JP2021082848A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2021082848A
JP2021082848A JP2021035549A JP2021035549A JP2021082848A JP 2021082848 A JP2021082848 A JP 2021082848A JP 2021035549 A JP2021035549 A JP 2021035549A JP 2021035549 A JP2021035549 A JP 2021035549A JP 2021082848 A JP2021082848 A JP 2021082848A
Authority
JP
Japan
Prior art keywords
type
region
trench
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021035549A
Other languages
English (en)
Other versions
JP7156425B2 (ja
Inventor
慎一郎 松永
Shinichiro Matsunaga
慎一郎 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2021035549A priority Critical patent/JP7156425B2/ja
Publication of JP2021082848A publication Critical patent/JP2021082848A/ja
Priority to JP2022119105A priority patent/JP7505523B2/ja
Application granted granted Critical
Publication of JP7156425B2 publication Critical patent/JP7156425B2/ja
Priority to JP2024061138A priority patent/JP2024083467A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】オン抵抗特性を向上させることができる半導体装置を提供すること。【解決手段】n-型ドリフト層2の第1主面側に、トレンチゲート構造のMOSゲート構造が設けられる。トレンチ5の内部には、ゲート電極8よりもコレクタ側に堆積絶縁層6が設けられる。n-型ドリフト層2の内部に、トレンチ5の底部で堆積絶縁層6に接するp型埋め込み領域9が選択的に設けられる。p-型ベース領域3とp型埋め込み領域9との間に、p-型ベース領域3、p型埋め込み領域9およびゲート絶縁膜7に接してp型カラム領域16が設けられている。p型カラム領域16は、トレンチ5の側壁に沿ってトレンチ5の底部よりもコレクタ側へ延在する。n型ブロッキング領域15は、耐圧を律速する箇所(堆積絶縁層6付近およびpn接合23付近)におけるn-型ドリフト層2の不純物濃度が高くならないように、トレンチ5の底部よりもコレクタ側に設けられている。【選択図】図5

