JP2021025366A - 2重屋根の断熱構造 - Google Patents

2重屋根の断熱構造 Download PDF

Info

Publication number
JP2021025366A
JP2021025366A JP2019146029A JP2019146029A JP2021025366A JP 2021025366 A JP2021025366 A JP 2021025366A JP 2019146029 A JP2019146029 A JP 2019146029A JP 2019146029 A JP2019146029 A JP 2019146029A JP 2021025366 A JP2021025366 A JP 2021025366A
Authority
JP
Japan
Prior art keywords
roof
heat insulating
layer
folded plate
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019146029A
Other languages
English (en)
Inventor
優 松田
Masaru Matsuda
優 松田
功一 河井
Koichi Kawai
功一 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019146029A priority Critical patent/JP2021025366A/ja
Publication of JP2021025366A publication Critical patent/JP2021025366A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

【課題】断熱性能に及ぼす対流の影響を低減するとともに、上屋根と下屋根との間における輻射熱を低減して断熱性能を向上させることが可能な2重屋根の断熱構造を提供すること。【解決手段】少なくとも上屋根金属折板を有する上屋根と、前記上屋根の下方に位置し、少なくとも下屋根金属折板を有する下屋根と、前記上屋根の下面と対向するように前記下屋根の上面に設けられ、繊維系断熱材からなる断熱層である繊維系断熱層と、を備える2重屋根の断熱構造である。前記上屋根及び前記下屋根の少なくとも一方は、発泡樹脂体からなる断熱層である発泡樹脂層と、前記発泡樹脂層を保護する保護層とを更に有する。【選択図】図1

Description

本発明は、2重屋根の断熱構造に関する。
屋根の断熱性能を高めるために、従来、断熱材として発泡樹脂を折板屋根に設けた断熱構造、又は、ガラスウール等の繊維系断熱材を折板屋根に設けた断熱構造が提案されている。また、上屋根と下屋根とを互いに対向させて配置した2重屋根の構造が、屋根の断熱性能をより向上させ得る断熱構造として提案されている。このような従来の屋根の断熱構造として、例えば、特許文献1〜5に開示されたものがある。
特許文献1には、下部屋根板と上部屋根板との間の所定の空間に、ガラスウール(グラスウール)やロックウール等の繊維系断熱材が充填された構造の2重折板屋根が開示されている。また、特許文献1には、上記所定の空間に繊維系断熱材を充填し得るように、下部屋根板と上部屋根板とを所定の間隔をあけて連結するための連結具が開示されている。この連結具においては、押込みボルトの先端を嵌合式ハゼ部側に螺入することにより、該押込みボルトの先端が嵌合式ハゼ部の立上がり部に嵌入して、凹陥状の係止部が形成される、この結果、連結具は下部屋根板上に固定される。また、この連結具の構造は、断熱性を有する樹脂ブロックを介して上部屋根板を保持する吊子を固定する構造としている。このため、下部屋根板と上部屋根板とは、金属接触をすることがなく、この連結具によって十分な機械的強度を持って連結される。
特許文献2には、屋根下地構造体に固定した第1取付金具と、山部と谷部と傾斜側部とを有する第1折板屋根材と、固定部と結合部とを有する第2取付金具と、前記第1折板屋根材の2山に対して1山のピッチを有する山部と該山部に設けた結合部と谷部と傾斜側部とを有する第2折板屋根材と、を備えた2重構造の折板屋根構造が開示されている。この2重構造の折板屋根構造において、第1折板屋根材は、第1取付金具に取り付けられている。第2取付金具の固定部は、第1折板屋根材の1つおきの山部に固定されている。第2折板屋根材の谷部は、第1折板屋根材の山部のうち第2取付金具を固定していない1つおきの山部に、載置支持されている。第2折板屋根材において隣り合う結合部は、第2取付金具の結合部にそれぞれ結合されている。また、特許文献2には、第1折板屋根材と第2折板屋根材との間の空間にガラスウール等の断熱材を敷設すれば、2重構造の折板屋根の断熱効果を増大させ得ることが開示されている。
特許文献3には、金属折板で形成した上葺材と下葺材の上に敷設した断熱材との間に、外気と連通するように形成された連続空間を有する通気機能付きの2重屋根の断熱構造が開示されている。また、特許文献3には、下葺材の上に敷設した断熱材として、ガラスウール等でもよいが、独立気泡の発泡材が好適であることが開示されている。
特許文献4には、建築物の屋根に供する金属折板を基材とし、この金属折板に断熱材マットを貼付けてなる金属複合屋根材が開示されている。この金属複合屋根材において、上記断熱材マットは、マット状或いはフェルト状のロックウール断熱材の少なくとも1つの面を、可撓性を有する補強用表面被覆シートによって被覆して形成され、その補強用表面被覆シートを屋内側表面にして上記金属折板に貼り付けられている。また、この金属複合屋根材において、補強用表面被覆シートは、ガラスクロスで補強されたアルミニウム箔の面を表にして、上記断熱材マットのロックウール断熱材に接着されている。上記断熱材マットは、金属折板に貼り付けられた際、この金属折板に対する優れた追従性を有するため、施工後のスプリングバックによるロックウール断熱材の剥離を防止し得る。また、上記補強用表面被覆シートのアルミニウム箔は、その防湿効果によって上記断熱材マットのロックウール断熱材への水分の浸透を防止するものである。
特許文献5には、鋼板、金属箔および樹脂発泡体によって構成される耐火性金属折板屋根積層構造体が開示されている。この耐火性金属折板屋根積層構造体において、鋼板の片面には金属箔が接着され、この金属箔には樹脂発泡体が接着されている。また、特許文献5には、この耐火性金属折板屋根積層構造体が、優れた耐火性を有し、屋根耐火30分認定試験に合格し得る金属折板屋根積層構造体であることが記載されている。
特開平8−260628号公報 特開平8−035292号公報 特開2009−270349号公報 特開平11−131700号公報 特開2009−264082号公報
一般に、2重屋根の断熱構造では、折板屋根に断熱材を設けた1重屋根の断熱構造に比べて、より高い断熱性能を得られるが、季節の移り変わりに伴う外部環境の変化に対して室内環境を保護するという点に着目すれば、断熱性能は必ずしも十分でないことも考えられる。
例えば、2重屋根の断熱構造においては、多くの場合、上屋根と下屋根との間に、比較的広い間隔の空間(空気層)が存在している。この空気層としては、2重屋根の折板構造に含まれる山部及び谷部の斜面部位において、面間距離で70mm程度の間隔を有する空気層が挙げられる。このような2重屋根の断熱構造は、空気層内で生じる空気の対流による熱輸送の影響(以下、単に「対流の影響」と適宜略記する)を受け易い。しかし、夏場等、室外側の温度が室内側の温度に比べて著しく高い環境下においては、2重屋根の断熱構造は、対流の影響よりも、室外側から室内側への輻射の影響を大きく受け易い。このため、2重屋根の断熱構造においては、輻射の影響を軽減することが、断熱性能の向上に有効であると考えられた。一方、冬場や寒冷地等、室外側の温度が室内側の温度に比べて低い環境下においては、2重屋根の断熱構造に対する輻射の影響が相対的に低減する。
具体的には、室外側の温度が室内側の温度に比べて著しく高い環境下において、外部環境の影響による上屋根の室外側の温度が70℃であり、下屋根の室内側の温度が25℃である場合、室外側から室内側へ放出される輻射エネルギーと室内側から室外側へ放出される輻射エネルギーとの比は、以下に示す4乗則の式に基づいて、1.75倍である。また、外部環境の影響による上屋根の室外側の温度が80℃であり、室内側の温度条件が上記と同じである場合、上記の比は、1.97(約2倍)である。

{(273+70)/(273+25)}=1.75
{(273+80)/(273+25)}=1.97

これに対し、室外側の温度が室内側の温度に比べて低い環境下において、外部環境の影響による上屋根の室外側の温度が0℃であり、下屋根の室内側の温度が15℃である場合、室内側から室外側へ放出される輻射エネルギーと室外側から室内側へ放出される輻射エネルギーとの比は、以下に示す4乗則の式に基づいて、1.24倍に過ぎない。

{(273+15)/(273+0)}=1.24
以上より、2重屋根の断熱構造においては、「断熱性能に及ぼす対流の影響が輻射の影響に比べて大きくなる」と考えるに至った。すなわち、2重屋根の断熱構造としては、断熱性能に及ぼす対流の影響を低減するとともに、上屋根と下屋根との間における輻射熱を低減し得るものが、断熱性能を向上させるという観点から要望される。しかしながら、上述した従来の2重屋根の断熱構造では、上屋根と下屋根との間の空気層における対流の制御が困難であるから、断熱性能に及ぼす対流の影響を低減できない恐れがあるという問題が生じる。
本発明は、上記の事情に鑑みてなされたものであって、断熱性能に及ぼす対流の影響を低減するとともに、さらに上屋根と下屋根との間の熱抵抗を増加させることで、上屋根と下屋根との間における輻射熱の影響を低減して断熱性能を向上させることが可能な2重屋根の断熱構造を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る2重屋根の断熱構造は、少なくとも上屋根金属折板を有する上屋根と、前記上屋根の下方に位置し、少なくとも下屋根金属折板を有する下屋根と、前記上屋根の下面と対向するように前記下屋根の上面に設けられ、繊維系断熱材からなる断熱層である繊維系断熱層と、を備え、前記上屋根及び前記下屋根の少なくとも一方は、発泡樹脂体からなる断熱層である発泡樹脂層と、前記発泡樹脂層を保護する保護層とを更に有する、ことを特徴とする。
上記の構成により、上屋根と下屋根との間における空気の対流を繊維系断熱層によって抑制できるとともに、繊維系断熱層による熱抵抗と発泡樹脂層による熱抵抗とを足し合わせて2重屋根の断熱構造全体の熱抵抗を増大させることができ、この結果、2重屋根の断熱性能に及ぼす対流の影響を低減するとともに、上屋根と下屋根との間における輻射熱の影響を上記増大させた熱抵抗によって低減して、2重屋根の断熱性能を向上させることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層は、前記上屋根金属折板の下面に設けられ、前記保護層は、前記発泡樹脂層における前記繊維系断熱層側の面に設けられ、前記繊維系断熱層は、前記保護層の下面と対向するように、前記下屋根金属折板の上面に設けられている、ことを特徴とする。
上記の構成により、上屋根金属折板側から下屋根金属折板側に向かって発泡樹脂層と保護層と繊維系断熱層とを含む複合型の断熱層を構成することができ、これにより、2重屋根の断熱性能を向上させることができる。特に、室外側の温度が室内側の温度に比べて著しく高い環境下において、上屋根金属折板の下面に設けた発泡樹脂層と繊維系断熱層とにより、室外側から室内側へ向かう熱に対する高い断熱性能を発揮することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層は、前記下屋根金属折板の上面に設けられ、前記保護層は、前記発泡樹脂層における前記繊維系断熱層側の面に設けられ、前記繊維系断熱層は、前記上屋根金属折板の下面と対向するように、前記保護層の上面に設けられている、ことを特徴とする。
上記の構成により、上屋根金属折板側から下屋根金属折板側に向かって繊維系断熱層と発泡樹脂層と保護層とを含む複合型の断熱層を構成することができ、これにより、2重屋根の断熱性能を向上させることができる。特に、室外側の温度が室内側の温度に比べて低い環境下において、下屋根金属折板の上面に設けた発泡樹脂層と繊維系断熱層とにより、室内側から室外側へ向かう熱に対する高い断熱性能を発揮することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層は、前記上屋根金属折板の下面と前記下屋根金属折板の上面とに各々設けられ、前記保護層は、前記上屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面と、前記下屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面とに各々設けられ、前記繊維系断熱層は、前記上屋根金属折板側の前記保護層の下面と対向するように、前記下屋根金属折板側の前記保護層の上面に設けられている、ことを特徴とする。
上記の構成により、上屋根金属折板側から下屋根金属折板側に向かって発泡樹脂層と保護層と繊維系断熱層と保護層と発泡樹脂層とを含む複合型の断熱層を構成することができ、これにより、2重屋根の断熱性能を向上させることができる。特に、外部環境によらず、室外側から室内側へ向かう熱に対する高い断熱性能と室内側から室外側へ向かう熱に対する高い断熱性能との双方を発揮することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層は、前記下屋根金属折板の下面に設けられ、前記保護層は、前記発泡樹脂層における前記繊維系断熱層とは反対側の面に設けられ、前記繊維系断熱層は、前記上屋根金属折板の下面と対向するように、前記下屋根金属折板の上面に設けられている、ことを特徴とする。
上記の構成により、上側から下側に向かって繊維系断熱層と発泡樹脂層と保護層とを含む複合型の断熱層を構成することができ、これにより、2重屋根の断熱性能を向上させるとともに、下屋根の耐火性能を向上させることができる。また、下屋根と同じ構造を有する既設の1重屋根を上記の2重屋根に容易に改修工事することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層は、前記上屋根金属折板の下面と前記下屋根金属折板の下面とに各々設けられ、前記保護層は、前記上屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面と、前記下屋根金属折板の前記発泡樹脂層における前記繊維系断熱層とは反対側の面とに各々設けられ、前記繊維系断熱層は、前記上屋根金属折板側の前記保護層の下面と対向するように、前記下屋根金属折板の上面に設けられている、ことを特徴とする。
上記の構成により、上側から下側に向かって発泡樹脂層と保護層と繊維系断熱層と発泡樹脂層と保護層とを含む複合型の断熱層を構成することができ、これにより、2重屋根の断熱性能を向上させるとともに、上屋根及び下屋根の耐火性能を向上させることができる。また、下屋根と同じ構造を有する既設の1重屋根を上記の2重屋根に容易に改修工事することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記上屋根及び前記下屋根は、前記下屋根の上面に設けられた前記繊維系断熱層の上面と前記上屋根の下面とが互いに対向して離間するように配置され、前記繊維系断熱層の上面と前記上屋根の下面との間に空気層を形成し、前記空気層の最狭部の間隔は、20mm以下である、ことを特徴とする。
上記の構成により、発泡樹脂層と保護層と空気層と繊維系断熱層とを含む複合型の断熱層を構成するとともに、上記空気層の面間隔を空気の対流抑制に適した面間隔にすることができ、これにより、空気層での空気の対流に起因する断熱性能の低下を防止して、2重屋根の断熱性能を向上させることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記空気層は、前記上屋根及び前記下屋根の山部と谷部と斜面部とを含む全域に亘って連続し、前記山部の頂面部及び前記谷部の底面部における前記空気層の間隔は、50mm以下であり、前記山部及び前記谷部の斜面部における前記空気層の最狭部の間隔は、20mm以下である、ことを特徴とする。上記の構成により、断熱性能を向上させるべく、空気層での空気の対流に起因する断熱性能の低下を防止するに適した2重屋根の断熱構造を実現することができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記繊維系断熱層の厚さは、50mm以上100mm以下である、ことを特徴とする。上記の構成により、2重屋根の断熱構造に設ける繊維系断熱層を、2重屋根の断熱性能の向上及び施工性に適した厚さのものとすることができる。例えば、繊維系断熱層の厚さは、2重屋根の断熱構造として対流空間を有しないようにする場合には、100mmの繊維系断熱材を使用することによって設定することができる。特に、2重屋根における斜面部に所定の対流空間を残す場合には、少なくとも、斜面部の対面間距離から斜面部に配置される発泡樹脂層の厚さを減じた厚さが所定厚さとなるように、繊維系断熱層の厚さを設定することができる。具体的には、繊維系断熱層の厚さは、50mmとすることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記上屋根金属折板及び前記下屋根金属折板は、各々、金属折板の単位構成部材である折板屋根部材を複数接合して構成され、前記発泡樹脂層の一部は、前記上屋根金属折板及び前記下屋根金属折板のうち前記発泡樹脂層が設けられた金属折板を構成する複数の前記折板屋根部材同士の接合部の継ぎ目を塞ぐ、ことを特徴とする。上記の構成により、上屋根金属折板及び下屋根金属折板の少なくとも一方の接合部の継ぎ目を気密に密着させることができ、この結果、2重屋根内部の防水性能及び結露防止性能を高めることができる。ここで、室外からの雨水や湿気の侵入を防止するという観点では、上屋根金属折板を構成する折板屋根部材同士の接合部の継ぎ目をシールすることが望ましい。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記保護層は、金属箔、又は樹脂フィルム上に金属が蒸着された金属蒸着樹脂フィルムからなる層のいずれかである、ことを特徴とする。
上記の構成により、発泡樹脂層の表面保護、劣化防止、耐火性改善、成形性改善、帯電による異物付着の防止、結露防止、紫外線による劣化の防止の効果を得ることができる。また、発泡樹脂層のみならず、繊維系断熱層の表面保護、結露防止、帯電による異物付着の防止、紫外線による劣化の防止の効果を得ることができ、繊維系断熱層の長寿命化及び性能向上を図ることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層と前記保護層との間に介在し、前記発泡樹脂層を補強する補強層を更に備え、前記補強層は、ポリエチレン系樹脂、ポリエステル系樹脂又はガラスによって構成されるクロスシートからなる層である、ことを特徴とする。上記の構成により、外気の気温変動に起因する発泡樹脂層の寸法変化を補強層によって緩和して発泡樹脂層の耐久性を向上させるとともに、折板加工時の発泡樹脂層の表面を補強して、発泡樹脂層の折板加工性を向上させることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂体は、ポリオレフィン系樹脂又はポリウレタン系樹脂である、ことを特徴とする。上記の構成により、折板屋根に設ける断熱材として好適な発泡樹脂体を得ることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂体は、含有する全気泡に対する独立気泡の割合が60%以上且つ発泡倍率が20倍以上50倍以下の軟質発泡樹脂体である、ことを特徴とする。折板屋根に設ける断熱材として更に好適な発泡樹脂体を得ることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記発泡樹脂層の厚さは、2mm以上12mm以下である、ことを特徴とする。上記の構成により、断熱層として好適な発泡樹脂層を折板屋根に設けることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記繊維系断熱材は、ガラスウール又はロックウールである、ことを特徴とする。上記の構成により、折板屋根に設ける断熱材としてコスト及び性能面で好適な繊維系断熱材を得ることができる。
また、本発明に係る2重屋根の断熱構造は、上記の発明において、前記繊維系断熱層は、断熱特性に加えて吸音特性を有し、前記発泡樹脂層は、断熱特性に加えて吸音特性と衝撃エネルギーの吸収特性とを有する、ことを特徴とする。上記の構成により、2重屋根に対して、断熱性能のみならず、吸音性能及び振動抑制性能を付与することができる。
