JP2021090328A - インバータ制御装置 - Google Patents

インバータ制御装置 Download PDF

Info

Publication number
JP2021090328A
JP2021090328A JP2019220961A JP2019220961A JP2021090328A JP 2021090328 A JP2021090328 A JP 2021090328A JP 2019220961 A JP2019220961 A JP 2019220961A JP 2019220961 A JP2019220961 A JP 2019220961A JP 2021090328 A JP2021090328 A JP 2021090328A
Authority
JP
Japan
Prior art keywords
switching element
control board
sensor
inverter
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019220961A
Other languages
English (en)
Inventor
優史 鈴木
Yuji Suzuki
優史 鈴木
恭士 中村
Takashi Nakamura
恭士 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2019220961A priority Critical patent/JP2021090328A/ja
Publication of JP2021090328A publication Critical patent/JP2021090328A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】スイッチング素子ユニットからの電磁ノイズの影響を受けにくい状態で電流検出用センサが設置されたインバータ制御装置を簡単な構成で実現する。【解決手段】インバータ制御装置20は、スイッチング素子ユニット5に第1面1aが対向するように配置された制御基板1と、電流を検出するセンサ素子2と、バスバー50の周囲を囲うと共にセンサ素子2に対して規定の位置関係となる状態で制御基板1とスイッチング素子ユニット5との間に配置されるセンサコア3と、制御基板1とスイッチング素子ユニット5との間に配置されるシールドプレート4とを備え、センサ素子2は、制御基板1に実装されていると共に制御基板1の第1面1aから突出するように配置され、センサコア3は、シールドプレート4に固定され、シールドプレート4は、センサコア3に対してスイッチング素子ユニット5の側に配置されている。【選択図】図1

