JP2021086902A - レーザ加工装置及びレーザ加工方法 - Google Patents

レーザ加工装置及びレーザ加工方法 Download PDF

Info

Publication number
JP2021086902A
JP2021086902A JP2019214337A JP2019214337A JP2021086902A JP 2021086902 A JP2021086902 A JP 2021086902A JP 2019214337 A JP2019214337 A JP 2019214337A JP 2019214337 A JP2019214337 A JP 2019214337A JP 2021086902 A JP2021086902 A JP 2021086902A
Authority
JP
Japan
Prior art keywords
laser
polarized light
light
laser processing
polarization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019214337A
Other languages
English (en)
Inventor
陽太郎 和仁
Yotaro Wani
陽太郎 和仁
泰則 伊ケ崎
Yasunori Igasaki
泰則 伊ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2019214337A priority Critical patent/JP2021086902A/ja
Priority to CN202080077494.7A priority patent/CN114730708A/zh
Priority to PCT/JP2020/043465 priority patent/WO2021106801A1/ja
Priority to DE112020005827.1T priority patent/DE112020005827T5/de
Priority to US17/779,300 priority patent/US20220390757A1/en
Priority to TW109141093A priority patent/TW202130442A/zh
Publication of JP2021086902A publication Critical patent/JP2021086902A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】複屈折材料からなる半導体対象物に対するレーザ加工の品質を向上させること。【解決手段】レーザ加工装置1は、複屈折材料からなる対象物11のレーザ加工を行うレーザ加工装置であって、レーザ光Lを出力する光源3と、光源3から出力されたレーザ光Lを変調する空間光変調器4と、レーザ光Lを対象物11に向けて集光する集光レンズ5と、対象物11においてZ方向(光軸方向)の一点に集光するように、レーザ光Lの偏光成分を制御する、空間光変調器4の機能としての偏光成分制御部と、を備える。【選択図】図1

