JP2024009576A - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JP2024009576A
JP2024009576A JP2022111208A JP2022111208A JP2024009576A JP 2024009576 A JP2024009576 A JP 2024009576A JP 2022111208 A JP2022111208 A JP 2022111208A JP 2022111208 A JP2022111208 A JP 2022111208A JP 2024009576 A JP2024009576 A JP 2024009576A
Authority
JP
Japan
Prior art keywords
laser
laser beam
processing
modulation
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022111208A
Other languages
English (en)
Inventor
孝文 荻原
Takafumi Ogiwara
裕太 近藤
Yuta Kondo
丈史 山田
Takefumi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2022111208A priority Critical patent/JP2024009576A/ja
Priority to KR1020230080804A priority patent/KR20240008246A/ko
Priority to CN202310838418.9A priority patent/CN117381202A/zh
Publication of JP2024009576A publication Critical patent/JP2024009576A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】レーザ光入射面のダメージの抑制と好適な加工との両立を図る。【解決手段】レーザ加工装置1は、レーザ光Lを出力するレーザ光源部3と、レーザ光源部3から出力されたレーザ光Lが入射する変調面51aを含み、変調面51aに変調パターンを表示することによって、変調パターンに応じてレーザ光Lを変調して出射するための空間光変調器51と、空間光変調器51から出射されたレーザ光Lを対象物11の内部に集光するための集光レンズ54と、空間光変調器51と集光レンズ54との間においてレーザ光Lの一部を遮断するダンパ55と、制御部9と、を備える。制御部9は、回折パターンMP3を含む変調パターンを切り替える切替処理を実行する。ダンパ55は、レーザ光Lのうちの回折パターンMP3により生成された回折光Lgを集光レンズ54に入射しないように遮断する。【選択図】図7

Description

本開示は、レーザ加工装置に関する。
特許文献1には、レーザ加工装置が記載されている。このレーザ加工装置は、光源から出射されたレーザ光を変調するための空間光変調器を備えている。空間光変調器では、液晶層に付与する電圧に基づいて変調パターンを液晶層に表示させることにより、レーザ光を変調している。このレーザ加工装置では、レーザ加工の一例として、レーザ内部加工が挙げられている。このレーザ内部加工では、対象物の内部に改質領域を形成する場合であって、対象物の内部に集光点を合わせた状態で、レーザ光をラインに沿って相対的に移動させる。これにより、改質領域がラインに沿って対象物の内部に形成される。
特開2015-223620号公報
ところで、上記のようなレーザ内部加工にあっては、レーザ光のビームプロファイルが例えばガウス分布である場合、対象物のレーザ光の入射面のうち、当該ガウシンアンビームのピーク強度が高い中心部分が入射するエリアにおいて、表面アブレーション等のダメージが生じるおそれがある。
特に、対象物のレーザ光の入射面のより近くに集光点を位置させて改質領域を形成する場合、レーザ光の入射面でのビーム径が、レーザ光の集光点を入射面からより遠くに位置させる場合と比較して小さくなるため、当該ダメージが生じやすい(第1の例)。また、対象物のレーザ光の入射面に対して、研削痕が残存していたり、膜やテープが設けられていたりする等、入射面がレーザ光を吸収しやすい状態にある場合にも、当該ダメージが生じやすい(第2の例)。さらに、例えば、対象物の内部に弱化領域(弱化領域の詳細ついては後述する)を形成する場合のように、改質領域を形成する場合と比較してパルス幅の短いレーザ光を用いる場合にも、当該ダメージが生じやすい(第3の例)。
上記のようなダメージを抑制するためには、例えば、上記特許文献1に記載されているような空間光変調器を用いてレーザ光を変調することにより、レーザ光のピーク強度を抑えることが考えられる。しかし、上記の第1の例では、レーザ光の集光点を入射面の近くに位置させる加工では、ピーク強度を抑えて当該ダメージを抑制することが望ましい一方で、レーザ光の集光点を入射面からより遠くに位置させる加工では、そもそも当該ダメージが生じにくいことに加えて、加工点でのエネルギーを確保して好適な加工を行うために、ピーク強度を抑えることが望ましくない場合があり得る。
また、上記の第3の例では、比較的に短パルス幅のレーザ光を用いて弱化領域を形成する加工では、ピーク強度を抑えて当該ダメージを抑制することが望ましいが、比較的にパルス幅の長いレーザ光を用いて改質領域を形成する加工では、相対的に当該ダメージが生じにくいことから、改質領域を好適に形成するためにピーク強度を抑えることが必ずしも望ましいといえない場合がある。さらに、上記第2の例でも同様に、対象物のレーザ光の入射面の状態によっては、ピーク強度を抑えることが好ましい場合と、ピーク強度を抑える必要性が低い場合とがある。
このように、上記技術分野にあっては、対象物のレーザ光の入射面のダメージを抑制することと、対象物の加工を好適に行うこととを両立することが要求され得る。
そこで、本開示は、レーザ光入射面のダメージの抑制と好適な加工との両立を図ることが可能なレーザ加工装置を提供することを目的とする。
本開示に係るレーザ加工装置は、[1]「レーザ光を出力するレーザ光源と、前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、を備え、前記制御部は、前記レーザ光源及び前記移動部を制御することにより、前記対象物の前記レーザ光の入射面に交差するZ方向についての前記集光点の位置を第1位置としつつ、前記集光点を前記入射面に沿ったX方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、前記レーザ光源及び前記移動部を制御することにより、前記Z方向についての前記集光点の位置を前記第1位置よりも前記入射面側の第2位置としつつ、前記集光点を前記X方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第2加工処理と、を実行し、前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、レーザ加工装置」である。
この加工装置では、第1加工処理と第2加工処理とが行われる。第1加工処理では、対象物のレーザ光の入射面に交差するZ方向についての集光点の位置を第1位置としつつ、集光点をX方向に沿って相対移動させながら対象物にレーザ光を照射し、対象物に改質領域を形成する。第2加工処理では、第1加工処理と同様に改質領域を形成するが、Z方向についての集光点の位置が第1加工処理の場合の第1位置よりも入射面側の第2位置とされる。したがって、第1加工処理に比べて、第2加工処理の方が入射面により近い位置にレーザ光の集光点が位置させられるため、表面アブレーションといった入射面のダメージが生じやすい。そこで、この加工装置では、第2加工処理を実行する際に、レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを空間光変調器に表示させると共に、第1加工処理を実行する際に、当該回折パターンを空間光変調器に表示させないように、第1加工処理と第2加工処理とで変調パターンを切り替える切替処理が行われる。レーザ光のうちの当該回折パターンにより生成された回折光は、集光レンズに入射しないようにダンパによって遮断される。この結果、比較的ダメージが生じやすい第2加工処理の際に、回折パターン及びダンパによってレーザ光のピーク強度が抑えられると共に、比較的ダメージが生じにくい第1加工処理の際には、そのようなピーク強度の制御が行われない。よって、第2加工処理でのレーザ光入射面のダメージの抑制と、第1加工処理での好適な加工とが両立され得る。
本開示に係るレーザ加工装置は、[2]「前記制御部は、前記レーザ光源及び前記移動部を制御することにより、前記Z方向についての前記集光点の位置を前記第2位置よりも前記入射面側の第3位置としつつ、前記集光点を前記X方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第3加工処理を実行し、前記制御部は、前記空間光変調器を制御することによって、前記第3加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させ、前記第3加工処理の前記回折パターンの前記変調面内の少なくとも1つの領域における回折効率は、前記第2加工処理の前記回折パターンの前記変調面内の対応する領域における回折効率よりも高い、上記[1]に記載のレーザ加工装置」であってもよい。この場合、第2加工処理及び第3加工処理でのレーザ光入射面のダメージの抑制と、第1加工処理での好適な加工とが両立され得る。
本開示に係るレーザ加工装置は、[3]「レーザ光を出力するレーザ光源と、前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、を備え、前記制御部は、前記レーザ光源及び前記移動部を制御することにより、前記レーザ光の吸収率が第1吸収率である入射面を介して前記対象物の内部に前記集光点を位置させつつ、当該入射面に沿ったX方向に沿って前記集光点を相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、前記レーザ光源及び前記移動部を制御することにより、前記レーザ光の吸収率が前記第1吸収率よりも高い第2吸収率である入射面を介して前記対象物の内部に前記集光点を位置させつつ、当該入射面に沿った前記X方向に沿って前記集光点を相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第2加工処理と、を実行し、前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、レーザ加工装置」である。