Description

本発明は、直流と交流との間で電力を変換するインバータを制御するインバータ制御装置に関する。
インバータは、例えば交流機器と直流電源との間で電力を変換し、直流電源からの電力に基づいて交流機器を駆動する。インバータを制御するインバータ制御回路は、例えば、交流機器に流れる交流電流を検出して、インバータをフィードバック制御する。この際、交流電流は、電流センサによって検出される。交流センサには、交流電流が流れる導電線に対して直列に設置されてセンサに流れる電流を直接検出する接触型と、導電線の近傍に設置されて導電線を流れる電流によって生じる磁界を検出してこの磁界の大きさに応じて電流を検出する非接触型とがある。非接触型の場合には、磁界を検出するセンサ素子と、磁束の通り道となる磁気コアとを備えて構成されることが多い。
特開2018−121418号公報には、そのようなセンサ素子(ホール素子(41))と磁気コア(42)とを備えた電流センサ(40)を備えた電力変換装置(10)が開示されている(背景技術において括弧内の符号は参照する文献のもの。)。磁気コア(42)は、インバータを構成するスイッチング素子が一体化されたスイッチング素子ユニット(パワーモジュール)を収納するパワーモジュールケース(20)の中に配置されている。ホール素子(41)はギャップを有したC型環状の磁気コア(42)のギャップに配置されている。パワーモジュールケース(20)には、冷媒が流れる冷却器(50)が取り付けられている。冷却器(50)には磁気コア(42)に接触するようにパワーモジュールケース(20)の内部に向けて突出した突出部(54)が設けられている。
特開2018−121418号公報
上記のように、電流センサ(40)(磁気コア(42)及びホール素子(41))がパワーモジュールケース(20)に配置されている場合、ホール素子(41)が高圧のパワーモジュールによる電磁ノイズの影響を受け易く、電流の検出精度が低下する可能性がある。また、パワーモジュールケース(20)に磁気コア(42)を収納するスペースを設けたり、冷却器(50)に突出部(54)を設けたりするなど、磁気コア(42)の取り付け構造が複雑となり、コストが上昇し易い。
上記背景に鑑みて、簡単な構成であって、インバータを構成するスイッチング素子ユニットからの電磁ノイズの影響を受けにくい状態で、電流を検出するセンサが設置されたインバータ制御装置を実現することが望まれる。
上記に鑑みた、直流と交流との間で電力を変換するインバータを制御するインバータ制御装置は、前記インバータをスイッチング制御する制御回路を備えて前記インバータを形成するスイッチング素子ユニットに一方の基板面である第1面が対向するように配置された制御基板と、電流を検出するセンサ素子と、前記スイッチング素子ユニットに接続されたバスバーの周囲を囲うと共に、前記センサ素子に対して規定の位置関係となる状態で前記制御基板と前記スイッチング素子ユニットとの間に配置されるセンサコアと、前記制御基板と前記スイッチング素子ユニットとの間に配置されるシールドプレートと、を備え、前記センサ素子は、前記制御基板に実装されていると共に前記制御基板の前記第1面から突出するように配置され、前記センサコアは、前記シールドプレートに固定され、前記シールドプレートは、前記センサコアに対して前記スイッチング素子ユニットの側に配置されている。
この構成によれば、センサコア及びセンサ素子と、スイッチング素子ユニットとの間に、シールドプレートが配置されているので、センサコア及びセンサ素子は、スイッチング素子ユニットからの電磁ノイズの影響を受けにくい。従って、センサ素子による電流検出の精度が電磁ノイズによって低下することを抑制することができる。また、多くの場合、電磁ノイズを遮蔽するシールドプレートは、金属によって構成されているため、比較的高い剛性を備えている。センサコアがシールドプレートに固定されることで、センサコアの耐振性を向上させることができる。また、シールドプレートへセンサコアを固定するので、センサコアをスイッチング素子ユニットやスイッチング素子ユニットを収納するケースに取り付ける場合に比べて、センサコアの取り付け構造を簡素化できる。このように、本構成によれば、簡単な構成であって、インバータを構成するスイッチング素子ユニットからの電磁ノイズの影響を受けにくい状態で、電流を検出するセンサが設置されたインバータ制御装置を実現することができる。
インバータ制御装置のさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
インバータ制御装置の分解斜視図 回転電機駆動装置の模式的なブロック図 制御基板の模式的平面図 インバータ制御装置の模式的側面図 シールドプレートの模式的平面図
以下、例えば電気自動車やハイブリッド車などの車両の駆動力源となる交流の回転電機を駆動制御する回転電機駆動装置に用いられる形態を例として、インバータ制御装置の実施形態を図面に基づいて説明する。図1は、インバータ制御装置20の分解斜視図であり、図2は、インバータ制御装置20が用いられる回転電機駆動装置100の模式的なブロック図である。
図2に示すように、回転電機80は、複数相(一例として、U相,V相,W相からなる3相)の交流で駆動される交流回転電機である。インバータ30は、定格電圧が48〜400ボルト程度の直流電源81及び回転電機80に接続されて、直流と複数相(ここでは3相)の交流との間で電力を変換する。直流電源81とインバータ30との間には、インバータ30の直流側の電圧(直流リンク電圧)を平滑する直流リンクコンデンサ82(平滑コンデンサ)が備えられている。
インバータ30は、複数のスイッチング素子33を備えて構成されている。スイッチング素子33は、例えば、IGBT(Insulated Gate Bipolar Transistor)や、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、SiC−MOSFET(Silicon Carbide - Metal Oxide Semiconductor FET)、SiC−SIT(SiC - Static Induction Transistor)、GaN−MOSFET(Gallium Nitride - MOSFET)等である。図2に示すように、本実施形態では、スイッチング素子33としてIGBTを例示している。また、各スイッチング素子33には、フリーホイールダイオード35が並列に接続されている。