Description

この発明は、半導体装置に関する。
従来、パワーデバイスに用いられるMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造の半導体装置(以下、MOS型半導体装置とする)として、半導体基板に形成したトレンチ内にMOSゲートを埋め込んだトレンチゲート構造を有する装置が公知である。このトレンチゲート構造のMOS型半導体装置では、一般的に、高耐圧化と低オン抵抗化とがトレードオフの関係にある。このようなトレードオフの関係を改善したMOS型半導体装置として、MOSゲートを埋め込んだトレンチの底部(ドレイン側端部)を囲むように設けられた、ドリフト層と異なる導電型のフローティング領域を備えた装置が提案されている(例えば、下記特許文献1参照。)。
従来のMOS型半導体装置の構造について説明する。図6は、従来の半導体装置の要部の構造を示す断面図である。図6には、オン状態のときに電流が流れる活性領域に配置される単位セル(素子の機能単位)構造を示す。図6は、下記特許文献1の図1に相当する。図6に示すように、従来の半導体装置100は、n-型ドリフト層102の第1主面側にMOSゲート構造を備え、第2主面側にn+型ドレイン層101を備える。MOSゲート構造は、p-型ベース領域103、n+型ソース領域104、トレンチ105、堆積絶縁層106、ゲート絶縁膜107およびゲート電極108からなる。n+型ソース領域104は、p-型ベース領域103の内部に選択的に設けられている。
トレンチ105は、深さ方向にn+型ソース領域104およびp-型ベース領域103を貫通してn-型ドリフト層102に達する。堆積絶縁層106は、トレンチ105のドレイン側に埋め込まれている。ゲート電極108は、トレンチ105の内部において堆積絶縁層106の上(ソース側)に設けられている。ゲート電極108は、トレンチ105の側壁に設けられたゲート絶縁膜107を挟んでp-型ベース領域103およびn+型ソース領域104に対向する。n-型ドリフト層102の内部には、フローティング状態のp型拡散領域(以下、p型埋め込み領域とする)109が設けられている。トレンチ105の底部は、p型埋め込み領域109の内部に位置する。符号110,111はそれぞれソース電極およびドレイン電極である。
従来の半導体装置100は、n-型ドリフト層102の内部にフローティング状態のp型埋め込み領域109を備えた構造(以下,フローティング構造とする)とすることで,次の特性を有する。ゲート電圧を印加しない(または負のゲート電圧を印加した)オフ状態では、n-型ドリフト層102の内部に、p-型ベース領域103とn-型ドリフト層102との間のpn接合121から空乏層(不図示)が広がる。この空乏層がp型埋め込み領域109にまで到達することでp型埋め込み領域109がパンチスルー状態となり、p-型ベース領域103とn-型ドリフト層102との間のpn接合121からp型埋め込み領域109までの電位が固定される。また、n-型ドリフト層102の内部には、p型埋め込み領域109とn-型ドリフト層102との間のpn接合122からも空乏層(不図示)が広がる。
このようにp-型ベース領域103とn-型ドリフト層102との間のpn接合121から空乏層が広がることで当該pn接合121付近が電界強度のピークとなる。さらに、p型埋め込み領域109とn-型ドリフト層102との間のpn接合122から空乏層が広がることで当該pn接合122付近にも電界強度のピークが形成される。すなわち、電界強度のピークを2箇所に分散させることができる。このため、電界強度の最大ピーク値を低減させることができ、高耐圧化を図ることができる。また、高耐圧を確保することができるため、n-型ドリフト層102の不純物濃度を高くして低オン抵抗化を図ることができる。このようなフローティング構造のメカニズムについて、電界強度分布の算出結果が詳細に開示されている(例えば、下記特許文献2参照。)。
例えばインバータ回路等に用いられる通常のMOS型半導体装置では、一般的に、ゲート電圧Vgによって半導体装置のオン・オフを制御することでドレイン電圧Vdが変化する。図7は、従来の半導体装置の電圧波形を示す特性図である。具体的には、図7に示すように、閾値電圧以上のゲート電圧Vgを印加したオン状態(以下、第1状態Aとする)では、n-型ドリフト層に空乏層が広がっていないため、ドレイン電圧Vdは低く、低オン抵抗の状態で動作する。一方、ゲート電圧Vgを印加せずにオフ状態を維持している間(以下、第2状態Bとする)は、n-型ドリフト層に空乏層が広がった状態(高オン抵抗の状態)となり、ドレイン電圧Vdが高い状態で維持される。すなわち、空乏層の広がりによってドレイン−ソース間の耐圧が保持された状態となる。そして、オフ状態から再度オン状態に移行されることで(以下、第3状態Cとする)、第2状態のときに広がっていた空乏層の幅が狭くなるため、再度、低オン抵抗の状態で動作する。その後、第2状態Bと第3状態Cとが交互に繰り返される。このように、通常のMOS型半導体装置(フローティング構造でないMOS型半導体装置)では、第2状態Bのときに、n-型ドリフト層の内部にp-型ベース領域とn-型ドリフト層との間のpn接合から空乏層が広がる。そして、第2状態Bのときにp-型ベース領域とn-型ドリフト層との間のpn接合から広がった空乏層の幅は、第3状態Cのときにp-型ベース領域からn-型ドリフト層へのホール(正孔)の供給により即時に狭くなる。
しかしながら、図6に示す従来のフローティング構造の半導体装置100では、通常のMOS型半導体装置と比較して、第3状態Cのときに高オン抵抗の状態から低オン抵抗の状態に戻りにくい。その理由は、次の通りである。従来の半導体装置100では、第2状態Bのときに、p-型ベース領域103とn-型ドリフト層102との間のpn接合121と、p型埋め込み領域109とn-型ドリフト層102との間のpn接合122との2箇所から空乏層が広がる。そして、第3状態Cのときに、ソース電極110に接続されたp-型ベース領域103には外部からホールが供給されるが、p型埋め込み領域109はフローティング状態であるため、p型埋め込み領域109には外部からホールの供給は行われない。このため、第3状態Cのときに、p型埋め込み領域109自身からのホールの供給だけでは、p型埋め込み領域109のドレイン側に広がった空乏層の幅を狭くするための十分なホールの量を短時間で補うことができない。すなわち、第3状態Cのときに空乏層の幅を狭くするために供給すべきホールの量が足りず、p型埋め込み領域109のドレイン側にまで広がった空乏層の幅が再び狭くなるまでには時間がかかる。その結果、図7に点線で示すように、第3状態Cのときにドレイン電圧Vdが徐々に低くなって最低値に達する。このため、即時に低オン抵抗の状態に戻らず、過渡的なオン抵抗特性に悪影響が生じる。特に、チップサイズが大きい場合、第3状態Cのときに空乏層の幅を狭くするために供給すべきホールの量が多くなるため、チップサイズが大きくなるほどホールの供給に遅れが生じる。一般的には、オン抵抗特性に悪影響が生じるチップサイズは数mm角以上程度である。
また、従来のフローティング構造の別の装置として、トレンチの側壁に設けられたゲート絶縁膜に沿って、かつp-型ベース領域とフローティング状態のp型拡散領域(p型埋め込み領域)とを連結するように設けられ、オン状態のときにフローティング状態のp型拡散領域へのホール供給路となるp--型拡散領域を備えた装置が提案されている(例えば、下記特許文献3参照。)。
