JP2021085898A - 光源装置およびプロジェクター - Google Patents

光源装置およびプロジェクター Download PDF

Info

Publication number
JP2021085898A
JP2021085898A JP2019212093A JP2019212093A JP2021085898A JP 2021085898 A JP2021085898 A JP 2021085898A JP 2019212093 A JP2019212093 A JP 2019212093A JP 2019212093 A JP2019212093 A JP 2019212093A JP 2021085898 A JP2021085898 A JP 2021085898A
Authority
JP
Japan
Prior art keywords
ray bundle
ray
incident
bundle
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019212093A
Other languages
English (en)
Other versions
JP7314778B2 (ja
Inventor
秋山 光一
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019212093A priority Critical patent/JP7314778B2/ja
Priority to CN202011318734.6A priority patent/CN112835255B/zh
Priority to US17/102,880 priority patent/US11493840B2/en
Publication of JP2021085898A publication Critical patent/JP2021085898A/ja
Application granted granted Critical
Publication of JP7314778B2 publication Critical patent/JP7314778B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/123The splitting element being a lens or a system of lenses, including arrays and surfaces with refractive power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/113Fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

【課題】励起光の利用効率の低下を抑制できる光源装置を提供する。【解決手段】本発明の光源装置は、第1光線束および第2光線束を射出する光源部と、第1光線束の主光線の進行方向を変化させる第1光学素子と、第2光線束の主光線の進行方向を変化させる第2光学素子と、入射面と反射面と第1側面と第2側面とを有する波長変換層と、第1反射面を有する第1反射素子と、第2反射面を有する第2反射素子と、を備える。第1光学素子および第2光学素子は、入射面において第1光線束の主光線と第2光線束の主光線とが互いに重ならないように各主光線の進行方向を変化させ、波長変換層の入射面の形状は矩形状であり、第1光線束および第2光線束は、入射面、第1反射面および第2反射面以外の領域には入射せず、第1光線束は、第1反射素子で反射されて第1側面から波長変換層に入射し、第2光線束は、第2反射素子で反射されて第2側面から波長変換層に入射する。【選択図】図5