Description

本発明は、レーザ加工装置及びレーザ加工方法に関する。
半導体インゴット等の半導体対象物にレーザ光を照射することにより、半導体対象物の内部に改質領域を形成し、改質領域から延びる亀裂を進展させることにより、半導体対象物から半導体ウェハ等の半導体部材を切り出す加工方法が知られている(例えば、特許文献1,2参照)。
特開2017−183600号公報 特開2017−057103号公報
ここで、例えば窒化ガリウム(GAN)インゴット等の複屈折材料からなる半導体対象物にレーザ光を集光させた場合、入射光におけるP偏光成分とS偏光成分とで屈折率が互いに異なる。また、それらの入射光は常光線と異常光線とに分けられるが、その中の異常光線はスネルの法則に従わず常光線とは異なる屈折角で光が伝搬する。これらのことから、半導体対象物の深さ方向において、互いに異なる位置にP偏光成分及びS偏光成分が集光する。このように集光点が深さ方向に分岐することによって半導体対象物において意図せず複数の打痕が形成されることとなり、適切でない亀裂を生じさせてしまう。このことで、例えばスライシング等の加工の品質が低下するおそれがある。
本発明は上記実情に鑑みてなされたものであり、複屈折材料からなる半導体対象物に対するレーザ加工の品質を向上させることを目的とする。
本発明の一態様に係るレーザ加工装置は、複屈折材料からなる半導体対象物にレーザ光を照射して半導体対象物のレーザ加工を行うレーザ加工装置であって、レーザ光を出力するレーザ出力部と、レーザ出力部から出力されたレーザ光を変調する空間光変調器と、レーザ光を半導体対象物に向けて集光する集光レンズと、半導体対象物において光軸方向の一点に集光するように、レーザ光の偏光成分を制御する偏光成分制御部と、を備える。
本発明の一態様に係るレーザ加工装置では、レーザ出力部から出力されたレーザ光が、空間光変調器によって変調され、集光レンズによって半導体対象物に集光される。そして、本レーザ加工装置では、偏光成分制御部によって、半導体対象物の一点に集光するようにレーザ光の偏光成分が制御されている。通常、複屈折材料からなる半導体対象物にレーザ光を集光させた場合、入射光におけるP偏光成分とS偏光成分とで屈折率が互いに異なる。また、それらの入射光は常光線と異常光線とに分けられるが、その中の異常光線はスネルの法則に従わず常光線とは異なる屈折角で光が伝搬する。これらのことから、半導体対象物の深さ方向において、互いに異なる位置にP偏光成分及びS偏光成分が集光する(集光点が二点となる)。このことによって、半導体対象物において意図せず複数の打痕が形成されることとなり、半導体対象物において適切でない亀裂が生じ、スライシング等の加工の品質が低下するおそれがある。この点、本発明の一態様に係るレーザ加工装置のように、偏光成分制御部によって、半導体対象物の一点に集光するようにレーザ光の偏光成分が制御されることにより、集光点が一点のみとなり、半導体対象物において打痕が一つのみ形成されることとなるので、半導体対象物において予期せぬ(適切でない)亀裂が生じることを抑制することができる。このことで、スライシング等の加工の品質が低下することを抑制することができる。以上のように、本発明の一態様に係るレーザ加工装置によれば、複屈折材料からなる半導体対象物に対するレーザ加工の品質を向上させることができる。
上述したレーザ加工装置において、レーザ出力部は、直線偏光であるレーザ光を出力し、偏光成分制御部は、レンズにより収束し、対象物に照射されるレーザ光の偏光成分を、P偏光又はS偏光のいずれか一方に統一してもよい。上述したように、入射光にP偏光成分とS偏光成分とが含まれている場合には互いに異なる位置にP偏光成分及びS偏光成分が集光してしまうところ、偏光成分制御部によってレーザ光の偏光成分がP偏光又はS偏光のいずれか一方に統一されることによって、集光点を適切に一点とすることができる。
上述したレーザ加工装置において、偏光成分制御部は、直線偏光をラジアル偏光又はアジマス偏光に変換する変換素子を有していてもよい。ラジアル偏光(放射状偏光)は、P偏光で半導体対象物に入射する。また、アジマス偏光は、S偏光で半導体対象物に入射する。このため、直線偏光がラジアル偏光又はアジマス偏光に変換されることにより、レーザ光の偏光成分をP偏光又はS偏光のいずれか一方に適切に統一することができ、集光点を適切に一点とすることができる。
上述したレーザ加工装置において、偏光成分制御部は、レーザ光におけるP偏光又はS偏光を遮断するスリット部を有していてもよい。P偏光又はS偏光が遮断されることにより、レーザ光の偏光成分をP偏光又はS偏光のいずれか一方に適切に統一することができ、集光点を適切に一点とすることができる。
上述したレーザ加工装置において、スリット部は、空間光変調器の変調パターンとして設定されるスリットパターンであってもよい。空間光変調器の変調パターンとしてスリットパターンが設定されることにより、物理的なスリットを設けることなく、シンプルな構成で、集光点を適切に一点とすることができる。
上述したレーザ加工装置において、複屈折材料は、面方位001の1軸性結晶材料であってもよい。これにより、レーザ光の偏光成分がP偏光又はS偏光のいずれか一方に統一される場合に、レーザ加工の品質を効果的に向上させることができる。
本発明の一態様に係るレーザ加工方法は、複屈折材料からなる半導体対象物にレーザ光を照射して半導体対象物のレーザ加工を行うレーザ加工方法であって、ステージに半導体対象物を載置する工程と、半導体対象物において光軸方向の一点に集光するようにレーザ光の偏光成分を制御する偏光成分制御部を設定する工程と、レーザ光を出力する工程と、を含む。
上述したレーザ加工方法において、レーザ光を出力する工程では、直線偏光であるレーザ光を出力し、偏光成分制御部を設定する工程では、直線偏光をラジアル偏光又はアジマス偏光に変換する変換素子を取り付けてもよい。