本実施形態では、スイッチング素子33及びフリーホイールダイオード35が1つの半導体チップに集積され、後述する他の回路(センス端子36、温度検出ダイオード37)と共に1つの半導体モジュール39として構成されている。複数の半導体モジュール39により構成されるインバータ30は、スイッチング素子ユニット5として構成されている。図2に示すように、本実施形態では、フリーホイールダイオード35の他、電流検出用のセンス端子36、温度検出ダイオード37も一体化されて半導体モジュール39が形成されている。温度検出ダイオード37は、スイッチング素子33の温度を検出する温度検出センサとして機能する。センス端子36は、入出力端子間(ドレイン−ソース間)を流れる素子電流(ドレイン−ソース間電流)に比例する微小な電流(センス電流)を流して素子電流を検出する。
1つの半導体モジュール39には、少なくとも4つの端子が備えられている。4つの端子は、スイッチング素子33のゲート端子(制御端子)に接続される第1端子、エミッタ端子(ソース端子)に接続される第2端子、センス端子に接続される第3端子、温度検出ダイオード37のアノード端子に接続される第4端子である。半導体モジュール39の第1端子、第2端子、第3端子、第4端子には、それぞれスイッチング素子ユニット5の第1接続端子、第2接続端子、第3接続端子、第4接続端子が接続されている。これらを総称して接続端子6と称する。図1に示すように、本実施形態では、接続端子6は、スイッチング素子ユニット5において第1水平方向Xに沿って直線上に並んで配置されている。
図2に示すように、インバータ30は、直流の正極Pに接続される上段側スイッチング素子31と直流の負極Nに接続される下段側スイッチング素子32とが直列に接続されたアーム34を備えている。上述したように、本実施形態ではインバータ30は、直流と3相の交流との間で電力を変換するので、3相に対応して3本のアーム34を備えている。本実施形態では、各アーム34について、上段側スイッチング素子31の接続端子6である上段側接続端子61と、下段側スイッチング素子32の接続端子6である下段側接続端子62とが、スイッチング素子ユニット5において第1水平方向Xに沿って直線上に8本並んで配置されている。
3相の各相(U相,V相,W相)において、上段側スイッチング素子31と下段側スイッチング素子32とが直列に接続されて1つのアーム34が構成されるとともに、各アームの中間点が、回転電機80の各相のステータコイルに接続されている。スイッチング素子ユニット5における各アーム34の中間点には、図1及び図2に示すように、交流電流が流れるバスバー50(U相バスバー51,V相バスバー52,W相バスバー53)が接続されている。
図2に示すように、インバータ30は、制御回路10(CTRL)により制御される。制御回路10は、より上位の不図示の制御装置(例えば車両制御装置)から提供される回転電機80の目標トルクに基づいて、ベクトル制御法を用いた電流フィードバック制御を行う。回転電機80の各相のステータコイルを流れる実電流は、交流の電流センサ83により検出され、回転電機80のロータの各時点での磁極位置は、レゾルバなどの回転センサ84により検出される。制御回路10は、電流センサ83及び回転センサ84の検出結果を用いて電流フィードバック制御を実行し、各スイッチング素子33を個別にスイッチング制御する制御信号を生成する。制御信号は、定格電圧が3.3〜5ボルト程度のマイクロコンピュータなどのプロセッサを中核とした論理演算回路によって生成される。
一方、定格電圧が48〜400ボルトの直流電源81に接続されるインバータ30を構成するスイッチング素子33をスイッチングするためには、波高値が15〜20ボルト程度の制御信号を与える必要がある。このため、論理演算回路によって生成された制御信号は、電圧や電流を増幅して駆動能力を高めるドライブ回路(本実施形態では制御回路10に含む)を経由し、スイッチング制御信号SWとして各スイッチング素子33に提供される。図2に示すように、スイッチング制御信号SWは、スイッチング素子33のゲート端子に接続される第1端子と、エミッタ端子に接続される第2端子との間に印可される。このため、本実施形態の制御回路10は、論理演算回路を含む低電圧回路と、ドライブ回路を含む高電圧回路とを有し、制御基板1は、低電圧回路が形成される低電圧領域と、高電圧回路が形成される高電圧領域とを有する。
図1の分解斜視図に示すように、インバータ制御装置20は、制御基板1と、センサ素子2と、センサコア3と、シールドプレート4と、スイッチング素子ユニット5とを備えている。制御基板1は、インバータ30をスイッチング制御する制御回路10が形成された基板であり、一方の基板面である第1面1aが、インバータ30を形成するスイッチング素子ユニット5に対向するように配置されている。本実施形態では、制御基板1が長方形の板状に形成されている。そして、制御基板1の基板面に沿った方向(基板水平方向H)のうち、基板面の長辺に沿う方向を第1水平方向Xとし、当該第1水平方向Xに直交する方向を第2水平方向Yとしている。センサ素子2は、バスバー50を流れる交流の電流を検出する素子であり、例えばホール素子である。センサ素子2は、バスバー50の近傍に設置されてバスバー50を流れる交流電流によって生じる磁界(磁束)を検出してこの磁界(磁束)の大きさに応じてバスバー50を流れる電流を検出する。センサコア3は、磁束の通り道となる磁性体コアである。