Description

本発明は、光源装置およびプロジェクターに関する。
プロジェクターの分野において、光源から射出された励起光を蛍光体に照射した際に蛍光体から発せられる蛍光を利用した光源装置が提案されている。下記の特許文献1には、蛍光体層と、蛍光体層の側面に設けられたダイクロイックミラーと、蛍光体層の底面に設けられた反射部と、励起光源と、を備える光源装置が開示されている。この光源装置において、蛍光は、蛍光体層上面の蛍光射出領域から射出され、平面視において、励起光は、蛍光射出領域と蛍光射出領域の外側の領域とを含む領域に照射され、蛍光体層の側面から入射する。
特開2015−121606号公報
特許文献1においては、励起光照射領域の形状を蛍光射出領域の形状と相似形としたまま、励起光照射領域の面積を蛍光射出領域の面積に対して大きくしている。しかしながら、蛍光体層の周囲の反射部材の配置によっては、励起光の一部が波長変換に利用されず、励起光の利用効率が低下する場合があった。
上記の課題を解決するために、本発明の一つの態様の光源装置は、第1波長帯を有する第1光線束および第2光線束を射出する光源と、前記第1光線束の主光線の進行方向を変化させる第1光学素子と、前記第2光線束の主光線の進行方向を変化させる第2光学素子と、前記第1光線束および前記第2光線束が入射される入射面と、前記入射面とは異なる反射面と、前記入射面および前記反射面に交差する第1側面と、前記入射面および前記反射面に交差するとともに前記第1側面とは異なる第2側面と、を有し、前記第1光線束および前記第2光線束を前記第1波長帯とは異なる第2波長帯を有する蛍光に波長変換する波長変換層と、第1反射面を有し、前記第1側面に対向して設けられる第1反射素子と、第2反射面を有し、前記第2側面に対向して設けられる第2反射素子と、を備える。前記第1光学素子および前記第2光学素子は、前記入射面において、前記第1光線束の主光線と前記第2光線束の主光線とが互いに重ならないように、前記第1光線束の主光線および前記第2光線束の主光線の進行方向を変化させる。前記波長変換層に対する前記第1光線束および前記第2光線束の入射方向から見て、前記入射面の形状は矩形状であり、前記第1光線束および前記第2光線束は、前記入射面、前記第1反射面および前記第2反射面以外の領域には入射せず、前記第1光線束は、前記第1反射素子で反射されて前記第1側面から前記波長変換層に入射し、前記第2光線束は、前記第2反射素子で反射されて前記第2側面から前記波長変換層に入射する。
本発明の一つの態様の光源装置において、前記光源は、前記第1波長帯を有する第3光線束および第4光線束を射出し、前記第3光線束の主光線の進行方向を変化させる第3光学素子と、前記第4光線束の主光線の進行方向を変化させる第4光学素子と、を備え、前記波長変換層は、前記入射面、前記反射面および前記第1側面に交差する第3側面と、前記入射面、前記反射面および前記第1側面に交差するとともに前記第3側面とは異なる第4側面と、を有し、第3反射面を有し、前記第3側面に対向して設けられる第3反射素子と、第4反射面を有し、前記第4側面に対向して設けられる第4反射素子と、を備え、前記第3光学素子は、前記入射面において、前記第3光線束の主光線が、前記第1光線束の主光線、前記第2光線束の主光線および前記第4光線束の主光線と重ならないように、前記第3光線束の主光線の進行方向を変化させ、前記第4光学素子は、前記入射面において、前記第4光線束の主光線が、前記第1光線束の主光線、前記第2光線束の主光線および前記第3光線束の主光線と重ならないように、前記第4光線束の主光線の進行方向を変化させ、前記入射方向から見て、前記第1光線束、前記第2光線束、前記第3光線束および前記第4光線束は、前記入射面、前記第1反射面、前記第2反射面、前記第3反射面および前記第4反射面以外の領域には入射せず、前記第3光線束は、前記第3反射素子で反射されて前記第3側面から前記波長変換層に入射し、前記第4光線束は、前記第4反射素子で反射されて前記第4側面から前記波長変換層に入射する構成が採用されてもよい。
本発明の一つの態様の光源装置において、前記第1光学素子および前記第2光学素子は、偏角プリズムであってもよい。
本発明の一つの態様の光源装置は、前記光源と前記偏角プリズムとの間の前記第1光線束および前記第2光線束の光路上に設けられ、前記第1光線束および前記第2光線束の照度を均一化する第3光学素子を備えていてもよい。
本発明の一つの態様の光源装置において、前記第1光学素子および前記第2光学素子は、マルチレンズアレイであり、前記マルチレンズアレイの光軸は、前記マルチレンズアレイに入射する前の前記第1光線束の主光線または前記第2光線束の主光線に対して傾斜していてもよい。
本発明の一つの態様のプロジェクターは、本発明の一つの態様の光源装置と、前記光源装置から射出された光を画像情報に応じて変調する光変調装置と、前記光変調装置によって変調された光を投射する投射光学装置と、を備える。
第1実施形態のプロジェクターの概略構成図である。 光源装置の概略構成図である。 光源部から射出された励起光の配置を示す正面図である。 波長変換素子の平面図である。 光路変更部の概略構成図である。 波長変換層上の光照射領域を示す図である。 従来例の波長変換層上の光照射領域を示す図である。 第2実施形態の光路変更部の概略構成図である。 第3実施形態の光路変更部の概略構成図である。 波長変換層上の光照射領域を示す図である。 第4実施形態の光路変更部の概略構成図である。 第5実施形態の光源装置における波長変換素子の平面図である。 光路変更部の概略構成図である。 図13のXIV−XIV線に沿う断面図である。 図13のXV−XV線に沿う断面図である。 波長変換層上の光照射領域を示す図である。 第6実施形態の光路変更部の概略構成図である。 図17のXVIII−XVIII線に沿う断面図である。 図17のXIX−XIX線に沿う断面図である。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜図7を用いて説明する。
以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
本実施形態に係るプロジェクターの一例について説明する。
図1は、本実施形態に係るプロジェクターの概略構成を示す図である。
図1に示すように、本実施形態のプロジェクター1は、スクリーンSCR上にカラー映像を表示する投射型画像表示装置である。プロジェクター1は、照明装置2と、色分離光学系3と、光変調装置4R,光変調装置4G,光変調装置4Bと、合成光学系5と、投射光学装置6と、を備えている。照明装置2の構成については、後で説明する。
色分離光学系3は、第1ダイクロイックミラー7aと、第2ダイクロイックミラー7bと、反射ミラー8aと、反射ミラー8bと、反射ミラー8cと、リレーレンズ9aと、リレーレンズ9bと、を備えている。色分離光学系3は、照明装置2から射出された照明光WLを赤色光LRと緑色光LGと青色光LBとに分離し、赤色光LRを光変調装置4Rに導き、緑色光LGを光変調装置4Gに導き、青色光LBを光変調装置4Bに導く。
フィールドレンズ10Rは、色分離光学系3と光変調装置4Rとの間に配置され、入射した光を略平行化して光変調装置4Rに向けて射出する。フィールドレンズ10Gは、色分離光学系3と光変調装置4Gとの間に配置され、入射した光を略平行化して光変調装置4Gに向けて射出する。フィールドレンズ10Bは、色分離光学系3と光変調装置4Bとの間に配置され、入射した光を略平行化して光変調装置4Bに向けて射出する。
第1ダイクロイックミラー7aは、赤色光成分を透過させ、緑色光成分および青色光成分を反射させる。第2ダイクロイックミラー7bは、緑色光成分を反射させ、青色光成分を透過させる。反射ミラー8aは、赤色光成分を反射させる。反射ミラー8bおよび反射ミラー8cは、青色光成分を反射させる。
第1ダイクロイックミラー7aを透過した赤色光LRは、反射ミラー8aで反射し、フィールドレンズ10Rを透過して赤色光用の光変調装置4Rの画像形成領域に入射する。第1ダイクロイックミラー7aで反射した緑色光LGは、第2ダイクロイックミラー7bでさらに反射し、フィールドレンズ10Gを透過して緑色光用の光変調装置4Gの画像形成領域に入射する。第2ダイクロイックミラー7bを透過した青色光LBは、リレーレンズ9a、入射側の反射ミラー8b、リレーレンズ9b、射出側の反射ミラー8c、およびフィールドレンズ10Bを経て青色光用の光変調装置4Bの画像形成領域に入射する。
光変調装置4R、光変調装置4G、および光変調装置4Bのそれぞれは、入射された色光を画像情報に応じて変調し、画像光を形成する。光変調装置4R、光変調装置4G、および光変調装置4Bのそれぞれは、液晶ライトバルブから構成されている。図示を省略したが、光変調装置4R、光変調装置4G、および光変調装置4Bの光入射側に、入射側偏光板がそれぞれ配置されている。光変調装置4R、光変調装置4G、および光変調装置4Bの光射出側に、射出側偏光板がそれぞれ配置されている。
合成光学系5は、光変調装置4R、光変調装置4G、および光変調装置4Bから射出された各画像光を合成してフルカラーの画像光を形成する。合成光学系5は、4つの直角プリズムを貼り合わせた平面視で略正方形状をなすクロスダイクロイックプリズムで構成されている。直角プリズム同士を貼り合わせた略X字状の界面には、誘電体多層膜が形成されている。
合成光学系5から射出された画像光は、投射光学装置6によって拡大投射され、スクリーンSCR上で画像を形成する。すなわち、投射光学装置6は、光変調装置4R、光変調装置4G、および光変調装置4Bにより変調された光を投射する。投射光学装置6は、複数の投射レンズで構成されている。
本実施形態の照明装置2の一例について説明する。
図2は、照明装置2の概略構成を示す図である。
図2に示すように、照明装置2は、光源装置2Aと、インテグレーター光学系31と、偏光変換素子32と、重畳レンズ33aと、を備えている。インテグレーター光学系31と重畳レンズ33aとは、重畳光学系33を構成している。
光源装置2Aは、光源部21Aと、コリメーター光学系22と、アフォーカル光学系23と、第1位相差板28aと、光路変更部24と、偏光分離素子25と、第1集光光学系26と、波長変換素子40と、第2位相差板28bと、第2集光光学系29と、拡散反射素子30と、を備えている。
以下、光源部21Aから光線束BLが射出される方向をX軸方向と定義し、波長変換素子40から蛍光YLが射出される方向をY軸方向と定義し、X軸方向およびY軸方向に直交する方向をZ軸方向と定義する。
光源部21Aと、コリメーター光学系22と、アフォーカル光学系23と、第1位相差板28aと、光路変更部24と、偏光分離素子25と、第2位相差板28bと、第2集光光学系29と、拡散反射素子30とは、光軸ax1上に順次並んで配置されている。波長変換素子40と、第1集光光学系26と、偏光分離素子25と、インテグレーター光学系31と、偏光変換素子32と、重畳レンズ33aとは、光軸ax2上に順次並んで配置されている。光軸ax1と光軸ax2とは、同一面内にあり、互いに直交する。