上述したレーザ加工方法において、偏光成分制御部を設定する工程では、レーザ光におけるP偏光又はS偏光を遮断するスリットパターンを、レーザ光を変調する空間光変調器の変調パターンとして設定してもよい。
本発明によれば、複屈折材料からなる半導体対象物に対するレーザ加工の品質を向上させることができる。
本発明の第1実施形態に係るレーザ加工装置の構成図である。 第1実施形態のレーザ加工方法及び半導体部材製造方法の対象物であるGaNインゴットの側面図である。 図2に示されるGaNインゴットの平面図である。 レーザ加工装置を用いた半導体部材製造方法の一工程におけるGaNインゴットの一部分の縦断面図である。 レーザ加工装置を用いた半導体部材製造方法の一工程におけるGaNインゴットの一部分の横断面図である。 レーザ加工装置を用いた半導体部材製造方法の一工程におけるGaNインゴットの側面図である。 レーザ加工装置を用いた半導体部材製造方法の一工程におけるGaNインゴットの側面図である。 空間光変調器の変調パターン(スリットパターン含む)を示す図である。 スリットパターンを用いた場合の集光点を示す図である。 第1実施形態に係るレーザ加工方法の各工程を示すフローチャートである。 比較例と本実施形態との集光点の違いを示す図である。 本発明の第2実施形態に係るレーザ加工装置の構成図である。 軸対称偏光素子による偏光分布の変調を説明する図である。 第2実施形態に係るレーザ加工方法の各工程を示すフローチャートである。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
[レーザ加工装置の基本構成]
図1に示されるように、第1実施形態に係るレーザ加工装置1は、ステージ2と、光源3と、空間光変調器4と、集光レンズ5と、制御部6と、を備えている。レーザ加工装置1は、複屈折材料からなる半導体対象物である対象物11にレーザ光Lを照射して、該対象物11のレーザ加工を行う装置である。複屈折材料は、例えば、異方性を有する面方位(001)1軸性結晶材料である。複屈折材料は、2軸性結晶材料であってもよい。レーザ加工装置1は、レーザ光Lを照射することにより、対象物11に改質領域12を形成する。レーザ加工装置1は、本実施形態で主に説明するようなレーザスライシング装置であってもよいし、レーザダイシング装置であってもよいし、内部レーザマーキング装置であってもよいし、レーザストラクチャー装置であってもよい。以下、第1水平方向をX方向といい、第1水平方向に垂直な第2水平方向をY方向という。また、鉛直方向をZ方向という。
ステージ2は、例えば対象物11に貼り付けられたフィルムを吸着することにより、対象物11を支持する。本実施形態では、ステージ2は、X方向及びY方向のそれぞれに沿って移動可能である。また、ステージ2は、Z方向に平行な軸線を中心線として回転可能である。
光源3は、例えばパルス発振方式によって、対象物11に対して透過性を有するレーザ光Lを出力するレーザ出力部である。光源3は、例えば直線偏光であるレーザ光Lを出力する。光源3から出力されたレーザ光Lは、例えばアテネータ(不図示)により出力が調整されると共に、一又は複数のレンズ系(不図示)によりビーム径が拡大される。空間光変調器4は、光源3から出力されたレーザ光Lを変調する。空間光変調器4は、例えば反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。本実施形態では、空間光変調器4は、レーザ光Lの偏光成分を制御する偏光成分制御部(詳細は後述)としても機能する。集光レンズ5は、空間光変調器4によって変調されたレーザ光Lを対象物11に向けて集光する。本実施形態では、空間光変調器4及び集光レンズ5は、Z方向に沿って移動可能である。
ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12が形成される。改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。
一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット13がX方向に沿って1列に並ぶように形成される。1つの改質スポット13は、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット13の集合である。隣り合う改質スポット13は、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。
制御部6は、ステージ2、光源3、空間光変調器4及び集光レンズ5を制御する。制御部6は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部6では、メモリ等に読み込まれたソフトウェア(プログラム)が、プロセッサによって実行され、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信が、プロセッサによって制御される。これにより、制御部6は、各種機能を実現する。
[レーザ加工装置を用いた半導体部材製造方法の一例]
次に、レーザ加工装置1を用いた半導体部材製造方法の一例として、対象物11であるGaNインゴット20(図2及び図3参照)から複数のGaNウェハ30(図2及び図3参照)をスライシングして取得する工程について説明する。本実施形態では、対象物11は、図2及び図3に示されるように、窒化ガリウム(GaN)によって例えば円板状に形成されたGaNインゴット(半導体インゴット、半導体対象物)20である。一例として、GaNインゴット20の直径は2inであり、GaNインゴット20の厚さは2mmである。一例として、GaNウェハ30の直径は2inであり、GaNウェハ30の厚さは100μmである。
