JP2021038126A - セラミック複合体の製造方法 - Google Patents

セラミック複合体の製造方法 Download PDF

Info

Publication number
JP2021038126A
JP2021038126A JP2019161969A JP2019161969A JP2021038126A JP 2021038126 A JP2021038126 A JP 2021038126A JP 2019161969 A JP2019161969 A JP 2019161969A JP 2019161969 A JP2019161969 A JP 2019161969A JP 2021038126 A JP2021038126 A JP 2021038126A
Authority
JP
Japan
Prior art keywords
ceramic composite
melt
seed crystal
crucible
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019161969A
Other languages
English (en)
Other versions
JP7350298B2 (ja
Inventor
古滝 敏郎
Toshiro Furutaki
敏郎 古滝
文弥 堀越
Fumiya Horikoshi
文弥 堀越
鈴木 正幸
Masayuki Suzuki
正幸 鈴木
柴田 大輔
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adamant Namiki Precision Jewel Co Ltd filed Critical Adamant Namiki Precision Jewel Co Ltd
Priority to JP2019161969A priority Critical patent/JP7350298B2/ja
Publication of JP2021038126A publication Critical patent/JP2021038126A/ja
Application granted granted Critical
Publication of JP7350298B2 publication Critical patent/JP7350298B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】一次光と波長変換された二次光を均一に散乱するラメラ構造のサイズを制御することが可能なセラミック複合体の製造方法の提供。【解決手段】スリットを有すると共に、各々の長手方向が平行に配置された複数のダイ9を坩堝に収容し、坩堝に少なくとも酸化アルミニウム、酸化イットリウム、酸化マグネシウム、および酸化セリウムを含む原料を投入する工程と、坩堝を加熱して、原料を坩堝内で溶融して融液21を用意する工程と、スリットを介してスリット上部に融液を溜めた融液溜まり22を形成する工程と、融液溜まりに種結晶17を接触させ、種結晶を引き上げ速度0.9mm/時間以上400mm/時間以下で引き上げる引き上げ工程を有するセラミック複合体2の製造方法。【選択図】図7

