JP2021064661A - Holding device - Google Patents

Holding device Download PDF

Info

Publication number
JP2021064661A
JP2021064661A JP2019187541A JP2019187541A JP2021064661A JP 2021064661 A JP2021064661 A JP 2021064661A JP 2019187541 A JP2019187541 A JP 2019187541A JP 2019187541 A JP2019187541 A JP 2019187541A JP 2021064661 A JP2021064661 A JP 2021064661A
Authority
JP
Japan
Prior art keywords
power supply
supply terminal
terminal
heater electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019187541A
Other languages
Japanese (ja)
Other versions
JP7313254B2 (en
Inventor
太一 岐部
Taichi Kibe
太一 岐部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019187541A priority Critical patent/JP7313254B2/en
Publication of JP2021064661A publication Critical patent/JP2021064661A/en
Application granted granted Critical
Publication of JP7313254B2 publication Critical patent/JP7313254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To prevent damage to a first power feeding terminal and other members caused by force in a second direction applied to the first power feeding terminal and so forth due to displacement of a base member.SOLUTION: A holding device comprises: a first member which has a first surface substantially perpendicular to a first direction; a second member, provided with a through-hole, which has a heat expansion coefficient different from that of the first member; a power feeding pad; a first power feeding terminal which is bonded to the power feeding pad; a second power feeding terminal; a third power feeding terminal which is disposed at a location, inside the through-hole, between the first power feeding terminal and the second power feeding terminal; a first spring; and a second spring. The third power feeding terminal is disposed so that a gap is formed between itself and a wall surface of the second member defining the through-hole. Also, the third power feeding terminal is provided in a manner movable in a direction substantially perpendicular to the first direction.SELECTED DRAWING: Figure 3

Description

本明細書に開示される技術は、対象物を保持する保持装置に関する。 The techniques disclosed herein relate to holding devices that hold objects.

例えば半導体を製造する際にウェハを保持する保持装置として、静電チャックが用いられる。静電チャックは、例えばセラミックスにより構成され、所定の方向(以下、「第1の方向」という。)に略直交する略平面状の表面(以下、「吸着面」という。)を有する板状部材と、板状部材の内部に配置されたチャック電極と、例えば金属により構成され、板状部材の吸着面とは反対側の表面(以下、「第1の表面」という。)に対向する表面(以下、「第2の表面」という。)を有するベース部材とを備えている。静電チャックは、チャック電極に電圧が印加されることにより発生する静電引力を利用して、板状部材の吸着面にウェハを吸着して保持する。 For example, an electrostatic chuck is used as a holding device for holding a wafer when manufacturing a semiconductor. The electrostatic chuck is a plate-like member made of, for example, ceramics and having a substantially planar surface (hereinafter, referred to as “adsorption surface”) substantially orthogonal to a predetermined direction (hereinafter, referred to as “first direction”). And a surface (hereinafter referred to as "first surface") which is composed of, for example, metal and is composed of a chuck electrode arranged inside the plate-shaped member and is opposite to the suction surface of the plate-shaped member. Hereinafter, it is provided with a base member having a "second surface"). The electrostatic chuck uses the electrostatic attraction generated by applying a voltage to the chuck electrode to suck and hold the wafer on the suction surface of the plate-shaped member.

静電チャックの吸着面に保持されたウェハの温度が所望の温度にならないと、ウェハに対する各処理(成膜、エッチング等)の精度が低下するおそれがあるため、静電チャックにはウェハの温度分布を制御する性能が求められる。そのため、静電チャックの使用時には、板状部材に配置されたヒータ電極による加熱や、ベース部材に形成された冷媒流路に冷媒を供給することによる冷却によって、板状部材の吸着面の温度分布の制御(ひいては、吸着面に保持されたウェハの温度分布の制御)が行われる。 If the temperature of the wafer held on the suction surface of the electrostatic chuck does not reach the desired temperature, the accuracy of each process (deposition, etching, etc.) on the wafer may decrease. Therefore, the temperature of the wafer is applied to the electrostatic chuck. Performance to control the distribution is required. Therefore, when the electrostatic chuck is used, the temperature distribution of the adsorption surface of the plate-shaped member is caused by heating by the heater electrodes arranged on the plate-shaped member and cooling by supplying the refrigerant to the refrigerant flow path formed in the base member. (By extension, control of the temperature distribution of the wafer held on the suction surface) is performed.

静電チャックには、ヒータ電極への給電のための構成が設けられる(例えば、特許文献1参照)。具体的には、特許文献1の静電チャックは、板状部材の第1の表面(吸着面とは反対側の表面)の側に配置された給電パッドと、ベース部材の第2の表面(板状部材の第1の表面に対向する表面)から第2の表面とは反対側の表面(以下、「第3の表面」という。)まで貫通する貫通孔に配置された給電端子を備える。当該給電端子は、給電パッドに接合された第1の給電端子と、ベース部材の第3の表面の側に配置された第2の給電端子と、第1の給電端子と第2の給電端子との間に配置された第3の給電端子とにより構成されている。第3の給電端子は、ベース部材に対してねじにより固定されている。第1の給電端子の先端は、第1の方向に略直交する方向に伸縮する第1のばねを形成しており、第1のばねは、第3の給電端子に接触している。第2の給電端子の先端は、第1の方向に略直交する方向に伸縮する第2のばねを形成しており、第2のばねは、第3の給電端子に接触している。このような構成では、電源から、第2の給電端子、第3の給電端子、第1の給電端子、給電パッド等を介して、ヒータ電極に電力が供給される。 The electrostatic chuck is provided with a configuration for supplying power to the heater electrode (see, for example, Patent Document 1). Specifically, the electrostatic chuck of Patent Document 1 includes a power feeding pad arranged on the side of the first surface (the surface opposite to the suction surface) of the plate-shaped member and the second surface of the base member (the surface opposite to the suction surface). It is provided with a power supply terminal arranged in a through hole penetrating from a surface of the plate-shaped member facing the first surface) to a surface opposite to the second surface (hereinafter, referred to as a "third surface"). The power supply terminal includes a first power supply terminal joined to the power supply pad, a second power supply terminal arranged on the side of the third surface of the base member, a first power supply terminal, and a second power supply terminal. It is composed of a third power supply terminal arranged between the two. The third power feeding terminal is fixed to the base member by a screw. The tip of the first power feeding terminal forms a first spring that expands and contracts in a direction substantially orthogonal to the first direction, and the first spring is in contact with the third power feeding terminal. The tip of the second power feeding terminal forms a second spring that expands and contracts in a direction substantially orthogonal to the first direction, and the second spring is in contact with the third power feeding terminal. In such a configuration, power is supplied from the power source to the heater electrode via the second power supply terminal, the third power supply terminal, the first power supply terminal, the power supply pad, and the like.

特許第4522517号Patent No. 4522517

上記構成を有する従来の静電チャックでは、板状部材とベース部材との間で熱膨張係数が異なることにより、板状部材とベース部材との間の熱膨張差に起因してベース部材が板状部材に対して第1の方向に略直交する方向(以下、「第2の方向」という。)に相対的に変位することがある。これにより、第1の給電端子等に第2の方向の力がかかり、例えば第1の給電端子と給電パッドとの接合部分にクラックが発生する等、第1の給電端子や他の部材が損傷するおそれがある。上記構成を有する従来の静電チャックでは、第2の方向に伸縮する第1のばねおよび第2のばねの存在により、ベース部材の相対的な変位に起因して第1の給電端子等に第2の方向の力がかかることをある程度は抑制できる。しかしながら、第3の給電端子がベース部材に対してねじにより固定されているため、ベース部材の相対的な変位による力が第3の給電端子にかかりやすく(ひいては、第1の給電端子等にかかりやすく)、そのため、ベース部材の変位に起因して第1の給電端子等に第2の方向の力がかかり、第1の給電端子や他の部材が損傷することを十分には抑制することができない。 In the conventional electrostatic chuck having the above configuration, since the coefficient of thermal expansion differs between the plate-shaped member and the base member, the base member becomes a plate due to the difference in thermal expansion between the plate-shaped member and the base member. It may be relatively displaced in a direction substantially orthogonal to the first direction (hereinafter, referred to as "second direction") with respect to the shaped member. As a result, a force is applied to the first power supply terminal or the like in the second direction, and for example, a crack is generated at the joint portion between the first power supply terminal and the power supply pad, and the first power supply terminal and other members are damaged. There is a risk of doing so. In the conventional electrostatic chuck having the above configuration, due to the presence of the first spring and the second spring that expand and contract in the second direction, the first power supply terminal and the like are connected due to the relative displacement of the base member. It is possible to suppress the application of the force in the two directions to some extent. However, since the third power supply terminal is fixed to the base member by a screw, a force due to the relative displacement of the base member is likely to be applied to the third power supply terminal (and thus to the first power supply terminal or the like). Therefore, a force in the second direction is applied to the first power feeding terminal or the like due to the displacement of the base member, and damage to the first power feeding terminal or other members can be sufficiently suppressed. Can not.

なお、このような課題は、第2の給電端子、第3の給電端子、第1の給電端子、給電パッド等を介して、ヒータ電極に電力が供給される静電チャックに限らず、第2の給電端子、第3の給電端子、第1の給電端子、給電パッド等を介して、特定部材(ヒータ電極以外の別の部材を含む。例えば、チャック電極)に電力が供給される保持装置に共通の課題である。 It should be noted that such a problem is not limited to the electrostatic chuck in which power is supplied to the heater electrode via the second power supply terminal, the third power supply terminal, the first power supply terminal, the power supply pad, and the like, and the second power supply terminal. To a holding device in which power is supplied to a specific member (including another member other than the heater electrode, for example, a chuck electrode) via a power supply terminal, a third power supply terminal, a first power supply terminal, a power supply pad, or the like. This is a common issue.

本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses a technique capable of solving the above-mentioned problems.

本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The techniques disclosed herein can be realized, for example, in the following forms.

(1)本明細書に開示される保持装置は、第1の方向に略直交する第1の表面を有する第1の部材と、前記第1の部材に接合された第2の部材であって、前記第1の表面に対向する第2の表面と、前記第2の表面とは反対側の第3の表面と、を有し、前記第2の表面から前記第3の表面まで貫通する貫通孔が形成され、熱膨張係数が前記第1の部材の熱膨張係数とは異なる第2の部材と、前記第1の部材の前記第1の表面の側に配置された給電パッドと、前記給電パッドに接合され、少なくとも一部が前記貫通孔の内部に位置している第1の給電端子と、前記第2の部材の前記第3の表面の側に配置され、少なくとも一部が前記貫通孔の内部に位置している第2の給電端子と、前記貫通孔の内部における前記第1の給電端子と前記第2の給電端子との間に配置された第3の給電端子と、を備える保持装置において、前記第1の給電端子と前記第3の給電端子の少なくとも一方は、前記第1の給電端子と前記第3の給電端子との間の電気的導通が可能であり、前記第1の方向に略直交する方向に伸縮する第1のばねを有し、前記第2の給電端子と前記第3の給電端子の少なくとも一方は、前記第2の給電端子と前記第3の給電端子との間の電気的導通が可能であり、前記第1の方向に略直交する方向に伸縮する第2のばねを有し、前記第3の給電端子は、前記貫通孔を画定する前記第2の部材の壁面との間に隙間が形成されるように配置され、前記第1の方向に略直交する方向に移動可能なように備えられている。 (1) The holding device disclosed in the present specification is a first member having a first surface substantially orthogonal to the first direction and a second member joined to the first member. A second surface facing the first surface and a third surface opposite to the second surface, penetrating from the second surface to the third surface. A second member in which holes are formed and whose coefficient of thermal expansion is different from the coefficient of thermal expansion of the first member, a power supply pad arranged on the side of the first surface of the first member, and the power supply. A first power feeding terminal joined to a pad and at least partly located inside the through hole and at least partly arranged on the side of the third surface of the second member, at least part of the through hole. A holding having a second power supply terminal located inside the through hole and a third power supply terminal arranged between the first power supply terminal and the second power supply terminal inside the through hole. In the device, at least one of the first power feeding terminal and the third power feeding terminal is capable of electrically conducting between the first power feeding terminal and the third power feeding terminal, and the first power feeding terminal can be electrically conducted. It has a first spring that expands and contracts in a direction substantially orthogonal to the direction, and at least one of the second power supply terminal and the third power supply terminal is a second power supply terminal and the third power supply terminal. The third feeding terminal has a second spring that expands and contracts in a direction substantially orthogonal to the first direction, and the third feeding terminal defines the through hole. It is arranged so as to form a gap between the wall surface and the wall surface, and is provided so as to be movable in a direction substantially orthogonal to the first direction.

