement results are shown in Table 1.
硫酸バリウム200gに代えて二酸化珪素200gを用い、強分散処理を行わないようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that 200 g of silicon dioxide was used instead of 200 g of barium sulfate and no strong dispersion treatment was performed. The measurement results are shown in Table 1.
硫酸バリウム200gに代えて二酸化チタン200gを用い、強分散処理を行わないようにした以外は実施例1と同様にして導電性粉末を得た。測定結果を表1に示す。 A conductive powder was obtained in the same manner as in Example 1 except that 200 g of titanium dioxide was used instead of 200 g of barium sulfate and no strong dispersion treatment was performed. The measurement results are shown in Table 1.
表1より、強分散処理をしないもの又は酸化錫層の含有量が30重量%未満である比較例の導電性粉末は、体積抵抗が高く、導電性が悪いことが判る。 From Table 1, it can be seen that the conductive powder of the comparative example in which the strong dispersion treatment is not performed or the content of the tin oxide layer is less than 30% by weight has high volume resistance and poor conductivity.
本発明に係る導電性粉末及びその製造方法は、精密電子機器の静電気障害防止、静電気災害の発生防止、防塵等のためのハウジング、建材、繊維、機械部品;電池等の用途に用いることができる。
The conductive powder and the method for producing the same according to the present invention can be used for housings, building materials, fibers, mechanical parts, batteries, and the like for preventing electrostatic failure of precision electronic devices, preventing occurrence of electrostatic disasters, and dust prevention. .
Claims (5)
The method for producing a conductive powder according to claim 4, wherein the core material is barium sulfate, titanium dioxide, alumina, or silicon dioxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342655A JP4540091B2 (en) | 2003-09-30 | 2003-09-30 | Conductive powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342655A JP4540091B2 (en) | 2003-09-30 | 2003-09-30 | Conductive powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005108734A JP2005108734A (en) | 2005-04-21 |
JP4540091B2 true JP4540091B2 (en) | 2010-09-08 |
Family
ID=34536860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003342655A Expired - Fee Related JP4540091B2 (en) | 2003-09-30 | 2003-09-30 | Conductive powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4540091B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4553345B2 (en) * | 2003-09-30 | 2010-09-29 | 三井金属鉱業株式会社 | Conductive powder |
JP4575656B2 (en) * | 2003-09-30 | 2010-11-04 | 三井金属鉱業株式会社 | Conductive powder |
JP5007970B2 (en) * | 2006-12-28 | 2012-08-22 | 三菱マテリアル株式会社 | Method for producing transparent conductive powder |
JP5438956B2 (en) * | 2008-03-18 | 2014-03-12 | 三井金属鉱業株式会社 | Method for producing particles having coating layer |
JP2010123428A (en) * | 2008-11-20 | 2010-06-03 | Mitsubishi Materials Corp | White conductive powder and its manufacturing method |
JP5155840B2 (en) * | 2008-12-12 | 2013-03-06 | 三井金属鉱業株式会社 | Method for producing metal hydroxide particles |
JP5514436B2 (en) * | 2008-12-27 | 2014-06-04 | 三菱マテリアル株式会社 | Method for producing white conductive powder having tin oxide layer |
JP2013006707A (en) * | 2011-06-22 | 2013-01-10 | Mitsubishi Materials Corp | Silicon oxide-containing conductive tin oxide powder containing silicon oxide |
KR101990792B1 (en) | 2019-01-17 | 2019-06-19 | 대한민국 | Measuring apparatus for water pollutant inducing environmental stress |
KR101990793B1 (en) | 2019-01-17 | 2019-06-19 | 대한민국 | Measuring system for water pollutant |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0558620A (en) * | 1991-09-03 | 1993-03-09 | Nippon Chem Ind Co Ltd | Electrically-conductive zeolite composition |
JPH08329735A (en) * | 1995-06-05 | 1996-12-13 | Mitsui Mining & Smelting Co Ltd | Conductive powder and its manufacture |
JP2000034122A (en) * | 1998-07-16 | 2000-02-02 | Titan Kogyo Kk | Ultrafine particle titanium dioxide, its production and its application |
JP2003261326A (en) * | 2002-03-08 | 2003-09-16 | Catalysts & Chem Ind Co Ltd | Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display |
-
2003
- 2003-09-30 JP JP2003342655A patent/JP4540091B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0558620A (en) * | 1991-09-03 | 1993-03-09 | Nippon Chem Ind Co Ltd | Electrically-conductive zeolite composition |
JPH08329735A (en) * | 1995-06-05 | 1996-12-13 | Mitsui Mining & Smelting Co Ltd | Conductive powder and its manufacture |
JP2000034122A (en) * | 1998-07-16 | 2000-02-02 | Titan Kogyo Kk | Ultrafine particle titanium dioxide, its production and its application |
JP2003261326A (en) * | 2002-03-08 | 2003-09-16 | Catalysts & Chem Ind Co Ltd | Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display |
Also Published As
Publication number | Publication date |
---|---|
JP2005108734A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5301370B2 (en) | Tin oxide particles and method for producing the same | |
JP4540091B2 (en) | Conductive powder and method for producing the same | |
CN106604794A (en) | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder | |
CN106573303A (en) | Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same | |
JP4801617B2 (en) | Conductive zinc oxide particles and method for producing the same | |
JP5142891B2 (en) | Cuprous oxide powder and method for producing the same | |
WO2004058645A1 (en) | Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition | |
JP2009199776A (en) | White conductive powder, its manufacturing method, and usage | |
JP4722412B2 (en) | Conductive tin oxide powder, method for producing the same, conductive paste and conductive paint | |
JP5438956B2 (en) | Method for producing particles having coating layer | |
JP4718111B2 (en) | Conductive powder and method for producing the same | |
WO2014003179A1 (en) | White conductive powder, dispersion liquid thereof, coating material, film composition, and production method of white conductive powder | |
JP4553345B2 (en) | Conductive powder | |
JP5285725B2 (en) | Conductive powder | |
JP4575656B2 (en) | Conductive powder | |
JP4493966B2 (en) | Conductive powder and method for producing the same | |
JP4771666B2 (en) | Conductive tin oxide powder and method for producing the same | |
JP3365883B2 (en) | Needle-like conductive tin oxide fine powder and method for producing the same | |
JPH1111947A (en) | Production of antimony doped tin oxide powder and coating material containing the same | |
JP3515625B2 (en) | Needle-like conductive tin oxide fine powder and method for producing the same | |
JP6249723B2 (en) | Conductive particles and method for producing the same | |
JP6577327B2 (en) | Conductive particles and conductive composition containing the same | |
JP2011054508A (en) | White conductive powder | |
WO2023112472A1 (en) | Aqueous carbon black dispersion for electroconductive coating materials, and method for producing aqueous carbon black dispersion for electroconductive coating materials | |
JP6559595B2 (en) | Production method of titanium dioxide composite powder and conductive composite powder, titanium dioxide composite powder and conductive composite powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100616 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4540091 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140702 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |