JP2021095642A - 薄膜蒸着工程を制御するための制御装置、及び方法 - Google Patents
薄膜蒸着工程を制御するための制御装置、及び方法 Download PDFInfo
- Publication number
- JP2021095642A JP2021095642A JP2021054312A JP2021054312A JP2021095642A JP 2021095642 A JP2021095642 A JP 2021095642A JP 2021054312 A JP2021054312 A JP 2021054312A JP 2021054312 A JP2021054312 A JP 2021054312A JP 2021095642 A JP2021095642 A JP 2021095642A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- data
- correlation model
- diffraction pattern
- state data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 322
- 238000000034 method Methods 0.000 title claims abstract description 302
- 238000005019 vapor deposition process Methods 0.000 title claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 167
- 238000005259 measurement Methods 0.000 claims abstract description 104
- 238000000427 thin-film deposition Methods 0.000 claims abstract description 94
- 230000015654 memory Effects 0.000 claims abstract description 29
- 238000010801 machine learning Methods 0.000 claims abstract description 27
- 238000004891 communication Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims description 29
- 238000010894 electron beam technology Methods 0.000 claims description 25
- 238000004422 calculation algorithm Methods 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 19
- 238000007740 vapor deposition Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 9
- 230000001276 controlling effect Effects 0.000 claims 2
- 230000002596 correlated effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 26
- 238000012545 processing Methods 0.000 description 20
- 238000007736 thin film deposition technique Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 11
- 238000000691 measurement method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000002003 electron diffraction Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000007781 pre-processing Methods 0.000 description 4
- 238000004549 pulsed laser deposition Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000000594 atomic force spectroscopy Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000000004 low energy electron diffraction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
- C23C14/545—Controlling the film thickness or evaporation rate using measurement on deposited material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/20—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
- G01N23/20058—Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Claims (11)
- 薄膜蒸着工程を制御するための制御装置であって、
相関モデルを格納する1つ以上のメモリと、
1つ以上のプロセッサと、を含み、
前記プロセッサは、
薄膜蒸着工程中に基板上の薄膜に照射して前記薄膜から反射された電子ビームにより形成される回折パターンのイメージを取得し、
前記イメージを前処理し、前記回折パターンのパターン類型、パターン間隔、及び前記薄膜から反射された電子ビームの強度を含む前処理されたデータを出力し、
前記相関モデルを用いて、前記回折パターンのイメージ及び前記前処理されたデータのうち少なくとも1つから工程中薄膜状態データを導き出すように構成される、
制御装置。 - 前記相関モデルは、機械学習アルゴリズムにより、薄膜測定結果セット、前処理された測定データセット、及び工程中薄膜状態データセット間の相関関係をモデリングして構築されたものである、
請求項1に記載の制御装置。 - 前記工程中薄膜状態データは、前記薄膜の表面構造、結晶構造、原子組成、応力、及び蒸着速度のデータを含む、
請求項1に記載の制御装置。 - 前記プロセッサは、
前記相関モデルを用いて、前記回折パターンの前記パターン類型から前記薄膜の前記表面構造及び前記結晶構造を導き出し、
前記相関モデルを用いて、前記回折パターンの前記パターン間隔から前記薄膜の前記原子組成及び前記応力を導き出し、
前記相関モデルを用いて、前記薄膜から反射された前記電子ビームの前記強度から前記薄膜の前記蒸着速度を導き出すように構成される、
請求項3に記載の制御装置。 - 前記薄膜蒸着工程を行う薄膜蒸着装置、及び前記薄膜蒸着工程中に前記薄膜に前記電子ビームを照射し、前記薄膜から反射された前記電子ビームから前記回折パターンを測定する1つ以上の測定装置と通信する通信インターフェースを含む、
請求項1に記載の制御装置。 - 前記メモリは、機械学習アルゴリズムにより、前記薄膜蒸着工程の工程条件データセット、前記薄膜蒸着装置の状態を示すセンシングデータセット、工程中薄膜状態データセット、及び工程後薄膜状態データセット間の相関関係をモデリングして構築された他の相関モデルを格納するように構成され、
前記プロセッサは、前記他の相関モデルを用いて、前記導き出された工程中薄膜状態データに基づいて、前記薄膜の工程後薄膜状態データを導き出すように構成される、
請求項5に記載の制御装置。 - 薄膜蒸着工程を制御するための方法であって、
1つ以上のプロセッサにより、薄膜蒸着工程中に基板上の薄膜に照射されて前記薄膜から反射された電子ビームにより形成された回折パターンのイメージを取得する段階と、
前記プロセッサにより、前記イメージを前処理し、前記回折パターンのパターン類型、前記回折パターンのパターン間隔、及び前記薄膜から反射された前記電子ビームの強度を含む前処理されたデータを出力する段階と、
前記プロセッサにより、1つ以上のメモリに格納された相関モデルを用いて、前記回折パターンの前記イメージ及び前記前処理されたデータのうち少なくとも1つから工程中薄膜状態データを導き出す段階と、
を含む方法。 - 前記相関モデルは、機械学習アルゴリズムにより、薄膜測定結果セット、前処理された測定データセット、及び工程中薄膜状態データセット間の相関関係をモデリングして構築されたものである、
請求項7に記載の方法。 - 前記工程中薄膜状態データは、前記薄膜の表面構造、結晶構造、原子組成、応力、及び蒸着速度のデータを含む、
請求項7に記載の方法。 - 前記工程中薄膜状態データを導き出す段階は、
前記相関モデルを用いて、前記回折パターンの前記パターン類型から前記薄膜の前記表面構造及び前記結晶構造を導き出す段階と、
前記相関モデルを用いて、前記回折パターンの前記パターン間隔から前記薄膜の前記原子組成及び前記応力を導き出す段階と、
前記相関モデルを用いて、前記薄膜から反射された前記電子ビームの前記強度から前記薄膜の前記蒸着速度を導き出す段階と、
を含む請求項9に記載の方法。 - 前記プロセッサにより、前記メモリに格納された他の相関モデルを用いて、前記導き出された工程中薄膜状態データに基づいて、前記薄膜の工程後薄膜状態データを導き出す段階を含み、
前記他の相関モデルは、機械学習アルゴリズムにより、前記薄膜蒸着工程の工程条件データセット、前記薄膜蒸着工程の薄膜蒸着装置の状態を示すセンシングデータセット、工程中薄膜状態データセット、及び工程後薄膜状態データセット間の相関関係をモデリングして構築されたものである、
請求項7に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180133542A KR101965605B1 (ko) | 2018-11-02 | 2018-11-02 | 박막 증착 공정을 제어하기 위한 장치, 방법 및 명령을 기록한 기록 매체 |
KR10-2018-0133542 | 2018-11-02 | ||
JP2019100773A JP6865474B2 (ja) | 2018-11-02 | 2019-05-29 | 薄膜蒸着工程を制御するための装置、方法及び命令を記録した記録媒体 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019100773A Division JP6865474B2 (ja) | 2018-11-02 | 2019-05-29 | 薄膜蒸着工程を制御するための装置、方法及び命令を記録した記録媒体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021095642A true JP2021095642A (ja) | 2021-06-24 |
JP7536302B2 JP7536302B2 (ja) | 2024-08-20 |
Family
ID=65812143
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019100773A Active JP6865474B2 (ja) | 2018-11-02 | 2019-05-29 | 薄膜蒸着工程を制御するための装置、方法及び命令を記録した記録媒体 |
JP2021054312A Active JP7536302B2 (ja) | 2018-11-02 | 2021-03-26 | 薄膜蒸着工程を制御するための制御装置、及び方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019100773A Active JP6865474B2 (ja) | 2018-11-02 | 2019-05-29 | 薄膜蒸着工程を制御するための装置、方法及び命令を記録した記録媒体 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11597997B2 (ja) |
EP (1) | EP3647458A1 (ja) |
JP (2) | JP6865474B2 (ja) |
KR (1) | KR101965605B1 (ja) |
TW (2) | TWI726767B (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3916122A1 (en) * | 2020-05-28 | 2021-12-01 | Solmates B.V. | Method for controlling stress in a substrate during laser deposition |
JP7481184B2 (ja) * | 2020-07-15 | 2024-05-10 | 株式会社神戸製鋼所 | 機械学習方法、機械学習装置、機械学習プログラム、通信方法、及び成膜装置 |
JP7481185B2 (ja) * | 2020-07-15 | 2024-05-10 | 株式会社神戸製鋼所 | 機械学習方法、機械学習装置、機械学習プログラム、通信方法、及び成膜装置 |
WO2022113867A1 (ja) * | 2020-11-30 | 2022-06-02 | コニカミノルタ株式会社 | 解析装置、検査システム、および学習装置 |
KR102578368B1 (ko) * | 2021-01-08 | 2023-09-15 | 대한광통신(주) | 머신러닝 기반 합성유리 퇴적공정 예측 방법, 장치 및 컴퓨터 프로그램 |
US20220228265A1 (en) * | 2021-01-15 | 2022-07-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for dynamically adjusting thin-film deposition parameters |
CN114662424B (zh) * | 2022-05-20 | 2022-09-02 | 季华实验室 | 薄膜沉积模拟方法、装置、电子设备及存储介质 |
KR20240047842A (ko) * | 2022-10-05 | 2024-04-12 | 서울대학교산학협력단 | 기계학습이 적용된 자동화된 박막 증착 시스템 및 박막 증착 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0637021A (ja) * | 1992-07-17 | 1994-02-10 | Fuji Electric Co Ltd | 学習予測・指示機能付半導体製造装置 |
CN1828508A (zh) * | 2005-03-01 | 2006-09-06 | 中国科学院半导体研究所 | 高能电子衍射图像处理系统及方法 |
US20090307163A1 (en) * | 2008-06-09 | 2009-12-10 | Samsung Mobile Display Co., Ltd. | Virtual measuring device and method |
JP2014216343A (ja) * | 2013-04-22 | 2014-11-17 | スタンレー電気株式会社 | Cuドープp型ZnO系半導体結晶層とその製造方法 |
JP2017510064A (ja) * | 2014-02-12 | 2017-04-06 | トランスルーセント インコーポレイテッドTranslucent, Inc. | シリコン基板上のiii−n半導体層 |
JP2018141205A (ja) * | 2017-02-28 | 2018-09-13 | 日本電信電話株式会社 | 単結晶性薄膜の形成方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2342638A1 (en) * | 1998-10-19 | 2000-04-27 | Qinetiq Limited | Layer processing |
US6970532B2 (en) * | 2000-05-10 | 2005-11-29 | Rigaku Corporation | Method and apparatus for measuring thin film, and thin film deposition system |
JP3670208B2 (ja) * | 2000-11-08 | 2005-07-13 | アルプス電気株式会社 | プラズマ処理装置,プラズマ処理システムおよびこれらの性能確認システム,検査方法 |
US6563578B2 (en) * | 2001-04-02 | 2003-05-13 | Advanced Micro Devices, Inc. | In-situ thickness measurement for use in semiconductor processing |
US7201936B2 (en) * | 2001-06-19 | 2007-04-10 | Applied Materials, Inc. | Method of feedback control of sub-atmospheric chemical vapor deposition processes |
US6593748B1 (en) * | 2001-07-12 | 2003-07-15 | Advanced Micro Devices, Inc. | Process integration of electrical thickness measurement of gate oxide and tunnel oxides by corona discharge technique |
JP3828443B2 (ja) * | 2002-03-22 | 2006-10-04 | 株式会社東芝 | 赤外線撮像装置及びその製造方法 |
US6849151B2 (en) * | 2002-08-07 | 2005-02-01 | Michael S. Barnes | Monitoring substrate processing by detecting reflectively diffracted light |
JP3811150B2 (ja) * | 2003-09-05 | 2006-08-16 | 株式会社東芝 | 膜厚測定方法、膜厚測定システム、半導体装置の製造方法及び膜厚測定システム制御プログラム |
WO2011100506A1 (en) * | 2010-02-12 | 2011-08-18 | First Solar, Inc. | Deposition rate control |
JP2013151721A (ja) * | 2012-01-25 | 2013-08-08 | Toyota Motor Corp | 固体電解質膜の製造方法 |
KR101340425B1 (ko) * | 2012-05-15 | 2013-12-10 | (주)베오스솔루션 | 박막 증착 장치 및 방법 |
JP6017243B2 (ja) * | 2012-09-26 | 2016-10-26 | スタンレー電気株式会社 | ZnO系半導体素子、及び、ZnO系半導体素子の製造方法 |
JP2014240780A (ja) * | 2013-06-11 | 2014-12-25 | 株式会社東芝 | 試料構造分析方法、透過電子顕微鏡およびプログラム |
KR102521159B1 (ko) * | 2014-11-25 | 2023-04-13 | 피디에프 솔루션즈, 인코포레이티드 | 반도체 제조 공정을 위한 개선된 공정 제어 기술 |
US10269545B2 (en) * | 2016-08-03 | 2019-04-23 | Lam Research Corporation | Methods for monitoring plasma processing systems for advanced process and tool control |
KR102135317B1 (ko) * | 2016-12-12 | 2020-07-20 | 주식회사 원익아이피에스 | 기판 처리 장치 |
-
2018
- 2018-11-02 KR KR1020180133542A patent/KR101965605B1/ko active
-
2019
- 2019-03-14 EP EP19162726.4A patent/EP3647458A1/en active Pending
- 2019-03-21 TW TW109123463A patent/TWI726767B/zh active
- 2019-03-21 TW TW108109693A patent/TWI704600B/zh active
- 2019-04-11 US US16/381,318 patent/US11597997B2/en active Active
- 2019-05-29 JP JP2019100773A patent/JP6865474B2/ja active Active
-
2021
- 2021-03-26 JP JP2021054312A patent/JP7536302B2/ja active Active
-
2023
- 2023-02-08 US US18/107,359 patent/US20230279538A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0637021A (ja) * | 1992-07-17 | 1994-02-10 | Fuji Electric Co Ltd | 学習予測・指示機能付半導体製造装置 |
CN1828508A (zh) * | 2005-03-01 | 2006-09-06 | 中国科学院半导体研究所 | 高能电子衍射图像处理系统及方法 |
US20090307163A1 (en) * | 2008-06-09 | 2009-12-10 | Samsung Mobile Display Co., Ltd. | Virtual measuring device and method |
JP2014216343A (ja) * | 2013-04-22 | 2014-11-17 | スタンレー電気株式会社 | Cuドープp型ZnO系半導体結晶層とその製造方法 |
JP2017510064A (ja) * | 2014-02-12 | 2017-04-06 | トランスルーセント インコーポレイテッドTranslucent, Inc. | シリコン基板上のiii−n半導体層 |
JP2018141205A (ja) * | 2017-02-28 | 2018-09-13 | 日本電信電話株式会社 | 単結晶性薄膜の形成方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101965605B1 (ko) | 2019-08-13 |
EP3647458A1 (en) | 2020-05-06 |
JP2020070494A (ja) | 2020-05-07 |
US11597997B2 (en) | 2023-03-07 |
JP6865474B2 (ja) | 2021-04-28 |
US20200140993A1 (en) | 2020-05-07 |
TWI726767B (zh) | 2021-05-01 |
TW202046383A (zh) | 2020-12-16 |
TWI704600B (zh) | 2020-09-11 |
JP7536302B2 (ja) | 2024-08-20 |
TW202018771A (zh) | 2020-05-16 |
US20230279538A1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6865474B2 (ja) | 薄膜蒸着工程を制御するための装置、方法及び命令を記録した記録媒体 | |
CN109657805B (zh) | 超参数确定方法、装置、电子设备及计算机可读介质 | |
CN108734299A (zh) | 量子计算机器学习模块 | |
Plathottam et al. | A review of artificial intelligence applications in manufacturing operations | |
Liu et al. | A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing | |
US20220027738A1 (en) | Distributed synchronous training architecture using stale weights | |
JP6890632B2 (ja) | データ処理装置、データ処理方法及びプログラム | |
US20210157824A1 (en) | Preprocessing for a Classification Algorithm | |
Qazani et al. | Estimation of tool–chip contact length using optimized machine learning in orthogonal cutting | |
Ivagnes et al. | Towards a machine learning pipeline in reduced order modelling for inverse problems: neural networks for boundary parametrization, dimensionality reduction and solution manifold approximation | |
Hashemi et al. | Gaussian process autoregression models for the evolution of polycrystalline microstructures subjected to arbitrary stretching tensors | |
Polatoglu | Observation of the Long-Term Relationship Between Cosmic Rays and Solar Activity Parameters and Analysis of Cosmic Ray Data with Machine Learning | |
EP4292732A1 (en) | Methods and apparatus for sensor-assisted part development in additive manufacturing | |
KR102567843B1 (ko) | 다층 박막 구조물의 두께 분석 시스템 및 방법 | |
EP4292733A1 (en) | Methods and apparatus for voxel-based autozoning part development in additive manufacturing | |
Urbas et al. | Machine learning method for predicting the influence of scanning parameters on random measurement error | |
Dias et al. | Evolutionary support vector machines: A dual approach | |
Lavasa et al. | Toward Explainable Metrology 4.0: Utilizing Explainable AI to Predict the Pointwise Accuracy of Laser Scanning Devices in Industrial Manufacturing | |
Mishra et al. | A cutting-edge framework for surface roughness prediction using multiverse optimization-driven machine learning algorithms | |
US20240193473A1 (en) | Semiconductor metrology system and method | |
Dwivedi et al. | Software Development Life Time Prediction Using Machine Learning Approach and There Comparison | |
US20240320508A1 (en) | Transfer learning for metrology data analysis | |
US20240202508A1 (en) | Hyperuniform and nearly hyperuniform neural networks | |
Nair et al. | Machine Learning Model Selection for Performance Prediction in 3D Printing | |
US20240202556A1 (en) | Precomputed explanation scores |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240731 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7536302 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |