JP2021081198A - 測定方法 - Google Patents

測定方法 Download PDF

Info

Publication number
JP2021081198A
JP2021081198A JP2019206179A JP2019206179A JP2021081198A JP 2021081198 A JP2021081198 A JP 2021081198A JP 2019206179 A JP2019206179 A JP 2019206179A JP 2019206179 A JP2019206179 A JP 2019206179A JP 2021081198 A JP2021081198 A JP 2021081198A
Authority
JP
Japan
Prior art keywords
measurement
surface shape
laser beam
light source
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019206179A
Other languages
English (en)
Inventor
伸彦 安達
Nobuhiko Adachi
伸彦 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019206179A priority Critical patent/JP2021081198A/ja
Publication of JP2021081198A publication Critical patent/JP2021081198A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】表面形状測定装置を用いて、測定面に対するレーザ光の入射角度を測定する。【解決手段】本発明にかかる測定方法は、測定面に対して垂直方向に移動可能な光源103を有する、表面形状測定装置100により実行される測定方法である。本発明にかかる測定方法は、第1の測定点に設置された光源103から、測定面にレーザ光を入射し、測定面で反射されたレーザ光に基づいて測定面の表面形状を第1の表面形状として測定する工程と、第1の測定点とは異なる第2の測定点に移動させた光源103から、測定面にレーザ光を入射し、測定面で反射されたレーザ光に基づいて測定面の表面形状を第2の表面形状として測定する工程と、第1の表面形状と前記第2の表面形状とのずれに基づいて、前記測定面に対するレーザ光の入射角度を測定する工程と、を備える。【選択図】図1

Description

本発明は、測定面に対するレーザ光の入射角度の測定方法に関する。
レーザ光を用いて、測定物の形状を測定する技術が提案されている。特許文献1は、測定物の所定の面と第1の角度をなすよう設置された第1の光源と、当該測定物の所定の面と第2の角度をなすよう設置された第2の光源とを用いて、測定物である形鋼の形状を測定する技術を開示している。測定物の形状を正確に測定するためには、測定面に対するレーザ光の入射角度を高精度に調整する必要がある。
特開2015−197431号公報
上記のように、レーザ光を用いて測定物の形状を測定するためには、測定面に対するレーザ光の入射角度を高精度に調整する必要がある。しかし、測定面に対するレーザ光の入射角度を正確に測定することは出来ないため、測定面に対するレーザ光の入射角度を高精度に調整することができないという問題があった。
本発明は、表面形状測定装置を用いて、測定面に対するレーザ光の入射角度を測定する測定方法を提供するものである。
本発明にかかる測定方法は、測定面に対して垂直方向に移動可能な光源、を有する表面形状測定装置により実行される測定方法であって、第1の測定点に設置された前記光源から、前記測定面にレーザ光を入射し、前記測定面で反射された前記レーザ光に基づいて前記測定面の表面形状を第1の表面形状として測定する工程と、前記第1の測定点とは異なる第2の測定点に移動させた前記光源から、前記測定面に前記レーザ光を入射し、前記測定面で反射された前記レーザ光に基づいて前記測定面の表面形状を第2の表面形状として測定する工程と、前記第1の表面形状と前記第2の表面形状とのずれに基づいて、前記測定面に対する前記レーザ光の入射角度を測定する工程と、を備える。
これにより、表面形状測定装置を用いて、測定面に対するレーザ光の入射角度を正確に測定することが可能となる。
これにより、表面形状測定装置を用いて、測定面に対するレーザ光の入射角度を正確に測定することが可能となる。
表面形状測定装置100の構成例を示す構成図である。 光源103を設置する第1の測定点と第2の測定点の概要を示す概略図である。 ずれ量ΔZを算出する方法の概要を示す概略図である。 第1の測定形状と第2の測定形状のピーク位置に基づいて、ずれ量を算出する方法を示す概略図である。 第1の測定形状と第2の測定形状を示すグラフに囲まれる面積に基づいて、ずれ量ΔZを算出する方法を示す概略図である。 ずれ量ΔZに基づいて、測定物10の測定面に対するレーザ光の入射角度θを算出する方法の概要を示す概略図である。 表面形状測定装置100の動作を示すフローチャートである。
以下、図面を参照して本発明の実施の形態について説明する。図1は、本実施の形態にかかる測定方法を使用する表面形状測定装置100の構成例を示す構成図である。図1に示す表面形状測定装置100は、測定物10を回転させつつ、測定物10の表面形状を測定し、測定物10の真円度を測定する。測定物10は、例えば、クランクシャフトのピン、ジャーナル部等である。
表面形状測定装置100は、回転テーブル101、移動機構102、光源103、角度調整機構104、信号処理・光源ユニット105、およびPC(Personal Computer)106を備える。表面形状測定装置100は、光源103から出射され測定面で反射されたレーザ光に基づいて測定面の表面形状を測定する。
回転テーブル101は、測定物10を載せて回転する。回転テーブル101は、一定速度で回転可能であってもよい。図1の回転テーブル101を含む装置は、真円度測定装置ともいう。移動機構102は、光源103を、測定物10の測定面に対して略垂直方向に移動させる機構である。
光源103は、測定物10の測定面に対してレーザ光を入射させる。光源103は、レーザセンサにおいて使用されるレーザ光の光源である。真円度測定の際にはレーザセンサとして、ラインセンサが用いられる。ラインセンサとは、一次元的な画像の撮影を行うセンサであり、測定物10を回転させることによって測定物10の一周分の画像を撮影することが可能となる。なお、光源103は、レーザ光を水平・鉛直方向に走査可能なものであってもよい。
図2は、本実施の形態にかかる測定方法における光源103の移動の概要を示す概略図である。本実施の形態では、まず、測定物10から距離Tだけ離れた第1の測定点に光源103を設置し、測定物10の測定面にレーザ光を入射し、測定物10の表面形状を第1の表面形状として測定する。そして、次に、第1の測定位置からΔTだけ移動した第2の測定点に光源103を設置し、測定物10の表面形状を第2の表面形状として測定する。
上述したように、本実施の形態は、光源103と測定物10の測定面との間の距離を変化させ、測定物10の測定面の表面形状を測定する。したがって、光源103は、測定物10の測定面との間の距離が変化しても表面形状を十分に測定可能なものである必要がある。つまり、光源103は、当該距離変化分のWD(ワーキングディスタンス)の変化を許容可能なものである必要がある。ここで、WDとは、測定面に焦点を合わせた状態での光源103の先端から測定面までの距離を表す。表面形状測定装置100は、WDの許容範囲内(公差範囲内)で測定面に対して略垂直に光源103を移動させ、測定面の表面形状を第1の表面形状および第2の表面形状として測定する。
なお、光源103は、複数の波長のレーザ光を出射可能であってもよい。本実施の形態では、光波干渉によって測定物10の表面形状を測定する。ここで、複数の波長を用いた測定を行うことにより、測定物10の表面形状をより詳細に測定することが可能となる。
角度調整機構104は、光源103の設置角度を調整可能な機構である。角度調整機構104は、光源103の設置角度を、水平方向と鉛直方向の両方向に対して微小に変更することができる。つまり、角度調整機構104は、測定物10の測定面に対するレーザ光の入射角度を水平方向と鉛直方向の両方向に対して、微調整することが可能である。
信号処理・光源ユニット105は、測定物10の測定面の表面形状を測定する表面形状測定機能を有する。信号処理・光源ユニット105は、レーザ光の光波干渉によって、光源103と測定物10の測定面との間の距離を測定する。なお、光波干渉とは、レーザ光を2つに分割し、光源103から出射し測定面で反射されたレーザ光と、参照用のレーザ光と、を再合成することにより干渉パターンを得ることである。信号処理・光源ユニット105は、当該測定距離に基づいて測定物10の表面形状を算出する。つまり、信号処理・光源ユニット105は、測定面の各位置における測定距離の分布から、測定物10の表面形状を算出する。
PC106は、光源103から出射されたレーザ光が、測定物10の測定面に入射する角度を算出する。PC106は、第1の表面形状と第2の表面形状とのずれを算出し、当該ずれに基づいて測定物10の測定面に対するレーザ光の入射角度を算出する。
図3は、本実施の形態にかかる測定方法において、ずれ量を算出する方法の概要を示す概略図である。
PC106は、第1の測定点からレーザ光を入射することにより測定された測定物10の第1の表面形状と、第2の測定点からレーザ光を入射することにより測定された測定物10の第2の表面形状と、を比較してずれを算出する。ここで、上述したように第2の測定点は、第1の測定点から測定物10の測定面に対して略垂直に移動した位置である。なお、上述したように第1の測定点および第2の測定点は、光源103のWDの許容範囲内に存在する。
図4、図5は、PC106がずれ量を算出する方法の具体例を示す。図4に示す方法は、まず、第1の表面形状の最大ピークと、第2の表面形状の最大ピークとを検出する。次に、PC106は、上述した最大ピークとなる位置の差分に基づいて、ずれ量ΔZを算出する。
図5は、第1の表面形状と第2の表面形状のずれを、2つのグラフで囲まれる領域の面積を用いて評価する方法である。例えば、PC106は、第2の表面形状をΔzだけ移動し、2つのグラフで囲まれる面積を算出する。2つのグラフで囲まれる面積とは、図5のs1〜s8を合計した面積である。PC106は、当該面積が最小となるΔzを算出する。当該面積が最小となるΔzが、ずれ量ΔZである。
図6は、上述したずれΔZに基づいて、PC106が、測定物10の測定面に対するレーザ光の入射角度を算出する方法の概要を示す概略図である。
PC106は、上述したずれに基づいて、測定物10の測定面に対するレーザ光の入射角度θを算出する。入射角度θは、第1の測定点と第2の測定点との間の距離ΔTと、ずれΔZとの逆正接を計算することにより算出される。つまり、PC106は、第1の測定点と第2の測定点との間の距離と、表面形状のずれ量ΔZと、を辺とする三角形から測定面に対するレーザ光の入射角度を算出する。レーザ光の測定面に対する入射角度とは、光源103の傾斜角度ともいえる。
また、PC106は、入射角度θから角度補正値を決定する。例えば、入射角度θに対して補正値は(−θ)であってもよい。補正値は、入射角度が許容値として定められた範囲内に収められるように定められてもよい。PC106は、角度調整機構104が当該角度補正値分の補正を自動で行うような制御を行ってもよい。
図7を用いて、本実施形態の動作について説明する。まず、測定物10との距離がWDとなるように、光源103が第1の測定点に設置される(ステップS101)。次に、測定物10の第1の表面形状が、測定される(ステップS102)。つまり、表面形状測定装置100は、第1の測定点に設置された光源103から、測定面にレーザ光を入射し、測定面で反射されたレーザ光に基づいて測定面の表面形状を第1の表面形状として測定する。
次に、光源103の位置を、WDの許容値の範囲内で移動させる(ステップS103)。つまり、光源103が、第2の測定位置に設置される。次に、測定物10の第2の表面形状が測定される(ステップS104)。つまり、表面形状測定装置100は、第1の測定点とは異なる第2の測定点に移動させた光源103から、測定面にレーザ光を入射し、測定面で反射されたレーザ光に基づいて測定面の表面形状を第2の表面形状として測定する。
次に、第1の表面形状と第2の表面形状を比較し、測定物10の測定面に対するレーザ光の入射角度を算出する(ステップS105)。つまり、表面形状測定装置100は、第1の表面形状と第2の表面形状とのずれに基づいて、測定面に対するレーザ光の入射角度を測定する。ここで、入射角度は、水平方向(X方向)と鉛直方向(Y方向)のそれぞれに対して算出されてもよい。
次に、ステップS105で算出された入射角度に基づいて、補正量が計算される(ステップS106)。補正量は、水平方向の入射角度および鉛直方向の入射角度の両方が、目標となる範囲内に収まるように定められる。最後に、上述した補正量に基づいて、角度調整機構104を用いて光源103の傾斜角度が微調整される(ステップS107)。
以下、本実施の形態の効果について説明する。
研磨過程で砥石に不具合が発生し、エンジン部品のクランクシャフトのピンあるいはジャーナル部にキズが生じる場合がある。当該キズは、最小で横幅10μm、深さ5μm程度と大変微小であることから、目視ではなく機械による検査が望ましい。ここで、キズの深さ方向の精度を確保するためには、測定面に対して垂直にレーザ光を入射させる必要がある。表面形状測定装置と真円度測定装置が別装置である場合、レーザ光の入射角度を測定するために大規模なゲージが必要となるという問題があった。
本実施の形態は、測定面に対して光源を略垂直に移動させ、移動前と移動後の測定面の表面形状を比較する。もし、レーザ光が測定面に対して垂直に入射していれば移動前後の表面形状は一致するはずである。レーザ光が測定面に対して垂直に入射していなければ、垂直方向とレーザ光の入射方向とのずれの大きさにしたがって、表面形状にもずれ量が生じる。本実施の形態では、表面形状のずれの度合いを評価して、レーザ光の測定面に対する入射角度を算出する。本実施の形態によると、水平・鉛直の両方向における入射角度の補正量を算出することが可能であり、当該補正量に基づいて光源の傾斜角度を調整することが可能となる。なお、光源103ではなく測定物10を移動させ、表面形状を測定した場合も同様の効果を得られる。
本実施の形態は、自動車の製造に対して応用できる。レーザ光を用いて、自動車部品のキズを検出する場合、精度を確保するためには測定面に対して垂直にレーザ光を入射する必要があるからである。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
100 表面形状測定装置
10 測定物
101 回転テーブル
102 移動機構
103 光源
104 角度調整機構
105 信号処理・光源ユニット
106 PC