シールドプレート4は、金属などの導電体により形成されており、例えばアルミニウム又は銅等によって形成されている。シールドプレート4は、制御基板1とスイッチング素子ユニット5との間に配置されて、スイッチング素子ユニット5のスイッチング動作に伴う電磁ノイズが制御基板1に放射されることを抑制する。即ち、制御回路10がスイッチング素子ユニット5からの電磁ノイズの影響を受けにくくなり、制御回路10の信頼性やスイッチング制御信号SW等の信頼性が電磁ノイズによって低下することを抑制することができる。
尚、このような電磁ノイズの遮蔽効果に鑑みれば、シールドプレート4は、制御基板1の基板面に直交する基板直交方向Zに見た平面視で、スイッチング素子ユニット5及び制御基板1の何れか小さい方の全体を覆うように形成されていることが好ましい。しかし、コストやインバータ制御装置20の大きさの制約等により、シールドプレート4が、制御回路10の一部やセンサ素子2及びセンサコア3を含む電流センサ83に遮蔽効果が及ぶような大きさに留まることを妨げるものではない。また、シールドプレート4が、スイッチング素子ユニット5及び制御基板1の何れか大きい方の全体を覆うように形成されていても良く、或いは、シールドプレート4が、スイッチング素子ユニット5及び制御基板1の双方よりも大きく形成されていても良い。
以下、さらに、制御基板1の模式的平面図を示す図3、インバータ制御装置20の模式的側面図を示す図4、シールドプレート4の模式的平面図を示す図5も参照して説明する。図1及び図5に示すように、センサコア3は、スイッチング素子ユニット5に接続されたバスバー50の周囲を囲うと共に、センサ素子2に対して規定の位置関係となる状態で制御基板1とスイッチング素子ユニット5との間に配置されている。図1及び図5に示すように、センサコア3は、基板直交方向Zに見た平面視での形状がC字状の環状(筒状)に形成されており、周方向の一部に切り欠き(間隙)が形成されている。バスバー50が筒状のセンサコア3の内側を通るように、センサコア3はバスバー50の周囲を囲って配置されている。センサ素子2は、センサコア3の周方向の一部に形成された切り欠き(間隙)に、センサコア3に接触しないように配置されている。この位置関係が規定の位置関係である。尚、図1等には、センサコア3の形状が、周方向の一部に形成された間隙以外の部分の平面視での形状が矩形環状である構成を例示しているが、センサコア3の形状が、周方向の一部に切り欠き(間隙)を有する円筒状であってもよい。
センサ素子2は、図1及び図4に示すように、センサ本体部2Bからセンサ端子2Pが突出したディスクリート部品である。センサ素子2は、制御基板1に実装されていると共に制御基板1の第1面1aから突出するように配置されている。本実施形態では、センサ端子2Pを90度折り曲げることによって制御基板1の第1面1aにおいて半田付けされる形態(表面実装される形態)を例示している。このように、表面実装されることによって、制御基板1の第1面1aからセンサ本体部2Bまでの長さを規定し易い。当然ながら、センサ端子2Pを折り曲げることなく、制御基板1に端子挿入孔を設けて、制御基板1の第2面1bにおいて半田付けされる形態を妨げるものではない。
センサコア3は、シールドプレート4に固定されている。上述したように、シールドプレート4は、アルミニウムなどの金属によって構成されているため、比較的高い剛性を備えている。センサコア3がシールドプレート4に固定されることで、センサコア3の耐振性を向上させることができる。尚、制御基板1及びシールドプレート4は、例えば、不図示のケースに固定される。
図1及び図4に示すように、シールドプレート4は、センサコア3に対してスイッチング素子ユニット5の側に配置されている。これにより、センサコア3及びセンサ素子2により構成される電流センサの全体が、シールドプレート4を挟んで電磁ノイズの発生源であるスイッチング素子ユニット5とは反対側に配置されることになる。即ち、電流センサがスイッチング素子ユニット5からの電磁ノイズの影響を受けにくくなり、電流検出の精度が電磁ノイズによって低下することを抑制することができる。
図1及び図3に示すように、本実施形態に係る制御基板1には、バスバー50が貫通するバスバー貫通孔15と、スイッチング素子33の接続端子6が貫通して、制御基板1に接続される(半田付けされる)端子接続孔16とが形成されている。端子接続孔16は、上段側スイッチング素子31の接続端子6である上段側接続端子61が接続される上段側接続部71と、下段側スイッチング素子32の接続端子6である下段側接続端子62が接続される下段側接続部72とのそれぞれ形成されている。図1及び図3に示すように、本実施形態では、バスバー貫通孔15は、下段側接続部72よりも上段側接続部71に近い位置に配置されている。
上述したように、交流電流が流れるバスバー50は、アーム34の中間点、即ちアーム34において上段側スイッチング素子31と下段側スイッチング素子32との接続点に接続されている。図2を参照して上述したように、上段側スイッチング素子31のスイッチング制御信号SWは、上段側スイッチング素子31の制御端子(ゲート端子)と負極Nの側(下段側スイッチング素子32の側)の端子(エミッタ端子)との間に印可される。下段側スイッチング素子32のスイッチング制御信号SWは、下段側スイッチング素子32の制御端子(ゲート端子)と負極N(エミッタ端子)との間に印可される。従って、アーム34の中間点と、制御端子との間の電位差は、下段側スイッチング素子32に比べて上段側スイッチング素子31の方が小さくなる。このため、交流電流が流れるバスバー50と、制御端子との間の制御基板1における絶縁距離は、上段側スイッチング素子31の方が下段側スイッチング素子32に比べて短くすることができる。本実施形態のように、バスバー貫通孔15が、下段側接続部72よりも上段側接続部71に近い位置に配置されていると、絶縁距離を考慮しても制御基板1が大きくなることを抑制してインバータ制御装置20を小型化することができる。
尚、本実施形態では省略しているが、バスバー貫通孔15の開口の内壁を覆うように、ゴムなどの非導電体により形成された絶縁部材(ブッシュ等)が配置されていてもよい。このようなブッシュによってインバータ制御装置20に振動や衝撃が加わった場合の絶縁性を確保することができる。後述するように、シールドプレート4に、バスバー50が貫通するプレート側バスバー貫通孔45が形成される場合には、プレート側バスバー貫通孔45にもそのような絶縁部材が配置されていてもよい。
