JP2021069141A - 車載制御装置 - Google Patents

車載制御装置 Download PDF

Info

Publication number
JP2021069141A
JP2021069141A JP2019190664A JP2019190664A JP2021069141A JP 2021069141 A JP2021069141 A JP 2021069141A JP 2019190664 A JP2019190664 A JP 2019190664A JP 2019190664 A JP2019190664 A JP 2019190664A JP 2021069141 A JP2021069141 A JP 2021069141A
Authority
JP
Japan
Prior art keywords
circuit
discharge
voltage
power supply
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019190664A
Other languages
English (en)
Other versions
JP6847181B1 (ja
Inventor
貴大 ▲高▼森
貴大 ▲高▼森
Takahiro Takamori
充孝 西田
Mitsutaka Nishida
充孝 西田
貴史 倉田
Takashi Kurata
貴史 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019190664A priority Critical patent/JP6847181B1/ja
Application granted granted Critical
Publication of JP6847181B1 publication Critical patent/JP6847181B1/ja
Publication of JP2021069141A publication Critical patent/JP2021069141A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

【課題】外部負荷を用いずに平滑コンデンサの残留電荷を速やかに放電させることができる車載制御装置を得る。【解決手段】1つまたは複数の直流変換回路11と、直流変換回路で駆動されるシステムIC12と、直流変換回路とシステムICとをつなぐ電路に直列に挿入された開閉回路13と、開閉回路とシステムICとの間に接続された平滑コンデンサ14と、平滑コンデンサと並列に接続された定電流放電回路15bを備えた放電回路15と、入力電圧が電圧閾値以下となったことを検出する低電圧検出回路16と、入力電圧が電圧閾値以下のときにシステムICへリセット指示、開閉回路へ遮断指示、および放電回路へ放電指示を送る制御回路17とを備えている。放電回路は、放電指示を受け取ると放電回路の定電流回路を起動させて平滑コンデンサの残留電荷を放電回路を介して放電させる。【選択図】図1