Description

本発明は、セラミック複合体の製造方法に関し、特にYAl12相およびAl相の2つの酸化物相をラメラ構造として有するセラミック複合体の製造方法に関する。
現在、光源として青色光を発光する発光ダイオード(LED:Light Emitting Diode)や半導体レーザを用い、青色光の一部を波長変換部材で黄色光に波長変換して、青色光と黄色光の混色により白色光を照射する照明装置が普及している。このような照明装置では、波長変換部材にYAG(YAl12)系の蛍光体材料を用い、樹脂やガラスに蛍光体粉末を含有させるものが提案されている。
また、特許文献1,2には、YAl12相およびAl相が共晶として連続的に三次元的に相互に絡み合ったラメラ構造を有するセラミック複合体が提案されている。このような特許文献1,2に記載されたセラミック複合体では、YAl12相で青色光を黄色光に波長変換するとともに、YAl12相とAl相の界面で青色光と黄色光が散乱されて混色で白色を得ることができる。
特許第4609319号公報 特許第5246376号公報
しかし特許文献1,2では、一方向凝固法としてブリッジマン法を用いてセラミック複合体が製造されており、坩堝の移動速度を1〜20mm/時間としているため、YAl12相およびAl相の微細化に限界があった。またブリッジマン法では固液界面の乱れから生じるコロニー構造ができてしまう。更に、YAl12相およびAl相のサイズを制御して、セラミック複合体の全域において均一なラメラ構造をえることも困難であった。
そこで本発明は、上記従来の問題点に鑑みなされたものであり、一次光と波長変換された二次光を均一に散乱するラメラ構造のサイズを制御することが可能なセラミック複合体の製造方法を提供することを目的とする。
上記課題を解決するために、本発明のセラミック複合体の製造方法は、スリットを有すると共に、各々の長手方向が平行に配置された複数のダイを坩堝に収容し、前記坩堝に少なくとも酸化アルミニウム、酸化イットリウム、酸化マグネシウム、および酸化セリウムを含む原料を投入する工程と、前記坩堝を加熱して、前記原料を前記坩堝内で溶融して融液を用意する工程と、前記スリットを介して前記スリット上部に前記融液を溜めた融液溜まりを形成する工程と、前記融液溜まりに種結晶を接触させ、前記種結晶を引き上げ速度0.9mm/時間以上400mm/時間以下で引き上げる引き上げ工程を有することを特徴とする。
このような本発明のセラミック複合体の製造方法では、YAl12相とAl相のラメラ間隔を制御する事ができ、一次光と波長変換された二次光を均一に散乱するセラミック複合体を得ることができる。更に、前記種結晶の引き上げ速度毎のラメラ間隔を均一に保つ事が可能となる。
また、本発明の一態様では、前記引き上げ工程の期間中において、前記融液溜まりでの前記融液の界面温度が一定である。
本発明では、一次光と波長変換された二次光を均一に散乱するラメラ構造のサイズを制御することが可能なセラミック複合体の製造方法を提供することができる。
EFG法によるセラミック複合体の製造装置を示す概略構成図である。 (a)本発明の実施形態に係るダイの一例を模式的に示す平面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。 (a)本発明の実施形態に係る種結晶の一例を示す説明図である。(b)本発明の実施形態に係る種結晶の他の例を示す説明図である。(c)本発明の実施形態に係る種結晶の更に他の例を示す説明図である。 本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す斜視図である。 (a)本発明の実施形態における種結晶と仕切り板との位置関係を模式的に示す正面図である。(b)本発明の実施形態における、種結晶の一部を溶融する様子を示す正面図である。 (a)本発明の実施形態に係る種結晶において、下辺が櫛歯形状の種結晶を示す説明図である。(b)本発明の実施形態に係る種結晶において、下辺が鋸形形状の種結晶を示す説明図である。 本発明の実施形態に係るセラミック複合体のスプレディング工程を模式的に示す斜視図である。 EFG法により得られる、本発明の実施形態に係る複数のセラミック複合体を部分的に示す斜視図である。 EFG法によって得られたセラミック複合体2の表面を示す顕微鏡写真である。 EFG法での引き上げ速度を変化させた際のラメラ構造を示す顕微鏡写真であり、小さい速度で引き上げた場合を示している。 EFG法での引き上げ速度を変化させた際のラメラ構造を示す顕微鏡写真であり、中程度の速度で引き上げた場合を示している。 EFG法での引き上げ速度を変化させた際のラメラ構造を示す顕微鏡写真であり、大きい速度で引き上げた場合を示している。 Ce濃度が0.5mol%である実施例1,2,4,6,9,11の引き上げ速度とラメラ間隔の関係を示すグラフである。 EFG法によるセラミック複合体の成長工程の別形態を示す斜視図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付すものとし、適宜重複した説明は省略する。図1から図8は、本発明の実施形態に係る複数のセラミック複合体及びその製造方法について説明する図である。