本保持装置では、上述の通り、前記第3の給電端子は、前記貫通孔を画定する前記第2の部材の壁面との間に隙間が形成されるように配置され、前記第1の方向に略直交する方向に移動可能なように備えられている。そのため、前記第1の部材と前記第2の部材との間の熱膨張差に起因して前記第2の部材が前記第1の部材に対して相対的に変位したときに、上記従来の静電チャックよりも、前記第1の給電端子等に力がかかることを抑制することができ、その結果、上記従来の静電チャックよりも、前記第1の給電端子や他の部材の損傷を抑制することができる。 In the present holding device, as described above, the third power feeding terminal is arranged so as to form a gap between the third power feeding terminal and the wall surface of the second member defining the through hole, and is arranged in the first direction. It is provided so that it can move in directions that are approximately orthogonal to each other. Therefore, when the second member is displaced relative to the first member due to the difference in thermal expansion between the first member and the second member, the conventional static electricity is used. It is possible to suppress the application of force to the first power feeding terminal or the like as compared with the electric chuck, and as a result, damage to the first power feeding terminal or other members is suppressed as compared with the conventional electrostatic chuck. can do.

(2)上記保持装置において、前記第1の給電端子は、前記第3の給電端子に対向する第4の表面を有し、前記第4の表面から前記第1の方向に突出する第1の凸部を有し、前記第2の給電端子は、前記第3の給電端子に対向する第5の表面を有し、前記第5の表面から前記第1の方向に突出する第2の凸部を有し、前記第3の給電端子の前記第1の給電端子の側の端部には、前記第1の方向に凹む第1の凹部が形成され、前記第1の凹部には、前記第1の凸部の少なくとも一部が挿入され、前記第3の給電端子の前記第2の給電端子の側の端部には、前記第1の方向に凹む第2の凹部が形成され、前記第2の凹部には、前記第2の凸部の少なくとも一部が挿入され、前記第1のばねは、前記第1の凸部と前記第1の凹部との少なくとも一方の少なくとも一部を形成し、前記第2のばねは、前記第2の凸部と前記第2の凹部との少なくとも一方の少なくとも一部を形成している、構成としてもよい。本保持装置においては、より効果的に、前記第1の給電端子等に力がかかることを抑制することができ、その結果、より効果的に、前記第1の給電端子や他の部材の損傷を抑制することができる。 (2) In the holding device, the first feeding terminal has a fourth surface facing the third feeding terminal, and the first feeding terminal projects from the fourth surface in the first direction. A second convex portion having a convex portion, the second feeding terminal has a fifth surface facing the third feeding terminal, and protrudes from the fifth surface in the first direction. At the end of the third power feeding terminal on the side of the first power feeding terminal, a first recess recessed in the first direction is formed, and the first recess is formed with the first recess. At least a part of the convex portion of 1 is inserted, and a second concave portion recessed in the first direction is formed at an end portion of the third power supply terminal on the side of the second power supply terminal. At least a part of the second convex portion is inserted into the second concave portion, and the first spring forms at least a part of at least one of the first convex portion and the first concave portion. The second spring may be configured to form at least a part of at least one of the second convex portion and the second concave portion. In this holding device, it is possible to more effectively suppress the application of force to the first power supply terminal or the like, and as a result, more effectively damage to the first power supply terminal or other members. Can be suppressed.

(3)上記保持装置において、前記第4の表面と前記第5の表面とのそれぞれは、前記第1の方向視で前記第3の給電端子を内包し、前記第1の凹部の深さが前記第1の凸部の高さよりも大きく、前記第2の凹部の深さが前記第2の凸部の高さよりも大きい、構成としてもよい。本保持装置では、前記第1の給電端子は、前記第1の凸部が前記第1の凹部の底面に接触しない位置で位置決め(前記第1の方向の位置決め。以下、同様)され、前記第2の給電端子は、前記第2の凸部が前記第2の凹部の底面に接触しない位置で位置決めされる。従って、本保持装置においては、前記第1の凸部が前記第1の凹部の底面に接触(または衝突)したり、前記第2の凸部が前記第2の凹部の底面に接触(または衝突)したりすることにより前記第1の凸部や前記第2の凸部が損傷することが防止される。 (3) In the holding device, each of the fourth surface and the fifth surface includes the third power feeding terminal in the first directional view, and the depth of the first recess is increased. The configuration may be such that the height of the first convex portion is larger than the height of the first convex portion and the depth of the second concave portion is larger than the height of the second convex portion. In this holding device, the first power feeding terminal is positioned at a position where the first convex portion does not come into contact with the bottom surface of the first concave portion (positioning in the first direction; the same applies hereinafter). The power feeding terminal 2 is positioned at a position where the second convex portion does not contact the bottom surface of the second concave portion. Therefore, in the present holding device, the first convex portion contacts (or collides with) the bottom surface of the first concave portion, or the second convex portion contacts (or collides with) the bottom surface of the second concave portion. ), It is possible to prevent the first convex portion and the second convex portion from being damaged.

(4)上記保持装置において、前記第1の部材と前記第2の部材との少なくとも一方に配置され、加熱または冷却を行う温度調整手段を備える、構成としてもよい。そのため、本保持装置においては、前記温度調整手段による加熱または冷却を行うことにより、前記第1の部材と前記第2の部材との間の熱膨張差に起因して前記第2の部材が前記第1の部材に対して相対的に変位する可能性が高い。そのため、このような構成において本発明を適用することは、特に有効である。 (4) The holding device may be configured to be arranged on at least one of the first member and the second member and provided with a temperature adjusting means for heating or cooling. Therefore, in the present holding device, by heating or cooling by the temperature adjusting means, the second member becomes the second member due to the difference in thermal expansion between the first member and the second member. There is a high possibility that it will be displaced relative to the first member. Therefore, it is particularly effective to apply the present invention in such a configuration.

なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、保持装置およびその製造方法等の形態で実現することが可能である。 The technique disclosed in the present specification can be realized in various forms, for example, in the form of a holding device and a method for manufacturing the same.

本実施形態における静電チャック100の外観構成を概略的に示す斜視図である。It is a perspective view which shows schematic appearance structure of the electrostatic chuck 100 in this embodiment. 本実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows typically the XZ cross-sectional structure of the electrostatic chuck 100 in this embodiment. 本実施形態における、チャック電極40およびヒータ電極50への給電のための構成(図2のPx部)のXZ断面構成を拡大して示す説明図である。It is explanatory drawing which enlarges and shows the XZ cross-sectional structure of the structure (Px part of FIG. 2) for power feeding to a chuck electrode 40 and a heater electrode 50 in this embodiment.

A.本実施形態:
A−1.静電チャック100の構成:
図1は、本実施形態における静電チャック100の外観構成を概略的に示す斜視図であり、図2は、本実施形態における静電チャック100のXZ断面構成を概略的に示す説明図であり、図3は、本実施形態における、チャック電極40およびヒータ電極50への給電のための構成(図2のPx部)のXZ断面構成を拡大して示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック100は実際にはそのような向きとは異なる向きで設置されてもよい。
A. This embodiment:
A-1. Configuration of electrostatic chuck 100:
FIG. 1 is a perspective view schematically showing an external configuration of the electrostatic chuck 100 in the present embodiment, and FIG. 2 is an explanatory view schematically showing an XZ cross-sectional configuration of the electrostatic chuck 100 in the present embodiment. FIG. 3 is an enlarged explanatory view showing the XZ cross-sectional configuration of the configuration for supplying power to the chuck electrode 40 and the heater electrode 50 (Px portion in FIG. 2) in the present embodiment. Each figure shows XYZ axes that are orthogonal to each other to identify the direction. In the present specification, for convenience, the Z-axis positive direction is referred to as an upward direction, and the Z-axis negative direction is referred to as a downward direction, but the electrostatic chuck 100 is actually installed in a direction different from such a direction. May be done.

静電チャック100は、対象物(例えば半導体ウェハW。以下、単に「ウェハW」という。)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウェハWを固定するために使用される。静電チャック100は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置された板状部材10およびベース部材20を備える。なお、静電チャック100は、特許請求の範囲における保持装置に相当し、Z軸方向は、特許請求の範囲における第1の方向に相当し、板状部材10は、特許請求の範囲における第1の部材に相当する。 The electrostatic chuck 100 is a device that attracts and holds an object (for example, a semiconductor wafer W; hereinafter, simply referred to as “wafer W”) by electrostatic attraction. For example, the wafer W is held in a vacuum chamber of a semiconductor manufacturing apparatus. Used to fix. The electrostatic chuck 100 includes a plate-shaped member 10 and a base member 20 arranged side by side in a predetermined arrangement direction (in the present embodiment, the vertical direction (Z-axis direction)). The electrostatic chuck 100 corresponds to a holding device in the claims, the Z-axis direction corresponds to the first direction in the claims, and the plate-shaped member 10 corresponds to the first direction in the claims. Corresponds to the member of.

板状部材10は、上述した配列方向(Z軸方向)に略直交する略円形平面状の上面(以下、「吸着面」という)S1および下面(吸着面S1とは反対側の表面)S2を有する部材であり、例えばセラミックス(例えば、アルミナや窒化アルミニウム等)により形成されている。板状部材10の直径は例えば50mm〜500mm程度(通常は200mm〜350mm程度)であり、板状部材10の厚さは例えば1mm〜10mm程度である。なお、板状部材10の下面S2は、特許請求の範囲における第1の表面に相当する。 The plate-shaped member 10 has a substantially circular planar upper surface (hereinafter referred to as “adsorption surface”) S1 and a lower surface (surface opposite to the adsorption surface S1) S2 substantially orthogonal to the above-mentioned arrangement direction (Z-axis direction). It is a member to have, and is formed of, for example, ceramics (for example, alumina, aluminum nitride, etc.). The diameter of the plate-shaped member 10 is, for example, about 50 mm to 500 mm (usually about 200 mm to 350 mm), and the thickness of the plate-shaped member 10 is, for example, about 1 mm to 10 mm. The lower surface S2 of the plate-shaped member 10 corresponds to the first surface in the claims.

図2に示すように、板状部材10の内部には、導電性材料(例えば、タングステン、モリブデン、白金等)により形成されたチャック電極40が配置されている。Z軸方向視でのチャック電極40の形状は、例えば略円形である。チャック電極40に電源(図示せず)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWが板状部材10の吸着面S1に吸着固定される。 As shown in FIG. 2, a chuck electrode 40 formed of a conductive material (for example, tungsten, molybdenum, platinum, etc.) is arranged inside the plate-shaped member 10. The shape of the chuck electrode 40 in the Z-axis direction is, for example, substantially circular. When a voltage is applied to the chuck electrode 40 from a power source (not shown), an electrostatic attraction is generated, and the wafer W is attracted and fixed to the suction surface S1 of the plate-shaped member 10 by this electrostatic attraction.

板状部材10の内部には、また、導電性材料(例えば、タングステン、モリブデン、白金等)を含む抵抗発熱体により構成されたヒータ電極50が配置されている。ヒータ電極50に電源(図示せず)から電圧が印加されると、ヒータ電極50が発熱することによって板状部材10が温められ(加熱され)、板状部材10の吸着面S1に保持されたウェハWが温められる(加熱される)。これにより、ウェハWの温度分布の制御が実現される。なお、ヒータ電極50は、特許請求の範囲における温度調整手段に相当する。 Inside the plate-shaped member 10, a heater electrode 50 composed of a resistance heating element containing a conductive material (for example, tungsten, molybdenum, platinum, etc.) is arranged. When a voltage is applied to the heater electrode 50 from a power source (not shown), the heater electrode 50 generates heat to heat (heat) the plate-shaped member 10 and hold it on the suction surface S1 of the plate-shaped member 10. The wafer W is heated (heated). As a result, the temperature distribution of the wafer W can be controlled. The heater electrode 50 corresponds to the temperature adjusting means in the claims.

ベース部材20は、板状部材10の下面S2に対向する上面S3と、上面S3とは反対側の下面S4とを有している。板状部材10とベース部材20とは、板状部材10の下面S2とベース部材20の上面S3とが、後述する接合部30を挟んで上記配列方向(Z軸方向)に対向するように配置される。ベース部材20は、例えば板状部材10と同径の、または、板状部材10より径が大きい略円形平面の板状部材であり、例えば金属(アルミニウムやアルミニウム合金等)により形成されている。従って、ベース部材20の熱膨張係数は、板状部材10の熱膨張係数とは異なっている。より具体的には、本実施形態では、ベース部材20の熱膨張係数は、板状部材10の熱膨張係数よりも大きい。ベース部材20の直径は、例えば220mm〜550mm程度(通常は220mm〜350mm)であり、ベース部材20の厚さは例えば20mm〜40mm程度である。なお、ベース部材20の上面S3は、特許請求の範囲における第2の表面に相当し、ベース部材20の下面S4は、特許請求の範囲における第3の表面に相当する。 The base member 20 has an upper surface S3 facing the lower surface S2 of the plate-shaped member 10 and a lower surface S4 on the opposite side of the upper surface S3. The plate-shaped member 10 and the base member 20 are arranged so that the lower surface S2 of the plate-shaped member 10 and the upper surface S3 of the base member 20 face each other in the arrangement direction (Z-axis direction) with the joint portion 30 described later interposed therebetween. Will be done. The base member 20 is, for example, a plate-shaped member having the same diameter as the plate-shaped member 10 or a substantially circular flat plate having a diameter larger than that of the plate-shaped member 10, and is formed of, for example, a metal (aluminum, an aluminum alloy, or the like). Therefore, the coefficient of thermal expansion of the base member 20 is different from the coefficient of thermal expansion of the plate-shaped member 10. More specifically, in the present embodiment, the coefficient of thermal expansion of the base member 20 is larger than the coefficient of thermal expansion of the plate-shaped member 10. The diameter of the base member 20 is, for example, about 220 mm to 550 mm (usually 220 mm to 350 mm), and the thickness of the base member 20 is, for example, about 20 mm to 40 mm. The upper surface S3 of the base member 20 corresponds to the second surface in the claims, and the lower surface S4 of the base member 20 corresponds to the third surface in the claims.