この加工装置では、第1加工処理と第2加工処理とが行われる。第1加工処理では、レーザ光の吸収率が第1吸収率である入射面を介して対象物の内部に集光点を位置させつつ、X方向に沿って集光点を相対移動させながら対象物にレーザ光を照射し、対象物に改質領域を形成する。第2加工処理では、第1加工処理と同様に改質領域を形成するが、対象物の入射面のレーザ光の吸収率が第1加工処理の場合よりも高い。したがって、第1加工処理に比べて、第2加工処理の方が入射面においてレーザ光が吸収されやいため、表面アブレーションといった入射面のダメージが生じやすい。そこで、この加工装置では、第2加工処理を実行する際に、レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを空間光変調器に表示させると共に、第1加工処理を実行する際に、当該回折パターンを空間光変調器に表示させないように、第1加工処理と第2加工処理とで変調パターンを切り替える切替処理が行われる。レーザ光のうちの当該回折パターンにより生成された回折光は、集光レンズに入射しないようにダンパによって遮断される。この結果、比較的ダメージが生じやすい第2加工処理の際に、回折パターン及びダンパによってレーザ光のピーク強度が抑えられると共に、比較的ダメージが生じにくい第1加工処理の際には、そのようなピーク強度の制御が行われない。よって、第2加工処理でのレーザ光入射面のダメージの抑制と、第1加工処理での好適な加工とが両立され得る。
本開示に係るレーザ加工装置は、[4]「レーザ光として第1レーザ光を出力する第1レーザと、前記第1レーザ光よりも短パルス幅の第2レーザ光を前記レーザ光として出力する第2レーザと、を含むレーザ光源と、前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、前記変調面に入射する前記レーザ光を前記第1レーザ光と前記第2レーザ光との間で切り替えるためのレーザ切替機構と、前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、を備え、前記制御部は、前記レーザ光源、前記レーザ切替機構、及び前記移動部を制御することにより、前記第1レーザ光の前記集光点を前記対象物の内部に位置させつつ、前記対象物の前記第1レーザ光の入射面に沿ったX方向に沿って前記集光点を相対移動させながら前記対象物に前記第1レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、前記レーザ光源、前記レーザ切替機構、及び前記移動部を制御することにより、前記第2レーザ光の前記集光点を前記対象物の内部に位置させつつ、前記対象物の前記第2レーザ光の入射面に沿った前記X方向に沿って前記集光点を相対移動させながら前記対象物に前記第2レーザ光を照射することによって、前記対象物に弱化領域を形成する第2加工処理と、を実行し、前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、レーザ加工装置」である。
この加工装置では、第1加工処理と第2加工処理とが行われる。第1加工処理では、第1レーザ光の集光点を対象物の内部に位置させつつ、X方向に沿って集光点を相対移動させながら対象物に第1レーザ光を照射し、対象物に改質領域を形成する。第2加工処理では、第1加工処理と異なり、第1レーザ光よりも短パルス幅の第2レーザ光が用いられる。すなわち、第2加工処理では、相対的に短パルス幅の第2レーザ光の集光点を対象物の内部に位置させつつ、X方向に沿って集光点を相対移動させながら対象物に第2レーザ光を照射することによって、対象物に弱化領域を形成する。したがって、第1加工処理に比べて、第2加工処理の方が短いパルス幅のレーザ光が用いられるため、表面アブレーションといった入射面のダメージが生じやすい。そこで、この加工装置では、第2加工処理を実行する際に、レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを空間光変調器に表示させると共に、第1加工処理を実行する際に、当該回折パターンを空間光変調器に表示させないように、第1加工処理と第2加工処理とで変調パターンを切り替える切替処理が行われる。レーザ光のうちの回折パターンにより生成された回折光は、集光レンズに入射しないようにダンパによって遮断される。この結果、比較的ダメージが生じやすい第2加工処理の際に、回折パターン及びダンパによってレーザ光のピーク強度が抑えられると共に、比較的ダメージが生じにくい第1加工処理の際には、そのようなピーク強度の制御が行われない。よって、第2加工処理でのレーザ光入射面のダメージの抑制と、第1加工処理での好適な加工とが両立され得る。
本開示に係るレーザ加工装置は、[5]「前記レーザ切替機構は、前記第1レーザから出力された前記第1レーザ光を前記変調面に向けて反射するための第1ミラーと、前記第2レーザから出力された前記第2レーザ光を前記変調面に向けて反射するための第2ミラーと、前記第1ミラーから前記変調面に向かう前記第1レーザ光の光路に対して前記第2ミラーを挿抜するように前記第2ミラーを駆動するミラー駆動部と、を含む、上記[3]に記載のレーザ加工装置」であってもよい。この場合、第1レーザ光の波長と第2レーザ光の波長とが近接している場合であっても、確実に、レーザ光源から出力されて空間光変調器に入射するレーザ光の切り替えを行うことができる。
本開示に係るレーザ加工装置は、[6]「前記変調面における前記レーザ光のビームプロファイルは、ガウス分布を有し、前記制御部は、前記変調面の外側から中心に向けて回折効率が高くなるように前記回折パターンを生成する、上記[1]~[4]のいずれかに記載のレーザ加工装置」であってもよい。この場合、ガウス分布を有するレーザ光を用いた加工において、レーザ光入射面のダメージの抑制と好適な加工との両立を容易且つ確実に図ることが可能である。
本開示に係るレーザ加工装置は、[7]「前記制御部は、少なくも2段階に回折効率が変化するように前記回折パターンを生成する、上記[1]~[5]のいずれかに記載のレーザ加工装置」であってもよい。この場合、集光レンズ及び対象物に入射するレーザ光のビームプロファイルを、より望ましいものに成形することが可能となる。
本開示によれば、レーザ光入射面のダメージの抑制と好適な加工との両立を図ることが可能なレーザ加工装置を提供することができる。
図1は、本実施形態に係るレーザ加工装置を示す模式図である。 図2は、本実施形態に係るレーザ加工装置を示す模式図である。 図3は、図1,2に示された結像光学系を示す図である。 図4は、図1,2に示された空間光変調器を示す模式的な断面図である。 図5は、空間光変調器を用いたレーザ光の変調を説明するための図である。 図6は、レーザ光のビームプロファイルとダメージ閾値との関係を説明するための模式図である。 図7は、回折パターンの一例を説明するための模式図である。 図8は、レーザ加工装置の第1加工例を説明するための図である。 図9は、レーザ加工装置の第1加工例を説明するための図である。 図10は、レーザ加工装置の第1加工例を説明するための図である。 図11は、レーザ加工装置の第2加工例を説明するための図である。 図12は、レーザ加工装置の第2加工例を説明するための図である。 図13は、レーザ加工装置の第3加工例を説明するための図である。 図14は、レーザ加工装置の第3加工例を説明するための図である。 図15は、変形例に係るレーザ加工装置を示す模式図である。
以下、一実施形態について、図面参照して説明する。なお、各図の説明において、同一又は相当する部分には同一の符号を付し、重複する説明を省略する場合がある。また、各図には、X方向を示すX軸、Y方向を示すY軸、及びZ方向を示すZ軸からなる直交座標系を示す場合がある。一例として、X方向は第1水平方向であり、Y方向はX方向に交差する第2水平方向であり、Z方向はX方向及びY方向に交差する鉛直方向である。
[レーザ加工装置]
図1及び図2は、本実施形態に係るレーザ加工装置を示す模式図である。図1,2に示されるように、レーザ加工装置1は、ステージ2と、レーザ光源部3と、第1移動機構(移動部)4と、レーザ照射部5と、第2移動機構(移動部)7と、制御部9と、を備えている。
ステージ2は、例えば対象物11に貼り付けられたフィルム(図示省略)を吸着することで、対象物11の表面11aがZ方向と直交するように対象物11を支持する。ここでは、対象物11は、表面11aがレーザ照射部5に臨むようにステージ2に支持されている。ステージ2は、X方向及びY方向のそれぞれの方向に沿って移動可能であり、Z方向に平行な軸線を中心線として回転可能である。
レーザ光源部(レーザ光源)3は、例えばパルス発振方式によってレーザ光Lを出力する。レーザ光Lは、例えば対象物11に対して透過性を有している。レーザ光源部3は、第1レーザ31、第2レーザ32、アッテネータ33,36、ビームエキスパンダ34,37、第1ミラー35、第2ミラー38、及び、ミラー駆動部39を有している。
第1レーザ31は、レーザ光Lとして、第1レーザ光L1を出力する。アッテネータ33及びビームエキスパンダ34は、第1レーザ光L1の光路上に順に配置されている。アッテネータ33は、第1レーザ31から出射した第1レーザ光L1を入射し、第1レーザ光L1の出力を調整して出射する。ビームエキスパンダ34は、アッテネータ33で出力が調整されて出射された第1レーザ光L1の径を拡大して出射する。第1ミラー35は、ビームエキスパンダ34から出射された第1レーザ光L1を、レーザ照射部5(後述する空間光変調器51の変調面51a)に向けて反射する。
第2レーザ32は、レーザ光Lとして、第2レーザ光L2を出力する。アッテネータ36及びビームエキスパンダ37は、第2レーザ光L2の光路上に順に配置されている。アッテネータ36は、第2レーザ32から出射した第2レーザ光L2を入射し、第2レーザ光L2の出力を調整して出射する。ビームエキスパンダ37は、アッテネータ36で出力が調整されて出射された第2レーザ光L2の径を拡大して出射する。第2ミラー38は、ビームエキスパンダ37から出射された第2レーザ光L2を、レーザ照射部5(後述する空間光変調器51の変調面51a)に向けて反射する。