本発明に係る2重屋根の断熱構造によれば、上屋根と下屋根との間における空気の対流を抑制できるとともに、繊維系断熱層による熱抵抗と発泡樹脂層による熱抵抗との重畳により、2重屋根の断熱構造全体の熱抵抗を増大させることができ、この結果、対流空間を所定高さ以下の空間とするか、あるいは閉塞することができるから、2重屋根の断熱性能に及ぼす対流の影響を低減することが可能になる。さらに、上屋根及び下屋根の少なくとも一方に発泡樹脂層を設けることで、上屋根と下屋根との間の熱抵抗を増大させ、上屋根と下屋根との間における輻射熱の影響を低減して、2重屋根の断熱性能を向上させることができる。また、発泡樹脂層上に形成された保護層による熱反射効果により、輻射熱を緩和することも場合により可能となる。さらに、発泡樹脂層及び繊維系断熱層の両者を形成することで、吸音性能だけでなく、制振機能を付与することが可能になる。また、上屋根又は下屋根のいずれかの接合部にシール構造を付与することで、上屋根又は下屋根の防水性や結露防止性を高めることができ、さらに、保護層の熱反射効果により、耐火性を30分耐火試験に合格し得る程度に高めることができる。また、本発明においては、発泡樹脂層には必ず一体的に保護層が形成されているため、発泡樹脂層の表面保護、劣化防止、耐火性改善、成形性改善、帯電による異物付着の防止、結露防止、紫外線による劣化の防止の効果を得ることができる。また、発泡樹脂層上に設けた保護層が繊維系断熱層に接している場合には、繊維系断熱層の少なくとも一方の面を保護することが可能になり、繊維系断熱層の長寿命化を計ることが可能になる。
図1は、本発明の実施形態1に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図2は、本発明の実施形態1における折板屋根部材の一構成例を示す斜視模式図である。 図3は、本発明の実施形態1における折板屋根部材同士の接合部の一構成例を示す断面模式図である。 図4は、本発明の実施形態2に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図5は、本発明の実施形態3に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図6は、本発明の実施形態4に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図7は、本発明の実施形態5に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図8は、本発明の実施形態6に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図9は、本発明の実施形態7に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図10は、本発明の実施形態8に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図11は、本発明の実施形態9に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図12は、本発明の実施形態10に係る2重屋根の断熱構造の一構成例を示す断面模式図である。 図13は、本発明の実施形態11に係る2重屋根の断熱構造の一構成例を示す断面模式図である。
以下に、図面を参照して本発明に係る2重屋根の断熱構造の好適な実施形態を詳細に説明する。なお、本実施形態により本発明が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
[実施形態1]
図1は、本発明の実施形態1に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図1に示すように、本実施形態1に係る2重屋根10は、上屋根1と下屋根2と繊維系断熱層3とを備え、この2重屋根10の断熱構造は、上屋根1と下屋根2と繊維系断熱層3とによって構成される。
なお、本発明においては、説明の便宜上、上下方向D1、横方向D2及び縦方向D3が設定されている。上下方向D1は構造体の上側と下側とを規定する方向であり、図1に示すように、上下方向D1の正側が上側であり、上下方向D1の負側が下側である。上下方向D1は、例えば鉛直方向と同一の方向であってもよいが、正負の各方向によって上側と下側とを規定していれば、鉛直方向に対して傾斜していてもよい。横方向D2は、上下方向D1及び縦方向D3に対して垂直な方向であり、例えば図1の紙面に向かって左右の方向である。縦方向D3は、上下方向D1及び横方向D2に対して垂直な方向であり、例えば図1の紙面に対して垂直の方向である。
上屋根1は、少なくとも上屋根金属折板を有する屋根の一例である。また、上屋根1及び下屋根2の少なくとも一方は、発泡樹脂体からなる断熱層である発泡樹脂層と、この発泡樹脂層を保護する保護層とを更に有する。本実施形態1では、図1に示すように、上屋根1は、上屋根金属折板11と発泡樹脂層12と保護層14とを有する。
上屋根金属折板11は、上屋根用の金属折板の一例であり、図1に示すように、鋼板等の金属板を山部と谷部とが交互に繰り返すように折り曲げてなる構造を有する。本実施形態1において、上屋根金属折板11の山部及び谷部は、横方向D2に沿って交互に繰り返すように並び、縦方向D3に沿って平行または所定角度を以て延在している。また、図1に示すように、上屋根金属折板11は、その山部の頂面部5aに接合部6を有する。接合部6は、上屋根金属折板11を構成する後述の折板屋根部材同士を接合する部分である。このような上屋根金属折板11は、上屋根1の屋根材層を構成する。
発泡樹脂層12は、発泡樹脂体からなる断熱層である。本実施形態1において、発泡樹脂層12は、上屋根用の発泡樹脂層の一例であり、図1に示すように、上屋根金属折板11の下面に設けられている。このような発泡樹脂層12を構成する発泡樹脂体は、上屋根金属折板11の下面に、例えば接着剤によって接着固定されている。なお、当該発泡樹脂体は、上屋根金属折板11の下面に熱圧着又は熱融着によって固定されてもよい。
保護層14は、発泡樹脂層12を保護する層であり、発泡樹脂層12における繊維系断熱層3側の面に設けられている。本実施形態1では、図1に示すように、保護層14は、発泡樹脂層12の下面に直接的に設けられており、且つ、繊維系断熱層3の上面と接触した状態にある。また、保護層14は、後述するように、アルミニウム等の金属を含有する層である。
このような保護層14は、発泡樹脂層12の表面を保護するとともに、繊維系断熱層3からの輻射熱を反射して当該輻射熱が発泡樹脂層12に伝導することを抑制する。これに加え、保護層14は、発泡樹脂層12の結露を防止し、発泡樹脂層12に耐食性を付与して発泡樹脂層12(具体的には発泡樹脂体)の劣化を防止し、発泡樹脂層12の紫外線による劣化を防止し、発泡樹脂層12の帯電による異物付着を防止する。さらに、保護層14は、発泡樹脂層12について、上屋根1の成形時における発泡樹脂体の成形性を改善し、発泡樹脂体の耐火性を改善し、発泡樹脂体の熱拡散性を改善する。また、保護層14は、上記の発泡樹脂層12のみならず、繊維系断熱層3の表面を保護し、繊維系断熱層3の結露を防止し、繊維系断熱層3の帯電による異物付着を防止する。これに加え、保護層14は、繊維系断熱層3の熱反射性及び熱拡散性を改善する。