図1に示すように、セラミック複合体の製造装置1は、セラミック複合体2を育成する育成容器3と、育成したセラミック複合体2を引き上げる引き上げ容器4とから構成され、EFG(Edge−defined Film−fed. Growth)法によりセラミック複合体2を育成成長する。
育成容器3は、坩堝5、坩堝駆動部6、ヒータ7、電極8、ダイ9、及び断熱材10を備える。坩堝5はモリブデン製またはタングステン製であり、原料を溶融する。坩堝駆動部6は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ9は坩堝5内に設置され、セラミック複合体2を引き上げる際の原料融液(以下、必要に応じて単に「融液」と表記)21の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ9を取り囲んでいる。
更に育成容器3は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとして例えばアルゴンガスを育成容器3内に導入するための導入口であり、坩堝5やヒータ7、及びダイ9の酸化消耗を防止する。一方、排気口12は育成容器3内を排気するために備えられる。
引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶17から育成成長した複数の平板形状のセラミック複合体2を引き上げる。シャフト13は種結晶17を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器3と引き上げ容器4とを仕切る。また基板出入口16は、種結晶17を出し入れする。
なお製造装置1は図示されない制御部も有しており、この制御部により坩堝駆動部6及びシャフト駆動部14の回転を制御する。
次に、ダイ9について説明する。ダイ9はモリブデン製であり、図2に示すように多数の仕切り板18を有する。図2ではダイの一例として、仕切り板18が30枚であり、ダイ9が15個形成されている場合を示している。仕切り板18は同一の平板形状を有し、微小間隙(スリット)19を形成するように互いに平行に配置されて、1つのダイ9を形成している。スリット19は、ダイ9のほぼ全幅に亘って設けられる。また複数のダイ9は同一形状を有すると共に、その長手方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット19が設けられることとなる。各仕切り板18の上部は斜面30が形成されており、互いの斜面30が向かい合わせで配置されることで、鋭角の開口部20が形成されている。またスリット19は融液21を毛細管現象によって、各ダイ9の下端から開口部20に上昇させる役割を有している。
坩堝5内に投入される原料は、坩堝5の温度上昇に基づいて溶融(原料メルト)し、融液21となる。この融液21の一部は、ダイ9のスリット19に浸入し、前記のように毛細管現象に基づいてスリット19内を上昇し開口部20から露出して、開口部20で原料融液溜まり22が形成される(図5(a)参照)。EFG法では、原料融液溜まり(以下、必要に応じて「融液溜まり」と表記)22で形成される融液面の形状に従って、セラミック複合体2が成長する。図2に示したダイ9では、融液面の形状は細長い長方形となるので、平板形状のセラミック複合体2が製造される。
次に、種結晶17について説明する。図1、図4、及び図5に示すように本実施形態では、種結晶17として平板形状のセラミック複合体製の基板を用いる。更に、種結晶17の平面方向とダイ9の長手方向は、互いに90°の角度で以て直交となるように、種結晶17が配置される。また、種結晶17とセラミック複合体2も90°の角度で以て直交するので、図1ではセラミック複合体2の側面を示している。
種結晶17は、シャフト13の下部の基板保持具(図示せず)との接触面積が大きいと、熱膨張率の差による応力のため変形し、場合によっては破損してしまう。反対に熱膨張率の差により種結晶17の固定が緩む場合もある。従って、種結晶17と基板保持具との接触面積は小さい方が好ましい。また、種結晶17は基板保持具に確実に固定できる基板形状の必要がある。
図3は種結晶17の基板形状の一例を示した図である。このうち、同図(a)及び(b)は、種結晶17の上部に切り欠き部23を設けたものである。この切り欠き部23を利用して、例えば2カ所の切り欠き部23の下側からU字形の基板保持具を差し込んで、接触面積を小さくしつつ確実に種結晶17を保持することが可能となる。
また、図3(c)に示したように、種結晶17内側に切り欠き穴24を設けても良い。この切り欠き穴24を利用して、例えば2カ所の切り欠き穴24に係止爪を差し込んで、基板保持具と種結晶17との接触面積を小さくしつつ、確実に種結晶17を保持することが可能となる。
次に、前記製造装置1を使用したセラミック複合体2の製造方法を説明する。最初にセラミック複合体の原料である、造粒された原料粉末(一例として酸化アルミニウムを64.71重量%、酸化イットリウムを35.02重量%、酸化マグネシウムを0.003重量%、酸化セリウム0.27重量%含んだ粉末)をダイ9が収納された坩堝5に所定量投入して充填する。原料粉末には、製造しようとするセラミック複合体の純度又は組成に応じて、上記以外の化合物や元素が含まれていてもよい。
続いて、坩堝5やヒータ7若しくはダイ9を酸化消耗させないために、育成容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。