Description

本願は、車載制御装置に関する。
鉄道車両および自動車などには、駆動系のモータなどの車載機器を制御するための車載制御装置が搭載されている。この車載制御装置には、マイクロプロセッサなどで構成されたシステム集積回路(以下、システムICと記す)が使われている。システムICとは、半導体チップにプロセッサコア、マクロコントローラなどがもつ基本機能に加えて使用目的に応じた機能が集積して搭載され、それらの機能が連携してシステムとして機能するように設計された集積回路である。このシステムICには、電源が投入されたときにラッチアップなどの不具合を防止するために、電源投入時および電源遮断時に実施すべき電源シーケンスが規定されている。
システムICの電源端子には電圧の安定化などを目的として平滑コンデンサが接続されている。この平滑コンデンサには電源遮断時に平滑コンデンサに残留した電荷を放電させるための放電抵抗が並列に接続されている。この放電抵抗は、制御装置の正常動作時における電力損失を抑制すためにその抵抗値が非常に大きな値に設定されている。そのため、電源遮断時に平滑コンデンサの残留電荷を放電させるためには長い時間を要する。
システムICの電源遮断時の電源シーケンスを正常に行うためには、システムICの各電源端子の電圧をシーケンスの順番でほぼゼロまで低下させていくことが必要である。しかしながら、平滑コンデンサの残留電荷の放電に時間がかかると、ある電源端子の電圧が低下する前に、そのあと低下させるべき他の電源端子の電圧が先に低下する場合がある。遵守するべきシーケンスと異なる順番で電源電圧が低下すると、本来電荷が残留しないはずの回路に電荷が残留したり、電圧の逆転による逆流電流が発生したりする可能性がある。そのため、電源遮断中、電源再投入時になどにラッチアップなどの不具合が発生する場合がある。したがって、電源遮断時の電源シーケンスを正常に行うためには、他の電源電圧が低下する前に平滑コンデンサの残留電荷を速やかに放電させる必要がある。
平滑コンデンサの残留電荷を速やかに放電させる方法として、複数のスイッチング素子で構成されたインバータ回路を備えた制御装置において、電源遮断時にいくつかのスイッチング素子をオンにして外部負荷のモータを無トルク状態で駆動するなどして平滑コンデンサの残留電荷を放電させる方法が開示されている(例えば、特許文献1および2参照)。
特開2005−253154号公報 特開2018−152973号公報
しかしながら、外部負荷のモータを介して平滑コンデンサの残留電荷を速やかに放電させる従来の方法は、システムICを用いた車載制御装置に用いることはできないという問題があった。
本願は、上述の課題を解決するためになされたもので、外部負荷を用いずに平滑コンデンサの残留電荷を速やかに放電させることができる車載制御装置を得ることを目的とする。
本願に係る車載制御装置は、直流入力電圧を異なる電圧に変換する1つまたは複数の直流変換回路と、1つの直流変換回路の出力端子から出力される電力が第1電力供給端子に入力されるシステムICと、1つの直流変換回路の出力端子とシステムICの第2電力供給端子とをつなぐ電路に直列に挿入された開閉回路と、開閉回路と第2電力供給端子との間に接続された平滑コンデンサと、平滑コンデンサと並列に接続された定電流回路を備えた放電回路と、直流入力電圧が予め設定された電圧閾値以下となったことを検出する低電圧検出回路と、低電圧検出回路において直流入力電圧が電圧閾値以下となったことが検出されたときに、システムICに対してリセット指示を、開閉回路に対して遮断指示を、および放電回路に対して放電指示を送る制御回路とを備えている。そして、放電回路は、放電指示を受け取ると放電回路の定電流回路を起動して平滑コンデンサの残留電荷をグラウンドへと放電させている。
本願の車載制御装置においては、放電回路が放電指示を受け取ると定電流回路を起動して平滑コンデンサの残留電荷をグラウンドへと放電させているので、外部負荷を用いずに平滑コンデンサの残留電荷を速やかに放電させることができる。
実施の形態1に係る車載制御装置の構成図である。 実施の形態1の定電圧検出回路の構成図である。 実施の形態1の放電回路の構成図である。 実施の形態1の車載制御装置におけるタイミングチャートである。 実施の形態1に係る車載制御装置の構成図である。 実施の形態2に係る車載制御装置の構成図である。 実施の形態2の車載制御装置におけるタイミングチャートである。 実施の形態2に係る車載制御装置の構成図である。
以下、本願を実施するための実施の形態に係る車載制御装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
図1は、実施の形態1に係る車載制御装置の構成図である。本実施の形態の車載制御装置は、例えば自動車に搭載されており、エンジン、ブレーキ、トランスミッションなどを制御する機能を備えている。
図1に示す本実施の形態の車載制御装置1は、直流変換回路11とシステムIC12と開閉回路13と平滑コンデンサ14と放電回路15と低電圧検出回路16と制御回路17とを備えている。直流変換回路11は直流入力電圧Vaを第1電源電圧Vb1に変換する。システムIC12の第1電力供給端子12aには、直流変換回路11から出力される第1電源電圧Vb1が入力される。開閉回路13は、直流変換回路11の出力端子11aとシステムIC12の第2電力供給端子12bとをつなぐ電路に直列に挿入されている。平滑コンデンサ14は、開閉回路13と第2電力供給端子12bとの間に接続されている。放電回路15は、平滑コンデンサ14に並列に接続されている。低電圧検出回路16は、直流入力電圧Vaが予め設定された電圧閾値以下となったことを検出する。制御回路17は、低電圧検出回路16において直流入力電圧Vaが電圧閾値以下となったことが検出されたときに、システムIC12に対してリセット指示を、開閉回路13に対して遮断指示を、および放電回路15に対して放電指示を送る。