下屋根2は、上屋根1の下方に位置し、少なくとも下屋根金属折板を有する屋根の一例である。本実施形態1では、図1に示すように、下屋根2は、下屋根金属折板21によって構成される。
下屋根金属折板21は、下屋根用の金属折板の一例であり、図1に示すように、鋼板等の金属板を山部と谷部とが交互に繰り返すように折り曲げてなる構造を有する。本実施形態1において、下屋根金属折板21の山部及び谷部の構造は、上述した上屋根金属折板11と同様である。また、図1に示すように、下屋根金属折板21は、その山部の頂面部に接合部7を有する。接合部7は、下屋根金属折板21を構成する後述の折板屋根部材同士を接合する部分である。このような下屋根金属折板21は、下屋根2の屋根材層を構成する。
本実施形態1において、上屋根1及び下屋根2は、図1に示すように、上屋根1の下面4aと下屋根2の上面4bとが互いに対向して上下方向D1に離間するように配置されている。詳細には、上屋根1及び下屋根2は、互いの山部同士及び谷部同士が対向するように上下方向D1に配置されている。望ましくは、上屋根1及び下屋根2は、互いに平行に配置されている。上屋根1の下面4aと下屋根2の上面4bとの上下方向D1の離間距離は、2重屋根10の設計に応じて所望の距離とすることが可能である。例えば、当該離間距離は、50mm以上100mm以下であることが好ましい。また、上屋根1と下屋根2とは、不図示の固定金具によって固定されている。これらの上屋根1及び下屋根2は、図1に示すように、上屋根1の下面4aと下屋根2の上面4bとの間の全域に亘って、繊維系断熱層3を挟んでいる。すなわち、上屋根1の下面4aと下屋根2の上面4bとの間の空間は、繊維系断熱層3によって埋められている。本実施形態1において、上屋根1の下面4aは、発泡樹脂層12に設けられた保護層14の下面である。下屋根2の上面4bは、下屋根金属折板21の上面である。特に図示しないが、これらの上屋根1及び下屋根2が上下方向D1に並んで連続して配置されている2重屋根10の横方向D2及び縦方向D3の各端部は、2重屋根外部(外気)に対して開放された状態とすることができる。このような開放状態の各端部は、必要に応じて開放状態とする場合もあるが、通常、面戸等の部材を設けることによって閉塞する。
なお、山部とは、上屋根1及び下屋根2の各々において上下方向D1の上側に凸となっている部分である。山部には、例えば上屋根金属折板11において、頂面部5aと、これに連続する両側の斜面部5cとが含まれる。この山部の構成は、下屋根金属折板21についても同様である。谷部とは、上屋根1及び下屋根2の各々において上下方向D1の下側に凸となっている部分である。谷部には、例えば上屋根金属折板11において、底面部5bと、これに連続する両側の斜面部5cとが含まれる。すなわち、斜面部5cは、山部及び谷部に共通する部分である。この谷部の構成は、下屋根金属折板21についても同様である。上記の山部及び谷部の定義は、本発明において共通である。
繊維系断熱層3は、上屋根1の下面4aと対向するように下屋根2の上面4bに設けられ、繊維系断熱材からなる断熱層の一例である。本実施形態1では、図1に示すように、繊維系断熱層3は、発泡樹脂層12に設けられた保護層14の下面と対向するように、下屋根金属折板21の上面に設けられている。詳細には、繊維系断熱層3の上面は保護層14の下面と接触し、且つ、繊維系断熱層3の下面は下屋根金属折板21の上面と接触している。繊維系断熱層3を構成する繊維系断熱材としては、例えば、ガラスウール(グラスウール)又はロックウール等が挙げられる。特に、上屋根1と下屋根2との間に形成される空間を閉塞し、さらに繊維系断熱材の施工の容易性(施工時の形状追従性)の観点から、当該繊維系断熱材としては、密度が10kg/mである10Kタイプのガラスウール又はロックウールが好ましい。繊維系断熱層3の厚さは、上屋根1の下面4aと下屋根2の上面4bとの上下方向D1の離間距離に応じて所望の厚さに設定される。例えば、繊維系断熱層3の厚さは、断熱性能及び施工性等の観点から、50mm以上100mm以下であることが好ましい。本実施形態1においては、上屋根1の下面4aと下屋根2の上面4bとの上下方向D1の離間距離が100mmである場合、繊維系断熱層3の厚さは、これと同じ100mmであることが好ましい。以下、繊維系断熱材といえば、特に説明がない限り、繊維系断熱層3を構成する繊維系断熱材を意味する。
繊維系断熱材は、細かい繊維が絡み合って形成される構造体であり、絡み合った細かい繊維の間に生じる多数の空間内に空気を閉じ込めることによって断熱性能を発揮する。繊維系断熱材の熱伝導率は、繊維自体の太さや繊維の密度によって異なる。繊維系断熱材は、ポリエチレン等の樹脂製の袋に詰められた状態で繊維系断熱層3を構成することが好ましいが、樹脂製の袋に詰められていなくてもよい。繊維系断熱材を形成する繊維の絡み合い構造は不定形であり、この繊維系断熱材によって構成される繊維系断熱層3の外表面(特に上面及び下面)は、凹凸状になっている。このため、繊維系断熱材を下屋根2の上面4bに敷き込んで上屋根1の下面4aと下屋根2の上面4bとの間に挟み込んだとしても、繊維系断熱層3は、その外表面には多数の隙間を有し、繊維自体が配置される部分は極めて少ないことから、繊維系断熱層3と上屋根1の下面4a及び下屋根2の上面4bとが密着することはない。具体的には、繊維系断熱層3の上面と保護層14の下面との接触界面には、繊維系断熱材の外表面の凹凸に応じた多数の微細空間が存在する。同様に、繊維系断熱層3の下面と下屋根金属折板21の上面との接触界面には、繊維系断熱材の外表面の凹凸に応じた多数の微細空間が存在する。したがって、繊維系断熱層3と保護層14及び下屋根金属折板21との間に意図的に空間を設けなくても、これらの接触界面においては、上屋根1や繊維系断熱層3からの輻射が起こる。このような繊維系断熱層3から上屋根1への輻射による熱(輻射熱)は、上述した保護層14による熱反射によって低減され得る。また、上屋根1や繊維系断熱層3から下屋根2への輻射熱は、上屋根1の発泡樹脂層12の断熱性能によって繊維系断熱層3の温度上昇を抑制することにより、低減され得る。
本実施形態1では、上屋根金属折板11及び下屋根金属折板21の素材の一例として、鋼板が適用可能である。鋼板の種類としては、例えば、溶融55%アルミニウム−亜鉛合金めっき鋼板(ガルバニウム鋼板)、溶融亜鉛めっき鋼板、溶融亜鉛−5%アルミニウム鋼板、溶融アルミニウムめっき鋼板、及び、これら鋼板の表面を塗装したカラー鋼板等を用いることができる。鋼板の板厚は、薄いと強度が不足し、厚いと加工性が低下する。通常は、上屋根金属折板11及び下屋根金属折板21には、耐食性を考慮して、溶融亜鉛めっき鋼板やガルバニウム鋼板が用いられるが、特に室外側は風雨にさらされるため、表面に防食塗装を施したカラー鋼鈑が用いられることが多い。そのため、鋼板の板厚としては、強度と耐食性、コストなどを考慮して、0.4mm以上1.5mm以下が好ましく、0.4mm以上1.0mm以下がより好ましい。例えば、上屋根金属折板11及び下屋根金属折板21の各々を構成する鋼板の板厚は、0.8mmである。