ミラー駆動部39は、例えばエアシリンダ等を用いて、第2ミラー38を駆動する。より具体的には、ミラー駆動部39は、第1ミラー35から変調面51aに向かう第1レーザ光L1の光路に対して第2ミラー38を挿抜するように、第2ミラー38を駆動する。第2ミラー38位置は、ミラー駆動部39により駆動された際に予め設置された部材に押し当てられることで決定される。このため、光軸ずれが生じにくい。なお、図1では、第2ミラー38が第1レーザ光L1の光路上から抜去された状態が示され、図2では、第2ミラー38が第1レーザ光L1の光路上に挿入された状態が示されている。
これにより、レーザ光源部3では、第1レーザ光L1が出力される状態(第2ミラー38が第1レーザ光L1の光路上から除かれた状態)と、第2レーザ光L2が出力される状態(第2ミラー38が第1レーザ光L1の光路上に配置された状態)と、の間で切り替えが可能とされている。すなわち、レーザ加工装置1では、第1レーザ光L1を用いた加工と第2レーザ光L2を用いた加工とが切り替えられるように構成されている。第1ミラー35、第2ミラー38、及び、ミラー駆動部39は、レーザ切替機構を構成している。第1ミラー35及び第2ミラー38は、第1レーザ光L1の光軸と第2レーザ光L2の光軸が一致するように位置合わせされている。
なお、第1レーザ31と第2レーザ32との組み合わせは、要求される加工の態様に応じて任意に設定され得る。第1レーザ31と第2レーザ32との組み合わせの一例は、以下のとおりである。なお、SDとは、対象物11の内部に改質領域を形成する加工を意味し、SGとは、対象物11の内部に弱化領域を形成する加工を意味する。
[例1:種々のガラス加工]
第1レーザ31:1030nm(パルス幅:fs)。
第2レーザ32:532nm(パルス幅:ps)。
[例2:異種材料SD(例:ガラス/Si)]
第1レーザ31:532nm(パルス幅:ps)。
第2レーザ32:1099nm(パルス幅:ns)。
[例3:異種プロセス(SG/SD)]
第1レーザ31:1099nm(パルス幅:ns)。
第2レーザ32:1064nm(パルス幅:ps)。
[例4:Si(薄物)/Si(厚物)]
第1レーザ31:1064nm(パルス幅:ns)。
第2レーザ32:1099nm(パルス幅:ns)。
引き続き図1,2を参照する。レーザ照射部5は、対象物11に対して透過性を有するレーザ光Lを集光して対象物11に照射する。ステージ2に支持された対象物11の内部にレーザ光Lが集光されると、レーザ光Lの集光点Cに対応する部分においてレーザ光Lが特に吸収され、対象物11の内部に改質領域12(又は後述する弱化領域22)が形成される。
改質領域12は、密度、屈折率、機械的強度、その他の物理的特性が周囲の非改質領域とは異なる領域である。改質領域12としては、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域等がある。改質領域12は、改質領域12からレーザ光Lの入射側及びその反対側に亀裂が延びるように形成され得る。そのような改質領域12及び亀裂は、例えば対象物11の切断に利用される。
第1移動機構4は、ステージ2をZ方向に交差(直交)する面内の一方向に移動させる第1移動部41と、ステージ2をZ方向に交差(直交)する面内の別方向に移動させる第2移動部42と、を含む。一例として、第1移動部41は、ステージ2をX方向に沿って移動させ、第2移動部42は、ステージ2をY方向に沿って移動させる。また、第1移動機構4は、ステージ2をZ方向に平行な軸線を回転軸として回転させる移動部を含み得る。第2移動機構7は、レーザ照射部5を少なくともZ方向に沿って移動させる(X方向及びY方向に移動させてもよい)。
一例として、ステージ2をX方向に沿って移動させ、対象物11に対して集光点CをX方向に沿って相対的に移動させると、複数の改質スポット12sがX方向に沿って1列に並ぶように形成される。1つの改質スポット12sは、1パルスのレーザ光Lの照射によって形成される。1列の改質領域12は、1列に並んだ複数の改質スポット12sの集合である。隣り合う改質スポット12sは、対象物11に対する集光点Cの相対的な移動速度及びレーザ光Lの繰り返し周波数によって、互いに繋がる場合も、互いに離れる場合もある。このように、第1移動機構4及び第2移動機構7は、対象物11に対してレーザ光Lの集光点Cを相対移動させるため移動部である。
レーザ照射部5は、空間光変調器51、結像光学系52、ミラー53、及び、集光レンズ54を有している。空間光変調器51は、レーザ光源部3から出力されたレーザ光Lの入射を受け、当該レーザ光Lを変調して出射する。ミラー53は、空間光変調器51から出射されたレーザ光Lを集光レンズ54に向けて反射する。集光レンズ54は、レーザ光Lを対象物11に向けて集光する。結像光学系52は、空間光変調器51と集光レンズ54(ここではミラー53)との間に介在されている。
図3は、図1,2に示された結像光学系を示す図である。図3に示されるように、結像光学系52は、4fレンズユニットを構成する一対のレンズ52A,52Bを含む。一対のレンズ52A,52Bは、空間光変調器51の変調面51aと集光レンズ54の入射瞳面33aとが結像関係にある両側テレセントリック光学系を構成している。これにより、空間光変調器51の変調面51aでのレーザ光の像(空間光変調器51において変調されたレーザ光Lの像)が、集光レンズ54の入射瞳面54aに転像(結像)される。なお、図中のFsはフーリエ面を示す。レーザ照射部5は、当該フーリエ面Fsに配置されたダンパ55をさらに含む。
図4は、図1,2に示された空間光変調器を示す模式的な断面図である。図4に示されるように、空間光変調器51は、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。空間光変調器51は、半導体基板511上に、駆動回路層512、画素電極層513、反射膜514、配向膜515、液晶層516、配向膜517、透明導電膜518及び透明基板519がこの順序で積層されることで、構成されている。
半導体基板511は、例えば、シリコン基板である。駆動回路層512は、半導体基板511上において、アクティブ・マトリクス回路を構成している。画素電極層513は、半導体基板511の表面に沿ってマトリックス状に配列された複数の画素電極513aを含んでいる。各画素電極513aは、例えば、アルミニウム等の金属材料によって形成されている。各画素電極513aには、駆動回路層512によって電圧が印加される。
反射膜514は、例えば、誘電体多層膜である。配向膜515は、液晶層516における反射膜514側の表面に設けられており、配向膜517は、液晶層516における反射膜514とは反対側の表面に設けられている。各配向膜515,517は、例えば、ポリイミド等の高分子材料によって形成されており、各配向膜515,517における液晶層516との接触面には、例えば、ラビング処理が施されている。配向膜515,517は、液晶層516に含まれる液晶分子516aを一定方向に配列させる。
透明導電膜518は、透明基板519における配向膜517側の表面に設けられており、液晶層516等を挟んで画素電極層513と向かい合っている。透明基板519は、例えば、ガラス基板である。透明導電膜518は、例えば、ITO等の光透過性且つ導電性材料によって形成されている。透明基板519及び透明導電膜518は、レーザ光Lを透過させる。
以上のように構成された空間光変調器51では、変調パターンを示す信号が制御部9から駆動回路層512に入力されると、当該信号に応じた電圧が各画素電極513aに印加され、各画素電極513aと透明導電膜518との間に電界が形成される。当該電界が形成されると、液晶層516において、各画素電極513aに対応する領域(画素51p)ごとに液晶分子516aの配列方向が変化し、各画素電極513aに対応する領域ごとに屈折率が変化する。この状態が、液晶層516に変調パターンが表示された状態である。変調パターンは、レーザ光Lを変調するためのものである。
すなわち、液晶層516に変調パターンが表示された状態で、レーザ光Lが、外部から透明基板519及び透明導電膜518を介して液晶層516に入射し、反射膜514で反射されて、液晶層516から透明導電膜518及び透明基板519を介して外部に出射させられると、液晶層516に表示された変調パターンに応じて、レーザ光Lが変調される。このように、空間光変調器51によれば、液晶層516に表示する変調パターンを適宜設定することで、レーザ光Lの変調(例えば、レーザ光Lの強度、振幅、位相、偏光等の変調)が可能である。
なお、図3等に示された変調面51aは、例えば液晶層516である。したがって、空間光変調器51は、レーザ光源部3から出力されたレーザ光Lが入射する変調面51aを含み、変調面51aに変調パターンを表示することによって、変調パターンに応じてレーザ光Lを変調して出射するためのものである。変調パターンとしては、歪補正パターンや収差補正パターン等の種々のパターンが用いられ得るが、ここでは、レーザ光Lを回折するための回折格子を含む回折パターンを用いる場合について例示する。
図5は、空間光変調器を用いたレーザ光の変調を説明するための図である。図5の(a)は、変調面51aに回折パターンを含まない変調パターンMP1が表示されている(すなわち、回折パターンが表示されていない)状態を示しており、図5の(b)は、変調面51aに回折パターンMP2が表示されている状態を示している。図5の(a)に示される状態では、レーザ光源部3から出力されて変調面51aに入射したレーザ光Lは、変調面51aにおいて回折されることなく反射されて空間光変調器51から出射される。そのため、レーザ光Lの略全部が、ダンパ55を通過しつつ結像光学系52を介して集光レンズ54(入射瞳面54a)に入射され、対象物11に向けて集光される。
一方、図5の(b)に示される状態では、レーザ光源部3から出力されて変調面51aに入射したレーザ光Lは、変調面51aに表示された回折パターンMP2に応じて回折され、回折光Lgと非回折光Lnとに分岐されて空間光変調器51から出射される。非回折光Lnは、図5の(a)の状態と同様に、偏向されることなくダンパ55を通過しつつ結像光学系52を介して集光レンズ54(入射瞳面54a)に入射され、対象物11に向けて集光される。