直流変換回路11は、例えば車載バッテリなどの外部の直流電源2からリレー3を介して直流入力電圧Vaが入力される。直流変換回路11は直流入力電圧Vaを第1電源電圧Vb1に変換し、この第1電源電圧Vb1を出力端子11aから開閉回路13へ出力する。また、直流変換回路11の出力端子11aはシステムIC12の第1電力供給端子12aおよび制御回路17の電力供給端子17aにも接続されている。したがって、第1電源電圧Vb1の電力はシステムIC12および制御回路17の駆動電力となっている。直流変換回路11は、例えばシリーズレギュレータ、スイッチングレギュレータなどの変換回路である。直流変換回路11は、直流入力電圧を異なる電圧に変換して出力する機能を有するものであれば他の変換回路であってもよい。
システムIC12は、第1電力供給端子12aに供給される第1電源電圧Vb1の電力で駆動される。システムIC12は、第2電力供給端子12bに入力される電圧に基づいて演算処理を行う。このシステムIC12は、マイクロコンピューター、SoC(System−on−a−Chip)などの演算処理器であり、電源シーケンスが規定されている。
開閉回路13は、直流変換回路11の出力端子11aとシステムIC12の第2電力供給端子12bとをつなぐ電路に直列に挿入されており、制御回路17から送られてくる遮断指示に基づいて電路を電気的に遮断する。開閉回路13は、例えばMOS−FET(Metal−Oxide−Semiconductor Field−Effect Transistor)などのトランジスタ、リレーなどであり、電路を電気的に遮断および接続を行う機能を有する。ここで、開閉回路13の出力側の電圧は、平滑コンデンサ14の電圧でありかつシステムIC12の第2電力供給端子12bの電圧である。これ以降、開閉回路13の出力側の電圧を第1制御電圧Vc1と呼ぶ。
平滑コンデンサ14は、開閉回路13と第2電力供給端子12bとの間に接続されており、第2電力供給端子12bに印加される第1制御電圧Vc1を平滑にする機能を備えている。平滑コンデンサ14は、例えばアルミニウム電解コンデンサなどである。
放電回路15は、平滑コンデンサ14に並列に接続されており、制御回路17から送られてくる放電指示に基づいて平滑コンデンサ14の残留電荷を放電させる機能を有する。なお、本実施の形態において、図1に示すように、制御回路17が開閉回路13に送る遮断指示と放電回路15に送る放電指示とは同じ第1信号端子17bから出力される第1動作指示信号に基づく指示である。
低電圧検出回路16は、直流入力電圧Vaが入力される。低電圧検出回路16は、直流入力電圧Vaが予め設定された電圧閾値Vth以下となったことを検出し、直流入力電圧Vaが電圧閾値Vth以下となった場合に、電圧低下検出信号Vlowを制御回路17の電圧信号端子17cに出力する。低電圧検出回路16は、例えばリセットICなどであり、直流入力電圧Vaが予め設定された電圧閾値Vth以下となったことを検出できるものであればそれ以外でもよい。なお、電圧閾値Vthは、例えば車載制御装置1の最低動作保証電圧の下限値である。
制御回路17は、電力供給端子17aに供給される第1電源電圧Vb1の電力で駆動される。制御回路17は、低電圧検出回路16から電圧低下検出信号Vlowを受け取ると、システムIC12の電源シーケンスを開始させるために、システムIC12に対してリセット指示をリセット端子17dから出力する。また、制御回路17は、リセット指示と同じタイミングで、開閉回路13に対しては遮断指示となり、放電回路15に対しては放電指示となる第1動作指示信号を第1信号端子17bから出力する。なお、第1電源電圧Vb1の電力を制御回路17の駆動電力とするために、制御回路17の電力供給端子17aは直流変換回路11に接続されているが、別の電源回路の出力を駆動電力とするために、電力供給端子17aは別の電源回路に接続されていてもよい。
図2は、本実施の形態の低電圧検出回路16の構成図である。低電圧検出回路16は、電圧比較器16aと、6個の抵抗16b、16c、16d、16e、16fおよび16gとを備えている。直流入力電圧Vaは、2つの抵抗16bおよび16cで分圧されて電圧比較器16aの非反転入力端子に入力される。低電圧検出回路16の基準電圧として予め定められた電圧閾値Vthは、2つの抵抗16dおよび16eで分圧されて反転入力端子に入力される。4つの抵抗16b、16c、16dおよび16eの抵抗値は、Vaが低電圧検出回路16の基準電圧として予め定められた電圧閾値Vthを下回った際に出力が反転するように設定されている。電圧比較器16aは、非反転入力端子に入力された電圧と反転入力端子に入力された電圧とを比較し、直流入力電圧Vaが電圧閾値Vth以下となった場合は、制御回路17に対して電圧低下検出信号Vlowを出力する。電圧低下検出信号Vlowは、例えば直流入力電圧Vaが電圧閾値Vthを超えていれば未検出を表すオフ、直流入力電圧Vaが電圧閾値Vth以下であれば検出を表すオンとなるデジタル信号である。電圧比較器16aの出力端子と電圧比較器16aの反転入力端子との間には、抵抗16fが接続されている。電圧比較器16aの出力端子の出力を抵抗16fを介して電圧比較器16aの反転入力端子にフィードバックすることで、反転入力端子に入力される電圧にヒステリシス幅を持たせることができる。つまり、電圧閾値Vthにヒステリシス幅を持たせることになる。電圧閾値Vthがヒステリシス幅をもつことで、例えばノイズの影響により直流入力電圧Vaが電圧閾値Vthに近い電圧となったときに、出力のデジタル信号がチャタリングを起こすことを防止することができる。なお、低電圧検出回路16の構成は図2に示した構成に限るものではなく、直流入力電圧Vaが電圧閾値Vth以下となることを検出できる構成であれば他の構成であってもよい。