次に、ヒータ7で加熱して坩堝5を所定の温度とし、原料粉末を溶融する。酸化アルミニウムの融点は2050℃?2072℃程度なので、坩堝5の加熱温度はその融点以上の温度(例えば2100℃)に設定する。加熱後しばらくすると原料粉末が溶融して、原料の融液21が用意される。更に融液21の一部はダイ9のスリット19を毛細管現象により上昇してダイ9の表面に達し、スリット19上部に融液溜まり22が形成される。
次に図4及び図5に示すように、スリット19上部の融液溜まり22の長手方向に対して垂直な角度に種結晶17を保持しつつ降下させ、種結晶17を融液溜まり22の融液面に接触させる。なお、種結晶17は、予め基板出入口16から引き上げ容器4内に導入しておく。図4ではスリット19や開口部20の見易さを優先するため、融液21と融液溜まり22の図示を省略している。
図4は、種結晶17と仕切り板18との位置関係を示した図である。前記の通り、種結晶17の平面方向を仕切り板18の長手方向と直交させることにより、種結晶17と融液21との接触面積を小さくすることが可能となる。従って、種結晶17の接触部分が融液21となじみ、育成成長されるセラミック複合体2に結晶欠陥が生じにくくなる。
種結晶17を融液面に接触させる際に、種結晶17の下部を仕切り板18の上部に接触させて溶融しても良い。図5(b)は、種結晶17の一部を溶融する様子を示した図である。このように種結晶17の一部を溶融することで、種結晶17と融液21との温度差を速やかに解消ことができ、セラミック複合体2での結晶欠陥の発生を更に低減することが可能となる。
続いて基板保持具を所定の上昇速度で引き上げて、種結晶17の引き上げを開始する。具体的には、シャフト13により基板保持具を所定の速度で上昇させる。
なお、ダイ9の開口部20に対する種結晶の位置合わせをより容易にするため、種結晶17の下辺に凹凸を設けてもよい。図6は、種結晶17の下辺の形状を例示した図であり、同図(a)は下辺が櫛歯形状の場合を、同図(b)では鋸形形状の場合を示している。
この凹凸の間隔は、開口部20の間隔に合わせ、凸部分を融液溜まり22の中心に合わせる。凸部分を設けることで凸部分をセラミック複合体2の成長開始点とすることができ、セラミック複合体2がより容易に形成可能となる。なお、凹凸の形状は図6に示したものには限定されず、例えば波形の凹凸形状であっても良い。
基板保持具を所定の速度で上昇させ、種結晶17を中心に図7に示すようにセラミック複合体2をダイ9の長手方向に拡幅するように結晶成長させる(スプレディング)。セラミック複合体2が、ダイ9の全幅(仕切り板18の端)まで拡幅すると(フルスプレッド)、ダイ9の全幅と同程度の幅を有する、面積の広い平板形状のセラミック複合体2が育成される(直胴工程)。図7は、スプレディング工程によりセラミック複合体2の幅が広がる様子を示した模式図である。幅の広いセラミック複合体2が得られることにより、セラミック複合体製品の歩留まりが向上する。
スプレディング工程により、ダイ9の全幅までセラミック複合体2を成長させた後、図8に示すようにダイ9の全幅と同程度の一定幅を有する、平板形状の直胴部分26を所定の速度で所定の長さ(直胴長さ)まで引き上げる引き上げ工程を実施し、平板形状のセラミック複合体2を得る。
引き上げ工程の期間中には、スリット19の上部に形成されている融液溜まり22での融液21の界面温度が一定となるように、ヒータ7等を用いて温度制御する。セラミック複合体2は、融液溜まり22まで上昇してきた融液21が種結晶17やネック25、直胴部分26と接触して引き上げられながら冷却されることで成長する。したがって、融液溜まり22の温度を一定に管理することで、セラミック複合体2の成長期間において結晶の成長条件を同等に保つことができ、セラミック複合体2全域にわたって均一なラメラ構造を形成することができる。
引き上げ工程における種結晶17の引き上げ速度は、0.9mm/時間以上400mm/時間以下の範囲とすることが好ましい。より好ましくは50mm/時間以上200mm/時間以下の範囲である。種結晶17の引き上げ速度を50mm/時間以上とすることにより、セラミック複合体2へのクラック導入を防止可能となる。更に、前記引き上げ速度を200mm/時間以下とすることにより、セラミック複合体2の育成状態をより安定化することが出来る。
引き上げ速度が0.9mm/時未満の場合には、引き上げ速度の誤差に対してラメラ構造のサイズ変動が大きくなるため、ラメラ構造のサイズを制御することが困難になる。従って、育成成長させたセラミック複合体2の白色光の発光強度の低下を招いてしまう。また、成長速度が遅いため生産性が低くなる。引き上げ速度が400mm/時間より大きい場合には、融液溜まり22の温度を制御することが困難になるため、ラメラ構造のサイズを制御することも困難になる。また、引き上げ速度が大きすぎると、融液溜まり22の融液21が種結晶17やネック25、直胴部分26から分離して成長が中断する可能性が高くなるため好ましくない。
この後、得られたセラミック複合体2を放冷し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状のセラミック複合体2の外観を図8に示す。直胴長さは特に限定されないが、2インチ以上(50.8mm以上)が好ましい。