下記特許文献3に示す構造について説明する。図8は、従来の半導体装置の別の一例の構造を示す断面図である。図8には、直線状の平面形状を有するトレンチ105に埋め込んだゲート電極108をトレンチ105の長手方向に平行に切断した断面構造を示す。図8は、下記特許文献3の図4に相当する。図8に示す従来の半導体装置200が図6に示す従来の半導体装置100と異なる点は、n-型ドリフト層102の内部にp--型拡散領域112が設けられている点である。p--型拡散領域112は、堆積絶縁層106の、トレンチ105側壁の部分に沿って設けられ、p-型ベース領域103とp型埋め込み領域109とを連結する。
--型拡散領域112は、不純物濃度が極めて低く、n-型ドリフト層102との間のpn接合から広がる空乏層により超高抵抗な領域となる。このため、オフ状態のときには、p型埋め込み領域109は、図6に示す従来の半導体装置100(下記特許文献1,2)と同様にフローティング状態となる。したがって、上述したフローティング構造と同様に、ドレイン−ソース間の耐圧が保持された状態となり、高耐圧化を図ることができる。一方、オン状態のときには、p--型拡散領域112によってp型埋め込み領域109がソース電位に固定されることで、p型埋め込み領域109からn-型ドリフト層102へホールが供給される。したがって、オン状態のときに供給されるホールの量を増やすことができる。
図8において、符号115〜119は、それぞれ、終端構造部202のトレンチ、堆積絶縁層、ゲート絶縁膜、ゲート電極およびp型埋め込み領域である。終端構造部202のトレンチ115、堆積絶縁層116、ゲート絶縁膜117、ゲート電極118およびp型埋め込み領域119は、活性領域201のトレンチ105、堆積絶縁層106、ゲート絶縁膜107、ゲート電極108およびp型埋め込み領域109と同様の構造を有する。ゲート電極118は最も活性領域201側のトレンチ115に設けられ、その他のトレンチ115には堆積絶縁層116が埋め込まれている。終端構造部202は、活性領域201の周囲を囲み、n-型ドリフト層102の第1主面側の電界を緩和し耐圧を保持する領域である。
特開2005−142243号公報 特開平9−191109号公報 特開2007−242852号公報
しかしながら、上記特許文献1,2には、トレンチ105の底部付近の電界強度を低下させることはできるが、オン状態のときに少数キャリア(ホール)の引き抜きを防止することについて記載されていない。また、上記特許文献1,2を絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)などの伝導度変調効果を利用したデバイスに適用したとしても、伝導度変調効果は向上されない。また、上記特許文献3では、IGBTなどの伝導度変調効果を利用したデバイスに適用した場合、オン状態のときにソース電位に固定されたp型埋め込み領域109からホールが引き抜かれる。このため、伝導度変調が起こりにくくなり、オン抵抗特性が悪化するという問題がある。
この発明は、上述した従来技術による問題点を解消するため、オン抵抗特性を向上させることができる半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。第1導電型の半導体層の第1主面側に、第2導電型の第1半導体領域が設けられている。前記第1半導体領域の内部に、第1導電型の第2半導体領域が選択的に設けられている。トレンチは、前記第2半導体領域および前記第1半導体領域を貫通して前記半導体層に達する。絶縁層は、前記トレンチの底部に埋め込まれている。前記トレンチの内部に、前記トレンチの側壁に沿ってゲート絶縁膜が設けられている。前記トレンチの内部の、前記ゲート絶縁膜の内側で、かつ前記絶縁層の表面に、ゲート電極が設けられている。
前記半導体層の内部に、第2導電型の第3半導体領域が選択的に設けられている。前記第3半導体領域は、前記第1半導体領域側から前記トレンチの底部よりも深い位置に達する。前記半導体層の第2主面側に、第4半導体領域が設けられている。前記半導体層の、前記トレンチの底部よりも前記第4半導体領域側に、第1導電型の第5半導体領域が選択的に設けられている。前記第5半導体領域は、前記第3半導体領域よりも前記第4半導体領域側に深い位置に達する。前記第5半導体領域は、前記半導体層よりも不純物濃度が高い。第1電極は、前記第1半導体領域、前記第2半導体領域および前記第3半導体領域に電気的に接続されている。第2電極は、前記第4半導体領域に電気的に接続されている。
前記第3半導体領域は、第2導電型の第6半導体領域と、第2導電型の第7半導体領域と、からなる。前記第6半導体領域は、前記半導体層の内部に選択的に設けられ、前記トレンチの底部で前記絶縁層に接する。前記第7半導体領域は、前記第1半導体領域と前記第6半導体領域との間に、前記第1半導体領域、前記第6半導体領域および前記ゲート絶縁膜に接して設けられ、かつ前記トレンチの一方の側壁に沿って前記トレンチの底部よりも前記第4半導体領域側へ延在する。前記絶縁層の厚さは、前記ゲート絶縁膜の厚さよりも厚い。前記ゲート絶縁膜の厚さは、前記トレンチの側壁に沿って均一である。
また、この発明にかかる半導体装置は、上述した発明において、前記第3半導体領域は、前記第1半導体領域から前記第5半導体領域に達することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第4半導体領域は、第2導電型であることを特徴とする。
上述した発明によれば、半導体層の内部に第5半導体領域を設けることで、半導体層の内部のキャリア密度を高めることができる。
本発明にかかる半導体装置によれば、オン抵抗特性を向上させることができるという効果を奏する。
実施の形態1にかかる半導体装置の構造を示す断面図である。 実施の形態2にかかる半導体装置の構造を示す断面図である。 実施の形態3にかかる半導体装置の構造を示す断面図である。 実施の形態4にかかる半導体装置の構造を示す断面図である。 実施の形態5にかかる半導体装置の構造を示す断面図である。 従来の半導体装置の要部の構造を示す断面図である。 従来の半導体装置の電圧波形を示す特性図である。 従来の半導体装置の別の一例の構造を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
実施の形態1にかかる半導体装置の構造について説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1には、実施の形態1にかかる半導体装置のオフ状態における断面構造を示す。オフ状態とは、半導体装置が動作しない状態であり、ゲート電圧を少なくとも0V以下にした状態(ゲート電極にゲート電圧を印加しないまたは負のゲート電圧を印加した状態)である。オン状態とは、半導体装置が動作する状態であり、ゲート電圧を閾値電圧以上とした状態である(ゲート電圧≧閾値電圧)。図1に示すように、実施の形態1にかかる半導体装置において、n-型ドリフト層(半導体層)2の第1主面側には、トレンチゲート構造のMOSゲート構造が設けられている。MOSゲート構造は、p-型ベース領域(第1半導体領域)3、n+型エミッタ領域(第2半導体領域)4、トレンチ5、堆積絶縁層(絶縁層)6、ゲート絶縁膜7およびゲート電極8からなる。
