JP2021060275A - 受光素子及び測距装置 - Google Patents

受光素子及び測距装置 Download PDF

Info

Publication number
JP2021060275A
JP2021060275A JP2019184512A JP2019184512A JP2021060275A JP 2021060275 A JP2021060275 A JP 2021060275A JP 2019184512 A JP2019184512 A JP 2019184512A JP 2019184512 A JP2019184512 A JP 2019184512A JP 2021060275 A JP2021060275 A JP 2021060275A
Authority
JP
Japan
Prior art keywords
pixel
transfer
pixels
transistor
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019184512A
Other languages
English (en)
Inventor
卓哉 丸山
Takuya Maruyama
卓哉 丸山
悠介 大竹
Yusuke Otake
悠介 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2019184512A priority Critical patent/JP2021060275A/ja
Priority to PCT/JP2020/032466 priority patent/WO2021070504A1/ja
Publication of JP2021060275A publication Critical patent/JP2021060275A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】対象物までの距離や対象物の反射率によらずに、ハイダイナミックレンジを実現することができる受光素子を提供する。【解決手段】第1画素及び第2画素を備え、第1画素及び第2画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタとを備え、第1画素のリセットトランジスタのゲートに第1リセット制御配線が接続され、第2画素のリセットトランジスタのゲートに第2リセット制御配線が接続され、第1及び第2画素のそれぞれの電荷の蓄積時間を互いに異ならせる。【選択図】図7

Description

本開示に係る技術(本技術)は、受光素子、及びその受光素子を用いた測距装置に関する。
光飛行時間に基づいて距離を測定するTime of Flight(ToF)方式として、パルス波を利用して直接的に計測される光飛行時間から距離を測定する直接ToF方式と、変調光の位相を利用して間接的に算出される光飛行時間から距離を測定する間接ToF方式が知られている。
このうち、間接ToF方式では、光源から光を照射し、対象物で反射された光を光電変換部が光電変換する。光電変換部により生成された電荷は、複数の転送トランジスタにより複数の電荷蓄積部へ振り分けられる。そして、複数の電荷蓄積部に蓄積された電荷量に応じた位相信号に基づき、対象物までの距離が算出される(特許文献1参照)。
特開2009−8537号公報
しかしながら、間接ToF方式では、遠距離にある対象物や低反射率の対象物の測距情報を得るために、光電変換部から電荷蓄積部への電荷の振り分け時間(電荷蓄積部の電荷の蓄積時間)を長くすると、近距離にある対象物や高反射率の対象物で反射した光により電荷蓄積部が飽和する場合がある。
本技術は、対象物までの距離や対象物の反射率によらずに、ハイダイナミックレンジを実現することができる受光素子及び測距装置を提供することを目的とする。
本技術の一態様に係る受光素子は、第1画素及び第2画素を備え、第1画素及び第2画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタとを備え、第1画素のリセットトランジスタのゲートに第1リセット制御配線が接続され、第2画素のリセットトランジスタのゲートに第2リセット制御配線が接続され、第1及び第2画素のそれぞれの電荷の蓄積時間を互いに異ならせることを要旨とする。
本技術の他の態様に係る受光素子は、第1画素及び第2画素を備え、第1画素及び第2画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタと、光電変換部の電荷を排出する排出トランジスタとを備え、第1画素の排出トランジスタのゲートに第1排出制御配線が電気的に接続され、第2画素の排出トランジスタのゲートに第2排出制御配線が電気的に接続され、第1及び第2画素のそれぞれの電荷の蓄積時間中に、第1及び第2画素のそれぞれの排出トランジスタのゲートに印加する電位を互いに異ならせることを要旨とする。
本技術の他の態様に係る受光素子は、行列状に配置された複数の画素を備え、複数の画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタとを備え、第1行目の画素のそれぞれのリセットトランジスタのゲートに第1リセット制御配線が接続され、第2行目の画素のそれぞれのリセットトランジスタのゲートに第2リセット制御配線が接続され、第1行目の画素のそれぞれの電荷の蓄積時間と、第2行目の画素のそれぞれの電荷の蓄積時間とを互いに異ならせることを要旨とする。
本技術の一態様に係る測距装置は、光を発する発光部と、光が対象物で反射した反射光を受光する複数の画素を有する受光部と、受光部からの検出信号に基づき、対象物までの距離を算出する算出部とを備え、複数の画素に含まれる第1画素及び第2画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタとを備え、第1画素のリセットトランジスタのゲートに第1リセット制御配線が接続され、第2画素のリセットトランジスタのゲートに第2リセット制御配線が接続され、第1及び第2画素のそれぞれの電荷の蓄積時間を互いに異ならせることを要旨とする。
本技術の他の態様に係る測距装置は、光を発する発光部と、光が対象物で反射した反射光を受光する複数の画素を有する受光部と、受光部からの検出信号に基づき、対象物までの距離を算出する算出部とを備え、複数の画素に含まれる第1画素及び第2画素のそれぞれは、光電変換部と、光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、光電変換部から第1及び第2電荷蓄積部に電荷をそれぞれ転送する第1及び第2転送トランジスタと、第1及び第2電荷蓄積部をリセットするリセットトランジスタと、光電変換部の電荷を排出する排出トランジスタとを備え、第1画素の排出トランジスタのゲートに第1排出制御配線が電気的に接続され、第2画素の排出トランジスタのゲートに第2排出制御配線が電気的に接続され、第1及び第2画素のそれぞれの電荷の蓄積時間中に、第1及び第2画素のそれぞれの排出トランジスタのゲートに印加する電位を互いに異ならせることを要旨とする。
第1実施形態に係る測距装置の概略図である。 第1実施形態に係る受光部の概略図である。 第1実施形態に係る画素アレイ部の概略図である。 第1実施形態に係る画素の等価回路図である。 第1実施形態に係る行方向の画素の一部の等価回路図である。 第1実施形態に係る画素の平面図である。 第1実施形態に係る測距方法のタイミングチャートである。 第2実施形態に係る行方向の画素の一部の等価回路図である。 第2実施形態に係る測距方法のタイミングチャートである。 第3実施形態に係る画素の等価回路図である。 第3実施形態に係る測距方法のタイミングチャートである。 第3実施形態に係る測距方法の他のタイミングチャートである。 第4実施形態に係る画素アレイ部の概略図である。 第4実施形態に係る長畜画素の等価回路図である。 第4実施形態に係る短畜画素の等価回路図である。 第5実施形態に係る画素の平面図である。 第5実施形態に係る行方向の画素の一部の等価回路図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下において、図面を参照して本技術の第1〜第5実施形態を説明する。以下の説明で参照する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
なお、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
(第1実施形態)
<測距装置の構成>
本技術の第1実施形態に係る測距装置10は、図1に示すように、レンズ11、受光部(受光素子)12、信号処理部13、発光部14及び発光制御部15を備える。
発光部14は、測距装置10の筐体内に配置してもよく、測距装置10の筐体外部に配置してもよい。発光部14は、赤外光(IR)等の光を発光する。なお、レンズ11と受光部12の間にIRバンドフィルタを設け、IRバンドパスフィルタの透過波長帯に対応する赤外光を発光部14が発光する構成であってもよい。発光制御部15は、信号処理部13からの制御信号(オン/オフ信号)に応じて、発光部14の発光を制御する。
受光部12は、例えばComplementary Metal Oxide Semiconductor(CMOS)イメージセンサで構成されている。受光部12は、発光部14から光が対象物で反射した反射光をレンズ11を介して受光する。受光部12は、受光した光量に応じた画素信号(検出信号)を信号処理部13へ出力する。
信号処理部13は、パターン切替部21及び距離画像生成部22を備える。パターン切替部21は、所定のタイミングで発光部14の発光パターンを切り替えるための制御信号(オン/オフ信号)を発光制御部15に出力する。例えば、パターン切替部21は、他の測距装置の発光パターンと重ならないように、発光部14の発光パターンを切り替えてもよい。なお、信号処理部13は、パターン切替部21を備えていなくてもよい。
距離画像生成部22は、受光部12からの検出信号に基づき、測距装置10から対象物までの距離を算出する。更に、距離画像生成部22は、算出された距離に基づき、距離画像を生成し、生成した距離画像を外部へ出力する。
<受光部の構成>
受光部12は、図2に示すように、画素アレイ部31、垂直駆動部32、カラム処理部33、水平駆動部34及びシステム制御部35を備える。画素アレイ部31、垂直駆動部32、カラム処理部33、水平駆動部34及びシステム制御部35は、図示を省略した半導体基板(半導体チップ)上に設けられている。
画素アレイ部31は、2次元の行列状に配置された複数の画素(単位画素)を備える。図2では、複数の画素の内の1つの画素40aを例示している。画素40aは、受光した光を光電変換し、光量に応じた電荷を生成する光電変換素子を有する。
画素アレイ部31には、画素駆動線36を介して垂直駆動部32が接続されている。垂直駆動部32は、シフトレジスタやアドレスデコーダ等で構成されている。垂直駆動部32は、画素アレイ部31の各画素を、全画素同時あるいは行単位等で駆動する。垂直駆動部32によって選択走査された画素行の各画素から出力される画素信号は、垂直信号線37の各々を通してカラム処理部33に供給される。
カラム処理部33は、画素アレイ部31の画素列毎に、選択行の各単位画素から垂直信号線37を通して出力される画素信号に対して所定の信号処理を行う。例えば、カラム処理部33は、信号処理として相関二重サンプリング(CDS)処理等のノイズ除去処理を行うことにより、リセットノイズや増幅トランジスタの閾値ばらつき等の画素固有の固定パターンノイズを除去する。カラム処理部33は、アナログ信号である画素信号をアナログ・デジタル(AD)変換してもよい。
水平駆動部34は、シフトレジスタやアドレスデコーダ等で構成されている。水平駆動部34は、カラム処理部33の画素列に対応する単位回路を順番に選択する。水平駆動部34による選択走査により、カラム処理部33で信号処理された画素信号が順番に信号処理部13に出力される。
システム制御部35は、各種のタイミング信号を生成するタイミングジェネレータ等で構成されている。システム制御部35は、タイミングジェネレータで生成された各種のタイミング信号に基づき、垂直駆動部32、カラム処理部33及び水平駆動部34等の駆動制御を行う。
図3に示すように、画素アレイ部31は、相対的に長時間に電荷を蓄積する画素(以下、「長蓄画素」という。)40aと、相対的に短時間に電荷を蓄積する画素(以下、「短蓄画素」という)40bとを有する。長蓄画素40a及び短畜画素40bは、千鳥格子状に配置されている。図3では模式的に、長蓄画素40aに「長」の文字を付し、短畜画素40bに「短」の文字を付している。
長蓄画素40aは、短畜画素40bと比較して、遠距離にある対象物や低反射率の対象物の測距情報を得易い。一方、短畜画素40bは、長蓄画素40aと比較して、近距離にある対象物や高反射率の対象物で反射した光により電荷蓄積部が飽和し難い。長蓄画素40a及び短畜画素40bからの画素信号を、信号処理部13により合成することにより、ハイダイナミックレンジを実現することができる。