また図14に示すように、ダイ9の全幅と種結晶17の幅を同一とし、種結晶17の全幅と同じ幅でセラミック複合体2を育成成長させても良い。なお図14でもスリット19の見易さを優先するため、融液21と融液溜まり22の図示を省略している。
以上説明したような製造装置1、種結晶17、及びダイ9を用いることにより、共通の種結晶17から複数のセラミック複合体2を同時に製造することが出来る。従って、一枚当たりのセラミック複合体2の製造コストを下げることが可能となる。
またEFG法では、複数のセラミック複合体2を育成成長する。従って、複数のセラミック複合体2が均一に冷却及び放冷される事で、ばらつきの無い均一なラメラ構造を得ることが出来る。
従って、種結晶17、及び仕切り板18を含めたダイ9は、精密に位置決めする必要がある。よって図1に示したように製造装置1は、ダイ9を設置する坩堝5を回転する坩堝駆動部6、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ9に対する種結晶17の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。なお、種結晶17とダイ9との精密な位置決めについては、各仕切り板18の斜面30の一部を切り欠いたダイ9を使用することによっても行うことが出来る。
図9は、上述したEFG法によって得られたセラミック複合体2の表面を示す顕微鏡写真である。図9に示すように、本実施形態のセラミック複合体2は、第1相であるYAl12相と、第2相であるAl相が共晶として存在しており、第1相と第2相が相互に立体的に絡み合ったラメラ構造を有している。図中において濃色で示された領域がYAl12相であり、淡色で示された領域がAl相である。また、第1相および第2相は、島状に独立して分離したものが少なく、三次元方向に連続した領域を有している。
またセラミック複合体2に含まれるYAl12相の組成比は、共晶組成近傍の19.72±2.00mol%である。YAl12相の組成比がこの範囲を外れると、Al相との共晶でラメラ構造を均一に形成することが困難である。
また、YAl12相におけるCeの含有量は0.01mol%以上5.0mol%以下の範囲が好ましい。0.01mol%未満ではセラミック複合体2の発効強度が弱くなって照明装置用途に不適格となってしまう。他方、5.0mol%超では所望以外の他の化合物が生成し、白色光の発光に寄与しなくなる為である。YAl12相のYが部分的にCeに置換されることで、YAl12相が蛍光体材料として機能し、一次光である青色光を吸収して二次光の黄色光を放出する。Al相の熱伝導率はYAl12相の熱伝導率の約4倍と大きく、YAl12相での一次光を二次の黄色光に変換する際の発熱を効率的に放熱できる。YAl12相ではCe濃度によって吸収波長や発光波長が変化するが、本実施形態のセラミック複合体では後述するように比較的Ceの含有量が多くても均一に微細なラメラ構造を形成することができる。
またセラミック複合体2には、MgOが10ppm以上500ppm以下の範囲で含有されている。MgOをこの範囲で含有することにより、青色光から白色光への変換効率が高められ、白色光の発光強度を大きく出来る。
また、本実施形態のセラミック複合体2では、YAl12相とAl相のラメラ構造では、YAl12相におけるラメラ間隔の平均値を0.5μm以上20μm以下とすることが好ましい。ここでYAl12相のラメラ間隔とは、Al相に挟まれたYAl12相の幅を示しており、連続したYAl12相の長手方向を横断した幅を示している。ラメラ間隔が0.5μm未満の場合には、YAl12相のサイズが青色光の波長の数倍程度となってしまい均一に青色光を黄色光に波長変換することが困難になってしまう。また、ラメラ間隔が20μmよりも大きい場合には、ラメラ構造の緻密さが不十分であり、セラミック複合体2を青色光が透過する間にYAl12相とAl相の界面に入射する回数が減少し、十分に光が散乱されず波長変換や混色の効率が低下してしまう。
またセラミック複合体2は、上述したようにEFG法を用いて製造されているため、坩堝5の材料であるモリブデン(Mo)またはタングステン(W)が微量に融液21に溶け出してセラミック複合体2に取り込まれる。したがって、セラミック複合体2には、上記YAl12相とAl相、MgOおよびCeの他に、微量のMoまたはWが含有されている。
セラミック複合体2に含有されるMoまたはWの量は、好ましくは1mol・ppm以上30000mol・ppm以下の範囲であり、さらに好ましくは100mol・ppm以上3000mol・ppm以下の範囲である。EFG法を用いたセラミック複合体2の製造では、坩堝5の材料が融液21に溶け出すことを完全に防止することが不可能であり、MoまたはWの含有量を1mol・ppm未満とすることは非常に困難である。また、MoまたはWの含有量を30000mol・ppmを超えて大きくすると、YAl相やAl相の結晶性が悪化して波長変換効率が悪化するため好ましくない。MoまたはWの含有量を100mol・ppm以上3000mol・ppm以下に設定すると、これら問題点が解消されると共に、一次光と二次光を均一に散乱して白色光の発光量増加が可能となるため、最も望ましい。したがって、セラミック複合体2に含有されるMoまたはWの含有量を少なくとも1mol・ppm以上30000mol・ppm以下とすることで、微細なラメラ構造を形成して均一に光散乱を行い、発光強度の均一化と変換効率の向上を図ることができる。