-型ドリフト層2の第2主面側には、p+型コレクタ層(第4半導体領域)1が設けられている。p+型コレクタ層1は、n-型ドリフト層2の第2主面の表面層に例えばイオン注入によって形成した拡散領域であってもよいし、実施の形態1にかかる半導体装置を作製(製造)するために用意したp+型出発基板(半導体チップ)で構成されていてもよい。p+型コレクタ層1をp+型出発基板とする場合、n-型ドリフト層2は、p+型コレクタ層1となるp+型出発基板の例えばおもて面に堆積したエピタキシャル層である。p-型ベース領域3は、n-型ドリフト層2の第1主面側に設けられている。p-型ベース領域3は、n-型ドリフト層2の第1主面に堆積したエピタキシャル層であってもよいし、n-型ドリフト層2の第1主面の表面層に例えばイオン注入によって形成された拡散領域であってもよい。
-型ベース領域3の不純物濃度は、低くするほど閾値電圧が低くなるが、ゲート電圧を少なくとも0V以下にしたときに、p-型ベース領域3の、ゲート電極8に対向する部分にチャネル(n型の反転層)が形成されない(オン状態にならない)程度に低いことが好ましい。n+型エミッタ領域4は、p-型ベース領域3の内部に選択的に設けられている。n+型エミッタ領域4は、エピタキシャル層であってもよいし、例えばイオン注入によって形成された拡散領域であってもよい。トレンチ5は、n+型エミッタ領域4およびp-型ベース領域3を貫通してn-型ドリフト層2に達する。堆積絶縁層6は、トレンチ5の内部のコレクタ側に設けられている。すなわち、堆積絶縁層6は、トレンチ5の底部(コレクタ側端部)に埋め込まれている。
ゲート電極8は、トレンチ5の内部において堆積絶縁層6の表面上(エミッタ側)に設けられている。ゲート電極8は、トレンチ5の側壁に設けられたゲート絶縁膜7を挟んでp-型ベース領域3、n+型エミッタ領域4およびn-型ドリフト層2に対向する。すなわち、ゲート電極8のコレクタ側の端部は、p-型ベース領域3とn-型ドリフト層2との間のpn接合21よりもコレクタ側に位置する。n-型ドリフト層2の内部には、p-型ベース領域3と離してp型拡散領域(p型埋め込み領域(第3半導体領域))9が選択的に設けられている。p型埋め込み領域9は、トレンチ5の底部を囲むようにn-型ドリフト層2の内部に埋め込まれており、堆積絶縁層6を挟んでゲート電極8に対向する。すなわち、p型埋め込み領域9の内部にトレンチ5の底部が位置する。
p型埋め込み領域9は、トレンチ側壁に設けられたゲート絶縁膜7を挟んでゲート電極8に対向しない程度に、トレンチ5の内壁に沿ってエミッタ側に延在していてもよい。すなわち、堆積絶縁層6の厚さt1は、トレンチ5の側壁に設けられたゲート絶縁膜7を挟んでp型埋め込み領域9とゲート電極8とが対向しない程度に厚い。p型埋め込み領域9は、n-型ドリフト層2にかかる電界を緩和する機能を有する。p型埋め込み領域9は、例えばイオン注入によって形成された拡散領域であってもよい。p型埋め込み領域9の不純物濃度は、設計条件に合わせて種々変更可能であり、エネルギー準位の縮退が起きない(フェルミ準位が価電子帯中に移動しない)程度に高くてもよい。例えば、p型埋め込み領域9の不純物濃度は、コレクタに高電圧が印加された場合においてもp型埋め込み領域9全体が空乏化しない程度に高く、例えばn-型ドリフト層2の不純物濃度と同程度以上に設定されている。
-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分には、オフ状態のときにゲート絶縁膜7に沿ってp型の反転層12が形成される(図中ハッチングで示す部分)。このp型の反転層12によってp-型ベース領域3とp型埋め込み領域9とが電気的に接続される。このため、オフ状態の時にp型埋め込み領域9はエミッタ電位に固定される。オフ状態のときにn-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分にp型の反転層12を生じさせるために、n-型ドリフト層2の不純物濃度、ゲート絶縁膜7の厚さt2、およびゲート電極8の仕事関数が適宜設定される。具体的には、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分の不純物濃度は、オフ状態のときにp型の反転層12が生じる(すなわちホールが存在する)程度に低く設定されている。
-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分の不純物濃度は、n-型ドリフト層2の他の部分の不純物濃度と異なっていてもよい。例えば、n-型ドリフト層2の不純物濃度が1×1014/cm3以上1×1016/cm3以下程度の範囲内である場合、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分の不純物濃度は例えば1×1017/cm3以下程度である。ゲート絶縁膜7の厚さt2は、オフ状態のときに、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分にp型の反転層12を生じさせる程度に薄く設定されていればよい。すなわち、ゲート絶縁膜7の厚さt2は、上記条件を満たしていればよく、例えば、堆積絶縁層6の厚さよりも薄くてもよいし、堆積絶縁層6と同じ厚さであってもよい。
例えば、ゲート絶縁膜7の厚さt2を100nmとし、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分の不純物濃度を1×1017/cm3とした場合、ゲート電圧が−10V程度のときにp型の反転層12が形成される。n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分の不純物濃度が1×1017/cm3以下程度であれば、ゲート電圧が−15V程度まで低くなるようにシフトさせるアプリケーション(製品)においてもp型の反転層12を形成することができる。また、n-型ドリフト層2の不純物濃度が均一に5×1014/cm3以下程度である場合(例えば耐圧13kVクラス)、ゲート電圧が−2V程度であってもp型の反転層12を形成することができる。
また、ゲート電圧が0V程度であっても、ゲート電極8の仕事関数を適宜設定することで、p型の反転層12を形成可能である。この場合、ゲート電極8は、例えば、n-型ドリフト層2との仕事関数差によってn-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分(n-型ドリフト層2の、ゲート絶縁膜7との界面付近)にホールを生じさせるような仕事関数をもつ電極材料で形成されていればよい。具体的には、ゲート電極8の電極材料として、例えば1×1018/cm3程度に高不純物濃度のp型炭化珪素(SiC)半導体や、p型不純物をドープしたドープドポリシリコン(doped poly−Si)等を用いてもよい。エミッタ電極(第1電極)10は、p-型ベース領域3およびn+型エミッタ領域4に接し、図示省略する層間絶縁膜によってゲート電極8と電気的に絶縁されている。コレクタ電極(第2電極)11は、p+型コレクタ層1に接する。
特に限定しないが、例えば実施の形態1にかかる半導体装置が耐圧13kVクラスである場合、n+型エミッタ領域4およびp+型コレクタ層1は十分に高い不純物濃度(1×1018/cm3以上程度)であり、その厚さは0.1μm以上程度である。p-型ベース領域3の不純物濃度は、ゲート絶縁膜7の厚さt2にもよるが、1×1015/cm3以上1×1017/cm3以下程度である。n-型ドリフト層2の厚さは100μm以上150μm以下程度である。n-型ドリフト層2の不純物濃度は上述した範囲程度であり、好ましくは5×1014/cm3以下程度である。トレンチ5の深さは1μm以上3μm以下程度である。ゲート絶縁膜7の厚さt2は50nm以上200nm以下程度である。p型埋め込み領域9の不純物濃度は1×1018/cm3程度以上である。
次に、実施の形態1にかかる半導体装置の動作について説明する。エミッタ電極10は、グランドに接地された状態か、負の電圧が印加された状態となっている(エミッタ電位≦0)。コレクタ電極11は、正の電圧が印加された状態となっている(コレクタ電位>0)。この状態では、p-型ベース領域3とn-型ドリフト層2との間のpn接合21は逆バイアスされている。このため、p-型ベース領域3およびn-型ドリフト層2の内部に空乏層(不図示)が広がり、伝導キャリアである電子の経路(チャネル)が遮断されている。このとき、ゲート電極8にゲート電圧を印加しないまたは負のゲート電圧を印加した状態(ゲート電圧≦0V)では、エミッタ−コレクタ間に電流は流れない。すなわち、オフ状態が維持される。オフ状態が維持されている間、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分にはゲート絶縁膜7に沿ってp型の反転層12が形成され、p-型ベース領域3とp型埋め込み領域9とが電気的に接続される。このため、p型埋め込み領域9はp-型ベース領域3とほぼ同じベース(エミッタ)電位に固定され、p型埋め込み領域9とn-型ドリフト層2との間のpn接合22も逆バイアスされる。
一方、ゲート電極8への印加電圧を閾値電圧以上にした場合(ゲート電圧≧閾値電圧)、p-型ベース領域3の、n+型エミッタ領域4とn-型ドリフト層2とに挟まれた部分(ゲート電極8に対向する部分)に、ゲート絶縁膜7に沿ってn型の反転層(チャネル(不図示))が形成される。これによって、n+型エミッタ領域4、n型の反転層およびn-型ドリフト層2が伝導キャリアである電子の経路となる。すなわち、エミッタ電極10から出た電子は、n+型エミッタ領域4、n型の反転層およびn-型ドリフト層2を通ってコレクタ電極11へと動き、エミッタ−コレクタ間に電流が流れる。この状態がオン状態である。オン状態のときには、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9とに挟まれた部分にp型の反転層12は生じないため、p型埋め込み領域9はフローティング状態となる。そして、再び、ゲート電極8への印加電圧を少なくとも0V以下(ゲート電圧≦0V)にすることで、オン状態からオフ状態に移行する。このように、ゲート電極8への印加電圧によって半導体装置のオン・オフが制御される。
ゲート電圧が0より大きくかつ閾値電圧未満である状態(0<ゲート電圧<閾値電圧)においても、ゲート電圧が0V以下である場合と同様にn型の反転層(チャネル)は形成されない。しかし、実際には、外部からオフ制御のための指令値(ゲート電圧<閾値電圧)がゲート電極8に印加された後、ゲート電圧が0Vになるまでの間、実施の形態1にかかる半導体装置は動作を停止するまでの遷移状態にあり、完全に停止していない。このため、上述した説明においては、実施の形態1にかかる半導体装置の動作が完全に停止する少なくとも0V以下のゲート電圧である状態をオフ状態としているが、n-型ドリフト層2にp型の反転層12が形成されるときのゲート電圧と、p-型ベース領域3にn型の反転層(チャネル)が形成されるとき(オン状態)のゲート電圧(すなわち閾値電圧)とが等しくなるように調整可能であれば、ゲート電圧が閾値電圧未満である場合(ゲート電圧<閾値電圧)をオフ状態としてもよい。
また、上述した説明においては、IGBTなどの伝導度変調効果を利用したデバイスを例に説明しているが、絶縁ゲート型電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)に本発明を適用してもよい。この場合、p+型コレクタ層1に代えてn+型ドレイン層を設け、n+型エミッタ領域4、エミッタ電極10およびコレクタ電極11をそれぞれn+型ソース領域、ソース電極およびドレイン電極とする。また、実施の形態1にかかる半導体装置の半導体材料として、シリコン(Si)半導体を用いてもよいし、例えば炭化珪素半導体など、シリコンよりもバンドギャップが広い半導体(以下、ワイドバンドギャップ半導体とする)を用いてもよい。
以上、説明したように、実施の形態1によれば、オン状態のときに、p型埋め込み領域はフローティング状態であるため、p型埋め込み領域からエミッタ電極への少数キャリア(ホール)の引き抜きが生じない。このため、IGBTなどの伝導度変調効果を利用したデバイスにおいて伝導度変調が妨げられることはない。これにより、オン抵抗特性が悪化することを防止することができる。すなわち、例えば上記特許文献3のようにオン状態のときにp型埋め込み領域がエミッタ電位に固定される場合に比べて、オン抵抗特性を向上させることができる。
また、例えば上記特許文献3のようにオフ状態のときにp型埋め込み領域がフローティング状態である場合、p型埋め込み領域の電位状態によっては、ゲート電極とp型埋め込み領域との電位差が大きくなり堆積絶縁層に高電界が集中する虞がある。一方、実施の形態1によれば、オフ状態のときに、p型埋め込み領域はp型の反転層によってp-型ベース領域と電気的に接続され、エミッタ電位(例えばグランド)に固定される。これにより、コレクタ電極に高電圧が印加されたとしても、ゲート電極とp型埋め込み領域との電位差(堆積絶縁層にかかる電圧)はゲート電圧程度となるため、堆積絶縁層に高電界が集中しない。また、p型埋め込み領域がエミッタ電位に固定されることで、n-型ドリフト層の、ゲート絶縁膜に沿った部分もエミッタ電位に近い電位に保たれ、ゲート絶縁膜にかかる電圧はゲート電圧程度となる。このため、ゲート絶縁膜にも高電界が集中しない。したがって、従来よりも耐圧特性を向上させることができ、動作不良や絶縁破壊などが生じることを防止することができる。また、ゲート酸化膜に高電界が集中しないため、半導体材料の最大電界強度に近い電界を生じさせる程度までコレクタ電圧の許容上限値を高くすることができる。これにより、例えばワイドバンドギャップ半導体を用いて、ワイドバンドギャップ半導体材料の特性限界に近い状態まで高耐圧化が可能となる。
また、実施の形態1によれば、オフ状態のときにn-型ドリフト層の内部にp型の反転層を形成し、このp型の反転層によってp-型ベース領域とp型埋め込み領域とを電気的に接続することができるため、例えば上記特許文献3のようにp-型ベース領域とp型埋め込み領域とを接続するための拡散領域を形成する必要がない。したがって、従来よりも製造工程を簡略化することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図2は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、n-型ドリフト層2の内部に、n-型ドリフト層2よりも不純物濃度の高いn型拡散領域(以下、n型ブロッキング領域(第5半導体領域)とする)13を設けている点である。n型ブロッキング領域13は、オン状態のときにn-型ドリフト層2の内部の少数キャリア(ホール)に対する障壁となり、少数キャリアの蓄積効果を高める機能を有する。これにより、n-型ドリフト層2のキャリア密度を高くすることができるため、オン抵抗を低減することができる。
n型ブロッキング領域13は、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9との間に、p-型ベース領域3およびp型埋め込み領域9と離して設けられることが好ましい。その理由は、次の通りである。p-型ベース領域3とn-型ドリフト層2との間のpn接合21付近における電界強度、または、トレンチ5の底部付近(p型埋め込み領域9および堆積絶縁層6付近)における電界強度が耐圧を律速する。この耐圧を律速する箇所におけるn-型ドリフト層2の不純物濃度が高くならないように、n型ブロッキング領域13を設けないことが好ましいからである。すなわち、p-型ベース領域3とp型埋め込み領域9との間にn型ブロッキング領域13を設けることで、トレンチ5の底部およびp型埋め込み領域9における電界強度をほぼ変化させずに、n型ブロッキング領域13を設けることができる。これにより、耐圧を低下させることなく、低オン抵抗化を図ることができる。
n型ブロッキング領域13の不純物濃度は、n-型ドリフト層2の不純物濃度よりも高い。また、n型ブロッキング領域13の不純物濃度は、p型埋め込み領域9のコレクタ側の電界強度が耐圧限界値を超えない程度に高不純物濃度(例えば1×1017/cm3程度)であってもよい。n型ブロッキング領域13の厚さは、例えば数μm程度である。n型ブロッキング領域13は、エピタキシャル層であってもよいし、例えばイオン注入によって形成された拡散領域であってもよい。エピタキシャル層からなるn型ブロッキング領域13を形成する場合、例えば、p+型コレクタ層1となるp+型出発基板上に、n-型ドリフト層2およびn型ブロッキング領域13を堆積した後、再度n-型ドリフト層2を堆積することでn-型ドリフト層2の厚さを調整すればよい。イオン注入による拡散領域からなるn型ブロッキング領域13を形成する場合、例えば、イオン注入の加速エネルギーを種々変更し、n-型ドリフト層2の第1主面から所定の深さにn型ブロッキング領域13を形成すればよい。
n型ブロッキング領域13は、n-型ドリフト層2を挟んで、例えばp-型ベース領域3とn-型ドリフト層2との間のpn接合21全面に対向していてもよい。また、n型ブロッキング領域13は、トレンチ5の底部よりもコレクタ側に設けられていてもよい。この場合、n型ブロッキング領域13の不純物濃度および厚さを適宜設定することで、耐圧低下を最小限に抑えることができる。
以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、n型ブロッキング領域を設けることにより、さらにオン抵抗特性を向上させることができる。
(実施の形態3)
次に、実施の形態3にかかる半導体装置の構造について説明する。図3は、実施の形態3にかかる半導体装置の構造を示す断面図である。実施の形態3にかかる半導体装置が実施の形態2にかかる半導体装置と異なる点は、p型埋め込み領域9が常時(オン状態およびオフ状態ともに)フローティング状態である点である。
実施の形態3においては、オフ状態のとき、n-型ドリフト層2の内部に、p-型ベース領域3とn-型ドリフト層2との間のpn接合21から空乏層(不図示)が広がり、当該pn接合21付近が電界強度のピークとなる。また、n-型ドリフト層2の内部には、p型埋め込み領域9とn-型ドリフト層2との間のpn接合22からも空乏層(不図示)が広がり、当該pn接合22付近にも電界強度のピークが形成される。すなわち、n-型ドリフト層2の内部において電界強度のピークを2箇所に分散させることができ、電界強度の最大ピーク値を低減させることができる。このため、耐圧を向上させることができる。また、n-型ドリフト層2の内部にn型ブロッキング領域13を設けることで、実施の形態2と同様にオン抵抗特性を向上させることができる。
以上、説明したように、実施の形態3によれば、実施の形態2と同様の効果を得ることができる。
(実施の形態4)
次に、実施の形態4にかかる半導体装置の構造について説明する。図4は、実施の形態4にかかる半導体装置の構造を示す断面図である。実施の形態4にかかる半導体装置が実施の形態3にかかる半導体装置と異なる点は、隣り合うトレンチ5間に挟まれた部分に、トレンチ5よりも深い深さで、かつ常時エミッタ電位に固定されたp型領域(以下、p型カラム領域(第3半導体領域)とする)14を設けている点である。実施の形態4においては、p型埋め込み領域は設けられていない。また、n型ブロッキング領域(第5半導体領域)15は、耐圧を律速する箇所(堆積絶縁層6付近、および後述するp型カラム領域14とn-型ドリフト層2との間のpn接合23付近)におけるn-型ドリフト層2の不純物濃度が高くならないように、トレンチ5の底部よりもコレクタ側に設けられている。
p型カラム領域14は、隣り合うトレンチ5間にトレンチ5と離して設けられ、かつエミッタ電極10に電気的に接続されている。p型カラム領域14の深さは、トレンチ5の深さよりも深い。例えば、p型カラム領域14は、n+型エミッタ領域4およびp-型ベース領域3を貫通して、n-型ドリフト層2の内部に設けられたn型ブロッキング領域15に達していてもよい。トレンチ5よりも深いp型カラム領域14を設けることにより、p型カラム領域14とn-型ドリフト層2との間のpn接合23に電界を集中させることができるため、堆積絶縁層6付近の電界強度を低下させることができる。p型カラム領域14の不純物濃度は、設計条件に合わせて種々変更可能であり、エネルギー準位の縮退が起きない程度に高くてもよい。
以上、説明したように、実施の形態4によれば、n-型ドリフト層の内部にn型ブロッキング領域を設けることで、実施の形態2と同様にオン抵抗特性を向上させることができる。
(実施の形態5)
次に、実施の形態5にかかる半導体装置の構造について説明する。図5は、実施の形態5にかかる半導体装置の構造を示す断面図である。実施の形態5にかかる半導体装置が実施の形態4にかかる半導体装置と異なる点は、p型カラム領域(第7半導体領域)16によってp-型ベース領域3とp型埋め込み領域(第6半導体領域)9とを連結している点である。すなわち、p-型ベース領域3、p型カラム領域16およびp型埋め込み領域9によって、実施の形態4のp型カラム領域と同様に、隣り合うトレンチ5間に挟まれた部分に、トレンチ5よりも深い深さで設けられ、常時エミッタ電位に固定されたp型領域が構成されている。具体的には、p型カラム領域16は、n-型ドリフト層2の、p-型ベース領域3とp型埋め込み領域9との間に、トレンチ5の側壁に設けられたゲート絶縁膜7に沿って設けられている。n型ブロッキング領域15の構成は、実施の形態4と同様である。
以上、説明したように、実施の形態5によれば、実施の形態4と同様の効果を得ることができる。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
以上のように、本発明にかかる半導体装置は、高耐圧を有するトレンチゲート構造のMOS型半導体装置に有用である。
1 p+型コレクタ層
2 n-型ドリフト層
3 p-型ベース領域
4 n+型エミッタ領域
5 トレンチ
6 堆積絶縁層
7 ゲート絶縁膜
8 ゲート電極
9 p型埋め込み領域
10 エミッタ電極
11 コレクタ電極
12 p型の反転層
13,15 n型ブロッキング領域
14,16 p型カラム領域
21 p-型ベース領域とn-型ドリフト層との間のpn接合
22 p型埋め込み領域とn-型ドリフト層との間のpn接合
23 p型カラム領域とn-型ドリフト層との間のpn接合

Claims (3)

  1. 第1導電型の半導体層の第1主面側に設けられた第2導電型の第1半導体領域と、
    前記第1半導体領域の内部に選択的に設けられた第1導電型の第2半導体領域と、
    前記第2半導体領域および前記第1半導体領域を貫通して前記半導体層に達するトレンチと、
    前記トレンチの底部に埋め込まれた絶縁層と、
    前記トレンチの内部に、前記トレンチの側壁に沿って設けられたゲート絶縁膜と、
    前記トレンチの内部の、前記ゲート絶縁膜の内側で、かつ前記絶縁層の表面に設けられたゲート電極と、
    前記半導体層の内部に選択的に設けられ、前記第1半導体領域側から前記トレンチの底部よりも深い位置に達する第2導電型の第3半導体領域と、
    前記半導体層の第2主面側に設けられた第4半導体領域と、
    前記半導体層の、前記トレンチの底部よりも前記第4半導体領域側に選択的に設けられ、前記第3半導体領域よりも前記第4半導体領域側に深い位置に達する、前記半導体層よりも不純物濃度の高い第1導電型の第5半導体領域と、
    前記第1半導体領域、前記第2半導体領域および前記第3半導体領域に電気的に接続された第1電極と、
    前記第4半導体領域に電気的に接続された第2電極と、
    を備え、
    前記第3半導体領域は、
    前記半導体層の内部に選択的に設けられ、前記トレンチの底部で前記絶縁層に接する第2導電型の第6半導体領域と、
    前記第1半導体領域と前記第6半導体領域との間に、前記第1半導体領域、前記第6半導体領域および前記ゲート絶縁膜に接して設けられ、かつ前記トレンチの一方の側壁に沿って前記トレンチの底部よりも前記第4半導体領域側へ延在する第2導電型の第7半導体領域と、からなり、
    前記絶縁層の厚さは、前記ゲート絶縁膜の厚さよりも厚いことを特徴とする半導体装置。
  2. 前記第3半導体領域は、前記第1半導体領域から前記第5半導体領域に達することを特徴とする請求項1に記載の半導体装置。
  3. 前記第4半導体領域は、第2導電型であることを特徴とする請求項1または2に記載の半導体装置。
JP2021035549A 2021-03-05 2021-03-05 半導体装置 Active JP7156425B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021035549A JP7156425B2 (ja) 2021-03-05 2021-03-05 半導体装置
JP2022119105A JP7505523B2 (ja) 2021-03-05 2022-07-26 半導体装置
JP2024061138A JP2024083467A (ja) 2021-03-05 2024-04-04 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021035549A JP7156425B2 (ja) 2021-03-05 2021-03-05 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019044314A Division JP6885414B2 (ja) 2019-03-11 2019-03-11 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022119105A Division JP7505523B2 (ja) 2021-03-05 2022-07-26 半導体装置

Publications (2)

Publication Number Publication Date
JP2021082848A true JP2021082848A (ja) 2021-05-27
JP7156425B2 JP7156425B2 (ja) 2022-10-19

Family

ID=75963378

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021035549A Active JP7156425B2 (ja) 2021-03-05 2021-03-05 半導体装置
JP2022119105A Active JP7505523B2 (ja) 2021-03-05 2022-07-26 半導体装置
JP2024061138A Pending JP2024083467A (ja) 2021-03-05 2024-04-04 半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022119105A Active JP7505523B2 (ja) 2021-03-05 2022-07-26 半導体装置
JP2024061138A Pending JP2024083467A (ja) 2021-03-05 2024-04-04 半導体装置

Country Status (1)

Country Link
JP (3) JP7156425B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311716A (ja) * 2003-04-07 2004-11-04 Toshiba Corp 絶縁ゲート型半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688725A (en) * 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
JP5729331B2 (ja) * 2011-04-12 2015-06-03 株式会社デンソー 半導体装置の製造方法及び半導体装置
JP2013149798A (ja) * 2012-01-19 2013-08-01 Fuji Electric Co Ltd 炭化珪素半導体装置
JP5812029B2 (ja) * 2012-06-13 2015-11-11 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP6237408B2 (ja) * 2014-03-28 2017-11-29 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311716A (ja) * 2003-04-07 2004-11-04 Toshiba Corp 絶縁ゲート型半導体装置

Also Published As

Publication number Publication date
JP7505523B2 (ja) 2024-06-25
JP2024083467A (ja) 2024-06-21
JP2022136213A (ja) 2022-09-15
JP7156425B2 (ja) 2022-10-19

Similar Documents

Publication Publication Date Title
JP6780777B2 (ja) 半導体装置
JP5787853B2 (ja) 電力用半導体装置
US10546950B2 (en) Semiconductor device
JP5449094B2 (ja) 半導体装置
JP6715567B2 (ja) 半導体装置
US7838926B2 (en) Semiconductor device
US20160035869A1 (en) Semiconductor device
KR20190072631A (ko) 게이트 트렌치들 및 매립된 종단 구조체들을 갖는 전력 반도체 디바이스들 및 관련 방법들
JP5865618B2 (ja) 半導体装置
CN111129135B (zh) 半导体装置
WO2018147466A1 (ja) 半導体装置
JP5687582B2 (ja) 半導体素子およびその製造方法
US7626232B2 (en) Voltage-controlled semiconductor device
JP2023550032A (ja) 複数のゲート・トレンチを有する半導体パワー・デバイス及びそのようなデバイスを形成する方法
JP2024511552A (ja) 信頼性及び導通が向上したトレンチ型パワー・デバイス
JP6885414B2 (ja) 半導体装置
JP2023003117A (ja) 半導体装置
JP7512920B2 (ja) 半導体装置およびその製造方法
JP2023553358A (ja) フィンfetパワー半導体デバイス
JP7156425B2 (ja) 半導体装置
CN109314142A (zh) 短沟道沟槽功率mosfet
JP2020129675A (ja) 半導体装置
WO2023112547A1 (ja) 半導体装置
JP7405230B2 (ja) スイッチング素子
US20230361171A1 (en) Field effect transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220919

R150 Certificate of patent or registration of utility model

Ref document number: 7156425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150