ベース部材20は、板状部材10の下面S2とベース部材20の上面S3との間に配置された接合部30によって、板状部材10に接合されている。接合部30の厚さは、例えば0.1mm〜1.5mm程度である。接合部30は、例えば樹脂材料(接着材料)により形成されている。接合部30を形成する樹脂材料としては、シリコーン樹脂やフッ素樹脂、アクリル樹脂、エポキシ樹脂等の種々の樹脂材料を用いることができる。 The base member 20 is joined to the plate-shaped member 10 by a joint portion 30 arranged between the lower surface S2 of the plate-shaped member 10 and the upper surface S3 of the base member 20. The thickness of the joint portion 30 is, for example, about 0.1 mm to 1.5 mm. The joint portion 30 is formed of, for example, a resin material (adhesive material). As the resin material forming the joint portion 30, various resin materials such as silicone resin, fluororesin, acrylic resin, and epoxy resin can be used.

ベース部材20の内部には冷媒流路21が形成されている。冷媒流路21に冷媒(例えば、フッ素系不活性液体や水等)が流されると、ベース部材20が冷却され、接合部30を介したベース部材20と板状部材10との間の伝熱(熱引き)により板状部材10が冷却され、板状部材10の吸着面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度分布の制御が実現される。なお、冷媒流路21は、特許請求の範囲における温度調整手段に相当する。 A refrigerant flow path 21 is formed inside the base member 20. When a refrigerant (for example, a fluorine-based inert liquid, water, etc.) is flowed through the refrigerant flow path 21, the base member 20 is cooled, and heat is transferred between the base member 20 and the plate-shaped member 10 via the joint portion 30. The plate-shaped member 10 is cooled by (heat transfer), and the wafer W held on the suction surface S1 of the plate-shaped member 10 is cooled. As a result, the temperature distribution of the wafer W can be controlled. The refrigerant flow path 21 corresponds to the temperature adjusting means in the claims.

A−2.チャック電極40およびヒータ電極50への給電のための構成:
次に、図2および図3を用いて、チャック電極40およびヒータ電極50への給電のための構成について説明する。静電チャック100は、ヒータ電極50への給電のための構成を備えている。すなわち、図3に示すように、静電チャック100には、ベース部材20の下面S4から板状部材10の内部に至るヒータ電極用端子用孔150が形成されている。ヒータ電極用端子用孔150は、ベース部材20を上下方向に貫通する貫通孔25と、接合部30を上下方向に貫通する貫通孔35と、板状部材10の下面S2側に形成された凹部15とが、互いに連通することにより構成された一体の孔である。本実施形態では、ヒータ電極用端子用孔150を構成する貫通孔25,35は、断面(Z軸方向に直交する方向に平行な断面)が略円形状の孔である。
A-2. Configuration for feeding power to the chuck electrode 40 and the heater electrode 50:
Next, the configuration for supplying power to the chuck electrode 40 and the heater electrode 50 will be described with reference to FIGS. 2 and 3. The electrostatic chuck 100 has a configuration for supplying power to the heater electrode 50. That is, as shown in FIG. 3, the electrostatic chuck 100 is formed with a hole 150 for a terminal for a heater electrode extending from the lower surface S4 of the base member 20 to the inside of the plate-shaped member 10. The heater electrode terminal hole 150 includes a through hole 25 that penetrates the base member 20 in the vertical direction, a through hole 35 that penetrates the joint portion 30 in the vertical direction, and a recess formed on the lower surface S2 side of the plate-shaped member 10. Reference numeral 15 denotes an integral hole formed by communicating with each other. In the present embodiment, the through holes 25 and 35 constituting the heater electrode terminal hole 150 are holes having a substantially circular cross section (cross section parallel to the direction orthogonal to the Z-axis direction).

板状部材10におけるヒータ電極用端子用孔150を構成する凹部15の底面には、ヒータ電極用ビア51を介してヒータ電極50と電気的に接続されたヒータ電極用給電パッド52が配置されている。従って、ヒータ電極用給電パッド52は、板状部材10の下面S2の側に配置されている。ヒータ電極用給電パッド52およびヒータ電極用ビア51は、導電性材料(例えば、タングステン、モリブデン、白金等)により形成されている。なお、ヒータ電極用給電パッド52は、厚さ方向(Z軸方向)の全体が板状部材10から露出している。ただし、ヒータ電極用給電パッド52の下面が板状部材10から露出している限りにおいて、ヒータ電極用給電パッド52における厚さ方向の一部分または全体が、板状部材10に埋設されていてもよい。 A heater electrode feeding pad 52 electrically connected to the heater electrode 50 via the heater electrode via 51 is arranged on the bottom surface of the recess 15 forming the heater electrode terminal hole 150 in the plate-shaped member 10. There is. Therefore, the power supply pad 52 for the heater electrode is arranged on the lower surface S2 side of the plate-shaped member 10. The power feeding pad 52 for the heater electrode and the via 51 for the heater electrode are formed of a conductive material (for example, tungsten, molybdenum, platinum, etc.). The entire thickness direction (Z-axis direction) of the heater electrode feeding pad 52 is exposed from the plate-shaped member 10. However, as long as the lower surface of the heater electrode feeding pad 52 is exposed from the plate-shaped member 10, a part or the whole of the heater electrode feeding pad 52 in the thickness direction may be embedded in the plate-shaped member 10. ..

ベース部材20のヒータ電極用端子用孔150内には、絶縁性材料(例えばポリエーテルイミドなどの樹脂)により形成されたヒータ電極用絶縁管(インシュレーター)22が配置されている。ヒータ電極用絶縁管22の熱膨張係数は、板状部材10の熱膨張係数とは異なっている。より具体的には、本実施形態では、ヒータ電極用絶縁管22の熱膨張係数は、板状部材10の熱膨張係数よりも大きい。以下において、ベース部材20とヒータ電極用絶縁管22とにより構成される複合体を「ベース複合体200」という。また、「ベース部材20の上面S3」を「ベース複合体200の上面S3」ということがあり、「ベース部材20の下面S4」を「ベース複合体200の下面S4」ということがある。ここで、上述したように、ベース部材20の熱膨張係数と、ヒータ電極用絶縁管22の熱膨張係数とは、いずれも、板状部材10の熱膨張係数よりも大きい。従って、ベース複合体200の熱膨張係数は、板状部材10の熱膨張係数とは異なっている。 In the heater electrode terminal hole 150 of the base member 20, a heater electrode insulating tube (insulator) 22 formed of an insulating material (for example, a resin such as polyetherimide) is arranged. The coefficient of thermal expansion of the insulating tube 22 for the heater electrode is different from the coefficient of thermal expansion of the plate-shaped member 10. More specifically, in the present embodiment, the coefficient of thermal expansion of the heater electrode insulating tube 22 is larger than the coefficient of thermal expansion of the plate-shaped member 10. Hereinafter, the complex composed of the base member 20 and the insulating tube 22 for the heater electrode is referred to as “base complex 200”. Further, the "upper surface S3 of the base member 20" may be referred to as the "upper surface S3 of the base complex 200", and the "lower surface S4 of the base member 20" may be referred to as the "lower surface S4 of the base complex 200". Here, as described above, both the coefficient of thermal expansion of the base member 20 and the coefficient of thermal expansion of the insulating tube 22 for the heater electrode are larger than the coefficient of thermal expansion of the plate-shaped member 10. Therefore, the coefficient of thermal expansion of the base complex 200 is different from the coefficient of thermal expansion of the plate-shaped member 10.

ヒータ電極用絶縁管22は、ベース部材20の上面S3(より正確には、当該上面S3よりも少し上側)から下面S4まで延びている内部空間(以下、「ベース複合体200の貫通孔」という。)22aを有する管状の部材である。言い換えると、ベース複合体200の貫通孔22aは、ベース複合体200の上面S3から下面S4まで貫通している。本実施形態では、Z軸方向視でのベース複合体200の貫通孔22aの形状は、略円形(後述の幅広部22bを除く。)である。ヒータ電極用絶縁管22の存在により、後述するヒータ電極用の給電端子44とベース部材20との短絡が防止される。なお、本実施形態では、ベース複合体200は、特許請求の範囲における第2の部材に相当する。 The heater electrode insulating tube 22 has an internal space extending from the upper surface S3 of the base member 20 (more accurately, slightly above the upper surface S3) to the lower surface S4 (hereinafter referred to as “through hole of the base complex 200”). .) A tubular member having 22a. In other words, the through hole 22a of the base complex 200 penetrates from the upper surface S3 to the lower surface S4 of the base complex 200. In the present embodiment, the shape of the through hole 22a of the base complex 200 in the Z-axis direction is substantially circular (excluding the wide portion 22b described later). The presence of the heater electrode insulating tube 22 prevents a short circuit between the power supply terminal 44 for the heater electrode and the base member 20, which will be described later. In this embodiment, the base complex 200 corresponds to the second member in the claims.

ヒータ電極用絶縁管22は、Z軸方向に略直交する方向(図3のXZ断面ではX軸方向)の幅が他の部分の幅よりも広い部分(以下、「幅広部」という。)22bを有している。ヒータ電極用絶縁管22の幅広部22bは、ヒータ電極用絶縁管22のうち、ベース部材20の下面S4の側に位置する。ヒータ電極用絶縁管22の幅広部22bは、ヒータ電極用絶縁管22におけるZ軸周りの周方向の一部に形成されている。ベース部材20のヒータ電極用端子用孔150を画定する壁面20aには、Z軸方向に略直交する方向(図3のXZ断面ではX軸方向)に凹む凹部(以下、「ベース部材凹部」という。)20bがZ軸周りの周方向の全周に亘って形成されている。ヒータ電極用絶縁管22の幅広部22bがベース部材凹部20bに配置されることにより、ヒータ電極用絶縁管22のZ軸方向の位置決めがなされる。なお、Z軸方向に平行な断面であって、図3のXZ断面とは別の断面において、ヒータ電極用絶縁管22の幅広部22bの幅よりも大きい内部空間が、Z軸方向におけるベース部材20の下面S4からベース部材凹部20bの上端まで形成されている。当該内部空間は、上記のベース部材凹部20bに連通している。ベース部材20にヒータ電極用絶縁管22の組み付ける際には、まず、ヒータ電極用絶縁管22の幅広部22bをベース部材20の下面S4側からベース部材凹部20bに差し込むことにより、幅広部22bをZ軸方向におけるベース部材凹部20bの位置に配置し、その後に、ヒータ電極用絶縁管22を、Z軸を中心として回転させることにより、ヒータ電極用絶縁管22の幅広部22bをベース部材凹部20bに配置する。また、ベース部材凹部20bとヒータ電極用絶縁管22の幅広部22bとの間には、接着剤(図示せず)が配置されており、当該接着剤により、Z軸方向に略直交する方向のヒータ電極用絶縁管22の位置ズレおよびZ軸を中心とした回転方向におけるヒータ電極用絶縁管22の位置ズレが防止される。なお、当該接着剤としては、例えば、耐腐食性を有するエポキシ接着剤を用いることができる。 The heater electrode insulating tube 22 has a width in a direction substantially orthogonal to the Z-axis direction (X-axis direction in the XZ cross section of FIG. 3) wider than the width of the other portion (hereinafter, referred to as “wide portion”) 22b. have. The wide portion 22b of the heater electrode insulating tube 22 is located on the lower surface S4 side of the base member 20 of the heater electrode insulating tube 22. The wide portion 22b of the heater electrode insulating tube 22 is formed in a part of the heater electrode insulating tube 22 in the circumferential direction around the Z axis. The wall surface 20a defining the heater electrode terminal hole 150 of the base member 20 is recessed in a direction substantially orthogonal to the Z-axis direction (X-axis direction in the XZ cross section of FIG. 3) (hereinafter, referred to as “base member recess”). .) 20b is formed over the entire circumference in the circumferential direction around the Z axis. By arranging the wide portion 22b of the heater electrode insulating tube 22 in the base member recess 20b, the heater electrode insulating tube 22 is positioned in the Z-axis direction. In addition, in the cross section parallel to the Z-axis direction and different from the XZ cross section of FIG. 3, the internal space larger than the width of the wide portion 22b of the heater electrode insulating tube 22 is the base member in the Z-axis direction. It is formed from the lower surface S4 of 20 to the upper end of the base member recess 20b. The internal space communicates with the base member recess 20b. When assembling the heater electrode insulating tube 22 to the base member 20, first, the wide portion 22b of the heater electrode insulating tube 22 is inserted into the base member recess 20b from the lower surface S4 side of the base member 20 to form the wide portion 22b. By arranging it at the position of the base member recess 20b in the Z-axis direction and then rotating the heater electrode insulating tube 22 around the Z axis, the wide portion 22b of the heater electrode insulating tube 22 is formed into the base member recess 20b. Place in. Further, an adhesive (not shown) is arranged between the recess 20b of the base member and the wide portion 22b of the insulating tube 22 for the heater electrode, and the adhesive is used in a direction substantially orthogonal to the Z-axis direction. The misalignment of the insulating tube 22 for the heater electrode and the misalignment of the insulating tube 22 for the heater electrode in the rotation direction about the Z axis are prevented. As the adhesive, for example, an epoxy adhesive having corrosion resistance can be used.