光源部21Aは、励起光を射出する複数の発光素子211を備えている。複数の発光素子211は、光軸ax1と直交する面内においてアレイ状に並んで配置されている。本実施形態の場合、光源部21Aは、4個の発光素子211が1列に並んで配置された光源ユニットが、4個の発光素子211の配列方向と直交する方向に4組並べられた構成を有している。すなわち、光源部21Aは、16個の発光素子211が4行4列にアレイ状に配列された構成を有している。なお、発光素子211の個数および配置は、上記の構成に限定されない。
図3は、光源部21Aから射出された励起光ELの配置を励起光ELの射出方向から見た正面図である。
図3に示すように、16個の発光素子211から射出された16本の励起光ELが4行4列にアレイ状に配列されている。ここで、図3の縦方向に並んだ4本の励起光ELをまとめて光線束と称する。以下、説明の便宜上、図3において、左端の光線束を第1光線束BL1と称し、右端の光線束を第2光線束BL2と称し、左から2番目の光線束を第3光線束BL3と称し、右から2番目の光線束を第4光線束BL4と称する。
発光素子211は、半導体レーザー素子で構成されている。半導体レーザー素子は、第1波長帯の青色の光線、具体的にはピーク波長が例えば460nmの第1波長帯のレーザー光を射出する。したがって、光源部21Aは、全体として、第1光線束BL1、第2光線束BL2、第3光線束BL3、および第4光線束BL4を含む光線束BLを射出する。
図3に示すように、光源部21Aから射出された光線束BLは、コリメーター光学系22に入射する。コリメーター光学系22は、光源部21Aから射出された光線束BLを平行光に変換する。コリメーター光学系22は、アレイ状に並んで配置された複数のコリメーターレンズ22aから構成されている。1つのコリメーターレンズ22aは、1つの発光素子211に対応して配置されている。
コリメーター光学系22を通過した光線束BLは、アフォーカル光学系23に入射する。アフォーカル光学系23は、光線束BLの径、すなわち光線束BLの太さを調整する。アフォーカル光学系23は、凸レンズ23aと、凹レンズ23bと、から構成されている。
アフォーカル光学系23を通過した光線束BLは、第1位相差板28aに入射する。第1位相差板28aは、例えば回転可能とされた1/2波長板で構成されている。発光素子211から射出された光線束BLは、所定の偏光方向を有する直線偏光である。第1位相差板28aの回転角度を適切に設定することにより、第1位相差板28aを透過する光線束BLを、偏光分離素子25に対するS偏光成分とP偏光成分とを所定の比率で含む光線束BLとすることができる。第1位相差板28aの回転角度を変えることにより、S偏光成分とP偏光成分との比率を変化させることができる。
第1位相差板28aを通過した光線束BLは、光路変更部24に入射する。光路変更部24は、第1光線束BL1、第2光線束BL2、第3光線束BL3、および第4光線束BL4の各々の主光線の進行方向を変化させる。光路変更部24の構成については、後で詳しく説明する。
光路変更部24から射出されたS偏光成分とP偏光成分とを含む光線束BLは、偏光分離素子25に入射する。偏光分離素子25は、例えば波長選択性を有する偏光ビームスプリッターから構成されている。偏光分離素子25は、光軸ax1および光軸ax2に対して45°の角度をなすように配置されている。
偏光分離素子25は、光線束BLを、偏光分離素子25に対するS偏光成分の光線束BLsとP偏光成分の光線束BLpとに分離する偏光分離機能を有する。具体的に、偏光分離素子25は、S偏光成分の光線束BLsを反射させ、P偏光成分の光線束BLpを透過させる。また、偏光分離素子25は、偏光分離機能に加えて、青色の光線束BLとは波長帯が異なる黄色光成分を、偏光状態にかかわらず透過させる色分離機能を有している。
偏光分離素子25から射出されたS偏光の光線束BLsは、第1集光光学系26に入射する。第1集光光学系26は、光線束BLsを波長変換素子40に向けて集光させる。第1集光光学系26は、第1レンズ26aと、第2レンズ26bと、から構成されている。第1レンズ26aおよび第2レンズ26bは、凸レンズから構成されている。第1集光光学系26から射出された光線束BLsは、波長変換素子40に集光した状態で入射する。
図4は、光線束BLsの入射方向から見た波長変換素子40の平面図である。以下の説明において、波長変換素子40を光線束BLsの入射方向から見ることを平面視と称する。
図2および図4に示すように、波長変換素子40は、基材41と、波長変換層42と、第1反射素子45と、第2反射素子46と、ダイクロイックミラー43と、ヒートシンク44と、を備えている。本実施形態において、波長変換層42は、蛍光体から構成されている。本実施形態においては、波長変換素子40として、モーター等の駆動源を有しておらず、回転可能とされていない固定型の波長変換素子が用いられる。
波長変換層42は、光線束BLsを第1波長帯とは異なる第2波長帯の蛍光YLに変換するセラミック蛍光体を含んでいる。第2波長帯は、例えば490〜750nmであり、蛍光YLは、緑色光成分および赤色光成分を含む黄色光である。なお、波長変換層42は、単結晶蛍光体を含んでいてもよい。
波長変換層42は、入射面42aと、反射面42bと、第1側面42cと、第2側面42dと、第3側面42eと、第4側面42fと、を有している。入射面42aは、第1光線束BL1、第2光線束BL2、第3光線束BL3、および第4光線束BL4が入射される面である。反射面42bは、入射面42aとは異なり、基材41と対向する面である。第1側面42cは、入射面42aおよび反射面42bに交差する面である。第2側面42dは、入射面42aおよび反射面42bに交差するとともに第1側面42cとは異なる面である。第3側面42eは、入射面42a、反射面42bおよび第1側面42cに交差する面である。第4側面42fは、入射面42a、反射面42bおよび第1側面42cに交差するとともに第3側面42eとは異なる面である。第2側面42dは、第1側面42cに対向する面である。第4側面42fは、第3側面42eに対向する面である。第3側面42eおよび第4側面42fは、第2側面42dに交差している。
波長変換層42は、例えばイットリウム・アルミニウム・ガーネット(YAG)系蛍光体を含んでいる。賦活剤としてセリウム(Ce)を含有するYAG:Ceを例にとると、波長変換層42として、Y、Al、CeO等の構成元素を含む原料粉末を混合して固相反応させた材料、共沈法やソルゲル法等の湿式法により得られるY−Al−Oアモルファス粒子、噴霧乾燥法や火炎熱分解法、熱プラズマ法等の気相法により得られるYAG粒子等を用いることができる。
波長変換層42は、基材41の第1面41aに接合材(図示略)によって接合されている。接合材には、例えばナノ銀焼結金属材料が用いられる。基材41は、例えばアルミニウム、銀等の光反射率の高い金属材料から構成されている。基材41の第1面41aは、波長変換層42の内部を進行する光を反射する。また、基材41の第1面41aに、反射層がさらに設けられていてもよい。
第1反射素子45および第2反射素子46は、基材41の第1面41aに設けられている。第1反射素子45は、第1反射面45aを有し、第1反射面45aが波長変換層42の第1側面42cに対向するように設けられている。第1反射面45aは、基材41の第1面41aに対して45°の角度をなすように傾斜している。第2反射素子46は、第2反射面46aを有し、第2反射面46aが波長変換層42の第2側面42dに対向するように設けられている。第2反射面46aは、基材41の第1面41aに対して45°の角度をなすように傾斜している。第1反射素子45および第2反射素子46は、例えばアルミニウム、銀等の光反射率の高い金属材料から構成されている。第1反射素子45および第2反射素子46の高さは、波長変換層42の厚さと等しい。
本実施形態の場合、波長変換素子40が第1反射素子45を有しているため、第1反射素子45に向けて射出された第1光線束BL1は、第1反射面45aで反射し、ダイクロイックミラー43を介して第1側面42cから波長変換層42に入射する。また、波長変換素子40が第2反射素子46を有しているため、第2反射素子46に向けて射出された第2光線束BL2は、第2反射面46aで反射し、ダイクロイックミラー43を介して第2側面42dから波長変換層42に入射する。このように、波長変換素子40に照射された光線束BLは、入射面42aだけでなく、第1側面42cおよび第2側面42dからも波長変換層42に入射する。
波長変換層42の第1側面42cには、第1反射素子45に対向してダイクロイックミラー43が設けられている。同様に、波長変換層42の第2側面42dには、第2反射素子46に対向してダイクロイックミラー43が設けられている。ダイクロイックミラー43は、青色光成分を透過し、黄色光成分を反射させる。すなわち、ダイクロイックミラー43は、第1波長帯の光線束BLsを透過し、第2波長帯の蛍光YLを反射させる。なお、波長変換層42の第3側面42eおよび第4側面42fに、蛍光YLを反射させる反射層が設けられていてもよい。
ヒートシンク44は、複数のフィンを有している。ヒートシンク44は、基材41の第2面41bに設けられている。ヒートシンク44は、例えば金属接合によって基材41に固定されている。波長変換素子40においては、ヒートシンク44を介して波長変換層42の熱を放出できるため、波長変換層42の熱劣化を防ぐことができる。
図4に示すように、平面視において、波長変換素子40は、略正方形状の波長変換層42を有する。上述したように、第1反射面45aおよび第2反射面46aは基材41の第1面41aに対して45°の角度をなしているため、平面視したときの第1反射面45aおよび第2反射面46aの幅Wは、波長変換層42の厚さと等しく、例えば50〜100μm程度である。
図2に示すように、波長変換素子40で生成された黄色の蛍光YLは、第1集光光学系26で平行化された後、偏光分離素子25に入射する。上述したように、偏光分離素子25が偏光状態にかかわらず黄色光成分を透過させる特性を有しているため、蛍光YLは、偏光分離素子25を透過する。
一方、偏光分離素子25から射出されたP偏光の光線束BLpは、第2位相差板28bに入射する。第2位相差板28bは、偏光分離素子25と拡散反射素子30との間の光路中に配置された1/4波長板から構成されている。したがって、偏光分離素子25から射出されたP偏光の光線束BLpは、第2位相差板28bによって、例えば右回りの円偏光の青色光線束BLc1に変換された後、第2集光光学系29に入射する。
第2集光光学系29は、第1レンズ29aと、第2レンズ29bと、から構成されている。第1レンズ29aおよび第2レンズ29bは、凸レンズから構成されている。第2集光光学系29は、青色光線束BLc1を集光させた状態で拡散反射素子30に入射させる。
拡散反射素子30は、偏光分離素子25から射出された光線束BLpの光路上に配置されている。拡散反射素子30は、第2集光光学系29から射出された青色光線束BLc1を偏光分離素子25に向けて拡散反射させる。拡散反射素子30としては、青色光線束BLc1をランバート反射させるとともに、青色光線束BLc1の偏光状態を乱さないことが望ましい。
以下、拡散反射素子30によって拡散反射された光を青色光線束BLc2と称する。本実施形態においては、青色光線束BLc1が拡散反射することによって略均一な照度分布を有する青色光線束BLc2が得られる。例えば右回りの円偏光の青色光線束BLc1は、拡散反射素子30によって拡散反射され、左回りの円偏光の青色光線束BLc2に変換される。