<画素の等価回路>
図4は、長蓄画素40a及び短畜画素40bの等価回路を示す。図4の左側の画素40aは、フォトダイオード51a、排出トランジスタ60a、転送トランジスタ61a,62a、変換効率調整トランジスタ63a,64a、選択トランジスタ65a,66a、増幅トランジスタ67a,68a及びリセットトランジスタ69a,70aを含む。排出トランジスタ60a、転送トランジスタ61a,62a、変換効率調整トランジスタ63a,64a、選択トランジスタ65a,66a、増幅トランジスタ67a,68a及びリセットトランジスタ69a,70aは、例えばMOSトランジスタで構成されている。
フォトダイオード51aは、入射光を光電変換する光電変換部を構成する。フォトダイオード51aのアノードは接地されている。フォトダイオード51aのカソードには、転送トランジスタ61a,62aのソース及び排出トランジスタ60aのソースが接続されている。
排出トランジスタ60aのドレインには電源電位VDDが印加される。排出トランジスタ60aのゲートには、排出制御配線84を介して排出信号OFGが印加される。排出トランジスタ60aは、排出信号OFGに基づき、フォトダイオード51aの電荷を排出する。なお、排出トランジスタ60aが無い構成であってもよい。
転送トランジスタ61a,62aのドレインは、浮遊拡散領域(フローティング・ディフュージョン)で構成される電荷蓄積部52a,53aにそれぞれ接続されている。転送トランジスタ61a,62aのゲートには、転送信号TG0,TG1がそれぞれ印加される。転送トランジスタ61a,62aは、転送信号TG0,TG1に基づき、フォトダイオード51aからの電荷を電荷蓄積部52a,53aにそれぞれ転送する。
電荷蓄積部52a,53aは、フォトダイオード51aから転送トランジスタ61a,62aを介して転送された電荷を蓄積する。電荷蓄積部52a,53aに蓄積された電荷量に応じて、電荷蓄積部52a,53aの電位は変調される。
電荷蓄積部52a,53aには、変換効率調整トランジスタ63a,64aのソースがそれぞれ接続されている。変換効率調整トランジスタ63a,64aのドレインは、リセットトランジスタ69a,70aのソースにそれぞれ接続されている。変換効率調整トランジスタ63a,64aのゲートには、変換効率調整配線83を介して共通の変換効率調整信号FDGが印加される。変換効率調整トランジスタ63a,64aは、変換効率調整信号FDGに応じて、電荷の変換効率を調整する。なお、変換効率調整トランジスタ63a,64aが無い構成であってもよい。その場合、電荷蓄積部52a,53aには、リセットトランジスタ69a,70aのソースがそれぞれ接続される。
リセットトランジスタ69a,70aのドレインには、電源電位VDDHが印加される。リセットトランジスタ69a,70aのゲートには、リセット制御配線80aが接続されている。リセットトランジスタ69a,70aのゲートには、リセット制御配線80aを介してリセット信号RST0が印加される。リセットトランジスタ69a,70aは、リセット信号RST0に基づき、電荷蓄積部52a,53aに蓄積されていた電荷を初期化(リセット)する。なお、電荷蓄積部52a,53aにそれぞれ個別に接続された2つのリセットトランジスタ69a,70aを設ける代わりに、電荷蓄積部52a,53aに共通に接続された1つのリセットトランジスタを設けてもよい。
電荷蓄積部52a,53aには、増幅トランジスタ67a,68aのゲートが接続されている。増幅トランジスタ67a,68aのドレインには、選択トランジスタ65a,66aのソースが接続されている。増幅トランジスタ67a,68aは、電荷蓄積部52a,53aの電位を増幅する。
選択トランジスタ65a,66aのドレインは、垂直信号線37にそれぞれ接続されている。選択トランジスタ65a,66aのゲートには、画素駆動線(選択信号線)36を介して選択信号SELが印加される。選択トランジスタ65a,66aは、選択信号SELに基づき、長蓄画素40aを選択する。長蓄画素40aが選択された場合、増幅トランジスタ67a,68aにより増幅された電位に応じた画素信号VSL0,VSL1が垂直信号線37を介して出力される。
一方、図4の右側の短蓄画素40bは、フォトダイオード51b、排出トランジスタ60b、転送トランジスタ61b,62b、変換効率調整トランジスタ63b,64b、選択トランジスタ65b,66b、増幅トランジスタ67b,68b及びリセットトランジスタ69b,70bを含む。排出トランジスタ60b、転送トランジスタ61b,62b、変換効率調整トランジスタ63b,64b、選択トランジスタ65b,66b、増幅トランジスタ67b,68b及びリセットトランジスタ69b,70bは、例えばMOSトランジスタで構成されている。
フォトダイオード51bは、入射光を光電変換する光電変換部を構成する。フォトダイオード51bのアノードは接地されている。フォトダイオード51bのカソードには、転送トランジスタ61b,62bのソース及び排出トランジスタ60bのソースが接続されている。
排出トランジスタ60bのドレインには電源電位VDDが印加される。排出トランジスタ60bのゲートには、長蓄画素40a側の排出トランジスタ60aのゲートと共通の排出制御配線84を介して排出信号OFGが印加される。排出トランジスタ60bは、排出信号OFGに基づき、フォトダイオード51bの電荷を排出する。なお、排出トランジスタ60bが無い構成であってもよい。
転送トランジスタ61b,62bのドレインは、浮遊拡散領域(フローティング・ディフュージョン)で構成される電荷蓄積部52b,53bにそれぞれ接続されている。転送トランジスタ61b,62bのゲートには、転送信号TG2,TG3がそれぞれ印加される。転送トランジスタ61b,62bは、転送信号TG2,TG3に基づき、フォトダイオード51bからの電荷を電荷蓄積部52b,53bにそれぞれ転送する。
電荷蓄積部52b,53bは、フォトダイオード51bから転送トランジスタ61b,62bを介して転送された電荷を蓄積する。電荷蓄積部52b,53bに蓄積された電荷量に応じて、電荷蓄積部52b,53bの電位は変調される。
電荷蓄積部52b,53bには、変換効率調整トランジスタ63b,64bのソースがそれぞれ接続されている。変換効率調整トランジスタ63b,64bのドレインは、リセットトランジスタ69b,70bのソースにそれぞれ接続されている。変換効率調整トランジスタ63b,64bのゲートには、長蓄画素40a側の変換効率調整トランジスタ63a,64aのゲートと共通の変換効率調整配線83を介して共通の変換効率調整信号FDGが印加される。変換効率調整トランジスタ63b,64bは、変換効率調整信号FDGに応じて、電荷の変換効率を調整する。なお、変換効率調整トランジスタ63b,64bが無い構成であってもよい。その場合、電荷蓄積部52b,53bには、リセットトランジスタ69b,70bのソースがそれぞれ接続される。
リセットトランジスタ69b,70bのドレインには、電源電位VDDHが印加される。リセットトランジスタ69b,70bのゲートには、長蓄画素40a側のリセットトランジスタ69a,70aが接続されているリセット制御配線80とは個別に、リセット制御配線81が接続されている。リセットトランジスタ69b,70bのゲートには、リセット制御配線81を介してリセット信号RST1が印加される。リセットトランジスタ69b,70bは、リセット信号RST1に基づき、電荷蓄積部52b,53bに蓄積されていた電荷を初期化(リセット)する。なお、電荷蓄積部52b,53bにそれぞれ個別に接続された2つのリセットトランジスタ69b,70bを設ける代わりに、電荷蓄積部52b,53bに共通に接続された1つのリセットトランジスタを設けてもよい。
電荷蓄積部52b,53bには、増幅トランジスタ67b,68bのゲートが接続されている。増幅トランジスタ67b,68bのドレインには、選択トランジスタ65b,66bのソースが接続されている。増幅トランジスタ67b,68bは、電荷蓄積部52b,53bの電位を増幅する。
選択トランジスタ65b,66bのドレインは、垂直信号線37にそれぞれ接続されている。選択トランジスタ65b,66bのゲートには、画素駆動線(選択信号線)36を介して選択信号SELが印加される。選択トランジスタ65b,66bは、選択信号SELに基づき、短蓄画素40bを選択する。短蓄画素40bが選択された場合、増幅トランジスタ67b,68bにより増幅された電位に応じた画素信号VSL2,VSL3が垂直信号線37を介して出力される。
図5は、同一行に配置された長蓄画素40a及び短蓄画素40bの一部を示す。図5の上下方向を行方向とし、図5の左右方向を列方向としている。図5に示すように、行方向に1つおきに配置された長蓄画素40aの転送トランジスタ61a,62aのそれぞれのゲートに、転送制御配線90,91がそれぞれ電気的に接続されている。一方、行方向に1つおきに配置された短蓄画素40bの転送トランジスタ61b,62bのそれぞれのゲートに、転送制御配線92,93がそれぞれ電気的に接続されている。
<画素の構成>
図6は、図4に示した長蓄画素40a及び短蓄画素40bの半導体基板50上の平面レイアウトを示す。図6以降の平面レイアウトでは、理解を容易にするために、各部位に「PD」、「TG」、「FD」、「FDG」、「RST」、「SEL」、「AMP」、「OFG」等の表記を付している。
図6の左側の長蓄画素40aは、図6の左右方向(行方向)に線対称の平面レイアウトを有する。図6の上下方向(列方向)において、フォトダイオード51aの上側には、転送トランジスタ61a,62a、電荷蓄積部52a,53a及び変換効率調整トランジスタ63a,64aが配置されている。変換効率調整トランジスタ63a,64aの上側には、拡散層で構成される付加容量部54a,55aが配置されている。
フォトダイオード51aの下側には、排出トランジスタ60a及びリセットトランジスタ69a,70aが配置されている。図6の左右方向(行方向)において、フォトダイオード51aを挟むように、選択トランジスタ65a,66a、ウェルコンタクト56a,57a及び増幅トランジスタ67a,68aが配置されている。