坩堝5としてMoまたはW以外の材料を用いると、融点が低いため坩堝5の材料が融液21に溶け出す量が増加し、セラミック複合体2に含有される坩堝5由来の元素含有量が増加するため好ましくない。また、坩堝5を構成する材料としてMoまたはW以外の融点が高い材料を用いることは、原料の融液21との反応性や、坩堝5の成形性等の問題があり好ましくない。したがって、EFG法を用いてセラミック複合体2を製造し、YAl12相とAl相のラメラ構造を微細化するためには、セラミック複合体2にMoまたはWが上記範囲で含まれていることが重要である。
セラミック複合体2の形状やサイズは限定されないが、セラミック複合体2への作業性の悪化防止の点から、幅が0.5mm以上300mm以下で長さが10mm以上1000mm以下の方形状、または直径が0.5mm以上2mm以下の形状が望ましい。上述したように本実施形態のセラミック複合体2はEFG法を用いて製造するため、ダイ9の幅と引き上げる長さを大きくすることで、容易に大面積のセラミック複合体2を得ることが可能である。また、ラメラ間隔の平均値が0.5μm以上20μm以下の範囲と微細な構造を有していることから、YAl12相とAl相の界面で光が散乱されやすく、大面積であっても均一に面内全域で光を散乱し、均一な白色光を得ることができる。
また、セラミック複合体2の厚みは限定されないが、0.1mm以上4.0mm以下の範囲が好ましく、より好ましくは0.5mm以上2.0mm以下の範囲である。セラミック複合体2の厚みが0.1mm未満である場合には、EFG法では育成制御が困難になり、製造誤差による厚みの影響や、面内での厚みムラの影響が大きくなるため、面内全域で白色光を均一に得ることが困難になる。また、セラミック複合体2に含まれるYAl12相の熱伝導率がAl相の1/4程度しかないため、結晶を厚くすると放熱性が悪化し、表面と内部で温度差が生じやすくなる。よって、セラミック複合体2の厚みが4.0mmより大きい場合には、EFG法による引き上げ時に厚さ方向における外側と内側との温度差が生じやすくなり、コロニー構造が発生しやすくなり、ラメラ間隔の均一性が損なわれるため好ましくない。
図10〜図12は、EFG法での引き上げ速度を変化させた際のラメラ構造を示す顕微鏡写真であり、図10は小さい速度で引き上げた場合を示し、図11は中程度の速度で引き上げた場合を示し、図12は大きい速度で引き上げた場合を示している。各々の写真で示されている範囲は、1辺が129μmの正方形である。
(実施例1)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を0.035インチ/時(約0.9mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は26.6μmであった。
(実施例2)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を0.2インチ/時(約5mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は15.2μmであった。
(実施例3)
セラミック複合体2に含まれるCeの濃度を0.3mol%とし、引き上げ速度を1.0インチ/時(約25mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は6.0μmであった。
(実施例4)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を1.0インチ/時(約25mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は5.5μmであった。
(実施例5)
セラミック複合体2に含まれるCeの濃度を0.3mol%とし、引き上げ速度を2.0インチ/時(約50mm/時)とした。相のラメラ間隔の平均を計測した結果は3.5μmであった。
(実施例6)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を2.0インチ/時(約50mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は4.6μmであった。
(実施例7)
セラミック複合体2に含まれるCeの濃度を1.0mol%とし、引き上げ速度を2.0インチ/時(約50mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は5.1μmであった。
(実施例8)
セラミック複合体2に含まれるCeの濃度を0.3mol%とし、引き上げ速度を4.0インチ/時(約100mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は2.6μmであった。
(実施例9)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を4.0インチ/時(約100mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は3.0μmであった。
(実施例10)