青色光線束BLc2は、第2集光光学系29によって平行光線束に変換された後、第2位相差板28bに再度入射する。左回りの円偏光の青色光線束BLc2は、第2位相差板28bによってS偏光の青色光線束BLs1に変換される。S偏光の青色光線束BLs1は、偏光分離素子25によってインテグレーター光学系31に向けて反射される。
これにより、青色光線束BLs1は、偏光分離素子25を透過した蛍光YLと合成され、照明光WLとして利用される。すなわち、青色光線束BLs1と蛍光YLとは、偏光分離素子25から互いに同じ方向に向けて射出され、青色光線束BLs1と黄色の蛍光YLとが合成された白色の照明光WLが生成される。
照明光WLは、インテグレーター光学系31に向けて射出される。インテグレーター光学系31は、第1レンズアレイ31aと、第2レンズアレイ31bと、から構成されている。第1レンズアレイ31aおよび第2レンズアレイ31bのそれぞれは、複数のレンズがアレイ状に配列された構成を有している。
インテグレーター光学系31を透過した照明光WLは、偏光変換素子32に入射する。偏光変換素子32は、偏光分離膜と位相差板とを有している。偏光変換素子32は、非偏光の蛍光YLを含む照明光WLを、光変調装置4R、光変調装置4G、および光変調装置4Bに入射させる直線偏光に変換する。
偏光変換素子32を透過した照明光WLは、重畳レンズ33aに入射する。重畳レンズ33aは、インテグレーター光学系31と協働して、被照明領域における照明光WLの照度分布を均一化する。このようにして、照明装置2は、照明光WLを生成する。
以下、光路変更部24について説明する。
図5は、光路変更部24の概略構成図である。
図5に示すように、光路変更部24は、偏角プリズムアレイ35と、マルチレンズアレイ36(第3光学素子)と、を備えている。偏角プリズムアレイ35は、第1偏角プリズム351(第1光学素子)と、第2偏角プリズム352(第2光学素子)と、第3偏角プリズム353と、第4偏角プリズム354と、を有する。第1偏角プリズム351、第2偏角プリズム352、第3偏角プリズム353、および第4偏角プリズム354は、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1偏角プリズム351は、第1位相差板28aから射出された第1光線束BL1の光路上に設けられている。第2偏角プリズム352は、第1位相差板28aから射出された第2光線束BL2の光路上に設けられている。第3偏角プリズム353は、第1位相差板28aから射出された第3光線束BL3の光路上に設けられている。第4偏角プリズム354は、第1位相差板28aから射出された第4光線束BL4の光路上に設けられている。
第1偏角プリズム351、第2偏角プリズム352、第3偏角プリズム353、および第4偏角プリズム354のそれぞれは、XY平面における断面形状が台形である。第1偏角プリズム351、第2偏角プリズム352、第3偏角プリズム353、および第4偏角プリズム354のそれぞれは、入射面が光軸ax1に対して垂直であり、射出面が光軸ax1に対して傾くように配置されている。第1偏角プリズム351、第2偏角プリズム352、第3偏角プリズム353、および第4偏角プリズム354のそれぞれは、断面形状である台形の平行な2辺のうち、短辺が光軸ax1から遠く、長辺が光軸ax1に近くなる向きに配置されている。
各光線束BL1,BL2,BL3,BL4が上記構成の偏角プリズムアレイ35を通過することによって、各光線束BL1,BL2,BL3,BL4の進行方向は、光軸ax1に平行な方向から光軸ax1に近付く方向に曲がる。具体的には、第1光線束BL1および第3光線束BL3の進行方向は、偏角プリズムアレイ35を通過することによって、図5における下方、すなわち−Y軸方向に曲がる。第2光線束BL2および第4光線束BL4の進行方向は、偏角プリズムアレイ35を通過することによって、図5における上方、すなわち+Y軸方向に曲がる。
マルチレンズアレイ36は、光源部21Aと偏角プリズムアレイ35との間の光線束BLの光路上に設けられている。マルチレンズアレイ36は、光線束BLが照射される波長変換層42上における光線束BLの照度を均一化する。本実施形態の場合、マルチレンズアレイ36は、基材の2つの面に複数のレンズがそれぞれ形成された両面マルチレンズアレイで構成されている。これにより、2枚のレンズアレイを備えた場合に比べて、物理的な光路長を短くすることができ、光源装置2Aの小型化が図れる。また、光軸ax1の方向から見た各レンズの形状は、正方形である。これにより、マルチレンズアレイ36から射出された光線束BLの光軸ax1に垂直な断面形状は、正方形状となる。
ここで、本実施形態の光路変更部24を備えていない比較例の光源装置を想定する。
図7は、比較例において、波長変換素子140上の光照射領域を示す図である。
図7に示すように、比較例の光源装置において、光線束を波長変換層142の入射面142aに加えて、第1側面142cおよび第2側面142dからも入射させるため、平面視において入射面142aと第1反射面145aと第2反射面146aとを含む領域に光線束BLを照射する。
このとき、比較例の光源装置は光路変更部を備えていないため、上記の領域に光線束BLを照射するためには、光線束BLの主光線に垂直な断面形状を正方形としたまま、光線束BLの照射範囲を入射面142aと第1反射面145aと第2反射面146aとを含む、斜線のハッチングを付した領域にまで拡大する必要がある。この場合、光線束BLの一部は第1反射面145aと第2反射面146aとが存在しない領域、すなわち、1点鎖線の正方形で示す光線束BLの照射範囲のうち、斜線のハッチングを付していない領域に照射され、その領域に照射された光線束BLの一部は波長変換に寄与しない。この場合、励起光の利用効率が低下する。
これに対して、本実施形態の光源装置2Aは光路変更部24を備えているため、上述したように、光源部21Aから射出された4本の光線束BL1,BL2,BL3,BL4のそれぞれは、偏角プリズムアレイ35によって光路が曲がる。仮に光路変更部24が存在せず、4本の光線束BL1,BL2,BL3,BL4の全てが光軸ax2に平行な状態で第1集光光学系26に入射したとすると、4本の光線束BL1,BL2,BL3,BL4は、各光線束の主光線が波長変換層42の入射面42aの中心点に重なるように集光される。ところが、実際には4本の光線束BL1,BL2,BL3,BL4が光軸ax2に非平行な状態で第1集光光学系26に入射するため、4本の光線束BL1,BL2,BL3,BL4の主光線の全ては入射面42aの中心点には重ならない。
図6は、本実施形態の波長変換素子40において、波長変換層42上の光照射領域を示す図である。
図6に示すように、本実施形態においては、第1光線束BL1の主光線と第3光線束BL3の主光線とは、波長変換層42の入射面42aの中心点から左側にずれた位置に入射する。また、第2光線束BL2の主光線と第4光線束BL4の主光線とは、波長変換層42の入射面42aの中心点から右側にずれた位置に入射する。すなわち、第1光線束BL1の主光線と第3光線束BL3の主光線とは入射面42aにおいて互いに重なり、第2光線束BL2の主光線と第4光線束BL4の主光線とは入射面42aにおいて互いに重なるが、第1光線束BL1の主光線と第2光線束BL2および第4光線束BL4の主光線とは入射面42aにおいて互いに重ならず、第3光線束BL3の主光線と第2光線束BL2および第4光線束BL4の主光線とは入射面42aにおいて互いに重ならない。
したがって、本実施形態の光源装置2Aにおいては、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第1光線束BL1は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第3光線束BL3は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第4光線束BL4は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。
このように、本実施形態の光源装置2Aにおいては、光線束BLの一部が第1反射面45aと第2反射面46aとが存在しない領域に照射されることがなく、光線束BLの略全てが波長変換に寄与する。その結果、本実施形態の光源装置2Aによれば、励起光の利用効率の低下を抑えることができる。また、本実施形態の波長変換素子40は、励起光を入射面だけから入射させる従来の波長変換素子に比べて、励起光の入射面積が増えるため、励起光の光密度が低下する。その結果、本実施形態の光源装置2Aによれば、従来の光源装置に比べて波長変換効率を高めることができる。
また、本実施形態のプロジェクター1は、上記の光源装置2Aを備えているため、励起光の利用効率の低下を抑えられる。
[第2実施形態]
以下、本発明の第2実施形態について、図8を用いて説明する。
第2実施形態のプロジェクターおよび光源装置の基本構成は第1実施形態と同様であり、光路変更部の構成が第1実施形態と異なる。そのため、プロジェクターおよび光源装置の全体の説明は省略する。
図8は、第2実施形態の光路変更部の概略構成図である。
図8に示すように、本実施形態の光路変更部51は、第1マルチレンズアレイ521(第1光学素子)と、第2マルチレンズアレイ522(第2光学素子)と、第3マルチレンズアレイ523と、第4マルチレンズアレイ524と、を備えている。第1マルチレンズアレイ521、第2マルチレンズアレイ522、第3マルチレンズアレイ523、および第4マルチレンズアレイ524は、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1マルチレンズアレイ521は、第1位相差板28aから射出された第1光線束BL1の光路上に設けられている。第2マルチレンズアレイ522は、第1位相差板28aから射出された第2光線束BL2の光路上に設けられている。第3マルチレンズアレイ523は、第1位相差板28aから射出された第3光線束BL3の光路上に設けられている。第4マルチレンズアレイ524は、第1位相差板28aから射出された第4光線束BL4の光路上に設けられている。
第1マルチレンズアレイ521、第2マルチレンズアレイ522、第3マルチレンズアレイ523、および第4マルチレンズアレイ524のそれぞれは、各マルチレンズアレイの光軸bx1,bx2,bx3,bx4が光軸ax1に対して傾斜するように配置されている。具体的には、第1マルチレンズアレイ521、第2マルチレンズアレイ522、第3マルチレンズアレイ523、および第4マルチレンズアレイ524のそれぞれは、各光線束が進むにつれて光軸ax1に近付くように傾斜している。すなわち、各マルチレンズアレイ521,522,523,524の光軸bx1,bx2,bx3,bx4は、各マルチレンズアレイ521,522,523,524に入射する前の各光線束BL1,BL2,BL3,BL4の主光線に対して傾斜している。
マルチレンズアレイの光軸とは、対向する各小レンズの入射面と射出面との曲率半径の中心を結んだ線のことを言い、各小レンズの組み合わせの数、すなわち、各小レンズの入射面と射出面との組み合わせの数だけ存在する。図8において、マルチレンズアレイの中心をとおり、各小レンズの入射面と射出面との曲率半径の中心を結んだ線と平行な線をマルチレンズアレイの光軸bx1,bx2,bx3,bx4として図示する。