図6の右側の短蓄画素40bは、左側の長蓄画素40aと同様の構成を有する。短蓄画素40bは、図6の左右方向(行方向)に線対称の平面レイアウトを有する。図6の上下方向(列方向)において、フォトダイオード51bの上側には、転送トランジスタ61b,62b、電荷蓄積部52b,53b及び変換効率調整トランジスタ63b,64bが配置されている。変換効率調整トランジスタ63b,64bの上側には、拡散層で構成される付加容量部54b,55bが配置されている。
フォトダイオード51bの下側には、排出トランジスタ60b及びリセットトランジスタ69b,70bが配置されている。図6の左右方向(行方向)において、フォトダイオード51bを挟むように、選択トランジスタ65b,66b、ウェルコンタクト56b,57b及び増幅トランジスタ67b,68bが配置されている。なお、図6に示した長蓄画素40a及び短蓄画素40bの平面レイアウトは一例であって、図6に示した長蓄画素40a及び短蓄画素40bの平面レイアウトに限定されない。
次に、図7のタイミングチャートを参照して、第1実施形態に係る測距方法を、長蓄画素40a及び短蓄画素40bに着目して説明する。
図7では発光パターンの図示を省略するが、発光部14は、所定のタイミングで照射のオン/オフを繰り返すように変調された照射光を発光する。対象物までの距離に応じた遅延時間だけ遅れて、フォトダイオード51a,51bにおいて反射光が受光される。
先ず、長蓄画素40a側の動作を説明する。時刻t0〜t1のリセット時間において、リセット信号RST0としてHレベルをリセットトランジスタ69a,70aのゲートに印加する。リセットトランジスタ69a,70aは導通状態となり、電荷蓄積部52a,53aをリセットする。この際、転送信号TG0,TG1としてLレベルを転送トランジスタ61a,62aのゲートに印加するため、転送トランジスタ61a,62aは、非導通状態となる。
時刻t1〜t3の電荷の蓄積時間において、リセット信号RST0としてLレベルをリセットトランジスタ69a,70aのゲートに印加するため、リセットトランジスタ69a,70aは非導通状態となる。また、転送信号TG0,TG1としてHレベル及びLレベルを逆位相で繰り返して、転送トランジスタ61a,62aのゲートに印加する。転送信号TG0は、例えば発光部14の発光パターンと同一位相とし、転送信号TG1は、発光部14の発光パターンと逆位相とする。転送トランジスタ61a,62aは、導通状態及び非導通状態を逆位相で繰り返すことにより、電荷蓄積部52a,53aに電荷を振り分ける。
時刻t3以降の読出し期間において、転送信号TG0,TG1としてLレベルを転送トランジスタ61a,62aのゲートに印加するため、転送トランジスタ61a,62aは非導通状態となる。この際、図7では図示を省略するが、選択信号SELとしてHレベルを選択トランジスタ65a,66aのゲートに印加する。選択トランジスタ65a,66aは導通状態となり、電荷蓄積部52a,53aの電荷量が読み出され、電荷量に応じた検出信号が、図1に示した信号処理部13へ出力される。
次に、短蓄画素40b側の動作を説明する。長蓄画素40aのリセット時間よりも長い時刻t0〜t2のリセット時間において、リセット信号RST1としてHレベルをリセットトランジスタ69b,70bのゲートに印加する。リセットトランジスタ69b,70bは導通状態となり、電荷蓄積部52b,53bをリセットする。この際、転送信号TG2,TG3としてLレベルを転送トランジスタ61b,62bのゲートに印加するため、転送トランジスタ61b,62bは、非導通状態となる。
長蓄画素40aの電荷の蓄積時間よりも短い時刻t2〜t3の電荷の蓄積時間において、リセット信号RST1としてLレベルをリセットトランジスタ69b,70bのゲートに印加するため、リセットトランジスタ69b,70bは非導通状態となる。また、転送信号TG2,TG3としてHレベル及びLレベルを逆位相で繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。
長蓄画素40aの読出し期間と同時の、時刻t3以降の読出し期間において、転送信号TG2,TG3としてLレベルを転送トランジスタ61b,62bのゲートに印加するため、転送トランジスタ61b,62bは非導通状態となる。転送信号TG2,TG3は、転送信号TG0,TG1と同一のパルス幅であってよい。この際、選択信号SELとしてHレベルを選択トランジスタ65b,66bに印加する。選択トランジスタ65b,66bは導通状態となり、電荷蓄積部52a,53aの電荷量が読み出され、電荷量に応じた検出信号が、図1に示した信号処理部13へ出力される。
信号処理部13は、長蓄画素40a及び短蓄画素40bからの検出信号に基づき、対象物までの距離を算出する。信号処理部13は、長蓄画素40a及び短蓄画素40bのそれぞれの検出信号に基づき、長蓄画像及び短蓄画像をそれぞれ生成してもよい。或いは、信号処理部13は、長蓄画像及び短蓄画像を合成した距離画像を生成してもよい。
なお、図7では2位相の転送期間を例示したが、特に限定されない。例えば、1フレーム内で変換効率調整トランジスタ63a,63b,64a,64bのオン・オフを切り替えることにより、1フレーム内で4位相の転送期間とすることも可能である。また、1フレーム内を2つの期間に分割し、2つの期間で合計4位相の転送期間を設定してもよい。
以上説明したように、第1実施形態に係る測距装置及び測距方法によれば、長蓄画素40aの転送トランジスタ61a,62a及び短蓄画素40bの転送トランジスタ61b,62bが、長蓄画素40a及び短蓄画素40bの電荷の蓄積時間を異ならせる。これにより、対象物までの距離や対象物の反射率によらずに、ハイダイナミックレンジを実現することができる。
また、転送信号TG0,TG1,TG2,TG3のパルス幅を同一に設定してもよい。転送信号TG0,TG1,TG2,TG3のパルス幅を同一とすることにより、駆動周波数を高くし、測距精度を向上させ易い。
(第2実施形態)
第2実施形態に係る測距装置は、図8に示すように、同一行の長蓄画素40aの転送トランジスタ61a及び短蓄画素40bの転送トランジスタ61bのそれぞれのゲートに共通の転送制御配線90が接続され、長蓄画素40aの転送トランジスタ62a及び短蓄画素40bの転送トランジスタ62bのそれぞれのゲートに共通の転送制御配線91が接続されている点が、図5に示した第1実施形態に係る測距装置と異なる。
長蓄画素40aの転送トランジスタ61a及び短蓄画素40bの転送トランジスタ61bのそれぞれのゲートには、転送制御配線90を介して転送信号TG0が印加される。長蓄画素40aの転送トランジスタ62a及び短蓄画素40bの転送トランジスタ62bのそれぞれのゲートには、転送制御配線91を介して転送信号TG1が印加される。第2実施形態に係る測距装置の他の構成は、第1実施形態に係る測距装置と同様であるので、重複した説明を省略する。
次に、図9のタイミングチャートを参照して、第2実施形態に係る測距方法を説明する。長蓄画素40aの動作は、図7に示した第1実施形態に係る測距方法と同様であるので、重複した説明を省略する。
短蓄画素40bでは、時刻t0〜t2のリセット時間において、リセット信号RST1としてHレベルをリセットトランジスタ69b,70bのゲートに印加する。リセットトランジスタ69b,70bは導通状態となり、電荷蓄積部52b,53bをリセットする。この際、転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分けるが、電荷蓄積部52b,53bの電荷はリセットトランジスタ69b,70bによりリセットされるため、電荷蓄積部52b,53bには電荷が蓄積されない。
時刻t2〜t3の電荷の蓄積時間において、転送信号TG0,TG1としてHレベル及びLレベルが引き続き、逆位相で繰り返して、転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。この際、リセット信号RST1がHレベルからLレベルとなり、リセットトランジスタ69b,70bは非導通状態となるため、電荷蓄積部52b,53bには電荷が蓄積されていく。
時刻t3以降の読出し期間の動作は、図7に示した第1実施形態に係る測距方法と同様であるので、重複した説明を省略する。
第2実施形態によれば、長蓄画素40aのリセットトランジスタ69a,70aのゲートと、短蓄画素40bのリセットトランジスタ69b,70bのゲートに、個別のリセット制御配線80,81が接続されている。そして、長蓄画素40aのリセットトランジスタ69a,70aによるリセット時間と、短蓄画素40bのリセットトランジスタ69b,70bによるリセット時間とを異ならせることにより、長蓄画素40a及び短蓄画素40bの蓄積時間を異ならせる。これにより、対象物までの距離や対象物の反射率によらずに、ハイダイナミックレンジを実現することができる。
更に、同一行の長蓄画素40aの転送トランジスタ61a及び短蓄画素40bの転送トランジスタ61bのそれぞれのゲートに共通の転送制御配線90が接続され、長蓄画素40aの転送トランジスタ62a及び短蓄画素40bの転送トランジスタ62bのそれぞれのゲートに共通の転送制御配線91が接続されているので、第1実施形態に係る測距装置の個別の転送制御線90〜93を用いる場合と比較して、配線本数の増加を抑制することができ、微細化を図ることができる。
(第3実施形態)
第3実施形態に係る測距装置として、電荷の蓄積時間が異なる長畜画素40a及び短蓄画素40bの代わりに、相対的に感度が低い画素(以下、「低感度画素」という。)40aと、相対的に感度が高い画素(以下、「高感度画素」という。)40bを有する場合を説明する。
第3実施形態に係る測距装置は、図10に示すように、低感度画素40aのリセットトランジスタ69a,70a及び高感度画素40bのリセットトランジスタ69b,70bのそれぞれのゲートに共通のリセット制御配線80が接続されている点が、図4に示した第1実施形態に係る測距装置と異なる。低感度画素40aのリセットトランジスタ69a,70a及び高感度画素40bのリセットトランジスタ69b,70bのそれぞれのゲートには、リセット制御配線80を介してリセット信号RSTが印加される。
更に、第3実施形態に係る測距装置は、図10に示すように、低感度画素40aの排出トランジスタ60aのゲートに排出制御配線84が電気的に接続され、これとは個別に、高感度画素40bの排出トランジスタ60bのゲートに排出制御配線85が電気的に接続されている点が、図4に示した第1実施形態に係る測距装置と異なる。低感度画素40aの排出トランジスタ60aのゲートには、排出制御配線84を介して排出信号OFG0が印加される。高感度画素40bの排出トランジスタ60bのゲートには、排出制御配線85を介して排出信号OFG1が印加される。