セラミック複合体2に含まれるCeの濃度を1.0mol%とし、引き上げ速度を4.0インチ/時(約100mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は4.4μmであった。
(実施例11)
セラミック複合体2に含まれるCeの濃度を0.5mol%とし、引き上げ速度を8.0インチ/時(約200mm/時)とした。YAl12相のラメラ間隔の平均を計測した結果は4.4μmであった。
厚みが0.5mmのセラミック複合体2の実施例1〜11に対して、波長450nmの青色光を照射したところ、いずれの実施例でも青色光はセラミック複合体2内で散乱されて一部が黄色光に波長変換され、外部に照射される光は均一な白色光であった。
図10〜図12に示したように、実施例1〜11のいずれでも青色光の散乱と波長変換をして白色光を得ることができた。また、EFG法でのセラミック複合体2の引き上げ速度を大きくすることで、YAl12相のラメラ間隔は小さくなる傾向が確認できた。さらに、Ce濃度を0.01mol%以上5.0mol%以下の範囲としても、ラメラ構造の微細化は維持されることが確認できた。また、Ce濃度が低いほうがラメラ間隔は小さくなる傾向も読み取れる。
図13は、Ce濃度が0.5mol%である実施例1,2,4,6,9,11の引き上げ速度とラメラ間隔の関係を示すグラフである。図13に示したグラフでは、横軸が引き上げ速度(μm/秒)であり縦軸がYAl12相のラメラ間隔(μm)である。
図13に示したように、本実施形態のセラミック複合体2の製造方法では、種結晶17の引き上げ速度V(μm)とYAl12相のラメラ間隔d(μm)には、d=a・V?1/2(aは定数)の関係があることがわかる。図13に示した例では定数a=13程度となっている。aはラメラ間隔dに応じて9〜18に設定可能で、dが狭いほどaは小さくなり、dが広いほどaは大きくなる。したがって、同一の装置と成長条件を用いれば、引き上げ速度Vを制御するだけで得られるセラミック複合体2のラメラ間隔を制御することが可能となり、引き上げ速度V毎のラメラ間隔dを均一に保つ事が可能となる
また図13から、引き上げ速度が0.9mm/時(約0.25μm/秒)未満の場合には、ラメラ間隔の変動が極めて大きいことがわかる。したがって、引き上げ速度Vに誤差が生じた場合には、ラメラ構造のサイズが大きく変動してしまい、ラメラ構造のサイズを制御することが困難になる。
また、図13では引き上げ速度が56μm/秒までしかプロットされていないが、それ以上の引き上げ速度においても上記関係式を満たすと推測される。引き上げ速度は大きいほどラメラ間隔が小さくなり、光を均一に散乱することができて好ましいが、500mm/時間(約140μm/秒)より大きいとラメラ間隔が小さくなりすぎて光の波長に近づき、かえって散乱が生じにくくなるため好ましくない。
また、引き上げ速度が400mm/時間(約110μm/秒)より大きい場合には、融液溜まり22の温度を制御することが困難になるため、ラメラ構造のサイズを制御することも困難になる。また、引き上げ速度が大きすぎると、融液溜まり22の融液21が種結晶17やネック25、直胴部分26から分離して成長が中断する可能性が高くなるため好ましくない。
以上に述べたように、本実施形態のセラミック複合体2の製造方法では、スリット19を有すると共に、各々の長手方向が平行に配置された複数のダイ9を坩堝5に収容し、坩堝5に少なくとも酸化アルミニウム、酸化イットリウム、酸化マグネシウム、および酸化セリウムを含む原料を投入する工程と、坩堝5を加熱して、原料を坩堝5内で溶融して融液21を用意する工程と、スリット19を介してスリット19上部に融液21を溜めた融液溜まりを形成する工程と、融液溜まりに種結晶17を接触させ、種結晶17を引き上げ速度0.9mm/時間以上400mm/時間以下で引き上げる引き上げ工程を有している。これにより、YAl12相とAl相のラメラ間隔を制御する事ができ、一次光と波長変換された二次光を均一に散乱するラメラ構造のサイズを制御することが可能となる。従って、二次光への波長変換効率を向上させる事が出来る。更に、種結晶17の引き上げ速度毎のラメラ間隔を均一に保つ事が可能となる。
また本発明では、EFG法によりセラミック複合体2を育成成長させる事により、種結晶の引き上げ速度を0.9mm/時間以上400mm/時間以下の範囲内で変動させると共に、Ceをセラミック複合体2に含有させても、コロニー構造の発生を防止する事が出来る。コロニー構造とはラメラ構造の相間隔の短い複数の相が密に存在する部分が、相間隔の長い複数の相が疎に存在する部分によって囲まれている構造である。そのようなコロニー構造は、図9〜図12に示すように、本実施形態及び実施例では何れも発生が確認されなかった。従って、セラミック複合体2に於ける白色光の発光ムラが防止可能となる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1…製造装置
2…セラミック複合体
3…育成容器
4…引き上げ容器
5…坩堝
6…坩堝駆動部
7…ヒータ
8…電極
9…ダイ
10…断熱材
11…雰囲気ガス導入口
12…排気口
13…シャフト
14…シャフト駆動部
15…ゲートバルブ
16…基板出入口
17…種結晶
18…仕切り板
19…スリット
21…融液
23…切り欠き部
24…切り欠き穴
26…直胴部分
30…斜面