各光線束BL1,BL2,BL3,BL4が上記構成の各マルチレンズアレイ521,522,523,524を通過することによって、各光線束BL1,BL2,BL3,BL4の進行方向は、光軸ax1に平行な方向から光軸ax1に近付く方向に曲がる。具体的には、第1光線束BL1および第3光線束BL3の進行方向は、各マルチレンズアレイ521,523を通過することによって、図8における下方、すなわち−Y軸方向に曲がる。第2光線束BL2および第4光線束BL4の進行方向は、各マルチレンズアレイ522,524を通過することによって、図8における上方、すなわち+Y軸方向に曲がる。
本実施形態の光源装置においては、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第1光線束BL1は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第3光線束BL3は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第4光線束BL4は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。
本実施形態の光源装置においても、励起光の利用効率の低下を抑えることができる、波長変換効率を高めることができる、といった第1実施形態と同様の効果が得られる。
[第3実施形態]
以下、本発明の第3実施形態について、図9および図10を用いて説明する。
第3実施形態のプロジェクターおよび光源装置の基本構成は第1実施形態と同様であり、光路変更部の構成が第1実施形態と異なる。そのため、プロジェクターおよび光源装置の全体の説明は省略する。
図9は、第3実施形態の光路変更部の概略構成図である。
図9において、第1実施形態で用いた図5と同様の構成要素には同一の符号を付し、詳細な説明は省略する。
図9に示すように、本実施形態の光路変更部54は、偏角プリズムアレイ55と、マルチレンズアレイ56(第3光学素子)と、を備えている。偏角プリズムアレイ55は、第1偏角プリズム551(第1光学素子)と、第2偏角プリズム552(第2光学素子)と、を有する。第1偏角プリズム551と第2偏角プリズム552とは、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1偏角プリズム551は、第1位相差板28aから射出された第1光線束BL1の光路上に設けられている。第2偏角プリズム552は、第1位相差板28aから射出された第2光線束BL2の光路上に設けられている。本実施形態の場合、第3光線束BL3および第4光線束BL4の光路上には、偏角プリズムは設けられていない。
第1実施形態と同様、第1偏角プリズム551および第2偏角プリズム552のそれぞれは、XY平面における断面形状が台形である。第1偏角プリズム551および第2偏角プリズム552のそれぞれは、入射面が光軸ax1に対して垂直であり、射出面が光軸ax1に対して傾くように配置されている。第1偏角プリズム551および第2偏角プリズム552のそれぞれは、断面形状である台形の平行な2辺のうち、短辺が光軸ax1から遠く、長辺が光軸ax1に近くなる向きに配置されている。
各光線束BL1,BL2が上記構成の偏角プリズムアレイ55を通過することによって、第1光線束BL1および第2光線束BL2の進行方向は、光軸ax1に平行な方向から光軸ax1に近付く方向に曲がる。具体的には、第1光線束BL1の進行方向は、偏角プリズムアレイ55を通過することによって、図9における下方、すなわち、−Y軸方向に曲がる。第2光線束BL2の進行方向は、偏角プリズムアレイ55を通過することによって、図9における上方、すなわち、+Y軸方向に曲がる。これに対して、第3光線束BL3および第4光線束BL4の進行方向は曲がらない。
図10は、本実施形態の波長変換素子において、波長変換層42上の光照射領域を示す図である。
図10に示すように、本実施形態の光源装置においては、第1光線束BL1の主光線は、波長変換層42の入射面42aの中心点から左側にずれ、第2光線束BL2の主光線は、波長変換層42の入射面42aの中心点から右側にずれた位置に入射する。したがって、第1光線束BL1の主光線と第2光線束BL2の主光線とは、入射面42aにおいて互いに重ならない。また、第3光線束BL3の主光線と第4光線束BL4の主光線とは、入射面42aの中心点において互いに重なる。
したがって、本実施形態の光源装置においては、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第1光線束BL1は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42aから波長変換層42に入射する。
本実施形態の光源装置においても、励起光の利用効率の低下を抑えることができる、波長変換効率を高めることができる、といった第1実施形態と同様の効果が得られる。
[第4実施形態]
以下、本発明の第4実施形態について、図11を用いて説明する。
第4実施形態のプロジェクターおよび光源装置の基本構成は第1実施形態と同様であり、光路変更部の構成が第1実施形態と異なる。そのため、プロジェクターおよび光源装置の全体の説明は省略する。
図11は、第4実施形態の光路変更部の概略構成図である。
図11に示すように、本実施形態の光路変更部58は、第1マルチレンズアレイ591(第1光学素子)と、第2マルチレンズアレイ592(第2光学素子)と、第3マルチレンズアレイ593と、第4マルチレンズアレイ594と、を備えている。第1マルチレンズアレイ591、第2マルチレンズアレイ592、第3マルチレンズアレイ593、および第4マルチレンズアレイ594は、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1マルチレンズアレイ591は、第1位相差板28aから射出された第1光線束BL1の光路上に設けられている。第2マルチレンズアレイ592は、第1位相差板28aから射出された第2光線束BL2の光路上に設けられている。第3マルチレンズアレイ593は、第1位相差板28aから射出された第3光線束BL3の光路上に設けられている。第4マルチレンズアレイ594は、第1位相差板28aから射出された第4光線束BL4の光路上に設けられている。
第1マルチレンズアレイ591および第2マルチレンズアレイ592のそれぞれは、各マルチレンズアレイ591,592の光軸bx1,bx2が光軸ax1に対して傾くように配置されている。具体的には、第1マルチレンズアレイ591、および第2マルチレンズアレイ592のそれぞれは、各光線束が進むにつれて光軸ax1に近付くように傾いている。また、第3マルチレンズアレイ593および第4マルチレンズアレイ594のそれぞれは、各マルチレンズアレイの光軸bx3,bx4が光軸ax1に対して平行に配置されている。
各光線束BL1,BL2が上記構成のマルチレンズアレイ591,592を通過することによって、第1光線束BL1および第2光線束BL2の進行方向は、光軸ax1に平行な方向から光軸ax1に近付く方向に曲がる。具体的には、第1光線束BL1の進行方向は、マルチレンズアレイ591を通過することによって、図11における下方、すなわち、−Y軸方向に曲がる。第2光線束BL2の進行方向は、マルチレンズアレイ592を通過することによって、図11における上方、すなわち、+Y軸方向に曲がる。これに対して、第3光線束BL3および第4光線束BL4の進行方向は曲がらない。
したがって、本実施形態の光源装置においては、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面45aおよび第2反射面46a以外の領域には入射せず、第1光線束BL1は、第1反射面45aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面46aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42aから波長変換層に入射する。
本実施形態の光源装置においても、励起光の利用効率の低下を抑えることができる、波長変換効率を高めることができる、といった第1実施形態と同様の効果が得られる。
[第5実施形態]
以下、本発明の第5実施形態について、図12〜図16を用いて説明する。
第5実施形態のプロジェクターおよび光源装置の基本構成は第1実施形態と同様であり、波長変換素子および光路変更部の構成が第1実施形態と異なる。そのため、プロジェクターおよび光源装置の全体の説明は省略する。
図12は、第5実施形態の波長変換素子の平面図である。図12〜図16において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、説明を省略する。
図12に示すように、本実施形態の波長変換素子60は、基材41と、波長変換層42と、第1反射素子61と、第2反射素子62と、第3反射素子63と、第4反射素子64と、ダイクロイックミラー65と、ヒートシンク(図示略)と、を備えている。
第1反射素子61、第2反射素子62、第3反射素子63、および第4反射素子64は、基材41の第1面41aに設けられている。第1反射素子61および第2反射素子62は、第1実施形態の波長変換素子40の第1反射素子45および第2反射素子46と同様である。
第3反射素子63は、第3反射面63aを有し、第3反射面63aが波長変換層42の第3側面42eに対向するように設けられている。第3反射面63aは、基材41の第1面41aに対して45°の角度をなすように傾斜している。第4反射素子64は、第4反射面64aを有し、第4反射面64aが波長変換層42の第4側面42fに対向するように設けられている。第4反射面64aは、基材41の第1面41aに対して45°の角度をなすように傾斜している。第3反射素子63および第4反射素子64は、例えばアルミニウム、銀等の光反射率の高い金属材料から構成されている。第3反射素子63および第4反射素子64の高さは、波長変換層42の厚さと等しい。
本実施形態の場合、波長変換素子60が第3反射素子63を有しているため、第3反射素子63に向けて射出された光線束BLの一部は、第3反射面63aで反射し、第3側面42eから波長変換層42に入射する。また、波長変換素子60が第4反射素子64を有しているため、第4反射素子64に向けて射出された光線束BLの一部は、第4反射面64aで反射し、第4側面42fから波長変換層42に入射する。このように、波長変換素子60に照射された光線束BLは、入射面42aだけでなく、第1側面42c、第2側面42d、第3側面42e、および第4側面42fからも波長変換層42に入射する。
図13は、本実施形態の光路変更部67の概略構成図である。図14は、図13のXIV−XIV線に沿う第3偏角プリズム683の断面図である。図15は、図13のXV−XV線に沿う第4偏角プリズム684の断面図である。