まず、上述したレーザ加工装置1が、複数の仮想面15のそれぞれに沿って複数の改質スポット13を形成する。複数の仮想面15のそれぞれは、GaNインゴット20の内部においてGaNインゴット20の表面20aに対向する面であり、表面20aに対向する方向に並ぶように設定されている。本実施形態では、複数の仮想面15のそれぞれは、表面20aに平行な面であり、例えば円形状を呈している。複数の仮想面15のそれぞれは、表面20a側から見た場合に互いに重なるように設定されている。GaNインゴット20には、複数の仮想面15のそれぞれを囲むように複数の周縁領域16が設定されている。つまり、複数の仮想面15のそれぞれは、GaNインゴット20の側面20bに至っていない。一例として、隣り合う仮想面15間の距離は100μmであり、周縁領域16の幅(本実施形態では、仮想面15の外縁と側面20bとの距離)は30μm以上である。
複数の改質スポット13の形成は、例えば532nmの波長を有するレーザ光Lの照射によって、表面20aとは反対側から1つの仮想面15ごとに順次に実施される。複数の改質スポット13の形成は、複数の仮想面15のそれぞれにおいて同様であるため、以下、表面20aに最も近い仮想面15に沿った複数の改質スポット13の形成について、図4及び図5を参照して説明する。なお、図5において、矢印は、レーザ光Lの集光点Cの軌跡を示している。
まず、レーザ加工装置1が、図4及び図5に示されるように、表面20aからGaNインゴット20の内部にレーザ光Lを入射させることにより、仮想面15に沿って(例えば、仮想面15の全体に沿って2次元に並ぶように)複数の改質スポット13を形成する。このとき、レーザ加工装置1は、複数の改質スポット13からそれぞれ延びる複数の亀裂14が互いに繋がらないように複数の改質スポット13を形成してもよいし、互いに繋がるように複数の改質スポット13を形成してもよい。また、レーザ加工装置1は、パルス発振されたレーザ光Lの集光点Cを仮想面15に沿って移動させることにより、複数列の改質スポット13を形成する。なお、図4及び図5では、改質スポット13が白抜き(ハッチングなし)で示されており、亀裂14が延びる範囲が破線で示されている。
本実施形態では、パルス発振されたレーザ光Lが、Y方向に並ぶ複数の集光点Cに集光されるように、空間光変調器4によって変調される。そして、複数の集光点Cが、X方向に沿って仮想面15上を相対的に移動させられる。一例として、レーザ光Lのパルスピッチ(すなわち、複数の集光点Cの相対的な移動速度を、レーザ光Lの繰り返し周波数で除した値)は10μmである。また、1つの集光点C当たりのレーザ光Lのパルスエネルギー(以下、単に「レーザ光Lのパルスエネルギー」という)は、0.33μJである。
続いて、ヒータ等を備える加熱装置が、GaNインゴット20を加熱し、複数の仮想面15のそれぞれにおいて、複数の改質スポット13からそれぞれ延びる複数の亀裂14を互いに繋げることにより、図6に示されるように、複数の仮想面15のそれぞれにおいて、仮想面15に渡る亀裂17(以下、単に「亀裂17」という)を形成する。図6では、複数の改質スポット13及び複数の亀裂14、並びに、亀裂17が形成される範囲が破線で示されている。なお、加熱以外の方法でGaNインゴット20に何らかの力を作用させることにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。また、仮想面15に沿って複数の改質スポット13を形成することにより、複数の亀裂14を互いに繋げて亀裂17を形成してもよい。
ここで、GaNインゴット20においては、複数の改質スポット13からそれぞれ延びる複数の亀裂14内に窒素ガスが生じている。そのため、GaNインゴット20を加熱して窒素ガスを膨張させることにより、窒素ガスの圧力(内圧)を利用して亀裂17を形成することができる。しかも、周縁領域16によって、当該周縁領域16が囲む仮想面15の外部(例えば、GaNインゴット20の側面20b)への複数の亀裂14の進展が阻まれるため、複数の亀裂14内に生じた窒素ガスが仮想面15の外部に逃げるのを抑制することができる。つまり、周縁領域16は、改質スポット13を含まない非改質領域であって、当該周縁領域16が囲む仮想面15に亀裂17が形成される際に、当該周縁領域16が囲む仮想面15の外部への複数の亀裂14の進展を阻む領域である。そのために、周縁領域16の幅を30μm以上とすることが好ましい。
続いて、研削装置が、GaNインゴット20のうち複数の周縁領域16及び複数の仮想面15のそれぞれに対応する部分を研削(研磨)することにより、図7に示されるように、複数の亀裂17のそれぞれを境界としてGaNインゴット20から複数のGaNウェハ30を取得する。このように、GaNインゴット20は、複数の仮想面15のそれぞれに沿って切断される。なお、この工程では、研削以外の機械加工、レーザ加工等によって、GaNインゴット20のうち複数の周縁領域16に対応する部分を除去してもよい。
[偏光成分制御に係るレーザ加工装置の構成]
空間光変調器4は、対象物11において光軸方向(Z方向,対象物11の深さ方向)の一点に集光するように、レーザ光Lの偏光成分を制御する偏光成分制御部として機能する。通常、GaNインゴット20等の複屈折材料からなる対象物11にレーザ光集光させた場合、入射光におけるP偏光(異常光線)成分とS偏光(常光線)成分とで屈折率が互いに異なり、また、常光線と異常光線とは異なる屈折角で光が伝搬するため、対象物11のZ方向において、互いに異なる位置にP偏光成分及びS偏光成分が集光し、集光点FPが二点となる(図11(a)参照)。このことによって、対象物11において複数の打痕が形成されて適切でない亀裂が生じ、上述したGaNウェハ30のスライシング等の加工の品質が低下するおそれがある。本実施形態では、空間光変調器4が偏光成分制御部として機能して、対象物11のZ方向において一点のみ集光点FPが形成される(図11(b)参照)ように、レーザ光Lの偏光成分を制御する。