Claims (2)

  1. スリットを有すると共に、各々の長手方向が平行に配置された複数のダイを坩堝に収容し、前記坩堝に少なくとも酸化アルミニウム、酸化イットリウム、酸化マグネシウム、および酸化セリウムを含む原料を投入する工程と、
    前記坩堝を加熱して、前記原料を前記坩堝内で溶融して融液を用意する工程と、
    前記スリットを介して前記スリット上部に前記融液を溜めた融液溜まりを形成する工程と、
    前記融液溜まりに種結晶を接触させ、前記種結晶を引き上げ速度0.9mm/時間以上400mm/時間以下で引き上げる引き上げ工程を有することを特徴とするセラミック複合体の製造方法。
  2. 前記引き上げ工程の期間中において、前記融液溜まりでの前記融液の界面温度が一定であることを特徴とする、請求項1に記載のセラミック複合体の製造方法。
JP2019161969A 2019-09-05 2019-09-05 セラミック複合体の製造方法 Active JP7350298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161969A JP7350298B2 (ja) 2019-09-05 2019-09-05 セラミック複合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161969A JP7350298B2 (ja) 2019-09-05 2019-09-05 セラミック複合体の製造方法

Publications (2)

Publication Number Publication Date
JP2021038126A true JP2021038126A (ja) 2021-03-11
JP7350298B2 JP7350298B2 (ja) 2023-09-26

Family

ID=74848200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161969A Active JP7350298B2 (ja) 2019-09-05 2019-09-05 セラミック複合体の製造方法

Country Status (1)

Country Link
JP (1) JP7350298B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229134A (ja) * 2011-04-25 2012-11-22 Fujikura Ltd 酸化物共晶体の製造方法
JP2013028667A (ja) * 2011-07-27 2013-02-07 Panasonic Corp イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
JP2016060672A (ja) * 2014-09-19 2016-04-25 並木精密宝石株式会社 複数のサファイア単結晶の製造方法
WO2016199406A1 (ja) * 2015-06-12 2016-12-15 株式会社 東芝 蛍光体およびその製造方法、ならびにledランプ
JP2017120864A (ja) * 2015-12-28 2017-07-06 株式会社タムラ製作所 発光装置
JP2018052783A (ja) * 2016-09-30 2018-04-05 アダマンド並木精密宝石株式会社 ヒータ断熱構造体および単結晶製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229134A (ja) * 2011-04-25 2012-11-22 Fujikura Ltd 酸化物共晶体の製造方法
JP2013028667A (ja) * 2011-07-27 2013-02-07 Panasonic Corp イットリウムアルミニウムガーネットタイプの蛍光体とこれを用いた発光装置
JP2016060672A (ja) * 2014-09-19 2016-04-25 並木精密宝石株式会社 複数のサファイア単結晶の製造方法
WO2016199406A1 (ja) * 2015-06-12 2016-12-15 株式会社 東芝 蛍光体およびその製造方法、ならびにledランプ
JP2017120864A (ja) * 2015-12-28 2017-07-06 株式会社タムラ製作所 発光装置
JP2018052783A (ja) * 2016-09-30 2018-04-05 アダマンド並木精密宝石株式会社 ヒータ断熱構造体および単結晶製造装置

Also Published As

Publication number Publication date
JP7350298B2 (ja) 2023-09-26

Similar Documents

Publication Publication Date Title
JP5904421B2 (ja) Iii族窒化物結晶および半導体装置の製造方法
JP5786179B2 (ja) 酸化ガリウム単結晶及びその製造方法
JP7007666B2 (ja) 発光体及び発光体の製造方法
US11525082B2 (en) Phosphor and production method thereof phosphor-including member, and light emitting device or projector
Jin et al. Blue low-threshold room-temperature stimulated emission from thermostable perovskite nanocrystals glasses through controlling crystallization
US20080008438A1 (en) Self-Coated Single Crystal, And Production Apparatus And Process Therefor
WO2021045077A1 (ja) セラミック複合体
JP2021038126A (ja) セラミック複合体の製造方法
JP7445949B2 (ja) セラミック複合体
JP2021038347A (ja) セラミック複合体
JP2021038346A (ja) セラミック複合体
WO2016043176A1 (ja) 複数のサファイア単結晶とその製造方法
WO2021079793A1 (ja) セラミック複合体及びセラミック複合体の製造方法
WO2017038745A1 (ja) 複数のサファイア単結晶及びその製造方法
JP2008050240A (ja) セシウムホウ酸化合物結晶の製造方法及びそれにより得られたセシウムホウ酸化合物
CN211311665U (zh) 一种导模法生产稀土共晶荧光体的模具
CN210778670U (zh) 一种导模法生产不同厚度稀土共晶荧光体的模具用夹片
WO2022163604A1 (ja) 発光体、腕時計、及び発光体の製造方法
JP6025085B2 (ja) 複数のサファイア単結晶とその製造方法
WO2023017670A1 (ja) 薄板状単結晶製造装置および薄板状単結晶製造方法
EP3736316B1 (en) Phosphor and light source device
JP2023142167A (ja) 蛍光体および光源装置
US20230257649A1 (en) Phosphor and light source device
JP2017078013A (ja) サファイア単結晶とその製造方法
JP2022153703A (ja) セラミック複合体と、セラミック複合体を備える腕時計又はネームプレート、セラミック複合体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230906

R150 Certificate of patent or registration of utility model

Ref document number: 7350298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150