図3は、本実施の形態の放電回路15の構成図である。放電回路15は、逆流防止素子15aと定電流放電回路15bと遅延回路15cと低速放電抵抗15dとを備えている。定電流放電回路15bは、放電開閉素子31と電流値設定抵抗32と放電駆動抵抗33とで構成されている。放電開閉素子31のベース端子は、放電駆動抵抗33を介して放電回路15の基準電圧Voに接続されている。放電開閉素子31のコレクタ端子は、逆流防止素子15aを介して平滑コンデンサ14に接続されている。放電開閉素子31のエミッタ端子は、電流値設定抵抗32を介してグラウンドに接続されている。また、放電開閉素子31のベース端子は、遅延回路15cにも接続されている。定電流放電回路15bは、エミッタフォロアに構成されており、ベース端子が直流電圧である基準電圧Voに接続されているため、コレクタ端子からエミッタ端子に流れる電流は定電流となる。
逆流防止素子15aは、平滑コンデンサ14の残留電荷の放電によって第1制御電圧Vc1が低下し、第1制御電圧Vc1が放電回路15の基準電圧Voより低くなったときに放電回路15から平滑コンデンサ14に向かって発生する逆電流を防止する。なお、放電回路15の基準電圧Voは、常時電力供給を行う別の電源回路で設定されている。
低速放電抵抗15dは、平滑コンデンサ14とグラウンドとの間に接続されているため、車載制御装置1が正常動作しているときは低速放電抵抗15dには常に電流が流れている。したがって、この低速放電抵抗15dでの電力損失を極力小さくするために、低速放電抵抗15dの抵抗値は例えば100KΩ以上と高い抵抗値に設定されている。そのため、この低速放電抵抗15dを介して平滑コンデンサ14の残留電荷を放電させる場合は、その抵抗値と容量値の時定数とによって決まる極めて長い時間が必要となる。一方、定電流放電回路15bは、基準電圧Voと電流値設定抵抗32の抵抗値とによって決まる一定の電流値にて平滑コンデンサ14の残留電荷を放電させる。そのため、定電流放電回路15bによって平滑コンデンサ14の残留電荷を放電させる場合は、線形に電圧が低下する。定電流放電回路15bを流れる電流値は、平滑コンデンサ14の容量値と放電時間から任意の値に設定することができ、放電時間がシーケンスを正常に行うことができる短い時間となるように設定する。
遅延回路15cは、遅延部34と第1放電遮断部35と第2放電遮断部36とで構成されている。遅延部34は、抵抗34aとコンデンサ34bとで構成されており、制御回路17から受け取る放電指示に予め設定された遅延時間を与える。第1放電遮断部35は放電開閉素子35aと抵抗35bとで構成されており、第2放電遮断部36は放電開閉素子36aと抵抗36bとで構成されている。第1放電遮断部35には、遅延部34で遅延時間を与えられた放電指示が入力される。第2放電遮断部36には、放電指示が直接入力される。第1放電遮断部35と第2放電遮断部36とは定電流放電回路15bの放電開閉素子31のベース端子に対して並列に接続されている。
次に、本実施の形態の放電回路15の動作について説明する。
放電回路15が制御回路17から放電指示を受け取っていない場合、すなわち開閉回路13に対して接続指示が出されている場合、遅延回路15cから定電流放電回路15bへはプルダウン信号が出力される。このとき、定電流放電回路15bの放電開閉素子31のベース端子がプルダウンされているので、放電開閉素子31のコレクタ端子とエミッタ端子とは遮断された状態となる。つまり、定電流放電回路15bの抵抗は無限大に近い値となる。放電回路15が制御回路17から放電指示を受け取ると、遅延回路15cで遅延された放電指示が定電流放電回路15bに入力される。定電流放電回路15bの放電開閉素子31のベース端子の電圧は放電駆動抵抗33を介して基準電圧Voにプルアップされ、放電開閉素子31のコレクタ端子とエミッタ端子との間が接続された状態となる。そうすると、平滑コンデンサ14の残留電荷は、逆流防止素子15a、放電開閉素子31および電流値設定抵抗32を介してグラウンドに流れる。上述のように、電流値設定抵抗32の抵抗値は、電源遮断時の電源シーケンスを遵守するために必要な放電時間に基づいて設定されているので定電流放電回路15bを経由する放電は短時間に速やかに行われる。平滑コンデンサ14の残留電荷が定電流放電回路15bを経由して放電され、第1制御電圧Vc1が放電開閉素子31のベース端子の電圧より低くなった時点で定電流放電回路15bを経由した放電が終了する。これ以降は、低速放電抵抗15dを経由した放電となる。ただし、低速放電抵抗15dを経由した放電は緩やかになる。
図4は、本実施の形態の車載制御装置1におけるタイミングチャートである。図4は、直流入力電圧Vaが低下していく状態おいて、車載制御装置1の動作状態を示している。
例えば、車両のイグニッションスイッチがオフに設定されてリレー3が開かれると、直流入力電圧Vaが徐々に低下する。低電圧検出回路16は、直流入力電圧Vaが予め設定された電圧閾値Vth以下となったことを検出し、電圧低下検出信号Vlowを制御回路17へ出力する。制御回路17は、低電圧検出回路16から送られてくる電圧低下検出信号Vlowを受けて、システムIC12へリセット指示を出力する。さらに制御回路17は、リセット指示と同じタイミングで、開閉回路13に対しては遮断指示となり、放電回路15に対しては放電指示となる第1動作指示信号を出力する。開閉回路13は、遮断指示である第1動作指示信号を受けて電路を電気的に遮断する。放電回路15は、放電指示である第1動作指示信号を受け取ると、放電回路15の遅延回路15cで予め設定された遅延時間を経過したのちに定電流放電回路15bを介して平滑コンデンサ14の残留電荷を放電させる。