図13に示すように、本実施形態の光路変更部67は、偏角プリズムアレイ68と、マルチレンズアレイ69(第3光学素子)と、を備えている。偏角プリズムアレイ68は、第1偏角プリズム681(第1光学素子)と、第2偏角プリズム682(第2光学素子)と、第3偏角プリズム683(第3光学素子)と、第4偏角プリズム684(第4光学素子)と、を有する。第1偏角プリズム681、第2偏角プリズム682、第3偏角プリズム683、および第4偏角プリズム684は、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1偏角プリズム681および第2偏角プリズム682のそれぞれは、XY平面における断面形状が台形である。また、第3偏角プリズム683および第4偏角プリズム684のそれぞれは、XZ平面における断面形状が台形である。第1偏角プリズム681、第2偏角プリズム682、第3偏角プリズム683、および第4偏角プリズム684のそれぞれは、入射面が光軸ax1に対して垂直であり、射出面が光軸ax1に対して傾くように配置されている。第1偏角プリズム681および第2偏角プリズム682のそれぞれは、XY平面の法線方向から見て、断面形状である台形の平行な2辺のうち、短辺が光軸ax1から遠く、長辺が光軸ax1に近くなる向きに配置されている。
図14に示すように、第3偏角プリズム683は、XZ平面の法線方向から見て、断面形状である台形の平行な2辺のうち、短辺が−Z方向、すなわち、図14における下方に位置し、長辺が+Z方向、すなわち、図14における上方に位置する向きに配置されている。
図15に示すように、第4偏角プリズム684は、XZ平面の法線方向から見て、断面形状である台形の平行な2辺のうち、短辺が+Z方向、すなわち、図15における上方に位置し、長辺が−Z方向、すなわち、図15における下方に位置する向きに配置されている。
各光線束BL1,BL2,BL3,BL4が上記構成の偏角プリズムアレイ68を通過することによって、各光線束BL1,BL2,BL3,BL4の進行方向は、光線束の進行方向から見て、互いに異なる4つの方向に曲がる。具体的には、第1光線束BL1の進行方向は、偏角プリズムアレイ68を通過することによって、−Y軸方向、すなわち、図13における下方に曲がる。第2光線束BL2の進行方向は、偏角プリズムアレイ68を通過することによって、+Y方向、すなわち、図13における上方に曲がる。第3光線束BL3の進行方向は、偏角プリズムアレイ68を通過することによって、+Z方向、すなわち、図13における紙面の手前方向に曲がる。第4光線束BL4の進行方向は、偏角プリズムアレイ68を通過することによって、−Z方向、すなわち、図13における紙面の奥方向に曲がる。
図16は、本実施形態の波長変換素子60において、波長変換層42上の光照射領域を示す図である。
図16に示すように、本実施形態の光源装置においては、第1光線束BL1の主光線は波長変換層42の入射面42aの中心点から左側にずれ、第2光線束BL2の主光線は波長変換層42の入射面42aの中心点から右側にずれ、第3光線束BL3の主光線は波長変換層42の入射面42aの中心点から上側にずれ、第4光線束BL4の主光線は波長変換層42の入射面42aの中心点から下側にずれる。すなわち、第1光線束BL1の主光線、第2光線束BL2の主光線、第3光線束BL3の主光線、第4光線束BL4の主光線は、入射面42aにおいて互いに重ならない。
したがって、本実施形態の光源装置においては、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面61aおよび第2反射面62a以外の領域には入射せず、第1光線束BL1は、第1反射面61aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面62aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42a、第3反射面63aおよび第4反射面64a以外の領域には入射せず、第3光線束BL3は、第3反射面63aで反射されて第3側面42eから波長変換層42に入射し、第4光線束BL4は、第4反射面64aで反射されて第4側面42fから波長変換層42に入射する。
このように、本実施形態の光源装置2Aの場合、光線束BLの一部が第1反射面61a、第2反射面62a、第3反射面63a、および第4反射面64aが存在しない領域に照射されることがなく、光線束BLの略全てが波長変換に寄与する。その結果、本実施形態の光源装置2Aによれば、励起光の利用効率の低下を抑えることができる。また、本実施形態の波長変換素子60は、励起光を入射面だけから入射させる従来の波長変換素子に比べて、励起光の入射面積が増えるため、励起光の光密度が低下する。その結果、本実施形態の光源装置2Aによれば、従来の光源装置に比べて波長変換効率を高めることができる。
また、本実施形態のプロジェクターは、上記の光源装置を備えているため、励起光の利用効率の低下を抑えられる。
[第6実施形態]
以下、本発明の第6実施形態について、図17〜図19を用いて説明する。
第6実施形態のプロジェクターおよび光源装置の基本構成は第1実施形態と同様であり、光路変更部の構成が第1実施形態と異なる。そのため、プロジェクターおよび光源装置の全体の説明は省略する。
図17は、第6実施形態の光路変更部71の概略構成図である。図18は、図17のXVIII−XVIII線に沿う第3マルチレンズアレイの断面図である。図19は、図17のXIX−XIX線に沿う第4マルチレンズアレイの断面図である。
図17に示すように、本実施形態の光路変更部71は、第1マルチレンズアレイ721(第1光学素子)と、第2マルチレンズアレイ722(第2光学素子)と、第3マルチレンズアレイ723(第3光学素子)と、第4マルチレンズアレイ724(第4光学素子)と、を備えている。第1マルチレンズアレイ721、第2マルチレンズアレイ722、第3マルチレンズアレイ723、および第4マルチレンズアレイ724は、一体化された1つの部材であってもよいし、個別の部材であってもよい。
第1マルチレンズアレイ721は、第1位相差板28aから射出された第1光線束BL1の光路上に設けられている。第2マルチレンズアレイ722は、第1位相差板28aから射出された第2光線束BL2の光路上に設けられている。第3マルチレンズアレイ723は、第1位相差板28aから射出された第3光線束BL3の光路上に設けられている。第4マルチレンズアレイ724は、第1位相差板28aから射出された第4光線束BL4の光路上に設けられている。
第1マルチレンズアレイ721、第2マルチレンズアレイ722、第3マルチレンズアレイ723、および第4マルチレンズアレイ724のそれぞれは、各マルチレンズアレイの光軸bx1,bx2,bx3,bx4が光軸ax1に対して傾くように配置されている。
具体的には、第1マルチレンズアレイ721、および第2マルチレンズアレイ722のそれぞれは、光軸ax1に近い側の端部721a,722aが第1位相差板28aに近く、光軸ax1から遠い側の端部721b,722bが第1位相差板28aから遠くなる向きに傾いている。
図18に示すように、第3マルチレンズアレイ723は、+Z方向の端部723a、すなわち図18における上端が第1位相差板28aに近く、−Z方向の端部723b、すなわち図18における下端が第1位相差板28aから遠くなる向きに傾いている。図19に示すように、第4マルチレンズアレイ724は、−Z方向の端部724a、すなわち図19における下端が第1位相差板28aに近く、+Z方向の端部724b、すなわち図19における上端が第1位相差板28aから遠くなる向きに傾いている。
これにより、第1光線束BL1の進行方向は、第1マルチレンズアレイ721を通過することによって、−Y方向、すなわち、図17における下方に曲がる。第2光線束BL2の進行方向は、第2マルチレンズアレイ722を通過することによって、+Y方向、すなわち、図17における上方に曲がる。第3光線束BL3の進行方向は、第3マルチレンズアレイ723を通過することによって、+Z方向、すなわち、図17における紙面の手前方向に曲がる。第4光線束BL4の進行方向は、第4マルチレンズアレイ724を通過することによって、−Z方向、すなわち、図17における紙面の奥方向に曲がる。
したがって、本実施形態の光源装置においても、第5実施形態と同様、第1光線束BL1および第2光線束BL2は、入射面42a、第1反射面61aおよび第2反射面62a以外の領域には入射せず、第1光線束BL1は、第1反射面61aで反射されて第1側面42cから波長変換層42に入射し、第2光線束BL2は、第2反射面62aで反射されて第2側面42dから波長変換層42に入射する。また、第3光線束BL3および第4光線束BL4は、入射面42a、第3反射面63aおよび第4反射面64a以外の領域には入射せず、第3光線束BL3は、第3反射面63aで反射されて第3側面42eから波長変換層42に入射し、第4光線束BL4は、第4反射面64aで反射されて第4側面42fから波長変換層42に入射する。
本実施形態の光源装置においても、励起光の利用効率の低下を抑えることができる、波長変換効率を高めることができる、といった第1実施形態と同様の効果が得られる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば上記実施形態では、光源部が4本の光線束を射出する例を示したが、光源部は、第1光線束および第2光線束を含む、少なくとも2本の光線束を射出する構成であればよい。
上記の第2実施形態、第4実施形態および第6実施形態のそれぞれにおいて、両面マルチレンズアレイは、各光線束の主光線の進行方向を変化させることができれば、第1マルチレンズアレイおよび第2マルチレンズアレイを含む複数のマルチレンズアレイに置き換えてもよい。なお、複数のマルチレンズアレイを用いる場合、当該複数のマルチレンズアレイが一体的に機能し、主光線の進行方向を変化させることができればよい。
その他、光源装置、およびプロジェクターの各構成要素の形状、数、配置、材料等の具体的な記載については、上記実施形態に限らず、適宜変更が可能である。上記実施形態では、本発明による光源装置を、液晶ライトバルブを用いたプロジェクターに搭載した例を示したが、これに限られない。本発明による光源装置を、光変調装置としてデジタルマイクロミラーデバイスを用いたプロジェクターに搭載してもよい。
上記実施形態では、本発明による光源装置をプロジェクターに搭載した例を示したが、これに限られない。本発明による光源装置は、照明器具や自動車のヘッドライト等にも適用することができる。
1…プロジェクター、2A…光源装置、4B,4G,4R…光変調装置、6…投射光学装置、21A…光源部、36…マルチレンズアレイ(第3光学素子)、42…波長変換層、42a…入射面、42b…反射面、42c…第1側面、42d…第2側面、42e…第3側面、42f…第4側面、45,61…第1反射素子、45a,61a…第1反射面、46,62…第2反射素子、46a,62a…第2反射面、63…第3反射素子、63a…第3反射面、64…第4反射素子、64a…第4反射面、351,551,681…第1偏角プリズム(第1光学素子)、352,552,682…第2偏角プリズム(第2光学素子)、521,591,721…第1マルチレンズアレイ(第1光学素子)、522,592,722…第2マルチレンズアレイ(第2光学素子)、683…第3偏角プリズム(第3光学素子)、684…第4偏角プリズム(第4光学素子)、723…第3マルチレンズアレイ(第3光学素子)、724…第4マルチレンズアレイ(第4光学素子)、BL1…第1光線束、BL2…第2光線束、BL3…第3光線束、BL4…第4光線束。