空間光変調器4は、レーザ光LにおけるP偏光又はS偏光を遮断するスリット部として機能することにより、レーザ光Lの偏光成分をP偏光又はS偏光のいずれか一方に統一し、集光点FPを一点としている。なお、「レーザ光Lの偏光成分をP偏光又はS偏光のいずれか一方に統一する」とは、レーザ光Lの偏光成分をP偏光又はS偏光のいずれか一方に完全に制限するものだけでなく、集光点FPが二点以上とならない範囲でレーザ光Lの偏光成分に遮断対象の偏光成分が含まれているものも含む。空間光変調器4の機能としてのスリット部は、空間光変調器4の変調パターンとして設定されるスリットパターンである。空間光変調器4では、液晶層に表示される変調パターンが適宜設定されることにより、レーザ光Lが変調(例えば、レーザ光Lの強度、振幅、位相、偏光等が変調)可能となる。変調パターンとは、変調を付与するホログラムパターンであり、スリットパターンを含んでいる。
図8は、空間光変調器4の液晶層に表示される変調パターン(スリットパターン含む)を示す図である。図8に示される「光の遮断領域」は、後述するスリットパターンSP1又はスリットパターンSP2によって遮光される領域を示している。また、図8に示される直線偏光の矢印は、直線偏光方向を示している。図8(a)に示される変調パターンMP1には、スリットパターンSP1と収差補正パターンCPとが含まれている。収差補正パターンとは、球面収差、非点収差、歪曲収差、コマ収差等の補正パターンである。図8(a)に示される例では、直線偏光方向に形成されたスリット部分以外の光が遮断されるようにスリットパターンSP1が設定されている。この場合には、レーザ光LにおけるS偏光が遮断され、レーザ光Lの偏光成分がP偏光に統一(制限)される。また、図8(b)に示される変調パターンMP2には、スリットパターンSP2と収差補正パターンCPとが含まれている。図8(b)に示される例では、直線偏光方向に直交する方向に形成されたスリット部分以外の光が遮断されるようにスリットパターンSP2が設定されている。この場合には、レーザ光におけるP偏光が遮断され、レーザ光Lの偏光成分がS偏光に統一(制限)される。
図9(a)は、スリットパターンSP1を用いた場合の集光点FPを示す図である。図9(b)は、スリットパターンSP2を用いた場合の集光点FPを示す図である。図9(a)及び図9(b)のそれぞれにおいて、左図はXZ平面、右図はYZ平面である。図9(a)に示されるように、スリットパターンSP1を用いた場合において、XZ平面及びYZ平面のいずれを参照しても、集光点FPがZ方向(光軸方向)に一点のみとなっていることが確認できる。同様に、図9(b)に示されるように、スリットパターンSP2を用いた場合において、XZ平面及びYZ平面のいずれを参照しても、集光点FPがZ方向(光軸方向)に一点のみとなっていることが確認できる。なお、スリットパターンSP2が用いられた場合には、P偏光が遮断されS偏光成分に統一されるところ、S偏光では入射角によらずに屈折率が一様になるため、集光性をより良好にすることができる。
[レーザ加工方法の一例]
次に、レーザ加工方法の一例について、図10を参照して説明する。図10は、第1実施形態に係るレーザ加工方法の各工程を示す図である。本レーザ加工方法は、複屈折材料からなる対象物11(例えばGaNインゴット20)にレーザ光Lを照射して対象物11にレーザ加工を行うものである。
図10に示されるように、第1実施形態に係るレーザ加工方法では、まず、ステージ2に対象物11がセット(載置)される(ステップS1,半導体対象物を載置する工程)。
つづいて、空間光変調器4において、液晶層に表示される変調パターン(スリットパターン含む)が設定される(ステップS2,偏光成分制御部を設定する工程)。ここでの変調パターンとは、例えば図8(a)に示される変調パターンMP1であり、レーザ光LにおけるS偏光を遮断し偏光成分をP偏光に統一(制限)するスリットパターンSP1を含んでいる。或いは、変調パターンとは、例えば図8(b)に示される変調パターンMP2であり、レーザ光LにおけるP偏光を遮断し偏光成分をS偏光に統一(制限)するスリットパターンSP2を含んでいる。このように、ステップS2(偏光成分制御部を設定する工程)では、レーザ光LにおけるP偏光又はS偏光を遮断するスリットパターンSP1又はスリットパターンSP2を、空間光変調器4の変調パターンとして設定する。なお、空間光変調器4の液晶層には、スリットパターン及び収差補正パターンが表示されてもよい。
つづいて、レーザ加工条件が入力され設定される(ステップS3)。レーザ加工条件とは、例えばレーザ光Lのエネルギー、パルスピッチ等の条件である。最後に、レーザ加工装置1によって、複数の仮想面15のそれぞれに沿って複数の改質スポット13が形成され、レーザ加工が実施される(ステップS4,レーザ光を出力する工程)。
[作用効果]
次に、本実施形態に係るレーザ加工装置1の作用効果について説明する。
本実施形態に係るレーザ加工装置1は、複屈折材料からなる対象物11のレーザ加工を行うレーザ加工装置であって、レーザ光Lを出力する光源3と、光源3から出力されたレーザ光Lを変調する空間光変調器4と、レーザ光Lを対象物11に向けて集光する集光レンズ5と、対象物11においてZ方向(光軸方向)の一点に集光するように、レーザ光Lの偏光成分を制御する、空間光変調器4の機能としての偏光成分制御部と、を備える。
本実施形態に係るレーザ加工装置1では、光源3から出力されたレーザ光が、空間光変調器4によって変調され、集光レンズ5によって対象物11に集光される。そして、本レーザ加工装置1では、空間光変調器4の機能である偏光成分制御部によって、対象物11の一点に集光するようにレーザ光Lの偏光成分が制御されている。通常、複屈折材料からなる半導体対象物にレーザ光を集光させた場合、入射光におけるP偏光成分とS偏光成分とで屈折率が互いに異なるため、図11(a)に示されるように、半導体対象物の深さ方向において、互いに異なる位置にP偏光成分及びS偏光成分が集光する(集光点FPが二点となる)。このことによって、半導体対象物において意図せず複数の打痕が形成されることとなり、半導体対象物において適切でない亀裂が生じ、スライシング等の加工の品質が低下するおそれがある。この点、本実施形態に係るレーザ加工装置1のように、空間光変調器4の機能である偏光成分制御部によって、対象物11の一点に集光点FP(図11(b)参照)が形成されるようにレーザ光の偏光成分が制御されることにより、対象物11において打痕が一つのみ形成されることとなり、対象物11において予期せぬ(適切でない)亀裂が生じることを抑制することができる。このことで、スライシング等の加工の品質が低下することを抑制することができる。以上のように、本実施形態に係るレーザ加工装置1によれば、複屈折材料からなる半導体対象物に対するレーザ加工の品質を向上させることができる。