直流入力電圧Vaは、電圧閾値Vth以下となった後も徐々に低下し、直流変換回路11が直流入力電圧を第1電源電圧Vb1に変換することができなくなる電圧Vdまで低下する。図4の第1電源電圧Vb1のタイミングチャートに示すように、直流変換回路11は、直流入力電圧Vaが電圧閾値Vth以下になっても直流入力電圧VaがVd以下になるまでは第1電源電圧Vb1を出力する。したがって、第1電源電圧Vb1の電力で駆動されるシステムIC12は、直流入力電圧Vaが電圧閾値Vth以下になっても直流入力電圧VaがVd以下になるまでは正常動作が可能となる。直流変換回路11の出力電圧は、直流入力電圧VaがVd以下となった後は徐々に低下する。
開閉回路13が遮断されたのちの第1制御電圧Vc1は、平滑コンデンサ14の残留電荷の電圧となる。したがって、図4の第1制御電圧Vc1のタイミングチャートは、開閉回路13が遮断された後は、平滑コンデンサ14の残留電荷の電圧を示している。放電回路15は、開閉回路13が電路を遮断したタイミングに対して遅れたタイミングで平滑コンデンサ14の残留電荷の放電を開始する。このとき、平滑コンデンサ14の残留電荷は、定電流放電回路15bを介して放電されるので、速やかに放電される。平滑コンデンサ14の残留電荷は、電流値設定抵抗32を介して放電された後は低速放電抵抗15dで緩やかに放電される。
このように構成された車載制御装置は、放電回路が放電指示を受け取ると放電回路の定電流回路を駆動させ平滑コンデンサの残留電荷を定電流で放電させているので、外部負荷を用いずに平滑コンデンサの残留電荷を速やかに放電させることができる。その結果、この車載制御装置は、システムICの第1電力供給端子への電力供給が低下する前に平滑コンデンサの残留電荷がほぼゼロとなるので、電源遮断時におけるシステムICの電源シーケンスを確実に実施することができる。
また、本実施の形態の車載制御装置は、放電回路の遅延回路で予め設定された遅延時間を経過したのちに定電流放電回路を介して平滑コンデンサの残留電荷を放電させているので、電源遮断時に安定した電源シーケンス動作を行うことができる。例えば、開閉回路が電路を遮断する前に放電回路の放電動作が開始されると、直流変換回路の出力電流が急激に増加する場合がある。その結果、電源遮断時に不要な電力の発生、システムICの第2電力供給端子の入力である第1制御電圧にリップルが発生するなど電源遮断時の電源シーケンス動作が不安定になる。上述のように、本実施の形態の車載制御装置は、開閉回路が遮断動作を行った後に放電回路の放電動作が開始されるので、電源遮断時に安定した電源シーケンス動作を行うことができる。
また、本実施の形態の車載制御装置においては、低電圧検出回路の電圧閾値Vthにヒステリシス幅を持たせることができるので、ノイズなどによるチャタリングの影響を最小限に抑えることができる。
さらに、平滑コンデンサの残留電荷は放電回路の定電流放電回路を経由して放電されるので、放電時の電流を任意の一定な電流値に設定することができるため、電流値設定抵抗32として許容電力が小さく安価な抵抗を用いることができる。
図5は、本実施の形態に係る別の車載制御装置の構成図である。図5に示す別の車載制御装置は、直流変換回路11と並列に第2直流変換回路21を備えている。第2直流変換回路21は、直流入力電圧Vaを第2電源電圧Vb2に変換して出力端子21aから出力する。出力端子21aは、システムIC12の第1電力供給端子12aに接続されており、第2電源電圧Vb2はシステムIC12の駆動電力となる。図1に示した車載制御装置においては、システムICの第1電力供給端子12aに入力される電力とシステムIC12の第2電力供給端子12bに入力される電力とは、同じ直流変換回路11の出力から得ていた。図5に示す別の車載制御装置のように、システムIC12の第1電力供給端子12aに入力される電力とシステムIC12の第2電力供給端子12bに入力される電力とを異なる直流変換回路の出力から得てもよい。
なお、本実施の形態の放電回路は、定電流放電回路と並列に接続された低速放電抵抗を備えており、第1制御電圧Vc1が放電開閉素子31のベース端子の電圧より低くなり定電流放電回路15bの放電動作が終了した後は、低速放電抵抗15dを経由した放電により平滑コンデンサの残留電荷を確実にゼロとすることができる。そのため、次の電源投入時の電源シーケンスを確実に実行させることができる。
実施の形態2.
図6は、実施の形態2に係る車載制御装置の構成図である。本実施の形態の車載制御装置1は、複数の直流変換回路を備えている。図6に示すように、本実施の形態の車載制御装置1は、実施の形態1の図1に示した車載制御装置の構成に加えて、直流入力電圧Vaを第2電源電圧Vb2に変換する第2直流変換回路21と、この第2直流変換回路21の出力端子21aとシステムIC12の第1電力供給端子12aとをつなぐ電路に直列に挿入された第2開閉回路23と、この第2開閉回路23と第1電力供給端子12aとの間に接続された第2平滑コンデンサ24と、この第2平滑コンデンサ24に並列に接続された第2放電回路25とを備えている。本実施の形態の車載制御装置1において、直流変換回路11と第2直流変換回路21とは並列に接続されている。なお、第2直流変換回路21、第2開閉回路23および第2放電回路25は、それぞれ直流変換回路11、開閉回路13および放電回路15と同じ構成である。