図1及び図4に示すように、シールドプレート4は、制御基板1とスイッチング素子ユニット5との間に配置されている。また、バスバー50は、スイッチング素子ユニット5からセンサ素子2が実装された制御基板1の方向に延伸するように配置されている。また、接続端子6(上段側接続端子61及び下段側接続端子62)は、制御基板1と接続されている。従って、本実施形態では、図1及び図4に示すように、シールドプレート4は、バスバー50が貫通するプレート側バスバー貫通孔45と、上段側接続端子61及び下段側接続端子62が貫通する接続端子貫通孔46とを備えている。尚、本実施形態では、接続端子6が貫通する接続端子貫通孔46が、各アーム34の全ての接続端子6が貫通可能な長孔として形成されている形態を例示しているが、図3に示した端子接続孔16と同様に、各接続端子6が1本ずつ貫通する孔であってもよい。
また、図3に示すように、本実施形態では、制御基板1の基板面に沿った方向(基板水平方向H、ここでは第2水平方向Y)に見て、上段側接続部71及び下段側接続部72と、センサ素子2とは、バスバー50を挟んで互いに反対側に配置されている。上述したように、制御回路10には、高電圧回路と低電圧回路とがあり、制御基板1には、高電圧回路が形成される高電圧領域と低電圧回路が形成される低電圧領域とがある。上段側接続部71及び下段側接続部72において接続される信号は高電圧回路を経た信号であり、センサ素子2による検出結果は低電圧回路においてスイッチング制御信号を生成するためのフィードバック制御に用いられる。本実施形態のように、上段側接続部71及び下段側接続部72と、センサ素子2とがバスバー50を挟んで互いに反対側に配置されていると、センサ素子2が高電圧回路の影響を受けにくくなる。また、制御基板1においては、高電圧回路と低電圧回路がそれぞれ異なる領域に配置されているので、センサ素子2が高電圧回路と離れて配置されることにより、センサ素子2を低電圧回路の領域に配置し易くなる。
尚、当然ながら、制御基板1における実装効率等により、上段側接続部71及び下段側接続部72と、センサ素子2とが、バスバー50に対して同じ側に配置された形態とすることを妨げるものではない。
〔その他の実施形態〕
次に、インバータ制御装置20のその他の実施形態について説明する。
(1)上記の実施形態では、制御基板1に、バスバー50が貫通するバスバー貫通孔15が形成された形態を例として説明した。しかし、そのような構成には限定されない。例えば、制御基板1に、バスバー50が貫通するバスバー貫通孔15が設けられていなくても良い。この場合、バスバー50は、例えば、センサコア3を貫通した後、制御基板1を避けるように屈曲される。また、制御基板1に、バスバー50が貫通するバスバー貫通孔15が設けられている場合において、バスバー貫通孔15が、上段側接続部71よりも下段側接続部72に近い位置に配置されていても良い。
(2)上記の実施形態では、シールドプレート4に、プレート側バスバー貫通孔45及び接続端子貫通孔46が形成された形態を例として説明した。しかし、そのような構成には限定されない。例えば、シールドプレート4が、プレート側バスバー貫通孔45及び接続端子貫通孔46の少なくとも一方を備えない構成であっても良い。或いは、シールドプレート4が、プレート側バスバー貫通孔45に代えて、シールドプレート4の外縁部分においてバスバー50が通過するように形成された切り欠き部を備えた構成であっても良い。同様に、シールドプレート4が、接続端子貫通孔46に代えて、シールドプレート4の外縁部分において、上段側接続端子61及び下段側接続端子62が通過するように形成された切り欠き部を備えた構成であっても良い。これらの場合において、バスバー50や接続端子6が、基板直交方向Zに沿って真っ直ぐに延伸せず、基板面に沿った方向(基板水平方向H)に沿ってシールドプレート4を迂回してから基板直交方向Zに沿って制御基板1側へ延伸するように構成されていてもよい。いずれの場合であっても、センサコア3は、バスバー50が貫通する位置に配置されるように、シールドプレート4に固定される。
〔実施形態の概要〕
以下、上記において説明したインバータ制御装置(20)の概要について簡単に説明する。
1つの態様として、直流と交流との間で電力を変換するインバータ(30)を制御するインバータ制御装置(20)は、前記インバータ(30)をスイッチング制御する制御回路(10)を備えて前記インバータ(30)を形成するスイッチング素子ユニット(5)に一方の基板面である第1面(1a)が対向するように配置された制御基板(1)と、電流を検出するセンサ素子(2)と、前記スイッチング素子ユニット(5)に接続されたバスバー(50)の周囲を囲うと共に、前記センサ素子(2)に対して規定の位置関係となる状態で前記制御基板(1)と前記スイッチング素子ユニット(5)との間に配置されるセンサコア(3)と、前記制御基板(1)と前記スイッチング素子ユニット(5)との間に配置されるシールドプレート(4)と、を備え、前記センサ素子(2)は、前記制御基板(1)に実装されていると共に前記制御基板(1)の前記第1面(1a)から突出するように配置され、前記センサコア(3)は、前記シールドプレート(4)に固定され、前記シールドプレート(4)は、前記センサコア(3)に対して前記スイッチング素子ユニット(5)の側に配置されている。