また、本実施形態1では、発泡樹脂層12を構成する発泡樹脂体として、例えば、ポリオレフィン系樹脂又はポリウレタン系樹脂等が適用可能である。詳細には、当該発泡樹脂体を構成する樹脂として、例えば、ポリエチレン、エチレン−α−オレフィン共重合体、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル−塩化ビニル共重合体、及びエチレン−アクリル酸共重合体の中から選択される1種単独または2種以上の混合物からなるポリオレフィン系樹脂又はポリウレタン樹脂等が挙げられる。これらの中でも、当該発泡樹脂体としては、ポリエチレン樹脂、ポリプロピレレン樹脂などのポリオレフィン系樹脂からなる発泡体が好適に使用できる。
ポリオレフィン系樹脂発泡体としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン−α−オレフィン共重合体、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、エチレン−酢酸ビニル−塩化ビニル共重合体、及びエチレン−アクリル酸共重合体の中から選択される1種単独または2種以上の混合物からなる発泡体を用いることが望ましい。
これらの中では、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体からなる発泡体が特に好ましい。また、上記の発泡樹脂体としては、例えば、難燃性や耐火性を付与する化合物等を発泡ポリエチレンに添加してなる難燃性の発泡ポリエチレンシートや耐火性の発泡ポリエチレンシート等を用いることができる。
また、発泡樹脂層12を構成する発泡樹脂体としては、含有する全気泡に対する独立気泡の割合が60%以上であり且つ発泡倍率が20倍以上50倍以下である軟質発泡樹脂体が好ましい。この独立気泡の割合は、当該発泡樹脂体のMD方向、TD方向及び断面方向の何れにおいても、60%以上である。何故ならば、独立気泡の割合が60%より低く、連通気泡の割合が増加すると、連通気泡内で空気が移動し、断熱性が低下するためである。また、断熱性向上の観点からは、独立気泡の割合が高い方が望ましく、独立気泡の割合は、80%以上であることが望ましい。
また、上記発泡樹脂体の発泡倍率は、上述したように20倍以上50倍以下であることが好ましく、20倍以上40倍以下であることがより好ましく、30倍以上40倍以下であることが特に好ましい。ここで、発泡倍率の上限を50倍としたのは、発泡倍率がこれよりも高いと、折板加工時に発泡樹脂体の表面に亀裂が生じる可能性があると同時に、発泡樹脂体のセル壁が薄くなり、発泡樹脂体の耐久性が低下するためである。また、発泡倍率が20倍未満になると、気泡中の空気の量が減少して樹脂分が増加するために、発泡樹脂体の加工性及び断熱性が低下するためである。なお、発泡倍率は、樹脂の発泡体で一般的に用いられている見かけ倍率である。この見かけ倍率は、シート状の発泡樹脂体から10cm×10cmの寸法の試片を切り出し、重量(W1[g])を秤量し、その後、試片の四隅の角部及び中心部における厚さを測定し(測定機はJIS K 6767法に準拠する。)、5点の平均値(T[cm])を用いて、下記の(1)式により算出することができる。

見かけ倍率(発泡倍率)=10×10×T/W1 ・・・・(1)
また、発泡樹脂層12の厚さは、2mm以上12mm以下であることが好ましく、2mm以上10mm以下であることがより好ましく、2mm以上8mm以下であることが特に好ましい。例えば、発泡樹脂層12の厚さは、必要に応じて調整可能であるが、2mm、4mm、6mm、8mmなどの厚さを適用できる。
本実施形態1において、保護層14は、金属を含有する層であり、例えば、金属箔、又は金属蒸着樹脂フィルムのいずれかであることが好ましい。金属蒸着樹脂フィルムは、樹脂フィルム上に金属が蒸着されることによって形成される。保護層14に含まれる金属としては、コストや成形性等の観点から、アルミニウムであることが好ましい。すなわち、保護層14は、アルミニウム箔又はアルミニウム蒸着樹脂フィルムのいずれも適用できるが、耐久性も考慮するとアルミニウム箔であることが好ましい。
保護層14として適用するアルミニウム箔の厚さは、5μm以上150μm以下であることが好ましく、8μm以上100μm以下であることがより好ましい。アルミニウム箔が150μmよりも厚いと、加工性が低下するとともに、コスト増加となる。また、アルミニウム箔が5μmよりも薄いと、発泡樹脂層12への貼り付けが困難であるとともに、使用時に破れる可能性がある。
また、保護層14として適用するアルミニウム蒸着樹脂フィルムは、樹脂フィルム上にアルミニウムが蒸着されることによって形成される。このアルミニウム蒸着樹脂フィルムに用いられる樹脂フィルム(基材樹脂)としては、例えば、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン系樹脂フィルム、塩化ビニル系樹脂フィルム、PET樹脂フィルム等のポリエステル系樹脂フィルム、ポリアミド系樹脂フィルム等が挙げられる。このアルミニウム蒸着樹脂フィルムの厚さは、5μm以上50μm以下であることが好ましく、10μm以上30μm以下であることがより好ましい。このアルミニウム蒸着樹脂フィルムにおいて、樹脂フィルムに設けるアルミニウムの蒸着層の厚さは、例えば、0.01μm以上10μm以下であり、好ましくは、0.5μm以上1.0μm以下である。
一方、繊維系断熱層3は、断熱特性に加えて吸音特性を有する。繊維系断熱層3を構成する繊維系樹脂体は、細かい繊維の絡み合いによって形成される多数の空間を有する多孔質体である。一般に、多孔質体は、細孔中の摩擦抵抗等による吸音特性を有する。このような多孔質体の吸音特性は、吸収する音波の速度が大きいほど向上する。多孔質体の吸音率は、多孔質体の厚さが音波の波長λの1/4以上である場合に非常に高くなる。すなわち、多孔質体は、低周波帯域(低温帯域)の音波に比べて、上記「厚さと波長λとの関係」を満足し易い高周波帯域(高音帯域)の音波を容易に吸収する。また、多孔質体の低周波帯域の音波に対する吸音特性は、当該多孔質体の厚さが増大するほど向上する。以上より、繊維系断熱層3は、低周波帯域の音波を吸収し得る程度に厚くすることにより、高周波帯域から低周波帯域までの広い周波数帯域の音波(音)を吸収することができる。このような繊維系断熱層3の好ましい厚さとして、例えば、50mm以上100mm以下の厚さが挙げられる。