レーザ加工装置1において、光源3は、直線偏光であるレーザ光Lを出力し、空間光変調器4の機能である偏光成分制御部は、レーザ光Lの偏光成分を、P偏光又はS偏光のいずれか一方に統一する。上述したように、入射光にP偏光成分とS偏光成分とが含まれている場合には互いに異なる位置にP偏光成分及びS偏光成分が集光してしまうところ、偏光成分制御部によってレーザ光Lの偏光成分がP偏光又はS偏光のいずれか一方に統一されることによって、集光点FPを適切に一点とすることができる。
レーザ加工装置1において、空間光変調器4の機能である偏光成分制御部は、レーザ光におけるP偏光又はS偏光を遮断するスリット部を有していてもよい。P偏光又はS偏光が遮断されることにより、レーザ光の偏光成分をP偏光又はS偏光のいずれか一方に適切に統一することができ、集光点を適切に一点とすることができる。
レーザ加工装置1において、上述したスリット部は、空間光変調器4の変調パターンとして設定されるスリットパターンSP1又はスリットパターンSP2(図8参照)であってもよい。空間光変調器4の変調パターンとしてスリットパターンが設定されることにより、物理的なスリットを設けることなく、最低限のシンプルな構成で、集光点を適切に一点とすることができる。なお、レーザ加工装置1においては、空間光変調器4のスリットパターンではなく、物理的なスリットが設けられて、レーザ光におけるP偏光又はS偏光が遮断されてもよい。
[第2実施形態]
以下、図12〜図14を参照して、本発明の第2実施形態に係るレーザ加工装置100及びレーザ加工方法について説明する。なお、以下では、第1実施形態と異なる点を主に説明し、第1実施形態と重複する説明を省略する。
図12は、第2実施形態に係るレーザ加工装置100の構成図である。レーザ加工装置100は、第1実施形態に係るレーザ加工装置1と基本構成が概ね同様であるが、レーザ加工装置1の構成に加えて、軸対称偏光素子150(変換素子)を備えている。
軸対称偏光素子150は、図12に示されるように、光路上、詳細には、空間光変調器4の下流且つ集光レンズ5の上流に配置されている。空間光変調器4には直線偏光が入力される必要があるため、軸対称偏光素子150は、空間光変調器4よりも下流に配置される必要がある。軸対称偏光素子150は、偏光成分制御部として機能する構成であり、レーザ光Lの直線偏光をラジアル偏光(放射状偏光)又はアジマス偏光(同心円状偏光)に変換する変換素子(偏光コンバータ)である。
図13は、軸対称偏光素子150による偏光分布の変調を説明する図である。図13には、軸対称偏光素子150の例として、軸対称偏光素子150aと軸対称偏光素子150bとが示されている。軸対称偏光素子150aは、レーザ光Lの直線偏光(図13に示すInput)をラジアル偏光(図13に示すOutputの上図)に変換する変換素子である。軸対称偏光素子150bは、レーザ光Lの直線偏光(図13に示すInput)をアジマス偏光(図13に示すOutputの下図)に変換する変換素子である。軸対称偏光素子150としては、従来より周知の構成を用いることができ、例えば、軸方位が15度ずつ異なる1/2波長板を1枚の石英板上に設けた部材を用いることができる。軸対称偏光素子150を90度回転させることによって、ラジアル偏光への変換とアジマス偏光への変換とを切り替えることができる。
上述したレーザ加工装置100を用いたレーザ加工方法の一例について、図14を参照して説明する。図14は、第2実施形態に係るレーザ加工方法の各工程を示す図である。
図14に示されるように、第2実施形態に係るレーザ加工方法では、まず、ステージ2に対象物11がセット(載置)される(ステップS11,半導体対象物を載置する工程)。
つづいて、光路上の所定の位置(空間光変調器4の下流且つ集光レンズ5の上流)に、直線偏光をラジアル偏光又はアジマス偏光に変換する軸対称偏光素子150が取り付けられる(ステップS12,偏光成分制御部を設定する工程)。
つづいて、空間光変調器4の液晶層に収差補正パターンが表示されると共に、レーザ加工条件が入力されて設定される(ステップS13)。最後に、レーザ加工装置1によって、複数の仮想面15のそれぞれに沿って複数の改質スポット13が形成され、レーザ加工が実施される(ステップS14,レーザ光を出力する工程)。
上述したレーザ加工装置100によれば、軸対称偏光素子150によってレーザ光Lの直線偏光がラジアル偏光又はアジマス偏光に変換される。ラジアル偏光は、P偏光で対象物11に入射する。また、アジマス偏光は、S偏光で対象物11に入射する。このため、直線偏光がラジアル偏光又はアジマス偏光に変換されることにより、レーザ光Lの偏光成分をP偏光又はS偏光に適切に統一することができ、集光点を適切に一点とすることができる。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されない。例えば、偏光成分制御部は、光軸方向の一点に集光するようにレーザ光の偏光成分を制御するものであればよく、必ずしもレーザ光の偏光成分をP偏光又はS偏光のいずれか一方に統一するものでなくてもよい。
1,100…レーザ加工装置、2…ステージ、3…光源(レーザ出力部)、4…空間光変調器、5…集光レンズ、11…対象物(半導体対象物)、150…軸対称偏光素子(変換素子)、L…レーザ光、SP1,SP2…スリットパターン。