一方、回折光Lgは、回折パターンMP2に応じた角度で出射され、ダンパ55によって遮断される。このため、回折光Lgは、集光レンズ54(入射瞳面54a)に入射することなく、対象物11には至らない。すなわち、ダンパ55は、空間光変調器51と集光レンズ54との間に配置され、空間光変調器51から出射されたレーザ光Lの一部を集光レンズ54に入射しないように遮断するものである。より具体的には、ダンパ55は、レーザ光Lのうちの回折パターンMP2により生成された回折光Lgを集光レンズ54に入射しないように遮断する。
このとき、回折パターンMP2のグレーティングの周期を調整することにより、回折光Lgがダンパ55で遮断されるように回折光Lgの分岐距離を設定することができる。また、回折パターンMP2の階調値(2値の階調差)を調整することにより、回折光Lgの比率(回折効率)を調整することができる。すなわち、例えば、回折効率が半分となる階調値の回折パターンMP2を変調面51aの全面に使用した場合には、回折光Lgと非回折光Lnとの比率が50:50となり、レーザ光Lの半分がダンパ55を通過して対象物11に至ることとなる。
また、回折効率が最大となる階調値の回折パターンMP2を変調面51aの全面に使用した場合には、回折光Lgと非回折光Lnとの比率が100:0となり、レーザ光Lの全てがダンパ55で遮断されることとなる。このように、レーザ加工装置1では、空間光変調器51に表示する回折パターンMP2を調整することにより、レーザ光Lのうちの対象物11に到達して加工に供される割合を調整することが可能とされている。
ここで、図6の(a)に示されるように、レーザ光LのビームプロファイルPfが例えばガウス分布を有し、且つ、そのピーク強度(ピークエネルギー)が対象物11のレーザ光Lの入射面(ここでは表面11a)のダメージ閾値Thを下回る場合には、表面アブレーション等のダメージを生じさせることなく、対象物11のレーザ内部加工が可能である。一方、図6の(b)に示されるように、対象物11の入射面のダメージ閾値Thが低下している場合、入射面における当該ガウシンアンビームのピーク強度が高い中心部分が入射するエリアにおいてダメージが生じるおそれがある。したがって、図6の(c)に示されるように、ピーク強度を抑えて入射面のダメージを抑制しつつ加工を行うことが望ましい場合がある。
そこで、レーザ加工装置1では、図7に示されるように、空間光変調器51の変調面51aに対して、変調面51a内におけるレーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3を表示させることにより、集光レンズ54の入射瞳面54aにおいて、ピーク強度が抑えられたビームプロファイルPf2を有するレーザ光Lを構成する。
図7の例では、レーザ光Lは、変調面51aにおいてガウス分布であるビームプロファイルpf1を有しており、変調面51aの領域R1から領域R3にかけて強度が高くなる。すなわち、変調面51aの領域R3は、変調面51aの例えば中心に位置すると共に、レーザ光Lの強度が最も高くなる領域である。領域R1は、領域R3の外側の環状領域であり、レーザ光Lの強度が最も低くなる領域である。領域R2は、領域R1と領域R3との間の環状領域であり、レーザ光Lの強度が中間となる領域である。
したがって、この例において変調面51aに表示される回折パターンMP3は、変調面51aの外側(領域R1)から中心(領域R3)に向けて回折効率が段階的に(ここでは2段階に)高くなるようなパターンとされる。一例として、回折パターンMP3の領域R1での回折効率を0%とし、回折パターンMP3の領域R2での回折効率を30%とし、回折パターンMP3の領域R3での回折効率を50%とすることができる。
これにより、レーザ光Lのうちの領域R3に入射した部分において回折光Lgの割合が最も大きくなる(すなわち、ダンパ55で遮断される割合が最も大きくなる)。また、レーザ光Lのうちの領域R2に入射した部分、及び、領域R1に入射した部分の順で、回折光Lgの割合が小さくなる(すなわち、ダンパ55で遮断されにくくなる)。この結果、集光レンズ54の入射瞳面54aにおいて、ピーク強度が抑えられて全体的にフラットなビームプロファイルpf2を有するレーザ光Lが構成される。
なお、レーザ加工装置1では、レーザ光Lのビームプロファイルがガウス分布を有している場合に限らず、変調面51aにおけるレーザ光Lの強度が相対的に低い領域から高い領域にかけて回折効率が高くなるように回折パターンMP3を調整することにより、同様の効果が得られる。
[第1加工例]
引き続いて、制御部9の制御のもとで実施される各種処理を含むレーザ加工装置1のレーザ加工の第1加工例について説明する。この第1加工例では、対象物11に対して、表面11aに交差するZ方向の複数の位置において、表面11aに沿ったX方向に延びるラインAに沿ってレーザ光Lを照射し、改質領域12を形成する。なお、制御部9は、プロセッサ、メモリ、ストレージ及び通信デバイス等を含むコンピュータ装置として構成されている。制御部9は、プロセッサが、メモリ等に読み込まれたソフトウェア(プログラム)を実行し、メモリ及びストレージにおけるデータの読み出し及び書き込み、並びに、通信デバイスによる通信を制御することにより、各種の処理を実行する。
この第1加工例では、まず、加工準備が行われる。加工準備では、まず、図8に示されるように、対象物11がステージ2に支持されている状態とされ、加工条件の設定が行われる。第1加工例の対象物11は、例えば、シリコンウェハといった半導体ウェハである。対象物11は、表面11aと、表面11aの反対側の裏面11bとを含む。対象物11は、表面11aがレーザ照射部5側に向くようにステージ2に支持される。これにより、対象物11の表面11aがレーザ光Lの入射面とされる。
ここでは、Z方向に異なる複数の位置でのレーザ光Lの照射(スキャン)のうち、いずれのスキャンにおいて、上記のような回折パターンMP3を使用するかを設定することができる。例えば、Z方向に異なる位置での複数のスキャンのうち、最も表面11aに近い位置でのスキャンの際、及び、2番目に表面11aに近い位置でのスキャンの再に、回折パターンMP3を使用するような設定が行われる。その後、実際に、回折パターンMP3を含む変調パターンの生成及びキャリブレーションが行われる。
続いて、加工準備では、アライメント及びハイトセットが行われる。一例として、ここでは、図示しないカメラにより撮像された対象物11及びレーザ光Lの画像に基づいて、アライメントとして、X方向及びY方向(表面11aに沿う方向)におけるレーザ光Lの照射位置を決定すると共に、ハイトセットとして、Z方向におけるレーザ光Lの集光点Cの位置を調整する。この後、実際に加工が行われる。
すなわち、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、Z方向についてのレーザ光Lの集光点Cの位置を第1位置Z1としつつ、集光点CをX方向に沿って相対移動させながら、対象物11にレーザ光Lを照射することによって、対象物11に改質領域12を形成する加工処理(第1加工処理)S11を実行する。
このとき、制御部9は、第1レーザ31及び第2レーザ32のいずれかのレーザ発振を制御すると共に、必要に応じてミラー駆動部39を制御することで、第1レーザ光L1及び第2レーザ光L2のいずれかをレーザ光源部3からレーザ光Lとして出力させることができる。なお、制御部9は、互いに異なる2つ以上の第1位置Z1に対して加工処理S11を実行してもよい。
制御部9は、加工処理S11では、変調面51a内におけるレーザ光Lの強度が低い領域(例えば領域R1)から高い領域(例えば領域R3)に向けて回折効率が高くなる回折パターンMP3を変調面51aに表示させないように(回折パターンMP3を含まない変調パターンMP1が変調面51aに表示されるように)、空間光変調器51の制御を行う。
続いて、図9に示されるように、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、Z方向についての集光点Cの位置を第1位置Z1よりも表面11a側の第2位置Z2としつつ、集光点CをX方向に沿って相対移動させながら対象物11にレーザ光Lを照射することによって、対象物11に改質領域12を形成する加工処理(第2加工処理)S12を実行する。
このとき、制御部9は、第1レーザ光L1及び第2レーザ光L2のうちの加工処理S11で使用した一方がレーザ光Lとしてレーザ光源部3から出力されるように、レーザ光源部3を制御してもよい。すなわち、加工処理S11と加工処理S12とで同一のレーザ光Lを利用してもよい。この場合、レーザ加工装置1は、第1レーザ31及び第2レーザ32の一方を備えていればよく、レーザ切替機構も不要となる。
制御部9は、加工処理S12では、回折パターンMP3が変調面51aに表示されるように空間光変調器51の制御を行う。このように、制御部9は、加工処理S12を実行する際に回折パターンMP3を変調面51aに表示させると共に、加工処理S11を実行する際に回折パターンMP3を変調面51aに表示させないように、加工処理S11と加工処理S12とで変調パターンを切り替える切替処理S13をさらに実行することとなる(図8,9参照)。
以上のように、第1加工例では、加工処理S11と加工処理S12とが行われる。加工処理S11では、Z方向についてのレーザ光の集光点Cの位置が第1位置Z1としつつ、集光点CをX方向に沿って相対移動させながら対象物11にレーザ光Lを照射し、対象物11に改質領域12を形成する。加工処理S12では、加工処理S11と同様に改質領域12を形成するが、Z方向についての集光点Cの位置が第1位置Z1よりも入射面側の第2位置Z2とされる。
したがって、加工処理S11に比べて、加工処理S12の方が入射面により近い位置にレーザ光Lの集光点Cが位置させられるため、入射面でのレーザ光Lのビーム径が小さくなり、表面アブレーションといった入射面のダメージが生じやすい。そこで、レーザ加工装置1では、加工処理S12を実行する際に、レーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3を空間光変調器51に表示させると共に、加工処理S11を実行する際に、当該回折パターンMP3を空間光変調器51に表示させないように、変調パターンを切り替える切替処理が行われる。