また、発泡樹脂層12は、断熱特性に加えて吸音特性と衝撃エネルギーの吸収特性とを有する。詳細には、発泡樹脂層12は、未発泡のバルクの樹脂に比べて、衝撃エネルギーの高い吸収特性を有する。一般に、衝撃エネルギーの吸収特性は、エネルギー吸収に関する質量則に基づいて、衝撃エネルギーを吸収する構造体の質量が大きいほど向上する。例えば、遮音材料においては、鉛やコンクリート等、質量の大きい構造体は、質量が小さい構造体に比べて、音波が伝わったときの振動エネルギーを衝撃エネルギーとして吸収し易い。これに対し、上述した発泡樹脂体は、質量則とは関係なく、発泡樹脂体の構造に起因するセル壁の弾性変形や粘弾性特性に起因して、音波の振動エネルギーを衝撃エネルギーとして吸収し得る材料である。このような発泡樹脂体によって構成される発泡樹脂層12は、質量則に基づくエネルギー吸収理論では効果を発揮しにくい低周波帯域の音波を吸収することができる。発泡樹脂層12は、上記のような低周波帯域の音波の吸収特性(吸音特性)に加え、衝撃等によって起こる振動を吸収する振動吸収特性(衝撃エネルギーの吸収特性)を有する。
つぎに、上屋根1及び下屋根2の製造方法について説明する。上屋根1の上屋根金属折板11及び下屋根2の下屋根金属折板21は、各々、金属折板の単位構成部材である折板屋根部材を複数接合することによって構成される。図2は、本発明の実施形態1における折板屋根部材の一構成例を示す斜視模式図である。図3は、本発明の実施形態1における折板屋根部材同士の接合部の一構成例を示す断面模式図である。
折板屋根部材15は、上屋根金属折板11及び下屋根金属折板21の各々を構成するために用いられる単位構成部材である。例えば、折板屋根部材15が上屋根金属折板11の単位構成部材である場合、図2に示すように、折板屋根部材15は、上屋根金属折板11の横方向D2に連続する複数の山部及び谷部のうち、1周期分の山部及び谷部の構造を有する。具体的には、折板屋根部材15は、横方向D2の両端側に部分頂面部5aa、5abを有し、これらの部分頂面部5aa、5abの間に底面部5b及び2つの斜面部5cを有する。一対の部分頂面部5aa、5abは、複数の折板屋根部材15同士を接合した際、横方向D2に並んで接続されることにより、上屋根金属折板11の山部の頂面部5a(図1参照)を構成する。底面部5bは、上屋根金属折板11の谷部の底面部5b(図1参照)である。2つの斜面部5cのうち、一方は、部分頂面部5aaと底面部5bとに連続する斜面部であり、他方は、部分頂面部5abと底面部5bとに連続する斜面部である。これら2つの斜面部5cは、上屋根金属折板11の山部及び谷部に共通する斜面部5c(図1参照)である。
また、折板屋根部材15は、一対の部分頂面部5aa、5abのうち、一方の部分頂面部5aaにL字状の被係合部16aを有し、他方の部分頂面部5abにコ字状の係合部16bを有する。被係合部16aは、複数の折板屋根部材15同士を接合する際、隣の折板屋根部材15の係合部16bによって係合される部分である。また、折板屋根部材15の下面には、図2の破線によって示されるように、一方の部分頂面部5aaから斜面部5c及び底面部5bを経て他方の部分頂面部5abに至る全域に、発泡樹脂層12が設けられている。発泡樹脂層12の一部は、上屋根金属折板11及び下屋根金属折板21のうち発泡樹脂層12が設けられた金属折板の接合部(本実施形態1では上屋根金属折板11の接合部6)の継ぎ目を塞ぐシール部として機能する。本実施形態1において、接合部6は、複数の折板屋根部材15同士の被係合部16aと係合部16bとの係合によって形成される。なお、図2には特に図示しないが、この発泡樹脂層12の下面には、図1に示した保護層14が設けられている。
上述した折板屋根部材15は、例えば、以下に示す貼着工程及び折板加工工程によって形成される。貼着工程では、折板屋根部材15の素材となる鋼板の一面に、予め金属含有膜を設けた発泡樹脂体が接着剤等によって貼着される。この際、当該鋼板の一面には、発泡樹脂体の上下両面のうち金属含有膜とは反対側の面が貼着される。その後、折板加工工程では、上記の鋼板が、発泡樹脂体及び金属含有膜とともにフォーミングロール等の設備によって折板加工される。これにより、図2に示すような折板屋根部材15が形成されるとともに、この折板屋根部材15の下面側に、折板屋根部材15の形状に追従した状態の発泡樹脂層12及び保護層14が形成される。
ここで、上屋根金属折板11を構成する複数の折板屋根部材15のうち、互いに接合する2つの折板屋根部材15−1、15−2を例示して、折板屋根部材15同士の接合方法を説明する。
この接合方法では、図3に示すように、2つの折板屋根部材15−1、15−2が横方向D2に並べられ、折板屋根部材15−2の被係合部16a(以下、被係合部16a−2とする)が、折板屋根部材15−1の係合部16b(以下、係合部16b−1とする)と係合される。この状態において、折板屋根部材15−1側の発泡樹脂層12と折板屋根部材15−2側の発泡樹脂層12とが、横方向D2に接触して一体化する。また、図3に示すように、折板屋根部材15−1側の発泡樹脂層12の一部と、折板屋根部材15−2側の発泡樹脂層12の一部とが、各々、シール層12a、12bとして被係合部16a−2と係合部16b−1との間に介在する。続いて、図3中の矢印によって示されるように、係合部16b−1の端部が、被係合部16a−2の端部側に折り曲げられるようにカシメられる。これにより、係合部16b−1及び被係合部16a−2は、シール層12a、12bを圧縮するとともに、2つの折板屋根部材15−1、15−2を接合する接合部6となる。また、折板屋根部材15−2の部分頂面部5aa及び折板屋根部材15−1の部分頂面部5abは、横方向D2に並ぶことにより、上屋根金属折板11における1つの山部の頂面部5aとなる。
上述したような折板屋根部材15同士の接合方法を必要回数繰り返すことにより、図1に示した上屋根1が製造される。このように製造された上屋根1において、上屋根金属折板11の接合部6の内部には、図3に示すように、発泡樹脂層12の一部であるシール層12a、12bが、被係合部16aと係合部16bとの間に圧縮された状態で介在している。これにより、接合部6の継ぎ目がシール層12a、12bによって塞がれる。この結果、上屋根金属折板11は、接合部6を含む全域に亘って気密状態(少なくとも水密状態)となり、雨水又は湿気等の水分が外部環境から2重屋根10の内部に侵入することを防止する。
なお、下屋根2の製造方法は、発泡樹脂層12及び保護層14が折板屋根部材15に設けられていないこと以外、上述した上屋根1の製造方法と同様である。
つぎに、上屋根1と下屋根2とによる2重屋根10の形成方法の一例について説明する。2重屋根10の形成方法では、先ず、下屋根2の直下に設けられた不図示の下屋根構造体であるタイトフレーム上に下屋根2を固定して敷設する。つぎに、下屋根2の上(本実施形態1では下屋根金属折板21の上)に作業者が載って、下屋根2の上面4bに繊維系断熱材を敷設して繊維系断熱層3を形成する。続いて、この繊維系断熱層3の上に、上屋根金属折板11と発泡樹脂層12と保護層14との積層体からなる上屋根1を配置する。この際、上屋根1の下面4aと下屋根2の上面4bとの間に繊維系断熱層3を挟み込むとともに、互いの山部同士及び谷部同士が対向するように、不図示の金属製の固定金具により下屋根2に対して上屋根1を固定する。このようにして、上屋根1と下屋根2との間に繊維系断熱層3が充填密着された状態の2重屋根10が形成される。