ベース複合体200の貫通孔22a(ヒータ電極用絶縁管22の内部空間)の内部には、ヒータ電極用の給電端子44が配置されている。ヒータ電極用の給電端子44は、ヒータ電極用の上側給電端子441(以下、単に「上側給電端子441」ともいう。)と、ヒータ電極用の下側給電端子442(以下、単に「下側給電端子442」ともいう。)と、ヒータ電極用の中央給電端子443(以下、単に「中央給電端子443」ともいう。)とから構成されている。上側給電端子441と、下側給電端子442と、中央給電端子443とは、いずれも、導電性を有する給電端子である。本実施形態では、各ヒータ電極用給電端子(上側給電端子441、下側給電端子442、中央給電端子443)のZ軸方向に略直交する断面の輪郭線は、略円形である。なお、ヒータ電極用の上側給電端子441は、特許請求の範囲における第1の給電端子に相当し、ヒータ電極用の下側給電端子442は、特許請求の範囲における第2の給電端子に相当し、ヒータ電極用の中央給電端子443は、特許請求の範囲における第3の給電端子に相当する。 A power supply terminal 44 for the heater electrode is arranged inside the through hole 22a (internal space of the insulating tube 22 for the heater electrode) of the base complex 200. The power supply terminal 44 for the heater electrode includes an upper power supply terminal 441 for the heater electrode (hereinafter, also simply referred to as “upper power supply terminal 441”) and a lower power supply terminal 442 for the heater electrode (hereinafter, simply “lower power supply terminal 441”). It is also composed of a "terminal 442") and a central power supply terminal 443 for the heater electrode (hereinafter, also simply referred to as "central power supply terminal 443"). The upper power supply terminal 441, the lower power supply terminal 442, and the central power supply terminal 443 are all conductive power supply terminals. In the present embodiment, the contour line of the cross section of each heater electrode feeding terminal (upper feeding terminal 441, lower feeding terminal 442, central feeding terminal 443) substantially orthogonal to the Z-axis direction is substantially circular. The upper power supply terminal 441 for the heater electrode corresponds to the first power supply terminal in the claims, and the lower power supply terminal 442 for the heater electrode corresponds to the second power supply terminal in the claims. The central power supply terminal 443 for the heater electrode corresponds to the third power supply terminal in the claims.

上側給電端子441の上端は、ヒータ電極用給電パッド52と隙間を介して対向しており、上側給電端子441は、ヒータ電極用ろう付け部78によってヒータ電極用給電パッド52に接合されている。下側給電端子442は、ベース部材20の下面S4の側に配置されている。中央給電端子443は、上側給電端子441と下側給電端子442との間に配置されている。 The upper end of the upper power supply terminal 441 faces the heater electrode power supply pad 52 via a gap, and the upper power supply terminal 441 is joined to the heater electrode power supply pad 52 by the heater electrode brazing portion 78. The lower power supply terminal 442 is arranged on the lower surface S4 side of the base member 20. The central power supply terminal 443 is arranged between the upper power supply terminal 441 and the lower power supply terminal 442.

上側給電端子441は、その下端において、導電性を有するばね(本実施形態では、板ばね。以下、「ヒータ電極用上側ばね」という。)441aを有している。本実施形態では、ヒータ電極用上側ばね441aは、上側給電端子441の他の部分と一体の部材として形成されている。ヒータ電極用上側ばね441aは、中央給電端子443に接触している。そのため、ヒータ電極用上側ばね441aを介した上側給電端子441と中央給電端子443との間の電気的導通が可能となっている。なお、ヒータ電極用上側ばね441aは、特許請求の範囲における第1のばねに相当する。 The upper power feeding terminal 441 has a conductive spring (in the present embodiment, a leaf spring; hereinafter referred to as "upper spring for heater electrode") 441a at its lower end. In the present embodiment, the upper spring 441a for the heater electrode is formed as a member integrated with the other portion of the upper power feeding terminal 441. The upper spring 441a for the heater electrode is in contact with the central feeding terminal 443. Therefore, electrical conduction between the upper power supply terminal 441 and the central power supply terminal 443 via the upper spring 441a for the heater electrode is possible. The upper spring 441a for the heater electrode corresponds to the first spring in the claims.

下側給電端子442は、その上端において、導電性を有するばね(本実施形態では、板ばね。以下、「ヒータ電極用下側ばね」という。)442aを有している。本実施形態では、ヒータ電極用下側ばね442aは、下側給電端子442の他の部分と一体の部材として形成されている。ヒータ電極用下側ばね442aは、中央給電端子443に接触している。そのため、ヒータ電極用下側ばね442aを介した下側給電端子442と中央給電端子443との間の電気的導通が可能となっている。なお、ヒータ電極用下側ばね442aは、特許請求の範囲における第2のばねに相当する。 The lower power feeding terminal 442 has a conductive spring (in the present embodiment, a leaf spring; hereinafter referred to as a "lower spring for a heater electrode") 442a at its upper end. In the present embodiment, the lower spring 442a for the heater electrode is formed as an integral member with the other portion of the lower power feeding terminal 442. The lower spring 442a for the heater electrode is in contact with the central feeding terminal 443. Therefore, electrical conduction between the lower power supply terminal 442 and the central power supply terminal 443 via the lower spring 442a for the heater electrode is possible. The lower spring 442a for the heater electrode corresponds to the second spring in the claims.

下側給電端子442は、Z軸方向に略直交する方向(図3のXZ断面ではX軸方向)の幅が他の部分の幅よりも広い部分(以下、「幅広部」という。)442bを有している。下側給電端子442の幅広部442bは、下側給電端子442のうち、ベース部材20の下面S4の側に位置する。下側給電端子442の幅広部442bは、下側給電端子442におけるZ軸周りの周方向の一部に形成されている。ベース複合体200の貫通孔22a(ヒータ電極用絶縁管22の内部空間)を画定するヒータ電極用絶縁管22の壁面22cには、Z軸方向に略直交する方向(図3のXZ断面ではX軸方向)に凹む凹部(以下、「ヒータ電極用絶縁管凹部」という。)22dがZ軸周りの周方向の全周に亘って形成されている。下側給電端子442の幅広部442bがヒータ電極用絶縁管凹部22dに配置されることにより、下側給電端子442のZ軸方向の位置決めがなされる。なお、Z軸方向に平行な断面であって、図3のXZ断面とは別の断面において、下側給電端子442の幅広部442bの幅よりも大きい内部空間が、Z軸方向におけるベース部材20の下面S4からヒータ電極用絶縁管凹部22dの上端まで形成されている。当該内部空間は、上記のヒータ電極用絶縁管凹部22dに連通している。ヒータ電極用絶縁管22に下側給電端子442の組み付ける際には、まず、下側給電端子442の幅広部442bをベース部材20の下面S4側からヒータ電極用絶縁管凹部22dに差し込むことにより、幅広部442bをZ軸方向におけるヒータ電極用絶縁管凹部22dの位置に配置し、その後に、下側給電端子442を、Z軸を中心として回転させることにより、下側給電端子442の幅広部442bをヒータ電極用絶縁管凹部22dに配置する。また、ヒータ電極用絶縁管凹部22dと下側給電端子442の幅広部442bとの間には、接着剤(図示せず)が配置されており、当該接着剤により、Z軸方向に略直交する方向の下側給電端子442の位置ズレおよびZ軸を中心とした回転方向の下側給電端子442の位置ズレが防止される。なお、当該接着剤としては、例えば、耐腐食性を有するエポキシ接着剤を用いることができる。 The lower power supply terminal 442 has a portion (hereinafter, referred to as “wide portion”) 442b having a width substantially orthogonal to the Z-axis direction (X-axis direction in the XZ cross section of FIG. 3) wider than the width of the other portion. Have. The wide portion 442b of the lower power feeding terminal 442 is located on the lower surface S4 side of the base member 20 of the lower power feeding terminal 442. The wide portion 442b of the lower power feeding terminal 442 is formed in a part of the lower power feeding terminal 442 in the circumferential direction around the Z axis. The wall surface 22c of the heater electrode insulating tube 22 that defines the through hole 22a (internal space of the heater electrode insulating tube 22) of the base composite 200 is oriented substantially orthogonal to the Z-axis direction (X in the XZ cross section of FIG. 3). A recess (hereinafter, referred to as “heater electrode insulating tube recess”) 22d recessed in the axial direction) is formed over the entire circumference in the circumferential direction around the Z axis. By arranging the wide portion 442b of the lower power supply terminal 442 in the recess 22d of the insulating pipe for the heater electrode, the lower power supply terminal 442 is positioned in the Z-axis direction. In addition, in the cross section parallel to the Z-axis direction and different from the XZ cross section of FIG. 3, the internal space larger than the width of the wide portion 442b of the lower power feeding terminal 442 is the base member 20 in the Z-axis direction. It is formed from the lower surface S4 of the above to the upper end of the insulating tube recess 22d for the heater electrode. The internal space communicates with the heater electrode insulating tube recess 22d. When assembling the lower power supply terminal 442 to the heater electrode insulating tube 22, first, the wide portion 442b of the lower power supply terminal 442 is inserted into the heater electrode insulating tube recess 22d from the lower surface S4 side of the base member 20. The wide portion 442b is arranged at the position of the insulating pipe recess 22d for the heater electrode in the Z-axis direction, and then the lower power supply terminal 442 is rotated about the Z-axis to cause the wide portion 442b of the lower power supply terminal 442 b. Is arranged in the recess 22d of the insulating pipe for the heater electrode. Further, an adhesive (not shown) is arranged between the recess 22d of the insulating tube for the heater electrode and the wide portion 442b of the lower power supply terminal 442, and the adhesive is substantially orthogonal to the Z-axis direction. The misalignment of the lower power supply terminal 442 in the direction and the misalignment of the lower power supply terminal 442 in the rotation direction about the Z axis are prevented. As the adhesive, for example, an epoxy adhesive having corrosion resistance can be used.

ヒータ電極50への給電のための構成は上述の通りである(上側給電端子441、下側給電端子442、および中央給電端子443の詳細構成については後述する)。静電チャック100の使用時には、電源(図示しない。)から、下側給電端子442、中央給電端子443、上側給電端子441、ヒータ電極用給電パッド52およびヒータ電極用ビア51を介してヒータ電極50に至る導通経路を介して、ヒータ電極50に電圧が印加されることにより、ヒータ電極50に電力が供給される。これにより、ヒータ電極50が発熱する。 The configuration for feeding the heater electrode 50 is as described above (detailed configurations of the upper feeding terminal 441, the lower feeding terminal 442, and the central feeding terminal 443 will be described later). When the electrostatic chuck 100 is used, the heater electrode 50 is connected from a power source (not shown) via a lower power supply terminal 442, a central power supply terminal 443, an upper power supply terminal 441, a heater electrode power supply pad 52, and a heater electrode via 51. Electric power is supplied to the heater electrode 50 by applying a voltage to the heater electrode 50 through the conduction path leading to. As a result, the heater electrode 50 generates heat.