第2直流変換回路21は直流入力電圧Vaを第2電源電圧Vb2に変換し、この第2電源電圧Vb2を出力端子21aから第2開閉回路23へ出力する。第2開閉回路23は、制御回路17から送られてくる遮断指示に基づいて電路を電気的に遮断する。第2放電回路25は、第2平滑コンデンサ24に並列に接続されており、制御回路17から送られてくる放電指示に基づいて第2平滑コンデンサ24の残留電荷を放電させる機能を備えている。なお、図6に示すように、制御回路17が第2開閉回路23に送る遮断指示と第2放電回路25に送る放電指示とは同じ第2信号端子17eから出力される第2動作指示信号に基づく指示である。本実施の形態において、制御回路17は、第2動作指示信号を第1動作指示信号に対して遅延させて出力している。
図7は、本実施の形態の車載制御装置1におけるタイミングチャートである。図7は、直流入力電圧Vaが低下していく状態おいて、車載制御装置1の動作状態を示している。図7において、直流入力電圧Vaから第1制御電圧Vc1までのタイミングチャートは、実施の形態1の図4で説明したタイミングチャートと同じである。なお、第2電源電圧Vb2のタイミングチャートは、第1電源電圧Vb1のタイミングチャートとほぼ同じになる。制御回路17は、第1動作指示信号対して遅れたタイミングで、第2開閉回路23に対しては遮断指示となり、第2放電回路25に対しては放電指示となる第2動作指示信号を出力する。第2開閉回路23は、遮断指示である第2動作指示信号を受けて電路を電気的に遮断する。第2開閉回路23が遮断されたのちの第2制御電圧Vc2は、第2平滑コンデンサ24の残留電荷の電圧となる。したがって、図7の第2制御電圧Vc2のタイミングチャートは、第2開閉回路23が遮断された後は、第2平滑コンデンサ24の残留電荷の電圧を示している。第2放電回路25は、第2開閉回路23が電路を遮断したタイミングに対して遅れたタイミングで第2平滑コンデンサ24の残留電荷の放電を開始する。このとき、第2平滑コンデンサ24の残留電荷は、定電流放電回路の電流値設定抵抗を介して放電されるので、速やかに放電される。第2平滑コンデンサ24の残留電荷は、電流値設定抵抗を介して放電された後は低速放電抵抗で緩やかに放電される。
このように構成された車載制御装置は、システムICの第1電力供給端子に入力される第2制御電圧が立ち下がる前に、システムICの第2電力供給端子に入力される第1制御電圧が立ち下がるので、電源遮断時におけるシステムICの電源シーケンスを確実に実施することができる。
また、システムICの第1電力供給端子に入力される第2制御電圧が第2放電回路で確実にゼロまで低下するので、次の電源投入時の電源シーケンスを確実に実行させることができる。
図8は、本実施の形態に係る別の車載制御装置の構成図である。図8に示す車載制御装置1は、図6に示す車載制御装置において、第2直流変換回路21の入力を直流入力電圧Vaに替えて直流変換回路11の出力電圧である第1電源電圧Vb1としたものである。図6に示した車載制御装置においては、直流変換回路11と第2直流変換回路21とは並列に接続されている。これに対して、図8に示した車載制御装置においては、直流変換回路11と第2直流変換回路21とは直列に接続されている。図8に示した車載制御装置の動作は、図6に示した車載制御装置の動作と同様である。
このように構成された車載制御装置も、システムICの第1電力供給端子に入力される第2制御電圧が立ち下がる前に、システムICの第2電力供給端子に入力される第1制御電圧が立ち下がるので、電源遮断時におけるシステムICの電源シーケンスを確実に実施することができる。
本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 車載制御装置、2 直流電源、3 リレー、11 直流変換回路、12 システムIC、12a 第1電力供給端子、12b 第2電力供給端子、13 開閉回路、14 平滑コンデンサ、15 放電回路、15a 逆流防止素子、15b 定電流放電回路、15c 遅延回路、15d 低速放電抵抗、16 低電圧検出回路、17 制御回路、17a 電力供給端子、21 第2直流変換回路、23 第2開閉回路、24 第2平滑コンデンサ、25 第2放電回路、31、35a、36a 放電開閉素子、32 電流値設定抵抗、33 放電駆動抵抗、34 遅延部、35 第1放電遮断部、36 第2放電遮断部。
本願に係る車載制御装置は、直流入力電圧を異なる電圧に変換する1つまたは複数の直流変換回路と、1つの直流変換回路の出力端子から出力される電力が第1電力供給端子に入力されるシステムICと、1つの直流変換回路の出力端子とシステムICの第2電力供給端子とをつなぐ電路に直列に挿入された開閉回路と、開閉回路と第2電力供給端子との間に接続された平滑コンデンサと、平滑コンデンサと並列に接続された定電流回路を備えた放電回路と、直流入力電圧が予め設定された電圧閾値以下となったことを検出する低電圧検出回路と、低電圧検出回路において直流入力電圧が電圧閾値以下となったことが検出されたときに、システムICに対してリセット指示を、開閉回路に対して遮断指示を、および放電回路に対して放電指示を送る制御回路とを備えている。そして、システムICは、第1電力供給端子に入力される電力で駆動されると共に、第2電力供給端子に入力される電圧に基づいて演算処理を行うものであり、放電回路は、放電指示を受け取ると放電回路の定電流回路を起動して平滑コンデンサの残留電荷をグラウンドへと放電させている。