レーザ光Lのうちの当該回折パターンMP3により生成された回折光Lgは、集光レンズ54に入射しないようにダンパ55によって遮断される。この結果、比較的ダメージが生じやすい加工処理S12の際に、回折パターンMP3及びダンパ55によってレーザ光Lのピーク強度が抑えられると共に、比較的ダメージが生じにくい加工処理S11の際には、そのようなピーク強度の制御が行われない。よって、加工処理S12でのレーザ光入射面のダメージの抑制と、加工処理S11での好適な加工とが両立され得る。
続いて、図10に示されるように、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、Z方向についての集光点Cの位置を第2位置Z2よりも表面11a側の第3位置Z3としつつ、集光点CをX方向に沿って相対移動させながら対象物11にレーザ光Lを照射することによって、対象物11に改質領域12を形成する加工処理(第3加工処理)S14を実行する。
このとき、制御部9は、第1レーザ光L1及び第2レーザ光L2のうちの加工処理S11,S12で使用した一方がレーザ光Lとしてレーザ光源部3から出力されるように、レーザ光源部3を制御してもよい。すなわち、加工処理S11,S12と加工処理S14とで同一のレーザ光Lを利用してもよい。この場合、レーザ加工装置1は、第1レーザ31及び第2レーザ32の一方を備えていればよく、レーザ切替機構も不要となる。
この第1加工例では、加工処理S14でのスキャンが、Z方向に異なる複数の位置でのスキャンのうち、最も表面11aに近い位置でのスキャンであるとする。したがって、制御部9は、加工処理S14においても、回折パターンが変調面51aに表示されるように空間光変調器51の制御を行う。加工処理S14では、加工処理S12と同様に改質領域12を形成するが、Z方向についての集光点Cの位置が第2位置Z2よりもさらに入射面側の第3位置Z3とされる。
したがって、加工処理S12に比べて、加工処理S14の方が入射面により近い位置にレーザ光Lの集光点Cが位置させられるため、入射面でのレーザ光Lのビーム径が小さくなり、表面アブレーションといった入射面のダメージがより生じやすい。そこで、レーザ加工装置1では、加工処理S14を実行する際に、レーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP4を空間光変調器51に表示させる。特に、回折パターンMP4の変調面51a内の各領域R1~R3のうちの少なくとも一部における回折効率は、加工処理S12の回折パターンMP3の変調面51a内の対応する各領域R1~R3における回折効率よりも高くされている。
一例として、加工処理S12での回折パターンMP3の領域R1での回折効率を0%とし、回折パターンMP3の領域R2での回折効率を15%とし、回折パターンMP3の領域R3での回折効率を25%とした場合、加工処理S14での回折パターンMP4の領域R1での回折効率を0%とし、回折パターンMP4の領域R2での回折効率を30%とし、回折パターンMP4の領域R3での回折効率を50%とすることができる。すなわち、回折パターンMP4の各領域R1~R3の回折効率は、加工処理S12の回折パターンMP3の対応する各領域R1~R3における回折効率以上であり、特に、回折パターンMP4の領域R2,R3の回折効率が回折パターンMP3の領域R2,R3の回折効率よりも高くされている。この結果、よりダメージが生じやすい加工処理S14の際に、回折パターンMP4及びダンパ55によってレーザ光Lのピーク強度が加工処理S12の場合よりも低く抑えられる。
なお、レーザ加工装置1では、変調面51aにおけるレーザ光LのビームプロファイルPf1は、ガウス分布を有し、制御部9は、変調面51aの外側から中心に向けて回折効率が高くなるように回折パターンMP3,MP4を生成してもよい。この場合、ガウス分布を有するレーザ光Lを用いた加工において、レーザ光入射面のダメージの抑制と好適な加工との両立を容易且つ確実に図ることが可能である。
さらに、レーザ加工装置1では、制御部9は、少なくも2段階に回折効率が変化するように回折パターンMP3,MP4を生成してもよい。この場合、集光レンズ54及び対象物11に入射するレーザ光Lのビームプロファイルを、より望ましいものに成形することが可能となる。
また、Z方向に異なる複数の位置でのレーザ光Lの照射(スキャン)の全てにおいて、レーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3,MP4を使用してもよい。一例として、比較的にレーザ光Lの入射面から遠い第1位置Z1位置にレーザ光Lの集光点Cを位置させる加工処理S11において、相対的に回折効率の低い回折パターンMP3を使用しつつ、比較的にレーザ光Lの入射面に近い第2位置Z2にレーザ光Lの集光点Cを位置させる加工処理S12や、第3位置Z3にレーザ光Lの集光点Cを位置させる加工処理S14において、相対的に回折効率の高い回折パターンMP4を使用することができる。すなわち、制御部9は、レーザ光Lの集光点CのZ方向の位置が入射面に近い加工であるほど、回折効率の高い回折パターンを空間光変調器51に表示させるような処理を実行しもよい。
[第2加工例]
引き続いて、制御部9の制御のもとで実施される各種処理を含むレーザ加工装置1のレーザ加工の第2加工例について説明する。この第2加工例では、対象物11に対して、表面11aに沿ったX方向に延びるラインAに沿ってレーザ光Lを照射し、改質領域12を形成すると共に弱化領域22を形成する。この第2加工例では、まず、加工準備が行われる。加工準備では、まず、図11に示されるように、対象物11がステージ2に支持されている状態とされ、加工条件の設定が行われる。
第2加工例の対象物11は、基板16と基板16上に形成された機能素子層17とを含む。基板16は表面11aを含み、機能素子層17は裏面11bを含む。基板16は、例えば、シリコン等を含む半導体基板である。機能素子層17は、X方向及びY方向に配列された複数の機能素子(半導体素子)を含む層である。機能素子層17では、Z方向に沿って複数の機能素子が積層されていてもよい。また、機能素子層17は、金属配線や金属膜、或いは、Low-k膜といった絶縁膜を含み得る。対象物11は、表面11aがレーザ照射部5側の向くように、裏面11bに設けられたテープTを介してステージ2に支持される。これにより、対象物11の表面11aがレーザ光Lの入射面とされる。
ここでは、改質領域12を形成するためのレーザ光Lの照射(スキャン)、及び、弱化領域22を形成するためのレーザ光Lの照射(スキャン)のうち、いずれのスキャンにおいて、上記のような回折パターンMP3を使用するかを設定することができる。ここでは、弱化領域22を形成するためのスキャンの際に、回折パターンMP3を使用すると共に、改質領域12を形成するためのスキャンの際に回折パターンMP3を使用しないような設定が行われる。その後、実際に、回折パターンMP3を含む変調パターンの生成及びキャリブレーションが行われる。
続いて、加工準備では、アライメント及びハイトセットが行われる。一例として、ここでは、図示しないカメラにより撮像された対象物11及びレーザ光Lの画像に基づいて、アライメントとして、X方向及びY方向(表面11aに沿う方向)におけるレーザ光Lの照射位置を決定すると共に、ハイトセットとして、Z方向におけるレーザ光Lの集光点Cの位置を調整する。この後、実際に加工が行われる。
すなわち、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、第2レーザ光L2の集光点Cを対象物11の内部に位置させつつ、X方向に沿って集光点Cを相対移動させながら対象物11に第2レーザ光L2を照射することによって、対象物11に弱化領域22を形成する加工処理(第2加工処理)S21を実行する。制御部9は、加工処理S21において、回折パターンMP3が変調面51aに表示されるように、空間光変調器51の制御を行う。
このとき、制御部9は、第1レーザ31及び第2レーザ32のうちの第2レーザ32のレーザ発振を制御すると共に、ミラー駆動部39を制御して第2ミラー38を駆動させることにより、第2レーザ光L2がレーザ光源部3からレーザ光Lとして出力されるようにする。第2レーザ光L2は、後述する加工処理S22で使用される第1レーザ光L1よりも短パルス幅とされている(具体的な波長・パルス幅の例は上記の[例3:異種プロセス(SG/SD)]参照)。また、第2レーザ光L2の集光点Cは、Z方向について、基板16と機能素子層17との界面近傍(図示の例では機能素子層17の内部)に位置させられる。
弱化領域22とは、機能素子層17を弱化させた領域である。弱化は、脆化を含む。機能素子層17の弱化とは、機能素子層17の少なくとも一部の領域(例えば、機能素子層17の一部分、及び、機能素子層17を構成する複数層の中の少なくとも一層等)における、第2レーザ光L2の吸収による溶融及び蒸発等の熱損傷、レーザ照射による化学結合の変化、並びに、切断又はアブレーション加工等の非熱加工の結果等を意味する。
機能素子層17の弱化とは、結果として機能素子層17に曲げ応力又は引張応力等の応力をかけた場合に、非処理領域(弱化していない領域)と比較して切断又は破壊が生じやすい状態になっていることをいう。弱化領域(脆化領域)22は、レーザ照射による痕跡が生じた領域とも言え、非処理領域と比較して切断又は破壊がしやすい状態になっている領域である。なお、弱化領域22は、機能素子層17の少なくとも一部の領域において、ライン状に連続的に形成されていてもよいし、レーザ照射のパルスピッチに応じて断続的に形成されていてもよい。
すなわち、弱化領域22が、パルス光である第2レーザ光L2の照射によって、1パルスの第2レーザ光L2の照射によって形成される1つの弱化スポットが複数配列されることで形成される場合、隣り合う弱化スポットは、連続的に繋がっていてもよいし、断続的に繋がっていてもよいし、互いに離れて独立していてもよい。また、弱化スポットは、機能素子層17の表面(裏面11b)に露出していてもよく、露出された弱化スポットは、連続的に繋がっていてもよいし、断続的に繋がっていてもよいし、互いに離れて独立していてもよい。近年では、デバイスの配線微細化に対処するため、Low-k膜が絶縁膜として採用される事や、3次元化に伴うパターンの積層数増加などにより、膜や金属配線、金属膜が複数積層されることがあり、上記のように弱化領域22を形成することがより有効となっている。