この構成によれば、センサコア(3)及びセンサ素子(2)と、スイッチング素子ユニット(5)との間に、シールドプレート(4)が配置されているので、センサコア(3)及びセンサ素子(2)は、スイッチング素子ユニット(5)からの電磁ノイズの影響を受けにくい。従って、センサ素子(2)による電流検出の精度が電磁ノイズによって低下することを抑制することができる。また、多くの場合、電磁ノイズを遮蔽するシールドプレート(4)は、金属によって構成されているため、比較的高い剛性を備えている。センサコア(3)がシールドプレート(4)に固定されることで、センサコア(3)の耐振性を向上させることができる。また、シールドプレート(4)へセンサコア(3)を固定するので、センサコア(3)をスイッチング素子ユニット(5)やスイッチング素子ユニット(5)を収納するケースに取り付ける場合に比べて、センサコア(3)の取り付け構造を簡素化できる。このように、本構成によれば、簡単な構成であって、インバータを構成するスイッチング素子ユニットからの電磁ノイズの影響を受けにくい状態で、電流を検出するセンサが設置されたインバータ制御装置を実現することができる。
また、前記シールドプレート(4)は、前記制御基板(1)の基板面に直交する方向(Z)に見た平面視で、前記スイッチング素子ユニット(5)及び前記制御基板(1)の何れか小さい方の全体を覆うように形成されていると好適である。
この構成によれば、スイッチング素子ユニッット(5)からの制御基板(1)に到達する電磁ノイズを、シールドプレート(4)によって適切に遮蔽することができる。
また、前記インバータ(30)は、直流の正極(P)に接続される上段側スイッチング素子(31)と直流の負極(N)に接続される下段側スイッチング素子(32)とが直列に接続されたアーム(34)を備え、前記制御基板(1)は、前記バスバー(50)が貫通するバスバー貫通孔(15)と、前記上段側スイッチング素子(31)の接続端子(6)である上段側接続端子(61)が接続される上段側接続部(71)と、前記下段側スイッチング素子(32)の接続端子(6)である下段側接続端子(62)が接続される下段側接続部(72)と、を備え、前記バスバー貫通孔(15)は、前記下段側接続部(72)よりも前記上段側接続部(71)に近い位置に配置されていると好適である。
交流電流は、アーム(34)において上段側スイッチング素子(31)と下段側スイッング素子(32)との接続点を流れる。上段側スイッチング素子(31)の制御信号の電圧は、上段側スイッチング素子(31)の制御端子(ゲート端子やベース端子)と負極側(下段側スイッチング素子(32)の側)の端子(エミッタ端子やソース端子)との間に印可される。下段側スイッチング素子(32)の制御信号の電圧は、下段側スイッチング素子(32)の制御端子(ゲート端子やベース端子)と負極(エミッタ端子やソース端子)との間に印可される。従って、上段側スイッチング素子(31)と下段側スイッング素子(32)との接続点と、制御端子との間の電位差は、下段側スイッチング素子(32)に比べて上段側スイッチング素子(31)の方が小さい。このため、交流電流が流れるバスバーと、制御端子との間の制御基板(1)における絶縁距離は、上段側スイッチング素子(31)の方が下段側スイッチング素子(32)に比べて短くすることができる。本構成によれば、バスバー貫通孔(15)が、下段側接続部(72)よりも上段側接続部(71)に近い位置に配置されているため、上述したように絶縁距離を考慮した上で制御基板(1)が大きくなることを抑制してインバータ制御装置(20)を小型化することができる。
また、前記制御基板(1)の基板面に沿った方向(H(Y))に見て、前記上段側接続部(71)及び前記下段側接続部(72)と、前記センサ素子(2)とは、前記バスバー(50)を挟んで互いに反対側に配置されていると好適である。
制御基板(1)には、インバータ(30)のスイッチング制御信号を生成するマイクロコンピュータなどを中核とした低電圧回路と、低電圧回路よりも高圧の回路であって、スイッチング制御信号を増幅してインバータ(30)を構成するスイッチング素子ユニット(5)に中継するドライブ回路などを中核とした高電圧回路とが形成される場合がある。一方、上段側接続部(71)及び前記下段側接続部(72)において接続される信号はドライブ回路などの高電圧回路を経た信号であり、センサ素子(2)による検出結果は低電圧回路においてスイッチング制御信号を生成するためのフィードバック制御に用いられる。本構成のように、上段側接続部(71)及び下段側接続部(72)と、センサ素子(2)とがバスバー(50)を挟んで互いに反対側に配置されていると、センサ素子(2)が高電圧回路の影響を受けにくくなる。また、制御基板(1)においては、高電圧回路と低電圧回路がそれぞれ異なる領域に配置されているので、センサ素子(2)が高電圧回路と離れて配置されることにより、センサ素子(2)を低電圧回路の領域に配置し易くなる。
また、前記シールドプレート(4)は、前記バスバー(50)が貫通するプレート側バスバー貫通孔(45)と、前記上段側接続端子(61)及び前記下段側接続端子(62)が貫通する接続端子貫通孔(46)と、を備えていると好適である。
シールドプレート(4)は、制御基板(1)とスイッチング素子ユニット(5)との間に配置されている。バスバー(50)は、スイッチング素子ユニット(5)からセンサ素子(2)が実装された制御基板(1)の側へ延伸するように配置される場合がある。また、上段側接続端子(61)及び下段側接続端子(62)は、制御基板(1)と接続される必要がある。従って、本構成のように、シールドプレート(4)にプレート側バスバー貫通孔(45)と接続端子貫通孔(46)とが形成されていると、バスバー(50)を制御基板(1)側へ延伸させることができると共に、上段側接続端子(61)及び下段側接続端子(62)を制御基板(1)に接続させることができる。
1 :制御基板
1a :第1面
2 :センサ素子
3 :センサコア
4 :シールドプレート
5 :スイッチング素子ユニット
6 :接続端子
10 :制御回路
15 :バスバー貫通孔
20 :インバータ制御装置
30 :インバータ
31 :上段側スイッチング素子
32 :下段側スイッチング素子
33 :スイッチング素子
34 :アーム
45 :プレート側バスバー貫通孔
46 :接続端子貫通孔
50 :バスバー
61 :上段側接続端子
62 :下段側接続端子
71 :上段側接続部
72 :下段側接続部
H :基板水平方向(基板面に沿った方向)
N :負極
P :正極
Z :基板直交方向(基板面に直交する方向)