Claims (6)

  1. 第1波長帯を有する第1光線束および第2光線束を射出する光源部と、
    前記第1光線束の主光線の進行方向を変化させる第1光学素子と、
    前記第2光線束の主光線の進行方向を変化させる第2光学素子と、
    前記第1光線束および前記第2光線束が入射される入射面と、前記入射面とは異なる反射面と、前記入射面および前記反射面に交差する第1側面と、前記入射面および前記反射面に交差するとともに前記第1側面とは異なる第2側面と、を有し、前記第1光線束および前記第2光線束を前記第1波長帯とは異なる第2波長帯を有する蛍光に波長変換する波長変換層と、
    第1反射面を有し、前記第1側面に対向して設けられる第1反射素子と、
    第2反射面を有し、前記第2側面に対向して設けられる第2反射素子と、
    を備え、
    前記第1光学素子および前記第2光学素子は、前記入射面において、前記第1光線束の主光線と前記第2光線束の主光線とが互いに重ならないように、前記第1光線束の主光線および前記第2光線束の主光線の進行方向を変化させ、
    前記波長変換層に対する前記第1光線束および前記第2光線束の入射方向から見て、前記入射面の形状は矩形状であり、前記第1光線束および前記第2光線束は、前記入射面、前記第1反射面および前記第2反射面以外の領域には入射せず、
    前記第1光線束は、前記第1反射素子で反射されて前記第1側面から前記波長変換層に入射し、
    前記第2光線束は、前記第2反射素子で反射されて前記第2側面から前記波長変換層に入射する、光源装置。
  2. 前記光源部は、前記第1波長帯を有する第3光線束および第4光線束を射出し、
    前記第3光線束の主光線の進行方向を変化させる第3光学素子と、
    前記第4光線束の主光線の進行方向を変化させる第4光学素子と、を備え、
    前記波長変換層は、前記入射面、前記反射面および前記第1側面に交差する第3側面と、前記入射面、前記反射面および前記第1側面に交差するとともに前記第3側面とは異なる第4側面と、を有し、
    第3反射面を有し、前記第3側面に対向して設けられる第3反射素子と、
    第4反射面を有し、前記第4側面に対向して設けられる第4反射素子と、
    を備え、
    前記第3光学素子は、前記入射面において、前記第3光線束の主光線が、前記第1光線束の主光線、前記第2光線束の主光線および前記第4光線束の主光線と重ならないように、前記第3光線束の主光線の進行方向を変化させ、
    前記第4光学素子は、前記入射面において、前記第4光線束の主光線が、前記第1光線束の主光線、前記第2光線束の主光線および前記第3光線束の主光線と重ならないように、前記第4光線束の主光線の進行方向を変化させ、
    前記入射方向から見て、前記第1光線束、前記第2光線束、前記第3光線束および前記第4光線束は、前記入射面、前記第1反射面、前記第2反射面、前記第3反射面および前記第4反射面以外の領域には入射せず、
    前記第3光線束は、前記第3反射素子で反射されて前記第3側面から前記波長変換層に入射し、
    前記第4光線束は、前記第4反射素子で反射されて前記第4側面から前記波長変換層に入射する、請求項1に記載の光源装置。
  3. 前記第1光学素子および前記第2光学素子は、偏角プリズムである、請求項1または請求項2に記載の光源装置。
  4. 前記光源部と前記偏角プリズムとの間の前記第1光線束および前記第2光線束の光路上に設けられ、前記第1光線束および前記第2光線束の照度を均一化する第3光学素子を備える、請求項3に記載の光源装置。
  5. 前記第1光学素子および前記第2光学素子は、マルチレンズアレイであり、
    前記マルチレンズアレイの光軸は、前記マルチレンズアレイに入射する前の前記第1光線束の主光線または前記第2光線束の主光線に対して傾斜している、請求項1または請求項2に記載の光源装置。
  6. 請求項1から請求項5までのいずれか一項に記載の光源装置と、
    前記光源装置から射出された光を画像情報に応じて変調する光変調装置と、
    前記光変調装置によって変調された光を投射する投射光学装置と、
    を備える、プロジェクター。
JP2019212093A 2019-11-25 2019-11-25 光源装置およびプロジェクター Active JP7314778B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019212093A JP7314778B2 (ja) 2019-11-25 2019-11-25 光源装置およびプロジェクター
CN202011318734.6A CN112835255B (zh) 2019-11-25 2020-11-23 光源装置和投影仪
US17/102,880 US11493840B2 (en) 2019-11-25 2020-11-24 Light source device and projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212093A JP7314778B2 (ja) 2019-11-25 2019-11-25 光源装置およびプロジェクター