Claims (9)

  1. 複屈折材料からなる半導体対象物にレーザ光を照射して前記半導体対象物のレーザ加工を行うレーザ加工装置であって、
    前記レーザ光を出力するレーザ出力部と、
    前記レーザ出力部から出力された前記レーザ光を変調する空間光変調器と、
    前記レーザ光を前記半導体対象物に向けて集光する集光レンズと、
    前記半導体対象物において光軸方向の一点に集光するように、前記レーザ光の偏光成分を制御する偏光成分制御部と、を備えるレーザ加工装置。
  2. 前記レーザ出力部は、直線偏光である前記レーザ光を出力し、
    前記偏光成分制御部は、前記レーザ光の偏光成分を、P偏光又はS偏光のいずれか一方に統一する、請求項1記載のレーザ加工装置。
  3. 前記偏光成分制御部は、直線偏光をラジアル偏光又はアジマス偏光に変換する変換素子を有する、請求項2記載のレーザ加工装置。
  4. 前記偏光成分制御部は、前記レーザ光におけるP偏光又はS偏光を遮断するスリット部を有する、請求項2記載のレーザ加工装置。
  5. 前記スリット部は、前記空間光変調器の変調パターンとして設定されるスリットパターンである、請求項4記載のレーザ加工装置。
  6. 前記複屈折材料は、面方位001の1軸性結晶材料である、請求項1〜5のいずれか一項記載のレーザ加工装置。
  7. 複屈折材料からなる半導体対象物にレーザ光を照射して前記半導体対象物のレーザ加工を行うレーザ加工方法であって、
    ステージに前記半導体対象物を載置する工程と、
    前記半導体対象物において光軸方向の一点に集光するように前記レーザ光の偏光成分を制御する偏光成分制御部を設定する工程と、
    前記レーザ光を出力する工程と、を含むレーザ加工方法。
  8. 前記レーザ光を出力する工程では、直線偏光である前記レーザ光を出力し、
    前記偏光成分制御部を設定する工程では、直線偏光をラジアル偏光又はアジマス偏光に変換する変換素子を光路上に配置する、請求項7記載のレーザ加工方法。
  9. 前記偏光成分制御部を設定する工程では、前記レーザ光におけるP偏光又はS偏光を遮断するスリットパターンを、前記レーザ光を変調する空間光変調器の変調パターンとして設定する、請求項7記載のレーザ加工方法。
JP2019214337A 2019-11-27 2019-11-27 レーザ加工装置及びレーザ加工方法 Pending JP2021086902A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019214337A JP2021086902A (ja) 2019-11-27 2019-11-27 レーザ加工装置及びレーザ加工方法
CN202080077494.7A CN114730708A (zh) 2019-11-27 2020-11-20 激光加工装置及激光加工方法
PCT/JP2020/043465 WO2021106801A1 (ja) 2019-11-27 2020-11-20 レーザ加工装置及びレーザ加工方法
DE112020005827.1T DE112020005827T5 (de) 2019-11-27 2020-11-20 Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren
US17/779,300 US20220390757A1 (en) 2019-11-27 2020-11-20 Laser processing device, and laser processing method
TW109141093A TW202130442A (zh) 2019-11-27 2020-11-24 雷射加工裝置及雷射加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019214337A JP2021086902A (ja) 2019-11-27 2019-11-27 レーザ加工装置及びレーザ加工方法