Claims (5)

  1. 直流入力電圧を異なる電圧に変換する1つまたは複数の直流変換回路と、
    1つの前記直流変換回路の出力端子から出力される電力が第1電力供給端子に入力されるシステムICと、
    1つの前記直流変換回路の前記出力端子と前記システムICの第2電力供給端子とをつなぐ電路に直列に挿入された開閉回路と、
    前記開閉回路と前記第2電力供給端子との間に接続された平滑コンデンサと、
    前記平滑コンデンサと並列に接続された定電流回路を備えた放電回路と、
    前記直流入力電圧が予め設定された電圧閾値以下となったことを検出する低電圧検出回路と、
    前記低電圧検出回路において前記直流入力電圧が前記電圧閾値以下となったことが検出されたときに、前記システムICに対してリセット指示を、前記開閉回路に対して遮断指示を、および前記放電回路に対して放電指示を送る制御回路とを備えた車載制御装置であって、
    前記放電回路は、前記放電指示を受け取ると前記放電回路の前記定電流回路を起動させて前記平滑コンデンサの残留電荷を前記放電回路を介して放電させることを特徴とする車載制御装置。
  2. 前記放電回路は、前記制御回路から受け取る前記放電指示に遅延を与える遅延回路をさらに備えたことを特徴とする請求項1に記載の車載制御装置。
  3. 前記放電回路は、逆流防止素子をさらに備えたことを特徴とする請求項1または2に記載の車載制御装置。
  4. 前記低電圧検出回路の前記電圧閾値は、ヒステリシス幅を有することを特徴とする請求項1から3のいずれか1項に記載の車載制御装置。
  5. 前記システムICの前記第1電力供給端子と1つの前記直流変換回路の前記出力端子とをつなぐ電路に直列に接続された第2開閉回路と、
    前記第2開閉回路と前記第1電力供給端子との間に接続された第2平滑コンデンサと、
    前記第2平滑コンデンサに並列に接続された第2放電回路とをさらに備え、
    前記第2放電回路は、前記制御回路から受け取る放電指示によって前記第2放電回路の定電流回路を起動して前記第2平滑コンデンサの残留電荷を前記第2放電回路を介して放電させることを特徴とする請求項1から4のいずれか1項に記載の車載制御装置。
JP2019190664A 2019-10-18 2019-10-18 車載制御装置 Active JP6847181B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190664A JP6847181B1 (ja) 2019-10-18 2019-10-18 車載制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190664A JP6847181B1 (ja) 2019-10-18 2019-10-18 車載制御装置