続いて、図12に示されるように、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び、第2移動機構7を制御することにより、第1レーザ光L1の集光点Cを対象物11の内部に位置させつつ、X方向に沿って集光点Cを相対移動させながら対象物11に第1レーザ光L1を照射することによって、対象物11に改質領域12を形成する加工処理(第1加工処理)S22を実行する。
このとき、制御部9は、第1レーザ31及び第2レーザ32のうちの第1レーザ31のレーザ発振を制御すると共に、ミラー駆動部39を制御して第2ミラー38を第1レーザ光L1の光路から抜去するように駆動させることにより、第1レーザ光L1がレーザ光源部3からレーザ光Lとして出力されるようにする。また、第1レーザ光L1の集光点Cは、Z方向について、弱化領域22よりも表面11a側に位置させられる。
制御部9は、加工処理S22では、回折パターンMP3を変調面51aに表示させないように(回折パターンMP3を含まない変調パターンMP1が変調面51aに表示されるように)、空間光変調器51の制御を行う。このように、制御部9は、加工処理S21を実行する際に回折パターンMP3を変調面51aに表示させると共に、加工処理S22を実行する際に回折パターンMP3を変調面51aに表示させないように、加工処理S21と加工処理S22とで変調パターンを切り替える切替処理S23をさらに実行することとなる(図11,12参照)。
なお、第2加工例では、加工処理S21と加工処理S22とで異なるレーザ光Lが使用される。よって、加工準備における変調パターンの生成及びキャリブレーションを、レーザ毎に、すなわち、第1レーザ光L1と第2レーザ光L2とのそれぞれに対して行うと共に、アッテネータ33,36の情報を記録することができる。また、必要に応じて、レーザ毎に、パワーメータの設定(出力計測範囲)を切り替えてもよい。
以上のように、第2加工例では、加工処理S21と加工処理S22とが行われる。加工処理S22では、第1レーザ光L1の集光点Cを対象物11の内部に位置させつつ、X方向に沿って集光点Cを相対移動させながら対象物11に第1レーザ光L1を照射し、対象物11に改質領域12を形成する。加工処理S21では、加工処理S22と異なり、第1レーザ光L1よりも短パルス幅の第2レーザ光L2が用いられる。すなわち、加工処理S21では、相対的に短パルス幅の第2レーザ光L2の集光点Cを対象物11の内部に位置させつつ、X方向に沿って集光点Cを相対移動させながら対象物11に第2レーザ光L2を照射することによって、対象物11に弱化領域22を形成する。
したがって、加工処理S22に比べて、加工処理S21の方が短いパルス幅のレーザ光が用いられるため、表面アブレーションといった入射面のダメージが生じやすい。そこで、レーザ加工装置1では、加工処理S21を実行する際に、レーザ光L(第2レーザ光L2)の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3を空間光変調器51に表示させると共に、加工処理S22を実行する際に、当該回折パターンMP3を空間光変調器51に表示させないように、加工処理S21と加工処理S22とで変調パターンを切り替える切替処理が行われる。
レーザ光L(第2レーザ光L2)のうちの回折パターンMP3により生成された回折光Lgは、集光レンズ54に入射しないようにダンパ55によって遮断される。この結果、比較的ダメージが生じやすい加工処理S21の際に、回折パターンMP3及びダンパ55によってレーザ光L(第2レーザ光L2)のピーク強度が抑えられると共に、比較的ダメージが生じにくい加工処理S22の際には、そのようなピーク強度の制御が行われない。よって、加工処理S21でのレーザ光入射面のダメージの抑制と、加工処理S22での好適な加工とが両立され得る。
また、レーザ加工装置1は、第1レーザ31から出力された第1レーザ光L1を変調面51aに向けて反射するための第1ミラー35と、第2レーザ32から出力された第2レーザ光L2を変調面51aに向けて反射するための第2ミラー38と、第1ミラー35から変調面51aに向かう第1レーザ光L1の光路に対して第2ミラー38を挿抜するように第2ミラー38を駆動するミラー駆動部39と、を含むレーザ切替機構を備えている。このため、第1レーザ光L1の波長と第2レーザ光L2の波長とが近接している場合(例えば、上記例のように1064nmと1099nmとである場合)であっても、確実に、レーザ光源部3から出力される(空間光変調器51に入射する)レーザ光Lの切り替えを行うことができる。
[第3加工例]
引き続いて、制御部9の制御のもとで実施される各種処理を含むレーザ加工装置1のレーザ加工の第3加工例について説明する。この第3加工例では、レーザ光Lの入射面の状態が互いに異なる2つの対象物11に対して、それぞれ、表面11aA,11aB(後述)に沿ったX方向に延びるラインAに沿ってレーザ光Lを照射し、改質領域12を形成する。この第3加工例では、複数(ここでは2つ)の対象物11A,11Bのそれぞれに対して、改質領域12を形成する。この第3加工例では、まず、加工準備が行われる。加工準備では、まず、図13に示されるように、対象物11Aがステージ2に支持されている状態とされ、加工条件の設定が行われる。
対象物11Aは、表面11aAを含む。対象物11Aは、例えばシリコンウェハといった半導体ウェハであり、その表面11aAは、例えば鏡面といったレーザ光Lの吸収率が相対的に低い第1吸収率の面とされている。対象物11Aは、表面11aAがレーザ照射部5側に向くように、ステージ2に支持される。これにより、対象物11Aの表面11aAがレーザ光Lの入射面とされる。
一方、対象物11Bは、表面11aBを含む(図14参照)。対象物11Bは、例えばシリコンウェハといった半導体ウェハであるが、その表面11aBは、例えば研削痕が生じていたり、膜やテープが設けられていたりすることにより、表面11aAのレーザ光Lの吸収率よりも高い第2吸収率を有している(すなわち、表面11aAよりもレーザ光Lを吸収しやすい)。
ここでは、互いに異なる表面11aA,11aBを有する対象物11A,11Bへのレーザ光Lの照射(スキャン)のうち、いずれのスキャンにおいて、上記のような回折パターンMP3を使用するかを設定することができる。ここでは、比較的にレーザ光Lを吸収しやすい表面11aBを有する対象物11Bのスキャンの際に、回折パターンMP3を使用するような設定が行われる。その後、実際に、回折パターンMP3を含む変調パターンの生成及びキャリブレーションが行われる。
続いて、加工準備では、アライメント及びハイトセットが行われる。一例として、ここでは、図示しないカメラにより撮像された対象物11A及びレーザ光Lの画像に基づいて、アライメントとして、X方向及びY方向(表面11aAに沿う方向)におけるレーザ光Lの照射位置を決定すると共に、ハイトセットとして、Z方向におけるレーザ光Lの集光点Cの位置を調整する。この後、実際に加工が行われる。
すなわち、レーザ加工装置1では、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、レーザ光Lの吸収率が第1吸収率である入射面(表面11aA)を介してレーザ光Lの集光点Cを対象物11Aの内部に位置させつつ、集光点CをX方向に沿って相対移動させながら、対象物11Aにレーザ光Lを照射することによって、対象物11Aに改質領域12を形成する加工処理(第1加工処理)S31を実行する。
このとき、制御部9は、第1レーザ31及び第2レーザ32のいずれかのレーザ発振を制御すると共に、必要に応じてミラー駆動部39を制御することで、第1レーザ光L1及び第2レーザ光L2のいずれかをレーザ光源部3からレーザ光Lとして出力させることができる。なお、制御部9は、互いに異なる2つ以上のZ方向位置において、加工処理S31を実行してもよい。
制御部9は、加工処理S31では、変調面51a内におけるレーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3を変調面51aに表示させないように(回折パターンMP3を含まない変調パターンMP1が変調面51aに表示されるように)、空間光変調器51の制御を行う。
続いて、図14に示されるように、レーザ加工装置1では、対象物11Bがステージ2に支持された状態とされる。対象物11Bは、表面11aBがレーザ照射部5側に向くように、ステージ2に支持される。これにより、対象物11Bの表面11aBがレーザ光Lの入射面とされる。
続いて、アライメント及びハイトセットが行われる。一例として、ここでは、図示しないカメラにより撮像された対象物11B及びレーザ光Lの画像に基づいて、アライメントとして、X方向及びY方向(表面11aBに沿う方向)におけるレーザ光Lの照射位置を決定すると共に、ハイトセットとして、Z方向におけるレーザ光Lの集光点Cの位置を調整する。この後、実際に加工が行われる。
すなわち、制御部9が、レーザ光源部3、第1移動機構4、及び第2移動機構7を制御することにより、レーザ光Lの吸収率が第1吸収率よりも高い第2吸収率である入射面(表面11aB)を介して対象物11Bの内部に集光点Cを位置させつつ、集光点CをX方向に沿って相対移動させながら対象物11Bにレーザ光Lを照射することによって、対象物11Bに改質領域12を形成する加工処理(第2加工処理)S32を実行する。
このとき、制御部9は、第1レーザ光L1及び第2レーザ光L2のうちの加工処理S31で使用した一方がレーザ光Lとしてレーザ光源部3から出力されるように、レーザ光源部3を制御してもよい。すなわち、加工処理S31と加工処理S32とで同一のレーザ光Lを利用してもよい。この場合、レーザ加工装置1は、第1レーザ31及び第2レーザ32の一方を備えていればよく、レーザ切替機構も不要となる。なお、表面11aA,11aBの第1吸収率及び第2吸収率の高低は、実際の値を取得する必要はなく、研削痕やテープの有無等により判断することが可能である。
制御部9は、加工処理S32では、回折パターンMP3が変調面51aに表示されるように空間光変調器51の制御を行う。このように、制御部9は、加工処理S32を実行する際に回折パターンMP3を変調面51aに表示させると共に、加工処理S31を実行する際に回折パターンMP3を変調面51aに表示させないように、加工処理S31と加工処理S32とで変調パターンを切り替える切替処理S33をさらに実行することとなる(図12,13参照)。