Publications (1)

Publication Number Publication Date
JP2021086902A true JP2021086902A (ja) 2021-06-03

Family

ID=76088478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019214337A Pending JP2021086902A (ja) 2019-11-27 2019-11-27 レーザ加工装置及びレーザ加工方法

Country Status (6)

Country Link
US (1) US20220390757A1 (ja)
JP (1) JP2021086902A (ja)
CN (1) CN114730708A (ja)
DE (1) DE112020005827T5 (ja)
TW (1) TW202130442A (ja)
WO (1) WO2021106801A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230144414A (ko) * 2022-04-07 2023-10-16 주식회사 이오테크닉스 레이저 가공 장치 및 레이저 가공 방법
WO2024034193A1 (ja) * 2022-08-12 2024-02-15 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157219A (ja) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd 露光ヘッドおよび露光装置
JP2008177191A (ja) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd 固体撮像装置およびそれを用いたカメラ
US8609512B2 (en) * 2009-03-27 2013-12-17 Electro Scientific Industries, Inc. Method for laser singulation of chip scale packages on glass substrates
JP2011248241A (ja) * 2010-05-28 2011-12-08 Disco Abrasive Syst Ltd 板状物の加工方法及びレーザー加工装置
EP2754524B1 (de) * 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
JP6121733B2 (ja) * 2013-01-31 2017-04-26 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP6433644B2 (ja) * 2013-06-07 2018-12-05 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 半導体ウェハのダイシング方法
JP6925778B2 (ja) * 2016-01-28 2021-08-25 浜松ホトニクス株式会社 レーザ出力装置及びレーザ加工装置
JP2018138310A (ja) * 2017-02-24 2018-09-06 公立大学法人兵庫県立大学 穴用レーザ加工装置及びレーザ加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230144414A (ko) * 2022-04-07 2023-10-16 주식회사 이오테크닉스 레이저 가공 장치 및 레이저 가공 방법
KR102606853B1 (ko) * 2022-04-07 2023-11-29 (주)이오테크닉스 레이저 가공 장치 및 레이저 가공 방법
WO2024034193A1 (ja) * 2022-08-12 2024-02-15 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法

Also Published As

Publication number Publication date
TW202130442A (zh) 2021-08-16
DE112020005827T5 (de) 2022-09-15
CN114730708A (zh) 2022-07-08
US20220390757A1 (en) 2022-12-08
WO2021106801A1 (ja) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6258787B2 (ja) レーザ加工装置及びレーザ加工方法
US7157661B2 (en) Method and apparatus for laser machining
JP2573902Y2 (ja) 位相板調節式レーザビームによる集積回路接続パスの切断装置
WO2021106801A1 (ja) レーザ加工装置及びレーザ加工方法
WO2015182238A1 (ja) レーザ加工装置及びレーザ加工方法
JP5905274B2 (ja) 半導体デバイスの製造方法
WO2005084874A1 (ja) レーザ加工装置
US20190224784A1 (en) Laser slicing apparatus and laser slicing method
KR20220103771A (ko) 레이저 가공 장치
US20230249285A1 (en) Laser machining method and method for manufacturing semiconductor member
JP7258542B2 (ja) レーザ加工装置
JPWO2020130055A1 (ja) レーザ加工方法、半導体部材製造方法及びレーザ加工装置
WO2021153353A1 (ja) レーザ加工方法、半導体部材製造方法、及び、レーザ加工装置
WO2022014107A1 (ja) レーザ加工装置、及び、レーザ加工方法
WO2021153354A1 (ja) レーザ加工方法、半導体部材製造方法、及び、レーザ加工装置
JP2024009576A (ja) レーザ加工装置
WO2022014105A1 (ja) レーザ加工装置、及び、レーザ加工方法
KR20210157964A (ko) 레이저 절단 장치
US20230219172A1 (en) Laser machining apparatus, laser machining method, and method for manufacturing semiconductor member
WO2022014603A1 (ja) レーザ加工装置及びレーザ加工方法
WO2022014618A1 (ja) レーザ加工装置及びレーザ加工方法
WO2022014619A1 (ja) レーザ加工装置及びレーザ加工方法
TW202322951A (zh) 雷射加工裝置和雷射加工方法
JP2023069018A (ja) レーザ加工装置、及び、レーザ加工方法
KR20240026912A (ko) 레이저 가공 장치, 및 레이저 가공 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240501