Publications (2)

Publication Number Publication Date
JP6847181B1 JP6847181B1 (ja) 2021-03-24
JP2021069141A true JP2021069141A (ja) 2021-04-30

Family

ID=74879220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190664A Active JP6847181B1 (ja) 2019-10-18 2019-10-18 車載制御装置

Country Status (1)

Country Link
JP (1) JP6847181B1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142611U (ja) * 1984-08-16 1986-03-19 カルソニックカンセイ株式会社 電源装置
JP2008253105A (ja) * 2007-03-30 2008-10-16 Denso Corp 放電回路
JP2018014813A (ja) * 2016-07-20 2018-01-25 東芝シュネデール・インバータ株式会社 インバータ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142611U (ja) * 1984-08-16 1986-03-19 カルソニックカンセイ株式会社 電源装置
JP2008253105A (ja) * 2007-03-30 2008-10-16 Denso Corp 放電回路
JP2018014813A (ja) * 2016-07-20 2018-01-25 東芝シュネデール・インバータ株式会社 インバータ装置

Also Published As

Publication number Publication date
JP6847181B1 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
KR102083204B1 (ko) 과전류 보호 회로
JPH10145205A (ja) 保護機能付きスイッチ回路
US10245956B2 (en) Preventing high induced voltage from being applied to discharge control device
CN110463039B (zh) 负载驱动装置
CN109661330B (zh) 车辆用蓄电装置
JP4391513B2 (ja) 車両用交流発電機の制御装置
US6005761A (en) Overheat protection device, semiconductor switch apparatus using the same, and intelligent power module
JP6409682B2 (ja) 電子制御装置
JP6057665B2 (ja) 半導体装置、電子機器、車両
JP2017073872A (ja) チャージポンプ回路
US11888388B2 (en) Electric compressor control device
JP2018082579A (ja) 制御装置、車載装置、制御方法及び充放電回路
CN110741529B (zh) 车载用电源装置
JP2009159259A (ja) スイッチング装置
EP3382838B1 (en) Protection circuit and control device for brushless dc motor
JP2013198172A (ja) 負荷駆動装置
JP6847181B1 (ja) 車載制御装置
JP4259006B2 (ja) 電気自動車用電源制御装置
JP2007019293A (ja) リニアソレノイドの駆動装置
JP2007027465A (ja) リニアソレノイドの駆動回路
KR100535082B1 (ko) 두 개의 배터리를 입출력으로 하는 직류 컨버터의돌입전류 방지회로
JP2018207684A (ja) 平滑コンデンサの放電方法及び放電装置
JP2017077138A (ja) 半導体装置
US10826486B2 (en) Switching driving circuit, switching circuit, and power supply device
JP7552550B2 (ja) スイッチの過電流検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R151 Written notification of patent or utility model registration

Ref document number: 6847181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350