なお、チャック電極40への給電のための構成も、ヒータ電極50への給電のための構成と同様である。従って、基本的には、上記のヒータ電極50への給電のための構成において、「ヒータ電極50」を「チャック電極40」と読み替え、「ヒータ電極用端子用孔150」を「チャック電極用端子用孔140」と読み替え、「貫通孔25」を「貫通孔24」と読み替え、「貫通孔35」を「貫通孔34」と読み替え、「凹部15」を「凹部14」と読み替え、「ヒータ電極用ビア51」を「チャック電極用ビア41」と読み替え、「ヒータ電極用給電パッド52」を「チャック電極用電極パッド42」と読み替え、「ヒータ電極用ろう付け部78」を「チャック電極用ろう付け部」(図示せず)と読み替え、「ベース部材凹部20b」を「ベース部材凹部20c」と読み替え、「ヒータ電極用絶縁管22」を「チャック電極用絶縁管23」と読み替え、「ベース複合体200の貫通孔22a」を「ベース複合体200の貫通孔23a」と読み替え、「幅広部22b」を「幅広部22e」と読み替え、「ヒータ電極用絶縁管凹部22d」を「ヒータ電極用絶縁管凹部22f」と読み替え、「ヒータ電極用の給電端子44」を「チャック電極用の給電端子54」と読み替え、「ヒータ電極用の上側給電端子441」を「チャック電極用の上側給電端子541」と読み替え、「ヒータ電極用の下側給電端子442」を「チャック電極用の下側給電端子542」と読み替え、「ヒータ電極用の中央給電端子443」を「チャック電極用の中央給電端子543」と読み替え、「ヒータ電極用上側ばね441a」を「チャック電極用上側ばね541a」と読み替え、「ヒータ電極用下側ばね442a」を「チャック電極用下側ばね542a」と読み替えればよい。なお、チャック電極用の上側給電端子541は、特許請求の範囲における第1の給電端子に相当し、チャック電極用の下側給電端子542は、特許請求の範囲における第2の給電端子に相当し、チャック電極用の中央給電端子543は、特許請求の範囲における第3の給電端子に相当し、チャック電極用上側ばね541aは、特許請求の範囲における第1のばねに相当し、チャック電極用下側ばね542aは、特許請求の範囲における第2のばねに相当する。 The configuration for supplying power to the chuck electrode 40 is the same as the configuration for supplying power to the heater electrode 50. Therefore, basically, in the configuration for supplying power to the heater electrode 50, the "heater electrode 50" is read as the "chuck electrode 40", and the "heater electrode terminal hole 150" is replaced with the "chuck electrode terminal". "Through hole 140" is read, "through hole 25" is read as "through hole 24", "through hole 35" is read as "through hole 34", "recess 15" is read as "recess 14", and "heater electrode". "Beer 51" should be read as "Beer 41 for chuck electrode", "Feeding pad 52 for heater electrode" should be read as "Electrode pad 42 for chuck electrode", and "Blade portion 78 for heater electrode" should be read as "Raw for chuck electrode". "Attachment" (not shown) is read, "base member recess 20b" is read as "base member recess 20c", "heater electrode insulating tube 22" is read as "chuck electrode insulating tube 23", and "base composite". The "through hole 22a" of the body 200 is read as "through hole 23a of the base composite 200", the "wide portion 22b" is read as "wide portion 22e", and the "heater electrode insulating tube recess 22d" is read as "heater electrode insulation". Replaced with "tube recess 22f", replaced "feeding terminal 44 for heater electrode" with "feeding terminal 54 for chuck electrode", and replaced "upper feeding terminal 441 for heater electrode" with "upper feeding terminal 541 for chuck electrode". "Lower power supply terminal 442 for heater electrode" is read as "Lower power supply terminal 542 for chuck electrode", and "Central power supply terminal 443 for heater electrode" is read as "Central power supply terminal 543 for chuck electrode". , "Upper spring 441a for heater electrode" may be read as "Upper spring 541a for chuck electrode", and "Lower spring 442a for heater electrode" may be read as "Lower spring 542a for chuck electrode". The upper power supply terminal 541 for the chuck electrode corresponds to the first power supply terminal in the claims, and the lower power supply terminal 542 for the chuck electrode corresponds to the second power supply terminal in the claims. The central power supply terminal 543 for the chuck electrode corresponds to the third power supply terminal in the claims, and the upper spring 541a for the chuck electrode corresponds to the first spring in the claims, and the lower spring for the chuck electrode. The side spring 542a corresponds to the second spring in the claims.

静電チャック100の使用時には、電源(図示しない。)から、チャック電極用の下側給電端子542、チャック電極用の中央給電端子543、チャック電極用の上側給電端子541、チャック電極用電極パッド42およびチャック電極用ビア41を介してチャック電極40に至る導通経路を介して、チャック電極40に電圧が印加される。これにより、ウェハWを吸着面S1に吸着固定するための静電引力が発生する。 When using the electrostatic chuck 100, from the power supply (not shown), the lower power supply terminal 542 for the chuck electrode, the central power supply terminal 543 for the chuck electrode, the upper power supply terminal 541 for the chuck electrode, and the electrode pad 42 for the chuck electrode. A voltage is applied to the chuck electrode 40 via the conduction path leading to the chuck electrode 40 via the chuck electrode via 41. As a result, an electrostatic attractive force for sucking and fixing the wafer W to the suction surface S1 is generated.

以下、ヒータ電極用の上側給電端子441とチャック電極用の上側給電端子541とをまとめて「上側給電端子441,541」ということがあり、ヒータ電極用の下側給電端子442とチャック電極用の下側給電端子542とをまとめて「下側給電端子442,542」ということがあり、ヒータ電極用の中央給電端子443とチャック電極用の中央給電端子543とをまとめて「中央給電端子443,543」ということがある。 Hereinafter, the upper power supply terminal 441 for the heater electrode and the upper power supply terminal 541 for the chuck electrode may be collectively referred to as "upper power supply terminal 441, 541", and the lower power supply terminal 442 for the heater electrode and the chuck electrode are used. The lower power supply terminal 542 may be collectively referred to as "lower power supply terminal 442, 542", and the central power supply terminal 443 for the heater electrode and the central power supply terminal 543 for the chuck electrode are collectively referred to as "central power supply terminal 443". 543 ".

A−3.上側給電端子441,541、下側給電端子442,542、および中央給電端子443,543の詳細構成:
次に、図3を用いて、上側給電端子441,541、下側給電端子442,542、および中央給電端子443,543の詳細構成について説明する。
A-3. Detailed configuration of the upper power supply terminal 441, 541, the lower power supply terminal 442, 542, and the central power supply terminal 443, 543:
Next, the detailed configuration of the upper power feeding terminal 441, 541, the lower power feeding terminal 442, 542, and the central power feeding terminal 443, 543 will be described with reference to FIG.

上側給電端子441(ヒータ電極用の上側給電端子441)は、中央給電端子443(ヒータ電極用の中央給電端子443)に対向する下面441bを有する略平板部441cと、略平板部441cの下面441bの略中央から下方向(Z軸方向の一方)に突出する第1の凸部441dとを有している。下側給電端子442(ヒータ電極用の下側給電端子442)は、中央給電端子443に対向する上面442cを有する部分442dと、当該部分442dの上面442cから上方向(Z軸方向の他方)に突出する第2の凸部442eとを有している。なお、上側給電端子441の下面441bと、下側給電端子442の上面442cとのそれぞれは、上下方向(Z軸方向)視で中央給電端子443を内包している。なお、上側給電端子441の下面441bは、特許請求の範囲における第4の表面に相当し、下側給電端子442の上面442cは、特許請求の範囲における第5の表面に相当する。 The upper power supply terminal 441 (upper power supply terminal 441 for the heater electrode) has a substantially flat plate portion 441c having a lower surface 441b facing the central power supply terminal 443 (central power supply terminal 443 for the heater electrode) and a lower surface 441b of the substantially flat plate portion 441c. It has a first convex portion 441d that protrudes downward (one of the Z-axis directions) from substantially the center of the above. The lower power supply terminal 442 (lower power supply terminal 442 for the heater electrode) has a portion 442d having an upper surface 442c facing the central power supply terminal 443 and an upward direction (the other in the Z-axis direction) from the upper surface 442c of the portion 442d. It has a protruding second convex portion 442e. The lower surface 441b of the upper power supply terminal 441 and the upper surface 442c of the lower power supply terminal 442 each include the central power supply terminal 443 in the vertical direction (Z-axis direction). The lower surface 441b of the upper power supply terminal 441 corresponds to the fourth surface in the claims, and the upper surface 442c of the lower power supply terminal 442 corresponds to the fifth surface in the claims.

中央給電端子443における上側給電端子441の側の端部には、下方向(Z軸方向の一方)に凹む第1の凹部443aが形成されている。第1の凹部443aの深さd1は、上側給電端子441の第1の凸部441dの高さh1よりも大きい。そのため、上側給電端子441は、第1の凸部441dが第1の凹部443aの底面に接触しない位置で位置決め(Z軸方向の位置決め)される。 At the end of the central power supply terminal 443 on the side of the upper power supply terminal 441, a first recess 443a that is recessed in the downward direction (one in the Z-axis direction) is formed. The depth d1 of the first concave portion 443a is larger than the height h1 of the first convex portion 441d of the upper power feeding terminal 441. Therefore, the upper power feeding terminal 441 is positioned (positioning in the Z-axis direction) at a position where the first convex portion 441d does not contact the bottom surface of the first concave portion 443a.

第1の凹部443aには、上側給電端子441の第1の凸部441dの一部が挿入されている。また、第1の凹部443aに挿入された第1の凸部441dの当該一部の先端によって、上述したヒータ電極用上側ばね441a(本実施形態では、板ばね)が形成されている。 A part of the first convex portion 441d of the upper power feeding terminal 441 is inserted into the first concave portion 443a. Further, the above-mentioned upper spring 441a for a heater electrode (in this embodiment, a leaf spring) is formed by the tip of the part of the first convex portion 441d inserted into the first concave portion 443a.

中央給電端子443における下側給電端子442の側の端部には、上方向(Z軸方向の他方)に凹む第2の凹部443bが形成されている。第2の凹部443bの深さd2は、下側給電端子442の第2の凸部442eの高さh2よりも大きい。そのため、下側給電端子442は、第2の凸部442eが第2の凹部443bの底面に接触しない位置で位置決め(Z軸方向の位置決め)される。 A second recess 443b that is recessed in the upward direction (the other in the Z-axis direction) is formed at the end of the central power supply terminal 443 on the side of the lower power supply terminal 442. The depth d2 of the second concave portion 443b is larger than the height h2 of the second convex portion 442e of the lower power feeding terminal 442. Therefore, the lower power feeding terminal 442 is positioned (positioning in the Z-axis direction) at a position where the second convex portion 442e does not contact the bottom surface of the second concave portion 443b.

第2の凹部443bには、下側給電端子442の第2の凸部442eの一部が挿入されている。また、第2の凹部443bに挿入された第2の凸部442eの当該一部の先端によって、上述したヒータ電極用下側ばね442a(本実施形態では、板ばね)が形成されている。 A part of the second convex portion 442e of the lower power feeding terminal 442 is inserted into the second concave portion 443b. Further, the lower spring 442a for the heater electrode (leaf spring in the present embodiment) described above is formed by the tip of the part of the second convex portion 442e inserted into the second concave portion 443b.

上下方向(Z軸方向)に略直交する方向における中央給電端子443の直径は、ベース複合体200の貫通孔22a(ヒータ電極用絶縁管22の内部空間)の直径よりも小さい。そのため、ベース複合体200の貫通孔22aを画定するヒータ電極用絶縁管22の壁面22cとの間に隙間G1が形成されている。そのため、中央給電端子443は、Z軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)に移動可能である。 The diameter of the central power supply terminal 443 in the direction substantially orthogonal to the vertical direction (Z-axis direction) is smaller than the diameter of the through hole 22a (internal space of the heater electrode insulating tube 22) of the base composite 200. Therefore, a gap G1 is formed between the base composite 200 and the wall surface 22c of the heater electrode insulating tube 22 that defines the through hole 22a. Therefore, the central power feeding terminal 443 can move in a direction substantially orthogonal to the Z-axis direction (for example, the X-axis direction in the XZ cross section of FIG. 3).

ヒータ電極用の上側給電端子441、ヒータ電極用の下側給電端子442、およびヒータ電極用の中央給電端子443の詳細構成は上述の通りである。なお、チャック電極用の上側給電端子541、チャック電極用の下側給電端子542、およびチャック電極用の中央給電端子543の詳細構成も、ヒータ電極用の上側給電端子441、ヒータ電極用の下側給電端子442、およびヒータ電極用の中央給電端子443の詳細構成と同様である。従って、基本的には、上記のヒータ電極用の上側給電端子441、ヒータ電極用の下側給電端子442、およびヒータ電極用の中央給電端子443の詳細構成において、「ヒータ電極用の上側給電端子441」を「チャック電極用の上側給電端子541」と読み替え、「ヒータ電極用の下側給電端子442」を「チャック電極用の下側給電端子542」と読み替え、「ヒータ電極用の中央給電端子443」を「チャック電極用の中央給電端子543」と読み替え、「下面441b」を「下面541b」と読み替え、「略平板部441c」を「略平板部541c」と読み替え、「第1の凸部441d」を「第3の凸部541d」と読み替え、「上面442c」を「上面542c」と読み替え、「部分442d」を「部分542d」と読み替え、「第2の凸部442e」を「第4の凸部542e」と読み替え、「第1の凹部443a」を「第3の凹部543a」と読み替え、「第2の凹部443b」を「第4の凹部543b」と読み替え、「壁面22c」を「壁面23c」と読み替え、「隙間G1」を「隙間G2」と読み替えればよい。なお、第3の凸部541dは、特許請求の範囲における第1の凸部に相当し、第4の凸部542eは、特許請求の範囲における第2の凸部に相当し、第3の凹部543aは、特許請求の範囲における第1の凹部に相当し、チャック電極用上側ばね541aは、特許請求の範囲における第1のばねに相当し、第4の凹部543bは、特許請求の範囲における第2の凹部に相当する。 The detailed configuration of the upper power supply terminal 441 for the heater electrode, the lower power supply terminal 442 for the heater electrode, and the central power supply terminal 443 for the heater electrode is as described above. The detailed configuration of the upper power supply terminal 541 for the chuck electrode, the lower power supply terminal 542 for the chuck electrode, and the central power supply terminal 543 for the chuck electrode also includes the upper power supply terminal 441 for the heater electrode and the lower side for the heater electrode. The detailed configuration is the same as that of the power supply terminal 442 and the central power supply terminal 443 for the heater electrode. Therefore, basically, in the detailed configuration of the upper power supply terminal 441 for the heater electrode, the lower power supply terminal 442 for the heater electrode, and the central power supply terminal 443 for the heater electrode, "the upper power supply terminal for the heater electrode" is basically used. "441" is read as "upper power supply terminal 541 for chuck electrode", "lower power supply terminal 442 for heater electrode" is read as "lower power supply terminal 542 for chuck electrode", and "central power supply terminal for heater electrode" is read. "443" is read as "central feeding terminal 543 for chuck electrode", "bottom surface 441b" is read as "bottom surface 541b", "substantially flat plate portion 441c" is read as "substantially flat plate portion 541c", and "first convex portion". "441d" is read as "third convex portion 541d", "upper surface 442c" is read as "upper surface 542c", "part 442d" is read as "part 542d", and "second convex portion 442e" is read as "fourth". "Convex portion 542e" is read, "first concave portion 443a" is read as "third concave portion 543a", "second concave portion 443b" is read as "fourth concave portion 543b", and "wall surface 22c" is read as "wall surface 22c". It may be read as "wall surface 23c" and "gap G1" as "gap G2". The third convex portion 541d corresponds to the first convex portion in the claims, the fourth convex portion 542e corresponds to the second convex portion in the claims, and the third concave portion. 543a corresponds to the first recess in the claims, the upper spring 541a for the chuck electrode corresponds to the first spring in the claims, and the fourth recess 543b corresponds to the first recess in the claims. Corresponds to the recess of 2.

A−4.本実施形態の効果:
以上説明したように、本実施形態の静電チャック100は、板状部材10と、板状部材10に接合されたベース複合体200と、ヒータ電極用給電パッド52と、上側給電端子441(ヒータ電極用の上側給電端子441)と、下側給電端子442(ヒータ電極用の下側給電端子442)と、中央給電端子443(ヒータ電極用の中央給電端子443)とを備える。板状部材10は、Z軸方向に略直交する下面S2を有する。ベース複合体200は、板状部材10の下面S2に対向する上面S3と、上面S3とは反対側の下面S4とを有している。ベース複合体200の熱膨張係数は、板状部材10の熱膨張係数とは異なる。ベース複合体200には、上面S3から下面S4まで貫通する貫通孔22aが形成されている。ヒータ電極用給電パッド52は、板状部材10の下面S2の側に配置されている。上側給電端子441は、ヒータ電極用給電パッド52に接合され、ベース複合体200の貫通孔22aの内部に位置している。下側給電端子442は、ベース複合体200の下面S4の側に配置され、ベース複合体200の貫通孔22aの内部に位置している。中央給電端子443は、ベース複合体200の貫通孔22aの内部における上側給電端子441と下側給電端子442との間に配置されている。上側給電端子441は、上側給電端子441と中央給電端子443との間の電気的導通が可能であり、Z軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)に伸縮するヒータ電極用上側ばね441aを有する。下側給電端子442は、下側給電端子442と中央給電端子443との間の電気的導通が可能であり、Z軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)に伸縮するヒータ電極用下側ばね442aを有する。中央給電端子443は、ベース複合体200の貫通孔22aを画定する壁面22cとの間に隙間G1が形成されるように配置され、Z軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)に移動可能なように備えられている。
A-4. Effect of this embodiment:
As described above, the electrostatic chuck 100 of the present embodiment includes a plate-shaped member 10, a base complex 200 joined to the plate-shaped member 10, a power supply pad 52 for a heater electrode, and an upper power supply terminal 441 (heater). It includes an upper power supply terminal 441) for the electrode, a lower power supply terminal 442 (lower power supply terminal 442 for the heater electrode), and a central power supply terminal 443 (central power supply terminal 443 for the heater electrode). The plate-shaped member 10 has a lower surface S2 that is substantially orthogonal to the Z-axis direction. The base complex 200 has an upper surface S3 facing the lower surface S2 of the plate-shaped member 10 and a lower surface S4 on the opposite side of the upper surface S3. The coefficient of thermal expansion of the base complex 200 is different from the coefficient of thermal expansion of the plate-shaped member 10. The base complex 200 is formed with a through hole 22a penetrating from the upper surface S3 to the lower surface S4. The power supply pad 52 for the heater electrode is arranged on the lower surface S2 side of the plate-shaped member 10. The upper power feeding terminal 441 is joined to the power feeding pad 52 for the heater electrode and is located inside the through hole 22a of the base complex 200. The lower power feeding terminal 442 is arranged on the side of the lower surface S4 of the base complex 200, and is located inside the through hole 22a of the base complex 200. The central power supply terminal 443 is arranged between the upper power supply terminal 441 and the lower power supply terminal 442 inside the through hole 22a of the base complex 200. The upper power supply terminal 441 can electrically conduct electricity between the upper power supply terminal 441 and the central power supply terminal 443, and expands and contracts in a direction substantially orthogonal to the Z-axis direction (for example, in the X-axis direction in the XZ cross section of FIG. 3). It has an upper spring 441a for a heater electrode. The lower power supply terminal 442 is capable of electrically conducting electrical conduction between the lower power supply terminal 442 and the central power supply terminal 443, and is in a direction substantially orthogonal to the Z-axis direction (for example, the X-axis direction in the XZ cross section of FIG. 3). It has a lower spring 442a for a heater electrode that expands and contracts. The central power feeding terminal 443 is arranged so that a gap G1 is formed between the central feeding terminal 443 and the wall surface 22c defining the through hole 22a of the base complex 200, and is arranged substantially orthogonal to the Z-axis direction (for example, the XZ cross section of FIG. 3). Is provided so that it can be moved in the X-axis direction).

従来の静電チャック(上記特許文献1)では、板状部材とベース部材との間で熱膨張係数が異なることにより、板状部材とベース部材との間の熱膨張差に起因してベース部材が板状部材に対して相対的に変位することがある。これにより、上側給電端子等に力がかかり、例えば上側給電端子と給電パッドとの接合部分にクラックが発生する等、上側給電端子や他の部材が損傷するおそれがある。従来の静電チャックでは、上下方向(Z軸方向)に略直交する方向に伸縮する第1のばねおよび第2のばねを備えることにより、ベース部材の相対的な変位に起因して上側給電端子等に力がかかることをある程度は抑制できる。しかしながら、中央給電端子がベース部材に対してねじにより固定されている(つまり、本実施形態の静電チャック100のようにZ軸方向に略直交する方向に移動することは不可能である)ため、ベース部材の変位に起因して上側給電端子等に力がかかることを十分には抑制することができない。 In the conventional electrostatic chuck (Patent Document 1 above), since the coefficient of thermal expansion differs between the plate-shaped member and the base member, the base member is caused by the difference in thermal expansion between the plate-shaped member and the base member. May be displaced relative to the plate-like member. As a result, a force is applied to the upper power supply terminal or the like, and for example, a crack may occur at the joint portion between the upper power supply terminal and the power supply pad, and the upper power supply terminal or other members may be damaged. The conventional electrostatic chuck includes a first spring and a second spring that expand and contract in a direction substantially orthogonal to the vertical direction (Z-axis direction), so that the upper power feeding terminal is caused by the relative displacement of the base member. It is possible to suppress the application of force to the like to some extent. However, since the central feeding terminal is fixed to the base member by a screw (that is, it is impossible to move in a direction substantially orthogonal to the Z-axis direction like the electrostatic chuck 100 of the present embodiment). , It is not possible to sufficiently suppress the application of force to the upper power feeding terminal or the like due to the displacement of the base member.

これに対し、本実施形態の静電チャック100では、上述の通り、中央給電端子443は、ベース複合体200の貫通孔22aを画定するヒータ電極用絶縁管22の壁面22cとの間に隙間G1が形成されるように配置され、Z軸方向に略直交する方向に移動可能なように備えられている。そのため、板状部材10とベース複合体200との間の熱膨張差に起因してベース複合体200が板状部材10に対して相対的に変位したときに、上記従来の静電チャックよりも、上側給電端子441等に力がかかることを抑制することができ、その結果、上記従来の静電チャックよりも、上側給電端子441や他の部材の損傷を抑制することができる。なお、この効果の観点から、中央給電端子443と、ベース複合体200の貫通孔22aを画定する壁面22cとの間の隙間G1のZ軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)の幅は、0.1mm以上(より好ましくは0.3mm以上、より好ましくは0.5mm以上)であることが好ましい。また、中央給電端子443と、上側給電端子441および下側給電端子442との電気的接続性の観点から、ベース複合体200の貫通孔22aを画定する壁面22cとの間の隙間G1のZ軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)の幅は、2mm以下(より好ましくは1mm以上、より好ましくは0.5mm以下)であることが好ましい。 On the other hand, in the electrostatic chuck 100 of the present embodiment, as described above, the central power feeding terminal 443 has a gap G1 between the central feeding terminal 443 and the wall surface 22c of the insulating tube 22 for the heater electrode that defines the through hole 22a of the base composite 200. Are arranged so as to be formed, and are provided so as to be movable in a direction substantially orthogonal to the Z-axis direction. Therefore, when the base complex 200 is displaced relative to the plate-shaped member 10 due to the difference in thermal expansion between the plate-shaped member 10 and the base composite 200, the conventional electrostatic chuck is more than the above-mentioned conventional electrostatic chuck. It is possible to suppress the application of force to the upper power feeding terminal 441 and the like, and as a result, it is possible to suppress damage to the upper power feeding terminal 441 and other members as compared with the conventional electrostatic chuck. From the viewpoint of this effect, a direction substantially orthogonal to the Z-axis direction of the gap G1 between the central power feeding terminal 443 and the wall surface 22c defining the through hole 22a of the base complex 200 (for example, the XZ cross section of FIG. 3). The width in the X-axis direction) is preferably 0.1 mm or more (more preferably 0.3 mm or more, more preferably 0.5 mm or more). Further, from the viewpoint of electrical connectivity between the central power supply terminal 443 and the upper power supply terminal 441 and the lower power supply terminal 442, the Z axis of the gap G1 between the wall surface 22c defining the through hole 22a of the base complex 200 The width in the direction substantially orthogonal to the direction (for example, the X-axis direction in the XZ cross section of FIG. 3) is preferably 2 mm or less (more preferably 1 mm or more, more preferably 0.5 mm or less).

なお、静電チャック100の使用時または使用後においては、上記隙間(ベース複合体200の貫通孔22aを画定するヒータ電極用絶縁管22の壁面22cとの間の隙間)Gが一時的に無くなる場合もあるが、少なくとも静電チャック100の使用前において当該隙間G1があれば、上記のように、上側給電端子441等に力がかかることを抑制することができ、その結果、上記従来の静電チャックよりも、上側給電端子441や他の部材の損傷を抑制することができる。 The gap (gap between the wall surface 22c of the insulating tube 22 for the heater electrode defining the through hole 22a of the base composite 200) G is temporarily eliminated during or after the use of the electrostatic chuck 100. In some cases, if the gap G1 is present at least before the use of the electrostatic chuck 100, it is possible to suppress the application of force to the upper power feeding terminal 441 or the like as described above, and as a result, the conventional static electricity is suppressed. Damage to the upper power supply terminal 441 and other members can be suppressed more than the electric chuck.

また、本実施形態の静電チャック100では、上側給電端子441は、中央給電端子443に対向する下面441bを有し、下面441bからZ軸方向に突出する第1の凸部441dを有している。下側給電端子442は、中央給電端子443に対向する上面442cを有し、上面442cからZ軸方向に突出する第2の凸部442eを有している。中央給電端子443の上側給電端子441の側の端部には、Z軸方向に凹む第1の凹部443aが形成されている。第1の凹部443aには、第1の凸部441dの一部が挿入されている。中央給電端子443の下側給電端子442の側の端部には、Z軸方向に凹む第2の凹部443bが形成されている。第2の凹部443bには、第2の凸部442eの一部が挿入されている。ヒータ電極用上側ばね441aは、第1の凸部441dの一部を形成している。ヒータ電極用下側ばね442aは、第2の凸部442eの一部を形成している。そのため、本実施形態の静電チャック100においては、より効果的に、上側給電端子441等に力がかかることを抑制することができ、その結果、より効果的に、上側給電端子441や他の部材の損傷を抑制することができる。 Further, in the electrostatic chuck 100 of the present embodiment, the upper power feeding terminal 441 has a lower surface 441b facing the central power feeding terminal 443, and has a first convex portion 441d protruding from the lower surface 441b in the Z-axis direction. There is. The lower power supply terminal 442 has an upper surface 442c facing the central power supply terminal 443, and has a second convex portion 442e protruding from the upper surface 442c in the Z-axis direction. A first recess 443a recessed in the Z-axis direction is formed at the end of the central power supply terminal 443 on the side of the upper power supply terminal 441. A part of the first convex portion 441d is inserted into the first concave portion 443a. A second recess 443b recessed in the Z-axis direction is formed at the end of the lower feed terminal 442 of the central power supply terminal 443. A part of the second convex portion 442e is inserted into the second concave portion 443b. The upper spring 441a for the heater electrode forms a part of the first convex portion 441d. The lower spring 442a for the heater electrode forms a part of the second convex portion 442e. Therefore, in the electrostatic chuck 100 of the present embodiment, it is possible to more effectively suppress the application of force to the upper power feeding terminal 441 and the like, and as a result, more effectively the upper power feeding terminal 441 and other power feeding terminals 441 and the like. Damage to members can be suppressed.

また、本実施形態の静電チャック100では、上側給電端子441の下面441bと、下側給電端子442の上面442cとのそれぞれは、Z軸方向視で中央給電端子443を内包している。中央給電端子443の第1の凹部443aの深さd1は、上側給電端子441の第1の凸部441dの高さh1よりも大きい。中央給電端子443の第2の凹部443bの深さd2は、下側給電端子442の第2の凸部442eの高さh2よりも大きい。そのため、本実施形態の静電チャック100では、上側給電端子441は、第1の凸部441dが第1の凹部443aの底面に接触しない位置で位置決め(Z軸方向の位置決め。以下、同様)され、下側給電端子442は、第2の凸部442eが第2の凹部443bの底面に接触しない位置で位置決めされる。従って、本実施形態の静電チャック100においては、第1の凸部441dが第1の凹部443aの底面に接触(または衝突)したり、第2の凸部442eが第2の凹部443bの底面に接触(または衝突)したりすることにより第1の凸部441dや第2の凸部442eが損傷することが防止される。 Further, in the electrostatic chuck 100 of the present embodiment, the lower surface 441b of the upper power supply terminal 441 and the upper surface 442c of the lower power supply terminal 442 each include the central power supply terminal 443 in the Z-axis direction. The depth d1 of the first concave portion 443a of the central feeding terminal 443 is larger than the height h1 of the first convex portion 441d of the upper feeding terminal 441. The depth d2 of the second concave portion 443b of the central feeding terminal 443 is larger than the height h2 of the second convex portion 442e of the lower feeding terminal 442. Therefore, in the electrostatic chuck 100 of the present embodiment, the upper power feeding terminal 441 is positioned at a position where the first convex portion 441d does not contact the bottom surface of the first concave portion 443a (positioning in the Z-axis direction; the same applies hereinafter). The lower power feeding terminal 442 is positioned at a position where the second convex portion 442e does not come into contact with the bottom surface of the second concave portion 443b. Therefore, in the electrostatic chuck 100 of the present embodiment, the first convex portion 441d comes into contact with (or collides with) the bottom surface of the first concave portion 443a, or the second convex portion 442e is the bottom surface of the second concave portion 443b. The first convex portion 441d and the second convex portion 442e are prevented from being damaged by contacting (or colliding with) the first convex portion 441d.

また、本実施形態の静電チャック100では、板状部材10に配置され、加熱を行うヒータ電極50と、ベース複合体200に配置され、冷却を行う冷媒流路21とを備える。そのため、本実施形態の静電チャック100においては、ヒータ電極50による加熱または冷媒流路21による冷却を行うことにより、板状部材10とベース複合体200との間の熱膨張差に起因してベース複合体200が板状部材10に対して相対的に変位する可能性が高い。そのため、このような構成において本発明を適用することは、特に有効である。 Further, the electrostatic chuck 100 of the present embodiment includes a heater electrode 50 arranged on the plate-shaped member 10 for heating and a refrigerant flow path 21 arranged on the base complex 200 for cooling. Therefore, in the electrostatic chuck 100 of the present embodiment, the difference in thermal expansion between the plate-shaped member 10 and the base composite 200 is caused by heating by the heater electrode 50 or cooling by the refrigerant flow path 21. There is a high possibility that the base composite 200 will be displaced relative to the plate-shaped member 10. Therefore, it is particularly effective to apply the present invention in such a configuration.

なお、上述した通り、チャック電極用の上側給電端子541、チャック電極用の下側給電端子542、およびチャック電極用の中央給電端子543の詳細構成も、ヒータ電極用の上側給電端子441、ヒータ電極用の下側給電端子442、およびヒータ電極用の中央給電端子443の詳細構成と同様である。従って、チャック電極用の上側給電端子541、チャック電極用の下側給電端子542、およびチャック電極用の中央給電端子543についても、ヒータ電極用の上側給電端子441、ヒータ電極用の下側給電端子442、およびヒータ電極用の中央給電端子443における上述の効果と同様の効果を奏する。 As described above, the detailed configurations of the upper power supply terminal 541 for the chuck electrode, the lower power supply terminal 542 for the chuck electrode, and the central power supply terminal 543 for the chuck electrode are also the upper power supply terminal 441 for the heater electrode and the heater electrode. This is the same as the detailed configuration of the lower power supply terminal 442 for the heater electrode and the central power supply terminal 443 for the heater electrode. Therefore, the upper power supply terminal 541 for the chuck electrode, the lower power supply terminal 542 for the chuck electrode, and the central power supply terminal 543 for the chuck electrode are also the upper power supply terminal 441 for the heater electrode and the lower power supply terminal for the heater electrode. It has the same effect as the above-mentioned effect in the 442 and the central feeding terminal 443 for the heater electrode.

B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Modification example:
The technique disclosed in the present specification is not limited to the above-described embodiment, and can be transformed into various forms without departing from the gist thereof, and for example, the following modifications are also possible.

上記実施形態において、ヒータ電極用上側ばね441aは、ヒータ電極用の上側給電端子441とは別体の部材によって構成されたものであってもよい。ヒータ電極用下側ばね442aは、ヒータ電極用の下側給電端子442とは別体の部材によって構成されたものであってもよい。チャック電極用上側ばね541aは、チャック電極用の上側給電端子541とは別体の部材によって構成されたものであってもよい。チャック電極用下側ばね542aは、チャック電極用の下側給電端子542とは別体の部材によって構成されたものであってもよい。 In the above embodiment, the upper spring 441a for the heater electrode may be formed of a member separate from the upper power feeding terminal 441 for the heater electrode. The lower spring 442a for the heater electrode may be formed of a member separate from the lower power feeding terminal 442 for the heater electrode. The upper spring 541a for the chuck electrode may be formed of a member separate from the upper power feeding terminal 541 for the chuck electrode. The lower spring 542a for the chuck electrode may be formed of a member separate from the lower power feeding terminal 542 for the chuck electrode.

上記実施形態(または上記変形例。以下、同様)において、ヒータ電極用上側ばね441aおよび/またはヒータ電極用下側ばね442aは、ヒータ電極用の中央給電端子443の一部(例えば、第1の凹部443a、第2の凹部443b)または全体によって形成されたものであってもよい。チャック電極用上側ばね541aおよび/またはチャック電極用下側ばね542aは、チャック電極用の中央給電端子543の一部(例えば、第3の凹部543a、第4の凹部543b)または全体によって形成されたものであってもよい。 In the above embodiment (or the above modification; the same applies hereinafter), the upper spring 441a for the heater electrode and / or the lower spring 442a for the heater electrode is a part of the central feeding terminal 443 for the heater electrode (for example, the first one). It may be formed by the recess 443a, the second recess 443b) or the whole. The upper spring 541a for the chuck electrode and / or the lower spring 542a for the chuck electrode was formed by a part (for example, a third recess 543a, a fourth recess 543b) or the whole of the central feeding terminal 543 for the chuck electrode. It may be a thing.

上記実施形態において、ヒータ電極用上側ばね441aおよび/またはヒータ電極用下側ばね442aは、ヒータ電極用の上側給電端子441および中央給電端子443とは別体の部材によって構成されたものであってもよい。チャック電極用上側ばね541aおよび/またはチャック電極用下側ばね542aは、チャック電極用の下側給電端子542および中央給電端子443とは別体の部材によって構成されたものであってもよい。 In the above embodiment, the upper spring 441a for the heater electrode and / or the lower spring 442a for the heater electrode is composed of a member separate from the upper power feeding terminal 441 for the heater electrode and the central feeding terminal 443. May be good. The upper spring 541a for the chuck electrode and / or the lower spring 542a for the chuck electrode may be configured by a member separate from the lower feeding terminal 542 for the chuck electrode and the central feeding terminal 443.

上記実施形態において、ヒータ電極用上側ばね441a、ヒータ電極用下側ばね442a、チャック電極用上側ばね541a、およびチャック電極用下側ばね542aは、導電性を有し、Z軸方向に略直交する方向(例えば、図3のXZ断面ではX軸方向)に伸縮するばねであれば、ばねの材質や形状は特に限定されない。例えば、ヒータ電極用上側ばね441a、ヒータ電極用下側ばね442a、チャック電極用上側ばね541a、およびチャック電極用下側ばね542aは、板ばね以外のばね(例えば、コイルばね)であってもよい。 In the above embodiment, the upper spring 441a for the heater electrode, the lower spring 442a for the heater electrode, the upper spring 541a for the chuck electrode, and the lower spring 542a for the chuck electrode have conductivity and are substantially orthogonal to each other in the Z-axis direction. The material and shape of the spring are not particularly limited as long as the spring expands and contracts in a direction (for example, in the X-axis direction in the XZ cross section of FIG. 3). For example, the upper spring 441a for the heater electrode, the lower spring 442a for the heater electrode, the upper spring 541a for the chuck electrode, and the lower spring 542a for the chuck electrode may be springs other than leaf springs (for example, coil springs). ..

上記実施形態において、上側給電端子441,541の全体がベース複合体200の貫通孔22a(チャック電極用の上側給電端子541の場合は、貫通孔23a)の内部に位置していてもよく、下側給電端子442,542の全体がベース複合体200の貫通孔22a(チャック電極用の下側給電端子542の場合は、貫通孔23a)の内部に位置していてもよい。 In the above embodiment, the entire upper feeding terminals 441 and 541 may be located inside the through hole 22a of the base complex 200 (in the case of the upper feeding terminal 541 for the chuck electrode, the through hole 23a). The entire side feeding terminals 442 and 542 may be located inside the through hole 22a of the base complex 200 (in the case of the lower feeding terminal 542 for the chuck electrode, the through hole 23a).

上記実施形態において、上側給電端子441,541の第1の凸部441d(チャック電極用の上側給電端子541の場合は、第3の凸部541d)の全体が第1の凹部443a(チャック電極用の上側給電端子541の場合は、第3の凹部543a)に挿入されていてもよい。また、上記実施形態において、下側給電端子442,542の第2の凸部442e(チャック電極用の上側給電端子541の場合は、第4の凸部542e)の全体が第2の凸部442e(チャック電極用の上側給電端子541の場合は、第4の凹部543b)に挿入されていてもよい。 In the above embodiment, the entire first convex portion 441d of the upper feeding terminals 441 and 541 (in the case of the upper feeding terminal 541 for the chuck electrode, the third convex portion 541d) is the first concave portion 443a (for the chuck electrode). In the case of the upper power feeding terminal 541, it may be inserted into the third recess 543a). Further, in the above embodiment, the entire second convex portion 442e of the lower feeding terminal 442,542 (in the case of the upper feeding terminal 541 for the chuck electrode, the fourth convex portion 542e) is the second convex portion 442e. (In the case of the upper power feeding terminal 541 for the chuck electrode, it may be inserted into the fourth recess 543b).

上記実施形態において、冷却を行う装置が板状部材10に備えられていてもよく、加熱を行う装置がベース複合体200に備えられていてもよい。 In the above embodiment, the device for cooling may be provided in the plate-shaped member 10, and the device for heating may be provided in the base complex 200.

また、上記実施形態の静電チャック100の各部材(板状部材10、ベース部材20、接合部30、上側給電端子441,541、下側給電端子442,542、中央給電端子443,543等)の形成材料は、あくまで一例であり、種々変更可能である。例えば、上記実施形態では、板状部材10がセラミックスにより形成されているが、板状部材10がセラミックス以外の材料(例えば、樹脂材料)により形成されるとしてもよい。 Further, each member of the electrostatic chuck 100 of the above embodiment (plate-shaped member 10, base member 20, joint portion 30, upper feeding terminal 441, 541, lower feeding terminal 442, 542, central feeding terminal 443, 543, etc.). The forming material of is only an example and can be changed in various ways. For example, in the above embodiment, the plate-shaped member 10 is made of ceramics, but the plate-shaped member 10 may be made of a material other than ceramics (for example, a resin material).

また、本発明は、第2の給電端子(上記実施形態では、上側給電端子441,541)、第3の給電端子(上記実施形態では、下側給電端子442,542)、第1の給電端子(上記実施形態では、中央給電端子443,543)、給電パッド等を介して、ヒータ電極に電力が供給される静電チャックに限らず、第2の給電端子、第3の給電端子、第1の給電端子、給電パッド等を介して、特定部材(ヒータ電極以外の別の部材を含む。例えば、チャック電極)に電力が供給される他の保持装置(例えば、CVDヒータ等のヒータ装置や真空チャック等)にも適用可能である。 Further, in the present invention, the second power supply terminal (upper power supply terminal 441, 541 in the above embodiment), the third power supply terminal (lower power supply terminal 442,542 in the above embodiment), the first power supply terminal. (In the above embodiment, the central power supply terminal 443,543), the second power supply terminal, the third power supply terminal, and the first power supply terminal are not limited to the electrostatic chuck in which power is supplied to the heater electrode via the power supply pad and the like. A heater device such as a CVD heater or a vacuum is supplied to a specific member (including another member other than the heater electrode. For example, a chuck electrode) via a power supply terminal, a power supply pad, or the like. It can also be applied to chucks, etc.).

10:板状部材 20:ベース部材 21:冷媒流路 22:ヒータ電極用絶縁管 30:接合部 40:チャック電極 41:チャック電極用ビア 42:チャック電極用電極パッド 44:ヒータ電極用の給電端子 50:ヒータ電極 51:ヒータ電極用ビア 52:ヒータ電極用給電パッド 54:チャック電極用の給電端子 78:ヒータ電極用ろう付け部 100:静電チャック 200:ベース複合体 441:ヒータ電極用の上側給電端子 441a:ヒータ電極用上側ばね 442:ヒータ電極用の下側給電端子 442a:ヒータ電極用下側ばね 443:ヒータ電極用の中央給電端子 541:チャック電極用の上側給電端子 541a:チャック電極用上側ばね 542:チャック電極用の下側給電端子 542a:チャック電極用下側ばね 543:チャック電極用の中央給電端子 W:ウェハ 10: Plate-shaped member 20: Base member 21: Refrigerant flow path 22: Insulated tube for heater electrode 30: Joint 40: Chuck electrode 41: Via for chuck electrode 42: Electrode pad for chuck electrode 44: Feeding terminal for heater electrode 50: Heater electrode 51: Via for heater electrode 52: Power supply pad for heater electrode 54: Power supply terminal for chuck electrode 78: Brazing part for heater electrode 100: Electrostatic chuck 200: Base composite 441: Upper side for heater electrode Power supply terminal 441a: Upper power supply terminal for heater electrode 442: Lower power supply terminal for heater electrode 442a: Lower spring for heater electrode 443: Central power supply terminal for heater electrode 541: Upper power supply terminal for chuck electrode 541a: For chuck electrode Upper spring 542: Lower feeding terminal for chuck electrode 542a: Lower spring for chuck electrode 543: Central feeding terminal for chuck electrode W: Wafer

Claims (4)

第1の方向に略直交する第1の表面を有する第1の部材と、
前記第1の部材に接合された第2の部材であって、前記第1の表面に対向する第2の表面と、前記第2の表面とは反対側の第3の表面と、を有し、前記第2の表面から前記第3の表面まで貫通する貫通孔が形成され、熱膨張係数が前記第1の部材の熱膨張係数とは異なる第2の部材と、
前記第1の部材の前記第1の表面の側に配置された給電パッドと、
前記給電パッドに接合され、少なくとも一部が前記貫通孔の内部に位置している第1の給電端子と、
前記第2の部材の前記第3の表面の側に配置され、少なくとも一部が前記貫通孔の内部に位置している第2の給電端子と、
前記貫通孔の内部における前記第1の給電端子と前記第2の給電端子との間に配置された第3の給電端子と、を備える保持装置において、
前記第1の給電端子と前記第3の給電端子の少なくとも一方は、前記第1の給電端子と前記第3の給電端子との間の電気的導通が可能であり、前記第1の方向に略直交する方向に伸縮する第1のばねを有し、
前記第2の給電端子と前記第3の給電端子の少なくとも一方は、前記第2の給電端子と前記第3の給電端子との間の電気的導通が可能であり、前記第1の方向に略直交する方向に伸縮する第2のばねを有し、
前記第3の給電端子は、前記貫通孔を画定する前記第2の部材の壁面との間に隙間が形成されるように配置され、前記第1の方向に略直交する方向に移動可能なように備えられている、
ことを特徴とする、保持装置。
A first member having a first surface that is substantially orthogonal to the first direction,
A second member joined to the first member, which has a second surface facing the first surface and a third surface opposite to the second surface. A second member having a through hole penetrating from the second surface to the third surface and having a coefficient of thermal expansion different from that of the first member.
A power supply pad arranged on the side of the first surface of the first member,
A first power supply terminal joined to the power supply pad and at least partially located inside the through hole,
A second power feeding terminal arranged on the side of the third surface of the second member and at least partly located inside the through hole.
In a holding device including a third power supply terminal arranged between the first power supply terminal and the second power supply terminal inside the through hole.
At least one of the first power supply terminal and the third power supply terminal is capable of electrically conducting between the first power supply terminal and the third power supply terminal, and is substantially in the first direction. It has a first spring that expands and contracts in the orthogonal direction,
At least one of the second power supply terminal and the third power supply terminal is capable of electrically conducting between the second power supply terminal and the third power supply terminal, and is substantially in the first direction. It has a second spring that expands and contracts in the orthogonal direction,
The third power feeding terminal is arranged so as to form a gap between the third power feeding terminal and the wall surface of the second member defining the through hole, and is movable in a direction substantially orthogonal to the first direction. Be prepared for,
A holding device characterized by the fact that.
請求項1に記載の保持装置において、
前記第1の給電端子は、前記第3の給電端子に対向する第4の表面を有し、前記第4の表面から前記第1の方向に突出する第1の凸部を有し、
前記第2の給電端子は、前記第3の給電端子に対向する第5の表面を有し、前記第5の表面から前記第1の方向に突出する第2の凸部を有し、
前記第3の給電端子の前記第1の給電端子の側の端部には、前記第1の方向に凹む第1の凹部が形成され、
前記第1の凹部には、前記第1の凸部の少なくとも一部が挿入され、
前記第3の給電端子の前記第2の給電端子の側の端部には、前記第1の方向に凹む第2の凹部が形成され、
前記第2の凹部には、前記第2の凸部の少なくとも一部が挿入され、
前記第1のばねは、前記第1の凸部と前記第1の凹部との少なくとも一方の少なくとも一部を形成し、
前記第2のばねは、前記第2の凸部と前記第2の凹部との少なくとも一方の少なくとも一部を形成している、
ことを特徴とする、保持装置。
In the holding device according to claim 1,
The first power feeding terminal has a fourth surface facing the third power feeding terminal, and has a first convex portion protruding from the fourth surface in the first direction.
The second power feeding terminal has a fifth surface facing the third power feeding terminal, and has a second convex portion protruding from the fifth surface in the first direction.
At the end of the third power supply terminal on the side of the first power supply terminal, a first recess recessed in the first direction is formed.
At least a part of the first convex portion is inserted into the first concave portion, and the first convex portion is inserted into the first concave portion.
A second recess recessed in the first direction is formed at the end of the third power feeding terminal on the side of the second feeding terminal.
At least a part of the second convex portion is inserted into the second concave portion, and the second convex portion is inserted into the second concave portion.
The first spring forms at least a part of at least one of the first convex portion and the first concave portion.
The second spring forms at least a part of at least one of the second convex portion and the second concave portion.
A holding device characterized by the fact that.
請求項2に記載の保持装置において、
前記第4の表面と前記第5の表面とのそれぞれは、前記第1の方向視で前記第3の給電端子を内包し、
前記第1の凹部の深さが前記第1の凸部の高さよりも大きく、
前記第2の凹部の深さが前記第2の凸部の高さよりも大きい、
ことを特徴とする、保持装置。
In the holding device according to claim 2,
Each of the fourth surface and the fifth surface includes the third power feeding terminal in the first directional view.
The depth of the first concave portion is larger than the height of the first convex portion,
The depth of the second concave portion is larger than the height of the second convex portion.
A holding device characterized by the fact that.
請求項1から請求項3までのいずれか一項に記載の保持装置において、
前記第1の部材と前記第2の部材との少なくとも一方に配置され、加熱または冷却を行う温度調整手段を備える、
ことを特徴とする、保持装置。
In the holding device according to any one of claims 1 to 3.
A temperature adjusting means which is arranged on at least one of the first member and the second member and performs heating or cooling is provided.
A holding device characterized by the fact that.
JP2019187541A 2019-10-11 2019-10-11 holding device Active JP7313254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187541A JP7313254B2 (en) 2019-10-11 2019-10-11 holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187541A JP7313254B2 (en) 2019-10-11 2019-10-11 holding device

Publications (2)

Publication Number Publication Date
JP2021064661A true JP2021064661A (en) 2021-04-22
JP7313254B2 JP7313254B2 (en) 2023-07-24

Family

ID=75486514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187541A Active JP7313254B2 (en) 2019-10-11 2019-10-11 holding device

Country Status (1)

Country Link
JP (1) JP7313254B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189954A1 (en) * 2022-03-29 2023-10-05 京セラ株式会社 Sample holder
KR20230151880A (en) 2022-04-26 2023-11-02 엔지케이 인슐레이터 엘티디 Wafer placement table

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188321A (en) * 1998-12-14 2000-07-04 Applied Materials Inc Electrostatic chuck connector and its combination
JP2008047657A (en) * 2006-08-12 2008-02-28 Ngk Spark Plug Co Ltd Electrostatic chuck device
WO2012019017A2 (en) * 2010-08-06 2012-02-09 Applied Materials, Inc. Electrostatic chuck and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188321A (en) * 1998-12-14 2000-07-04 Applied Materials Inc Electrostatic chuck connector and its combination
JP2008047657A (en) * 2006-08-12 2008-02-28 Ngk Spark Plug Co Ltd Electrostatic chuck device
WO2012019017A2 (en) * 2010-08-06 2012-02-09 Applied Materials, Inc. Electrostatic chuck and methods of use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189954A1 (en) * 2022-03-29 2023-10-05 京セラ株式会社 Sample holder
KR20230151880A (en) 2022-04-26 2023-11-02 엔지케이 인슐레이터 엘티디 Wafer placement table

Also Published As

Publication number Publication date
JP7313254B2 (en) 2023-07-24

Similar Documents

Publication Publication Date Title
TWI587441B (en) Electrostatic chuck
KR20150112777A (en) Electrostatic chuck
JP2021064661A (en) Holding device
TWI827619B (en) Electrostatic chuck and substrate fixing device
JP2007258615A (en) Electrostatic chuck
JP7030420B2 (en) Holding device
JP6758175B2 (en) Electrostatic chuck
JP6762432B2 (en) Holding device
JP6955407B2 (en) Holding device
JP7030557B2 (en) Holding device
JP7139165B2 (en) holding device
JP6994953B2 (en) Holding device
JP7233160B2 (en) Retaining device and method for manufacturing the retaining device
JP7101058B2 (en) Holding device
JP2021034412A (en) Holding device
JP2019040939A (en) Wafer mounting table
JP7477371B2 (en) Retaining device
JP7411383B2 (en) heating device
JP7182910B2 (en) holding device
JP6703646B2 (en) Holding device manufacturing method
JP7445433B2 (en) holding device
JP6943774B2 (en) Holding device
JP7278049B2 (en) holding device
JP6955408B2 (en) Holding device
JP2022023325A (en) Holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230711

R150 Certificate of patent or registration of utility model

Ref document number: 7313254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150