次に、図11のタイミングチャートを参照して、第3実施形態に係る測距方法の一例を説明する。
時刻t0〜t1は、低感度画素40a及び高感度画素40bの共通のリセット時間となる。時刻t0〜t1において、リセット信号RSTとしてHレベルが、低感度画素40aのリセットトランジスタ69a,70a及び高感度画素40bのリセットトランジスタ69b,70bのそれぞれのゲートに印加される。低感度画素40aのリセットトランジスタ69a,70aがそれぞれ導通し、電荷蓄積部52a,53aをリセットする。また、高感度画素40bのリセットトランジスタ69b,70bがそれぞれ導通し、電荷蓄積部52b,53bをリセットする。
時刻t1〜t2は、低感度画素40a及び高感度画素40bの共通の電荷の蓄積時間となる。時刻t1〜t2において、低感度画素40aでは、転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。この際、排出信号OFG0として、HレベルとLレベルの中間の電位(中間電位)を排出トランジスタ60aのゲートに印加する。排出トランジスタ60aは、排出信号OFG0がHレベルの場合に排出する電荷量よりも少ない電荷量をフォトダイオード51aから排出させる。これにより、フォトダイオード51aから電荷蓄積部52a,53aへ転送される電荷量が減少するため、低感度となる。
一方、高感度画素40bでは、時刻t1〜t2において、転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。この際、排出信号OFG1としてLレベルを排出トランジスタ60bのゲートに印加する。排出トランジスタ60bは非導通となるため、フォトダイオード51aの電荷は排出されない。フォトダイオード51aから電荷蓄積部52a,53aへ電荷が転送され、低感度画素40aに対して相対的に高感度となる。
時刻t2以降の読出し期間の動作は、図7に示した第1実施形態に係る測距方法と同様であるので、重複した説明を省略する。
第3実施形態によれば、低感度画素40a及び高感度画素40bの電荷の蓄積時間において、低感度画素40a及び高感度画素40bの排出信号OFG0,OFG1の電位を互いに異ならせることにより、低感度画素40a及び高感度画素40bの感度を互いに異ならせる。これにより、対象物までの距離や対象物の反射率に依らずに、ハイダイナミックレンジを実現することができる。
更に、同一行の長蓄画素40aの転送トランジスタ61a及び短蓄画素40bの転送トランジスタ61bのそれぞれのゲートに共通の転送制御配線90が接続され、長蓄画素40aの転送トランジスタ62a及び短蓄画素40bの転送トランジスタ62bのそれぞれのゲートに共通の転送制御配線91が接続されているので、第1実施形態に係る測距装置の個別の転送制御線90〜93を用いる場合と比較して、配線本数の増加を抑制することができ、微細化を図ることができる。
<変形例>
第3実施形態の変形例に係る測距装置は、第3実施形態に係る測距装置の構成と同様であるが、低感度画素40a及び高感度画素40bの代わりに、長畜画素40a及び短畜画素40bとして用いる点が、第3実施形態に係る測距装置と異なる。
図12のタイミングチャートを参照して、第3実施形態の変形例に係る測距方法を説明する。長畜画素40aでは、時刻t0〜t1において、排出信号OFG0として、Hレベルを排出トランジスタ60aのゲートに印加する。排出トランジスタ60aが導通状態であり、フォトダイオード51aの電荷を排出するため、電荷蓄積部52a,53aはリセット状態となる。即ち、排出信号OFG0をリセット信号RSTの代わりに機能させている。
時刻t1〜t3において、排出信号OFG0としてLレベルを排出トランジスタ60aのゲートに印加する。排出トランジスタ60aは非導通状態となり、フォトダイオード51aの電荷の排出が停止される。この際、転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。
一方、短畜画素40bでは、時刻t0〜t2において、排出信号OFG0として、Hレベルを排出トランジスタ60bのゲートに印加する。時刻t1〜t2において、転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。しかし、排出トランジスタ60bが導通状態となり、フォトダイオード51bの電荷を排出するため、フォトダイオード51aから電荷蓄積部52a,53aには電荷は蓄積されず、電荷蓄積部52a,53aはリセット状態となる。
時刻t2〜t3において、排出信号OFG0として、Lレベルを排出トランジスタ60aのゲートに印加するので、排出トランジスタ60aは非導通状態となる。転送信号TG0,TG1としてHレベル及びLレベルを交互に繰り返して転送トランジスタ61b,62bのゲートに印加する。転送トランジスタ61b,62bは、導通状態及び非導通状態を逆位相で交互に繰り返すことにより、電荷蓄積部52b,53bに電荷を振り分ける。フォトダイオード51aから電荷蓄積部52a,53aに電荷が蓄積される。
時刻t3以降の読出し期間の動作は、図7に示した第1実施形態に係る測距方法と同様であるので、重複した説明を省略する。
第3実施形態の変形例によれば、長畜画素40a及び短畜画素40bの排出信号OFG0,OFG1による排出動作のタイミングを互いに異ならせることにより、長畜画素40a及び短畜画素40bのリセット時間を互いに異ならせる。これにより、長畜画素40a及び短畜画素40bの電荷の蓄積時間を互いに異ならせることができる。したがって、対象物までの距離や対象物の反射率に依らずに、ハイダイナミックレンジを実現することができる。
(第4実施形態)
第4実施形態に係る測距装置は、図13に示すように、同一行に長蓄画素40aが隣接して配置され、同一行に短蓄画素40bが配置されている点が、図3に示した第1実施形態に係る測距装置と異なる。長蓄画素40a及び短蓄画素40bは、列方向において交互に配置されている。
図14Aに示すように、同一行の低感度画素40aのリセットトランジスタ69a,70aのそれぞれのゲートに共通のリセット制御配線80aが接続されている。リセットトランジスタ69a,70aのそれぞれのゲートには、リセット制御配線80aを介してリセット信号RST0が印加される。同一行の低感度画素40aの変換効率調整トランジスタ62a,63aのそれぞれのゲートに共通の変換効率調整配線83aが接続されている。変換効率調整トランジスタ62a,63aのそれぞれのゲートには、変換効率調整配線83aを介して変換効率調整信号FDG0が印加される。同一行の低感度画素40aの排出トランジスタ60aのゲートに共通の排出制御配線84aが接続されている。排出トランジスタ60aのゲートには、排出制御配線84aを介して排出信号OFG0が印加される。
図14Bに示すように、同一行の高感度画素40bのリセットトランジスタ69b,70bのそれぞれのゲートに共通のリセット制御配線80bが接続されている。リセットトランジスタ69b,70bのそれぞれのゲートには、リセット制御配線80bを介してリセット信号RST1が印加される。同一行の高感度画素40bの変換効率調整トランジスタ62b,6baのそれぞれのゲートに共通の変換効率調整配線83bが接続されている。変換効率調整トランジスタ62b,63bのそれぞれのゲートには、変換効率調整配線83bを介して変換効率調整信号FDG1が印加される。同一行の高感度画素40bの排出トランジスタ60bのゲートに共通の排出制御配線84bが接続されている。排出トランジスタ60bのゲートには、排出制御配線84bを介して排出信号OFG1が印加される。
第4実施形態に係る測距装置は、図9に示した第2実施形態に係る測距方法、図12に示した第3実施形態の変形例に係る測距方法を実現可能である。また、長蓄画素40aを低感度画素40aとし、短蓄画素40bを高感度画素40bとして、図11に示した第3実施形態に係る測距方法を実現可能である。
第4実施形態によれば、同一行に長蓄画素40aを隣接して配置し、同一行に短蓄画素40bを隣接して配置して、列方向に長蓄画素40a及び短蓄画素40bを交互に配置することにより、第1〜第3実施形態と比較して、配線本数を増加させずに、ハイダイナミックレンジを実現することができる。
(第5実施形態)
第5実施形態に係る測距装置は、図15に示すように、長畜画素40aが、3個の電荷蓄積部52a,53a,58aと、3個の電荷蓄積部52a,53a,58aに電荷を転送する3個の転送トランジスタ61a,62a,71aを有する点が、図6に示した第1実施形態に係る測距装置と異なる。
図15では、フォトダイオード51aの上側に2個の転送トランジスタ61a,62a及び2個の電荷蓄積部52a,52aが配置されている。また、フォトダイオード51aの下側に、1個の転送トランジスタ71a及び1個の電荷蓄積部58aが配置されている。更に、長畜画素40aは、電荷蓄積部58aをリセットするリセットトランジスタ72a、電荷蓄積部58aの電位を増幅する増幅トランジスタ73a、増幅トランジスタ73aのソースに接続された選択トランジスタ74aを備える。なお、短蓄画素40bも、長畜画素40aと同様に、3個以上の電荷蓄積部及び3個以上の転送トランジスタを備えていてもよい。
図16に示すように、同一行の長蓄画素40aの転送トランジスタ61a及び短蓄画素40bの転送トランジスタ61bのそれぞれのゲートには、共通の転送制御配線90が接続されている。長蓄画素40aの転送トランジスタ62a及び短蓄画素40bの転送トランジスタ62bのそれぞれのゲートには、共通の転送制御配線91が接続されている。長蓄画素40aの転送トランジスタ71a及び短蓄画素40bの転送トランジスタ71bのそれぞれのゲートには、共通の転送制御配線92が接続されている。
例えば2個の電荷蓄積部52a,52aを同様に機能させると共に、1個の電荷蓄積部58aを背景光除去用のノードとして使用することも可能である。また、3個の電荷蓄積部52a,53a,58aに電荷を振り分けることにより、1フレーム内に3位相の転送期間を設定してもよい。なお、長畜画素40a及び短蓄画素40bは、4個以上の電荷蓄積部及び4個以上の転送トランジスタを備えていてもよい。第5実施形態に係る測距装置の他の構成は、第1実施形態に係る測距装置と同様である。