Claims (5)

  1. 直流と交流との間で電力を変換するインバータを制御するインバータ制御装置であって、
    前記インバータをスイッチング制御する制御回路を備え、前記インバータを形成するスイッチング素子ユニットに一方の基板面である第1面が対向するように配置された制御基板と、
    電流を検出するセンサ素子と、
    前記スイッチング素子ユニットに接続されたバスバーの周囲を囲うと共に、前記センサ素子に対して規定の位置関係となる状態で前記制御基板と前記スイッチング素子ユニットとの間に配置されるセンサコアと、
    前記制御基板と前記スイッチング素子ユニットとの間に配置されるシールドプレートと、を備え、
    前記センサ素子は、前記制御基板に実装されていると共に前記制御基板の前記第1面から突出するように配置され、
    前記センサコアは、前記シールドプレートに固定され、
    前記シールドプレートは、前記センサコアに対して前記スイッチング素子ユニットの側に配置されている、インバータ制御装置。
  2. 前記シールドプレートは、前記制御基板の基板面に直交する方向に見た平面視で、前記スイッチング素子ユニット及び前記制御基板の何れか小さい方の全体を覆うように形成されている、請求項1に記載のインバータ制御装置。
  3. 前記インバータは、直流の正極に接続される上段側スイッチング素子と直流の負極に接続される下段側スイッチング素子とが直列に接続されたアームを備え、
    前記制御基板は、前記バスバーが貫通するバスバー貫通孔と、
    前記上段側スイッチング素子の接続端子である上段側接続端子が接続される上段側接続部と、
    前記下段側スイッチング素子の接続端子である下段側接続端子が接続される下段側接続部と、を備え、
    前記バスバー貫通孔は、前記下段側接続部よりも前記上段側接続部に近い位置に配置されている、請求項1又は2に記載のインバータ制御装置。
  4. 前記制御基板の基板面に沿った方向に見て、前記上段側接続部及び前記下段側接続部と、前記センサ素子とは、前記バスバーを挟んで互いに反対側に配置されている、請求項3に記載のインバータ制御装置。
  5. 前記シールドプレートは、前記バスバーが貫通するプレート側バスバー貫通孔と、前記上段側接続端子及び前記下段側接続端子が貫通する接続端子貫通孔と、を備えている、請求項3又は4の何れか一項に記載のインバータ制御装置。
JP2019220961A 2019-12-06 2019-12-06 インバータ制御装置 Pending JP2021090328A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220961A JP2021090328A (ja) 2019-12-06 2019-12-06 インバータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220961A JP2021090328A (ja) 2019-12-06 2019-12-06 インバータ制御装置