Publications (2)

Publication Number Publication Date
JP2021085898A true JP2021085898A (ja) 2021-06-03
JP7314778B2 JP7314778B2 (ja) 2023-07-26

Family

ID=75923249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212093A Active JP7314778B2 (ja) 2019-11-25 2019-11-25 光源装置およびプロジェクター

Country Status (3)

Country Link
US (1) US11493840B2 (ja)
JP (1) JP7314778B2 (ja)
CN (1) CN112835255B (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121606A (ja) * 2013-12-20 2015-07-02 セイコーエプソン株式会社 光源装置およびプロジェクター
JP2017126442A (ja) * 2016-01-13 2017-07-20 ウシオ電機株式会社 蛍光光源装置
US20180003357A1 (en) * 2016-07-04 2018-01-04 Lg Electronics Inc. Lighting apparatus for vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571481A1 (de) * 2004-02-25 2005-09-07 AgfaPhoto GmbH Beleuchtungssystem
JP5527594B2 (ja) 2010-03-24 2014-06-18 カシオ計算機株式会社 光源ユニット及びプロジェクタ
CN102636946B (zh) * 2011-02-11 2016-07-13 中强光电股份有限公司 光源模块与投影装置
CN102662301B (zh) * 2012-03-11 2015-05-27 深圳市光峰光电技术有限公司 光源系统及相关投影系统
JP6311219B2 (ja) * 2012-07-26 2018-04-18 株式会社リコー 照明光形成装置、照明光源装置および画像表示装置
JP2014119471A (ja) * 2012-12-13 2014-06-30 Seiko Epson Corp 光源装置及びプロジェクター
US10057553B2 (en) * 2015-06-19 2018-08-21 Seiko Epson Corporation Light source device, illumination device, and projector
EP3409011A1 (en) * 2016-01-26 2018-12-05 Barco N.V. Control of color primaries and white point in a laser-phosphor projector
JP6737150B2 (ja) * 2016-11-28 2020-08-05 セイコーエプソン株式会社 波長変換素子、光源装置及びプロジェクター
CN108303840A (zh) * 2018-03-23 2018-07-20 苏州佳世达光电有限公司 激光投影装置
JP6536724B1 (ja) * 2018-07-04 2019-07-03 ウシオ電機株式会社 光源装置、プロジェクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121606A (ja) * 2013-12-20 2015-07-02 セイコーエプソン株式会社 光源装置およびプロジェクター
JP2017126442A (ja) * 2016-01-13 2017-07-20 ウシオ電機株式会社 蛍光光源装置
US20180003357A1 (en) * 2016-07-04 2018-01-04 Lg Electronics Inc. Lighting apparatus for vehicle

Also Published As

Publication number Publication date
JP7314778B2 (ja) 2023-07-26
US20210157222A1 (en) 2021-05-27
US11493840B2 (en) 2022-11-08
CN112835255B (zh) 2022-06-24
CN112835255A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
TWI570500B (zh) A light source device, a lighting device, and a projector
JP6627364B2 (ja) 光源装置、光源ユニット及びプロジェクター
JP2017204357A (ja) 光源装置及びプロジェクター
JP6969201B2 (ja) 光源装置およびプロジェクター
CN110036339B (zh) 光源装置以及投影仪
CN108227358B (zh) 照明装置和投影仪
JP2016099566A (ja) 波長変換素子、光源装置、およびプロジェクター
US10551727B2 (en) Illumination device and projector
JP7322691B2 (ja) 光源装置およびプロジェクター
JP2019039950A (ja) 波長変換素子、光源装置及びプロジェクター
JP2017015966A (ja) 光源装置およびプロジェクター
CN114114812A (zh) 照明装置和投影仪
JP2017167415A (ja) 光源装置及びプロジェクター
CN114265275A (zh) 光源装置以及投影仪
JP6565365B2 (ja) 光源装置、照明装置およびプロジェクター
JP2021012284A (ja) 光源装置およびプロジェクター
CN114114810B (zh) 光源装置、图像显示装置以及投影仪
JP7424246B2 (ja) 光源装置、画像表示装置、およびプロジェクター
JP2021085898A (ja) 光源装置およびプロジェクター
JP2017194494A (ja) 光源装置、照明装置及びプロジェクター
JP2021110883A (ja) 光源装置およびプロジェクター
CN112835256B (zh) 光源装置以及投影仪
JP7131590B2 (ja) 光源装置およびプロジェクター
JP6954329B2 (ja) 波長変換素子、光源装置およびプロジェクター
JP7276102B2 (ja) プロジェクター

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210914

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7314778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150