第5実施形態によれば、長畜画素40a及び短蓄画素40bのそれぞれにおいて、電荷蓄積部の数は限定されず、3個以上の電荷蓄積部を有していてもよい。
(その他の実施形態)
上記のように、本技術は第1〜第5実施形態によって記載したが、この開示の一部をなす論述及び図面は本技術を限定するものであると理解すべきではない。上記の実施形態が開示する技術内容の趣旨を理解すれば、当業者には様々な代替実施形態、実施例及び運用技術が本技術に含まれ得ることが明らかとなろう。また、第1〜第5実施形態及びそれらの各変形例がそれぞれ開示する構成を、矛盾の生じない範囲で適宜組み合わせることができる。例えば、複数の異なる実施形態がそれぞれ開示する構成を組み合わせてもよく、同一の実施形態の複数の異なる変形例がそれぞれ開示する構成を組み合わせてもよい。
<移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図17は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図17に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図17の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図18は、撮像部12031の設置位置の例を示す図である。
図18では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図18には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
なお、本技術は、以下のような構成を取ることができる。
(1)
第1画素及び第2画素を備え、
前記第1画素及び第2画素のそれぞれは、
光電変換部と、
前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
を備え、
前記第1画素の前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
前記第2画素の前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
受光素子。
(2)
前記第1及び第2画素のそれぞれの前記リセットトランジスタが、リセット時間を互いに異ならせる、
前記(1)に記載の受光素子。
(3)
前記第1画素の前記第1及び第2転送トランジスタのそれぞれのゲートに第1及び第2転送制御配線がそれぞれ電気的に接続され、
前記第2画素の前記第1及び第2転送トランジスタのそれぞれのゲートに第3及び第4転送制御配線がそれぞれ電気的に接続されている、
前記(1)又は(2)に記載の受光素子。
(4)
前記第1及び第2画素のそれぞれの前記第1及び第2転送トランジスタが、
前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
前記(3)に記載の受光素子。
(5)
前記第1及び第2画素のそれぞれの前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が電気的に接続され、
前記第1及び第2画素のそれぞれの前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が電気的に接続されている、
前記(1)又は(2)に記載の受光素子。
(6)
前記リセットトランジスタが、
前記第1電荷蓄積部をリセットする第1リセットトランジスタと、
前記第2電荷蓄積部をリセットする第2リセットトランジスタと、
を備える、
前記(1)〜(5)のいずれか1つに記載の受光素子。
(7)
第1画素及び第2画素を備え、
前記第1画素及び第2画素のそれぞれは、
光電変換部と、
前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
前記光電変換部の前記電荷を排出する排出トランジスタと、
を備え、
前記第1画素の前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
前記第2画素の前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
前記第1及び第2画素のそれぞれの前記電荷の蓄積時間中に、前記第1及び第2画素のそれぞれの前記排出トランジスタのゲートに印加する電位を互いに異ならせる、
受光素子。
(8)
前記第1及び第2画素のそれぞれの前記リセットトランジスタのゲートに共通のリセット制御配線が接続されている、
前記(7)に記載の受光素子。
(9)
前記第1画素の前記第1転送トランジスタ及び前記第2画素の前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が接続され、
前記第1画素の前記第2転送トランジスタ及び前記第2画素の前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が接続されている、
前記(7)又は(8)に記載の受光素子。
(10)
行列状に配置された複数の画素を備え、
前記複数の画素のそれぞれは、
光電変換部と、
前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
を備え、
第1行目の前記画素のそれぞれの前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
第2行目の前記画素のそれぞれの前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
前記第1行目の前記画素のそれぞれの前記電荷の蓄積時間と、前記第2行目の前記画素のそれぞれの前記電荷の蓄積時間と、を互いに異ならせる、
受光素子。
(11)
前記第1行目の前記画素のそれぞれの前記リセットトランジスタ及び前記第2行目の前記画素のそれぞれの前記リセットトランジスタが、リセット時間を互いに異ならせる、
前記(10)に記載の受光素子。
(12)
前記第1行目の前記画素のそれぞれの前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
前記第2行目の前記画素のそれぞれの前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
前記第1及び第2画素の電荷の蓄積時間において、前記第1及び第2排出制御配線に印加する電位を互いに異ならせる、
前記(10)に記載の受光素子。
(13)
前記第1画素の前記第1転送トランジスタ及び前記第2画素の前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が接続され、
前記第1画素の前記第2転送トランジスタ及び前記第2画素の前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が接続されている、
前記(10)〜(12)のいずれか1つに記載の受光素子。
(14)
光を発する発光部と、
前記光が対象物で反射した反射光を受光する複数の画素を有する受光部と、
前記受光部からの検出信号に基づき、前記対象物までの距離を算出する算出部と、
を備え、
前記複数の画素に含まれる第1画素及び第2画素のそれぞれは、
光電変換部と、
前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
を備え、
前記第1画素の前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
前記第2画素の前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
測距装置。
(15)
光を発する発光部と、
前記光が対象物で反射した反射光を受光する複数の画素を有する受光部と、
前記受光部からの検出信号に基づき、前記対象物までの距離を算出する算出部と、
を備え、
前記複数の画素に含まれる第1画素及び第2画素のそれぞれは、
光電変換部と、
前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
前記光電変換部の前記電荷を排出する排出トランジスタと、
を備え、
前記第1画素の前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
前記第2画素の前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
前記第1及び第2画素のそれぞれの前記電荷の蓄積時間中に、前記第1及び第2画素のそれぞれの前記排出トランジスタのゲートに印加する電位を互いに異ならせる、
測距装置。
10…測距装置、11…レンズ、12…受光部(受光素子)、13…信号処理部、14…発光部、15…発光制御部、21…パターン切替部、22…距離画像生成部、31…画素アレイ部、32…垂直駆動部、33…カラム処理部、34…水平駆動部、35…システム制御部、36…画素駆動線、37…垂直信号線、50…半導体基板、51a,51b…フォトダイオード、52a,52b,53a,53b,58a…電荷蓄積部、54a,54b,55a,55b…付加容量部、56a,56b,57a,57b…ウェルコンタクト
60a,60b…排出トランジスタ、61a,61b,62a,62b,71a,71b…転送トランジスタ、63a,63b,64a,64b…変換効率調整トランジスタ、65a,65b,66a,66b…選択トランジスタ、67a,67b,68a,68b…増幅トランジスタ、69a,69b,70a,70bリセットトランジスタ、80,80a,80b,81…リセット制御配線、83…変換効率調整配線、84,85…排出制御配線、90〜93…転送制御線、12000…車両制御システム、12001…通信ネットワーク、12010…駆動系制御ユニット、12020…ボディ系制御ユニット、12030…車外情報検出ユニット、12030…ボディ系制御ユニット、12031…撮像部、12040…車内情報検出ユニット、12041…運転者状態検出部、12050…統合制御ユニット、12051…マイクロコンピュータ、12052…音声画像出力部、12061…オーディオスピーカ、12062…表示部、12063…インストルメントパネル、12100…車両、12101〜12105…撮像部