Publications (1)

Publication Number Publication Date
JP2021090328A true JP2021090328A (ja) 2021-06-10

Family

ID=76220762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220961A Pending JP2021090328A (ja) 2019-12-06 2019-12-06 インバータ制御装置

Country Status (1)

Country Link
JP (1) JP2021090328A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002806T5 (de) 2021-05-28 2024-03-14 Hitachi Astemo, Ltd. Elektrische Bremsvorrichtung und elektrische Scheibenbremse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022002806T5 (de) 2021-05-28 2024-03-14 Hitachi Astemo, Ltd. Elektrische Bremsvorrichtung und elektrische Scheibenbremse

Similar Documents

Publication Publication Date Title
CN110120300B (zh) 电容器部件
JP6240760B2 (ja) 電気モータまたは発電機用制御モジュール
US9042147B2 (en) Power inverter including a power semiconductor module
US11688562B2 (en) Capacitor component for an electric motor or generator
JP6389877B2 (ja) 電気モータまたは発電機用インバータ
US20180191220A1 (en) Electric compressor
JP4708487B2 (ja) インバータ装置用中継接続部材
WO2012035933A1 (ja) インバータ装置
US10811989B2 (en) Inverter unit
JP2015095486A (ja) 半導体装置
US11750112B2 (en) Inverter device including a bootstrap circuit
JP2010263671A (ja) 電力変換装置
JP6243320B2 (ja) パワー半導体モジュール
JP2021090328A (ja) インバータ制御装置
JP6407798B2 (ja) パワー半導体装置
KR101971904B1 (ko) 인버터
JP2018026509A (ja) 電子回路装置およびそれを含んだ回転電機
JP2021103905A (ja) 回路装置及び回路装置の製造方法
JP2016086491A (ja) 半導体装置
JP5682194B2 (ja) 電力変換装置
JP2020102524A (ja) スイッチング素子ユニット
CN110277359B (zh) 电力转换装置
JP2014175433A (ja) パワーモジュール及びそれを用いた電力変換装置
JP2014175432A (ja) パワーモジュール及びそれを用いた電力変換装置
JP2011185787A (ja) 電流検出装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423