Claims (1)

  1. 測定面に対して垂直方向に移動可能な光源、を有する表面形状測定装置により実行される測定方法であって、
    第1の測定点に設置された前記光源から、前記測定面にレーザ光を入射し、前記測定面で反射された前記レーザ光に基づいて前記測定面の表面形状を第1の表面形状として測定する工程と、
    前記第1の測定点とは異なる第2の測定点に移動させた前記光源から、前記測定面に前記レーザ光を入射し、前記測定面で反射された前記レーザ光に基づいて前記測定面の表面形状を第2の表面形状として測定する工程と、
    前記第1の表面形状と前記第2の表面形状とのずれに基づいて、前記測定面に対する前記レーザ光の入射角度を測定する工程と、を備える測定方法。
JP2019206179A 2019-11-14 2019-11-14 測定方法 Pending JP2021081198A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206179A JP2021081198A (ja) 2019-11-14 2019-11-14 測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206179A JP2021081198A (ja) 2019-11-14 2019-11-14 測定方法

Publications (1)

Publication Number Publication Date
JP2021081198A true JP2021081198A (ja) 2021-05-27

Family

ID=75964775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206179A Pending JP2021081198A (ja) 2019-11-14 2019-11-14 測定方法

Country Status (1)

Country Link
JP (1) JP2021081198A (ja)

Similar Documents

Publication Publication Date Title
Shahabi et al. Noncontact roughness measurement of turned parts using machine vision
US9689743B2 (en) Accuracy and precision in raman spectroscopy
KR20130095211A (ko) 얇은 디스크 형상물의 가장자리 프로파일을 비접촉으로 결정하기 위한 장치
US9733070B2 (en) Shape measuring apparatus, structure manufacturing system, stage apparatus, shape measuring method, structure manufacturing method, program, and recording medium
JP6003583B2 (ja) 形状評価方法、鋼板形状矯正方法、及び鋼板製造方法
JP6608729B2 (ja) 表面性状測定機及び表面性状測定方法
JP6815336B2 (ja) 静的縞パターンを使用した干渉ロールオフ測定
JP6199205B2 (ja) 真直形状測定方法及び真直形状測定装置
JP2017151086A (ja) 測定方法および測定プログラム
KR20160102244A (ko) 광학 검사를 위한 비-이미징 코히어런트 라인 스캐너 시스템 및 방법
Che et al. Real-time monitoring of workpiece diameter during turning by vision method
TWI568989B (zh) 全域式影像檢測系統及其檢測方法
JP2010256151A (ja) 形状測定方法
US20230278282A1 (en) Compensating laser alignment for irregularities in an additive manufacturing machine powderbed
TWI542430B (zh) Laser processing method
JP2021081198A (ja) 測定方法
US8149383B2 (en) Method for determining the systematic error in the measurement of positions of edges of structures on a substrate resulting from the substrate topology
JP6457574B2 (ja) 計測装置
JP2017053793A (ja) 計測装置、および物品の製造方法
CN115077412A (zh) 型面检测设备和型面检测方法、存储介质
JP2008058133A (ja) 長尺工具エッジの曲率半径の計測装置および長尺工具エッジの曲率半径の計測方法
JP2018169171A (ja) 鋼板形状計測装置及び鋼板形状矯正装置
US9470514B2 (en) System and method for using laser scan micrometer to measure surface changes on non-concave surfaces
RU2770133C1 (ru) Способ измерения параметров волнистости поверхности материалов и устройство для измерения параметров волнистости поверхности деталей
JPH1054707A (ja) 歪み測定方法及び歪み測定装置