Claims (15)

  1. 第1画素及び第2画素を備え、
    前記第1画素及び第2画素のそれぞれは、
    光電変換部と、
    前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
    前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
    前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
    を備え、
    前記第1画素の前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
    前記第2画素の前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
    前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
    受光素子。
  2. 前記第1及び第2画素のそれぞれの前記リセットトランジスタが、リセット時間を互いに異ならせる、
    請求項1に記載の受光素子。
  3. 前記第1画素の前記第1及び第2転送トランジスタのそれぞれのゲートに第1及び第2転送制御配線がそれぞれ電気的に接続され、
    前記第2画素の前記第1及び第2転送トランジスタのそれぞれのゲートに第3及び第4転送制御配線がそれぞれ電気的に接続されている、
    請求項1に記載の受光素子。
  4. 前記第1及び第2画素のそれぞれの前記第1及び第2転送トランジスタが、
    前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
    請求項3に記載の受光素子。
  5. 前記第1及び第2画素のそれぞれの前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が電気的に接続され、
    前記第1及び第2画素のそれぞれの前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が電気的に接続されている、
    請求項1に記載の受光素子。
  6. 前記リセットトランジスタが、
    前記第1電荷蓄積部をリセットする第1リセットトランジスタと、
    前記第2電荷蓄積部をリセットする第2リセットトランジスタと、
    を備える、
    請求項1に記載の受光素子。
  7. 第1画素及び第2画素を備え、
    前記第1画素及び第2画素のそれぞれは、
    光電変換部と、
    前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
    前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
    前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
    前記光電変換部の前記電荷を排出する排出トランジスタと、
    を備え、
    前記第1画素の前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
    前記第2画素の前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
    前記第1及び第2画素のそれぞれの前記電荷の蓄積時間中に、前記第1及び第2画素のそれぞれの前記排出トランジスタのゲートに印加する電位を互いに異ならせる、
    受光素子。
  8. 前記第1及び第2画素のそれぞれの前記リセットトランジスタのゲートに共通のリセット制御配線が接続されている、
    請求項7に記載の受光素子。
  9. 前記第1画素の前記第1転送トランジスタ及び前記第2画素の前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が接続され、
    前記第1画素の前記第2転送トランジスタ及び前記第2画素の前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が接続されている、
    請求項7に記載の受光素子。
  10. 行列状に配置された複数の画素を備え、
    前記複数の画素のそれぞれは、
    光電変換部と、
    前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
    前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
    前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
    を備え、
    第1行目の前記画素のそれぞれの前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
    第2行目の前記画素のそれぞれの前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
    前記第1行目の前記画素のそれぞれの前記電荷の蓄積時間と、前記第2行目の前記画素のそれぞれの前記電荷の蓄積時間と、を互いに異ならせる、
    受光素子。
  11. 前記第1行目の前記画素のそれぞれの前記リセットトランジスタ及び前記第2行目の前記画素のそれぞれの前記リセットトランジスタが、リセット時間を互いに異ならせる、
    請求項10に記載の受光素子。
  12. 前記第1行目の前記画素のそれぞれの前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
    前記第2行目の前記画素のそれぞれの前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
    前記第1及び第2画素の電荷の蓄積時間において、前記第1及び第2排出制御配線に印加する電位を互いに異ならせる、
    請求項10に記載の受光素子。
  13. 前記第1画素の前記第1転送トランジスタ及び前記第2画素の前記第1転送トランジスタのそれぞれのゲートに共通の第1転送制御配線が接続され、
    前記第1画素の前記第2転送トランジスタ及び前記第2画素の前記第2転送トランジスタのそれぞれのゲートに共通の第2転送制御配線が接続されている、
    請求項10に記載の受光素子。
  14. 光を発する発光部と、
    前記光が対象物で反射した反射光を受光する複数の画素を有する受光部と、
    前記受光部からの検出信号に基づき、前記対象物までの距離を算出する算出部と、
    を備え、
    前記複数の画素に含まれる第1画素及び第2画素のそれぞれは、
    光電変換部と、
    前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
    前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
    前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
    を備え、
    前記第1画素の前記リセットトランジスタのゲートに第1リセット制御配線が接続され、
    前記第2画素の前記リセットトランジスタのゲートに第2リセット制御配線が接続され、
    前記第1及び第2画素のそれぞれの前記電荷の蓄積時間を互いに異ならせる、
    測距装置。
  15. 光を発する発光部と、
    前記光が対象物で反射した反射光を受光する複数の画素を有する受光部と、
    前記受光部からの検出信号に基づき、前記対象物までの距離を算出する算出部と、
    を備え、
    前記複数の画素に含まれる第1画素及び第2画素のそれぞれは、
    光電変換部と、
    前記光電変換部により生成された電荷をそれぞれ蓄積する第1及び第2電荷蓄積部と、
    前記光電変換部から前記第1及び第2電荷蓄積部に前記電荷をそれぞれ転送する第1及び第2転送トランジスタと、
    前記第1及び第2電荷蓄積部をリセットするリセットトランジスタと、
    前記光電変換部の前記電荷を排出する排出トランジスタと、
    を備え、
    前記第1画素の前記排出トランジスタのゲートに第1排出制御配線が電気的に接続され、
    前記第2画素の前記排出トランジスタのゲートに第2排出制御配線が電気的に接続され、
    前記第1及び第2画素のそれぞれの前記電荷の蓄積時間中に、前記第1及び第2画素のそれぞれの前記排出トランジスタのゲートに印加する電位を互いに異ならせる、
    測距装置。
JP2019184512A 2019-10-07 2019-10-07 受光素子及び測距装置 Pending JP2021060275A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019184512A JP2021060275A (ja) 2019-10-07 2019-10-07 受光素子及び測距装置
PCT/JP2020/032466 WO2021070504A1 (ja) 2019-10-07 2020-08-27 受光素子及び測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184512A JP2021060275A (ja) 2019-10-07 2019-10-07 受光素子及び測距装置