以上のように、第3加工例では、加工処理S31と加工処理S32とが行われる。加工処理S31では、レーザ光Lの吸収率が第1吸収率である入射面を介して対象物11Aの内部に集光点Cを位置させつつ、X方向に沿って集光点Cを相対移動させながら対象物11Aにレーザ光Lを照射し、対象物11Aに改質領域12を形成する。加工処理S32では、加工処理A31と同様に改質領域12を形成するが、加工の対象が対象物11Bとされており、その入射面のレーザ光Lの吸収率が加工処理S31の場合よりも高い。したがって、加工処理S31に比べて、加工処理S32の方が入射面においてレーザ光Lが吸収されやいため、表面アブレーションといった入射面のダメージが生じやすい。
そこで、レーザ加工装置1では、加工処理S32を実行する際に、レーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンMP3を空間光変調器51に表示させると共に、加工処理S31を実行する際に、当該回折パターンMP3を空間光変調器51に表示させないように、加工処理S31と加工処理S32とで変調パターンを切り替える切替処理が行われる。
レーザ光Lのうちの当該回折パターンMP3により生成された回折光Lgは、集光レンズ54に入射しないようにダンパ55によって遮断される。この結果、比較的ダメージが生じやすい加工処理S32の際に、回折パターンMP3及びダンパ55によってレーザ光Lのピーク強度が抑えられると共に、比較的ダメージが生じにくい加工処理S31の際には、そのようなピーク強度の制御が行われない。よって、加工処理S32でのレーザ光入射面のダメージの抑制と、加工処理S31での好適な加工とが両立され得る。
なお、複数のZ方向の位置において加工処理S32を行う場合、制御部9は、第1加工例の加工処理S12及び加工処理S14のように回折パターンMP3,MP4を使い分けてもよい。すなわち、複数のZ方向の位置において加工処理S32を行う場合、比較的にレーザ光Lの入射面から遠い位置に集光点Cを位置させる場合には、相対的に回折効率の低い回折パターンMP3を使用し、比較的にレーザ光Lの入射面に近い位置に集光点Cを位置させる場合には、相対的に回折効率の高い回折パターンMP4を使用することができる。
また、対象物11Aに対する加工処理S31と対象物11Bに対する加工処理S32との両方において、レーザ光Lの強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを使用してもよい。一例として、比較的にレーザ光Lの入射面のレーザ光Lの吸収率が低い場合の加工処理S31において、相対的に回折効率の低い回折パターンMP3を使用しつつ、比較的にレーザ光Lの入射面のレーザ光Lの吸収率が高い場合の加工処理S32において、相対的に回折効率の高い回折パターンMP4を使用することができる。すなわち、制御部9は、レーザ光Lの入射面のレーザ光Lの吸収率が高い場合の加工であるほど、回折効率の高い回折パターンを空間光変調器51に表示させるような処理を実行しもよい。
[パターン調整]
レーザ加工装置1では、以上のような加工に加えて、条件出しとして変調パターンの調整を行うことができる。このパターン調整では、まず、上記加工例と同様に、対象物11がステージ2に支持された状態において、アライメント及びハイトセットが行われた後に加工条件が設定され、変調パターンの生成及びキャリブレーションが行われる。
その後、対象物11に対してレーザ光Lを照射し、対象物11のレーザ加工を行う。続いて、対象物11の観察及び評価を行うことにより、対象物11の所望のZ方向の位置に加工ができているか否か(例えば改質領域12が形成されているか否か)、及び/又は、入射面にダメージが生じていないか否かの判定を行う。この判定の結果、対象物11の所望の位置に加工ができていない場合、及び/又は、入射面にダメージが生じている場合、所定の回折効率(レーザ光Lの遮断割合)及び所定の領域R1~R3が設定された回折パターンMP3を変調面51aに表示させるように、空間光変調器51の制御を行う。
その後、再び、加工条件の設定、変調パターンの生成、及びキャリブレーションを行った後に対象物11のレーザ加工を行う。そして、再度、対象物11の観察及び評価を行う。そして、再び、対象物11の所望のZ方向の位置に加工ができているか否か(例えば改質領域12が形成されているか否か)、及び/又は、入射面にダメージが生じていないか否かの判定を行う。この判定の結果、対象物11の所望の位置に加工ができていない場合、及び/又は、入射面にダメージが生じている場合、回折効率や領域R1~R3の設定を変更ししつつ回折パターンMP3を変調面51aに表示させるように、空間光変調器51の制御を行う。
以上のように、入射面のダメージを抑制しつつ対象物11に所望の加工が行われるまで、回折パターンMP3の調整、対象物11の加工、観察及び評価を繰り返し実施することにより、適切な変調パターンが決定される。
[変形例]
以上の実施形態は、本開示の一側面を説明したものである。したがって、本開示は、上述したレーザ加工装置1に限定されることなく、任意に変形され得る。
図15は、変形例に係るレーザ加工装置を示す模式図である。図15に示されるレーザ加工装置1Aは、上記実施形態に係るレーザ加工装置1と比較して、レーザ光源部3が第2ミラー38に代えてダイクロイックミラー38Aを有する点、及び、ミラー駆動部39を有していない点において相違している。ダイクロイックミラー38Aは、第1ミラー35から変調面51aに向かう第1レーザ光L1の光路上に配置されている。ダイクロイックミラー38Aは、第2レーザ光L2を変調面51aに向けて反射する。
一方、ダイクロイックミラー38Aは、第1レーザ光L1の波長に対して透過性を有する。したがって、ダイクロイックミラー38Aは、第1レーザ光L1に対して単なる透過ウィンドウとして機能する。レーザ加工装置1Aでは、ダイクロイックミラー38Aを透過して出力される第1レーザ光L1と、ダイクロイックミラー38Aで反射されて出力される第2レーザ光L2の光路が一致するように調整されている。
このようなレーザ加工装置1Aによっても、レーザ加工装置1と同様の加工及び効果を奏することが可能である。また、レーザ加工装置1Aによれば、第1レーザ光L1と第2レーザ光L2との切り替えの際に、光軸ズレが生じない。また、レーザ加工装置1Aでは、第1レーザ光L1のアライメントは第1ミラー35によって行うことがき、第2レーザ光L2のアライメントはダイクロイックミラー38Aによって行うことができる。すなわち、第1レーザ光L1及び第2レーザ光L2のアライメントが分離される。
なお、上記の第1加工例、第2加工例、及び、第3加工例について、それぞれ、特徴的な変調パターンの切替処理を行っているが、これらの切替処理は、互いに組み合わせて行うことが可能である。
例えば、第3加工例において、比較的にレーザ光Lを吸収しにくい表面11aAを有する対象物11Aの加工処理S31の際に、Z方向に複数の位置に対して、集光点Cを位置させつつレーザ光Lを照射(スキャン)して改質領域12を形成する場合には、上述したように、第1加工例のように、制御部9は、Z方向の複数の位置でのスキャンのうちの入射面(表面11aA)に近い位置でのスキャンの際に回折パターンMP3を変調面51aに表示させると共に、他の位置でのスキャンの際に回折パターンMP3を変調面51aに表示させないように変調パターンの切替処理を実行してもよい(さらには、より入射面に近い位置でのスキャンの際に回折パターンMP4を表示させてもよい)。
同様に、第2加工例において、相対的に長いパルス幅の第1レーザ光L1を用いる加工処理S22の際に、Z方向に複数の位置に対して、集光点Cを位置させつつレーザ光Lを照射(スキャン)して改質領域12を形成する場合には、第1加工例のように、制御部9は、Z方向の複数の位置でのスキャンのうちの入射面(表面11a)に近い位置でのスキャンの際に回折パターンMP3を変調面51aに表示させると共に、他の位置でのスキャンの際に回折パターンMP3を変調面51aに表示させないように変調パターンの切替処理を実行してもよい(さらには、より入射面に近い位置でのスキャンの際に回折パターンMP4を表示させてもよい)。
さらに、各加工例において、回折パターンMP3によってレーザ光のピーク強度を抑えた場合には、制御部9は、レーザ光源部3からのレーザ光Lの出力を増大させることにより、対象物11への投入エネルギーを上げる処理を実行してもよい。また、回折パターンMP3は、回折効率が1段階で変化するように構成されてもよいし、3段階以上で変化するように構成されてもよい。
1,1A…レーザ加工装置、3…レーザ光源部(レーザ光源)、4…第1移動機構(移動部)、5…レーザ照射部、7…第2移動機構(移動部)、9…制御部、11,11A,11B…対象物、11a,11aA,11aB…表面(入射面)、12…改質領域、22…弱化領域、31…第1レーザ、32…第2レーザ、35…第1ミラー(レーザ切替機構)、38…第2ミラー(レーザ切替機構)、39…ミラー駆動部(レーザ切替機構)、51…空間光変調器、51a…変調面、54…集光レンズ、55…ダンパ、C…集光点、L…レーザ光、L1…第1レーザ光、L2…第2レーザ光、Lg…回折光、R1,R2,R3…領域、MP3…回折パターン。

Claims (7)

  1. レーザ光を出力するレーザ光源と、
    前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、
    前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、
    前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、
    前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、
    前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、
    を備え、
    前記制御部は、
    前記レーザ光源及び前記移動部を制御することにより、前記対象物の前記レーザ光の入射面に交差するZ方向についての前記集光点の位置を第1位置としつつ、前記集光点を前記入射面に沿ったX方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、