Publications (1)

Publication Number Publication Date
JP2021060275A true JP2021060275A (ja) 2021-04-15

Family

ID=75379978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184512A Pending JP2021060275A (ja) 2019-10-07 2019-10-07 受光素子及び測距装置

Country Status (2)

Country Link
JP (1) JP2021060275A (ja)
WO (1) WO2021070504A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022168741A (ja) * 2021-04-26 2022-11-08 キヤノン株式会社 受光装置および測距装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915161B2 (ja) * 1997-03-04 2007-05-16 ソニー株式会社 ブルーミング防止構造を備えた固体撮像素子のダイナミックレンジ拡大方法とその固体撮像素子
JP2006253876A (ja) * 2005-03-09 2006-09-21 Sony Corp 物理量分布検知装置および物理量分布検知装置の駆動方法
KR101094246B1 (ko) * 2009-03-16 2011-12-19 이재웅 넓은 동적범위를 갖는 씨모스 이미지 센서
JP2011155498A (ja) * 2010-01-27 2011-08-11 Olympus Corp 固体撮像装置
JP6700758B2 (ja) * 2015-12-04 2020-05-27 キヤノン株式会社 撮像装置の駆動方法
WO2017104765A1 (ja) * 2015-12-16 2017-06-22 株式会社ニコン 撮像装置および動き検出方法
JP6728268B2 (ja) * 2018-04-26 2020-07-22 キヤノン株式会社 撮像装置、撮像システム、および、移動体

Also Published As

Publication number Publication date
WO2021070504A1 (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
JP7284714B2 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
US11523079B2 (en) Solid-state imaging element and imaging device
JP7044107B2 (ja) 光センサ、及び、電子機器
US11252367B2 (en) Solid-stage image sensor, imaging device, and method of controlling solid-state image sensor
WO2021117350A1 (ja) 固体撮像素子、および、撮像装置
WO2022075190A1 (ja) 固体撮像装置
WO2021070504A1 (ja) 受光素子及び測距装置
WO2020158378A1 (ja) 測距装置、測距方法、並びにプログラム
WO2021100351A1 (ja) 受光素子及び測距装置
WO2022270034A1 (ja) 撮像装置、電子機器、および光検出方法
WO2021251041A1 (ja) 固体撮像素子
WO2021235222A1 (ja) 受光装置およびその駆動制御方法、並びに、測距装置
WO2021256031A1 (ja) 固体撮像素子、および、撮像装置
JP2021082897A (ja) 撮像装置
WO2022097446A1 (ja) 固体撮像素子
US20230062562A1 (en) Sensing system and distance measuring system
WO2022075065A1 (ja) 半導体装置、光学構造物
WO2023189600A1 (ja) 撮像システム
US20230228875A1 (en) Solid-state imaging element, sensing system, and control method of solid-state imaging element
US20230362503A1 (en) Solid imaging device and electronic device
WO2021002071A1 (ja) 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
CN113196104A (zh) 测距装置、测距方法和程序
JP2023022747A (ja) 固体撮像装置及び電子機器
JP2023001462A (ja) 光検出器及び電子機器
JP2022007152A (ja) 光検出装置および測距システム