    前記レーザ光源及び前記移動部を制御することにより、前記Z方向についての前記集光点の位置を前記第1位置よりも前記入射面側の第2位置としつつ、前記集光点を前記X方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第2加工処理と、
    を実行し、
    前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、
    前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、
    レーザ加工装置。
  2. 前記制御部は、前記レーザ光源及び前記移動部を制御することにより、前記Z方向についての前記集光点の位置を前記第2位置よりも前記入射面側の第3位置としつつ、前記集光点を前記X方向に沿って相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第3加工処理を実行し、
    前記制御部は、前記空間光変調器を制御することによって、前記第3加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させ、
    前記第3加工処理の前記回折パターンの前記変調面内の少なくとも1つの領域における回折効率は、前記第2加工処理の前記回折パターンの前記変調面内の対応する領域における回折効率よりも高い、
    請求項1に記載のレーザ加工装置。
  3. レーザ光を出力するレーザ光源と、
    前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、
    前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、
    前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、
    前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、
    前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、
    を備え、
    前記制御部は、
    前記レーザ光源及び前記移動部を制御することにより、前記レーザ光の吸収率が第1吸収率である入射面を介して前記対象物の内部に前記集光点を位置させつつ、当該入射面に沿ったX方向に沿って前記集光点を相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、
    前記レーザ光源及び前記移動部を制御することにより、前記レーザ光の吸収率が前記第1吸収率よりも高い第2吸収率である入射面を介して前記対象物の内部に前記集光点を位置させつつ、当該入射面に沿った前記X方向に沿って前記集光点を相対移動させながら前記対象物に前記レーザ光を照射することによって、前記対象物に改質領域を形成する第2加工処理と、
    を実行し、
    前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、
    前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、
    レーザ加工装置。
  4. レーザ光として第1レーザ光を出力する第1レーザと、前記第1レーザ光よりも短パルス幅の第2レーザ光を前記レーザ光として出力する第2レーザと、を含むレーザ光源と、
    前記レーザ光源から出力された前記レーザ光が入射する変調面を含み、前記変調面に変調パターンを表示することによって、前記変調パターンに応じて前記レーザ光を変調して出射するための空間光変調器と、
    前記空間光変調器から出射された前記レーザ光を対象物の内部に集光するための集光レンズと、
    前記空間光変調器と前記集光レンズとの間に配置され、前記空間光変調器から出射された前記レーザ光の一部を前記集光レンズに入射しないように遮断するダンパと、
    前記対象物に対して前記レーザ光の集光点を相対的に移動させるための移動部と、
    前記変調面に入射する前記レーザ光を前記第1レーザ光と前記第2レーザ光との間で切り替えるためのレーザ切替機構と、
    前記レーザ光源、前記空間光変調器、及び、前記移動部を制御する制御部と、
    を備え、
    前記制御部は、
    前記レーザ光源、前記レーザ切替機構、及び前記移動部を制御することにより、前記第1レーザ光の前記集光点を前記対象物の内部に位置させつつ、前記対象物の前記第1レーザ光の入射面に沿ったX方向に沿って前記集光点を相対移動させながら前記対象物に前記第1レーザ光を照射することによって、前記対象物に改質領域を形成する第1加工処理と、
    前記レーザ光源、前記レーザ切替機構、及び前記移動部を制御することにより、前記第2レーザ光の前記集光点を前記対象物の内部に位置させつつ、前記対象物の前記第2レーザ光の入射面に沿った前記X方向に沿って前記集光点を相対移動させながら前記対象物に前記第2レーザ光を照射することによって、前記対象物に弱化領域を形成する第2加工処理と、
    を実行し、
    前記制御部は、前記空間光変調器を制御することによって、前記第2加工処理を実行する際に、前記変調面内における前記レーザ光の強度が低い領域から高い領域に向けて回折効率が高くなる回折パターンを前記変調面に表示させると共に、前記第1加工処理を実行する際に、前記回折パターンを前記変調面に表示させないように、前記第1加工処理と前記第2加工処理とで前記変調パターンを切り替える切替処理をさらに実行し、
    前記ダンパは、前記レーザ光のうちの前記回折パターンにより生成された回折光を前記集光レンズに入射しないように遮断する、
    レーザ加工装置。
  5. 前記レーザ切替機構は、
    前記第1レーザから出力された前記第1レーザ光を前記変調面に向けて反射するための第1ミラーと、
    前記第2レーザから出力された前記第2レーザ光を前記変調面に向けて反射するための第2ミラーと、
    前記第1ミラーから前記変調面に向かう前記第1レーザ光の光路に対して前記第2ミラーを挿抜するように前記第2ミラーを駆動するミラー駆動部と、
    を含む、
    請求項4に記載のレーザ加工装置。
  6. 前記変調面における前記レーザ光のビームプロファイルは、ガウス分布を有し、
    前記制御部は、前記変調面の外側から中心に向けて回折効率が高くなるように前記回折パターンを生成する、
    請求項1に記載のレーザ加工装置。
  7. 前記制御部は、少なくも2段階に回折効率が変化するように前記回折パターンを生成する、
    請求項1~6のいずれか一項に記載のレーザ加工装置。
JP2022111208A 2022-07-11 2022-07-11 レーザ加工装置 Pending JP2024009576A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022111208A JP2024009576A (ja) 2022-07-11 2022-07-11 レーザ加工装置
KR1020230080804A KR20240008246A (ko) 2022-07-11 2023-06-23 레이저 가공 장치
CN202310838418.9A CN117381202A (zh) 2022-07-11 2023-07-10 激光加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022111208A JP2024009576A (ja) 2022-07-11 2022-07-11 レーザ加工装置

Publications (1)

Publication Number Publication Date
JP2024009576A true JP2024009576A (ja) 2024-01-23

Family

ID=89463685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022111208A Pending JP2024009576A (ja) 2022-07-11 2022-07-11 レーザ加工装置

Country Status (3)

Country Link
JP (1) JP2024009576A (ja)
KR (1) KR20240008246A (ja)
CN (1) CN117381202A (ja)

Also Published As

Publication number Publication date
KR20240008246A (ko) 2024-01-18
CN117381202A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
JP6258787B2 (ja) レーザ加工装置及びレーザ加工方法
JP6353683B2 (ja) レーザ加工装置及びレーザ加工方法
JP6272145B2 (ja) レーザ加工装置及びレーザ加工方法
JP6272301B2 (ja) レーザ加工装置及びレーザ加工方法
JP5468627B2 (ja) レーザ加工装置
JP6121733B2 (ja) レーザ加工装置及びレーザ加工方法
JP5930811B2 (ja) レーザ加工方法及びレーザ加工装置
JP6272302B2 (ja) レーザ加工装置及びレーザ加工方法
KR102128416B1 (ko) 레이저 가공 장치 및 레이저 가공 방법
JP5905274B2 (ja) 半導体デバイスの製造方法
JP2009056482A (ja) 基板分割方法、及び表示装置の製造方法
KR20120112775A (ko) 레이저 가공방법
KR20220103771A (ko) 레이저 가공 장치
JP2024009576A (ja) レーザ加工装置
WO2024057780A1 (ja) レーザ加工装置及びレーザ加工方法
JP7303078B2 (ja) レーザ加工装置及びレーザ加工方法
WO2024034193A1 (ja) レーザ加工装置及びレーザ加工方法
JP7303079B2 (ja) レーザ加工装置及びレーザ加工方法
JP7303080B2 (ja) レーザ加工装置及びレーザ加工方法
WO2023277006A1 (ja) レーザ加工装置、及び、レーザ加工方法
WO2022265046A1 (ja) レーザ加工装置及びレーザ加工方法
KR20210157964A (ko) 레이저 절단 장치