以上、説明したように、本実施形態1に係る2重屋根10の断熱構造では、上屋根金属折板11の下面に発泡樹脂層12を設け且つ発泡樹脂層12の下面に保護層14を設けて上屋根1を構成し、下屋根金属折板21からなる下屋根2の上面4bと上屋根1の下面4aとの間に繊維系断熱材を充填している。上記の構成により、上屋根金属折板11の下面と下屋根金属折板21の上面との間に、上側から下側に向かって発泡樹脂層12と保護層14と繊維系断熱層3とを含む複合型の断熱層を形成することができる。このため、発泡樹脂層12による熱抵抗と繊維系断熱層3による熱抵抗とを重畳できるとともに、上屋根1の下面4aと下屋根2の上面4bとの間の空間を繊維系断熱層3によって埋めることができる。これにより、2重屋根10全体の熱抵抗を、断熱層が発泡樹脂体のみ又は繊維系断熱材のみによって形成された場合に比べて高めるとともに、2重屋根10内部での空気の対流による熱移動を抑制することができる。この結果、2重屋根10の断熱性能に及ぼす対流の影響を低減できるとともに、発泡樹脂層12が断熱層を形成することで、繊維系断熱層3の温度上昇を抑制して繊維系断熱層3からの輻射熱を低減できることから、2重屋根10の断熱性能を向上させることができる。また、上屋根金属折板11に発泡樹脂層12が設けられている2重屋根10の断熱構造は、冬場の熱放散を防止する断熱性能に加えて、特に、夏場等、室外側の温度が室外側の温度に比べて著しく高い環境下において、上屋根1側から下屋根2側(室内側)に向かう熱に対する高い断熱性能を発揮することができ、この結果、冷暖房費用の低減及び室内環境の改善に寄与することができる。
また、本実施形態1に係る2重屋根10の断熱構造では、上屋根1側の発泡樹脂層12の下面に保護層14を設け、この保護層14と下屋根2の上面4bの繊維系断熱層3とを接触させている。このため、保護層14によって発泡樹脂層12の熱反射性を改善するとともに、繊維系断熱層3に金属層を別途設けることなく、発泡樹脂層12の保護層14によって繊維系断熱層3の熱反射性を改善することができる。これにより、繊維系断熱層3からの輻射熱を保護層14で反射して、発泡樹脂層12への当該輻射熱を低減することができ、この結果、2重屋根10の断熱性能(特に下屋根2側から上屋根1側への断熱性能)を向上させることができる。また、保護層14により、発泡樹脂層12の下面(表面)を保護しながら、発泡樹脂層12の劣化防止、耐火性の改善、成形性の改善、帯電による異物付着の防止、結露の防止、紫外線による劣化の防止等の効果を得ることができる。さらには、保護層14により、発泡樹脂層12のみならず、繊維系断熱層3の表面の保護、結露の防止、帯電による異物付着の防止、紫外線による劣化の防止等の効果を得ることができ、繊維系断熱層3の長寿命化及び性能向上を図ることができる。
また、本実施形態1に係る2重屋根10の断熱構造では、上屋根金属折板11を構成する複数の折板屋根部材15同士の接合するための被係合部16aと係合部16bとの間に発泡樹脂層12の一部をシール層12a、12bとして介在させ、被係合部16aと係合部16bとの係合によって、被係合部16aと係合部16bとの間にシール層12a、12bを圧縮しながら、折板屋根部材15同士を接合している。このため、折板屋根部材15同士の接合部6の継ぎ目をシール層12a、12bによって塞ぐことができ、これにより、上屋根金属折板11の接合部6を含む全域を気密状態にすることができる。この結果、2重屋根10の内部の防水性能及び結露防止性能を高めることができ、外部環境から上屋根1を通って2重屋根10の内部(延いては室内)に、雨水又は湿気等の水分が侵入すること(例えば雨漏り等)を防止することができる。このような防水性能及び結露防止性を高める効果は、上下の金属折板の間に繊維系断熱材のみを配置する従来の2重屋根の断熱構造においては、決して得ることができないものである。
また、本実施形態1に係る2重屋根10の断熱構造では、吸音特性を有する繊維系断熱層3と、吸音特性及び衝撃エネルギーの吸収特性を有する発泡樹脂層12とを上下方向D1に配置(積層)しているので、繊維系断熱層3の吸音特性と発泡樹脂層12の吸音特性とを重畳することができる。これにより、繊維系断熱層3の吸音特性が有効な音波の波長帯域と、発泡樹脂層12の吸音特性が有効な音波の波長帯域とを重畳した広い波長帯域の音波(高音及び低音)を吸収することができる。この結果、2重屋根10の吸音性能を向上させることができ、外部環境又は室内から2重屋根10に伝わる音を低減することができる。これに加え、上屋根1と下屋根2との間に伝わる音を保護層14によって反射することができ、この結果、室内側から室外側又は室外側から室内側へ伝わる音を低減する(減衰させる)ことができる。さらには、発泡樹脂層12による衝撃エネルギーの吸収特性により、2重屋根10の耐衝撃性能を高めることができ、外部環境又は室内からの衝撃によって2重屋根10に伝わる振動を低減することができる。
また、本実施形態1に係る2重屋根10の断熱構造では、上屋根金属折板11と発泡樹脂層12と保護層14との積層構造を有するように上屋根1を構成し、この保護層14を金属箔(アルミニウム箔等)又は金属蒸着樹脂フィルムによって構成している。このため、放射率が小さいアルミニウム等の金属を含有する保護層14によって、上屋根1に対する輻射熱を反射することができ、これにより、上屋根金属折板11自体の温度上昇を抑制することができる。この結果、上屋根1の耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。さらに、上屋根金属折板11を構成する折板屋根部材15同士の接合部6のシール性を高めて、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態2]
つぎに、本発明の実施形態2に係る2重屋根の断熱構造について説明する。図4は、本発明の実施形態2に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図4に示すように、本実施形態2に係る2重屋根10Aは、上述した実施形態1に係る2重屋根10の上屋根1に代えて上屋根1Aを備え、下屋根2に代えて下屋根2Aを備える。この2重屋根10Aの断熱構造は、上屋根1Aと下屋根2Aと繊維系断熱層3とによって構成される。その他の構成は実施形態1と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
上屋根1Aは、少なくとも上屋根金属折板を有する屋根の一例である。本実施形態2では、図4に示すように、上屋根1Aは、上屋根金属折板11によって構成される。また、上屋根金属折板11の接合部6は、発泡樹脂層12の一部を継ぎ目に介在させていないこと以外、上述した実施形態1と同様である。
下屋根2Aは、上屋根1Aの下方に位置し、少なくとも下屋根金属折板を有する屋根の一例である。本実施形態2では、図4に示すように、下屋根2Aは、下屋根金属折板21と発泡樹脂層22と保護層24とを有する。本実施形態2において、下屋根金属折板21の上面には、発泡樹脂層22が設けられている。この発泡樹脂層22の上面には、保護層24が設けられている。すなわち、下屋根2Aは、上述した実施形態1における上屋根1の積層構造とは異なり、上下方向D1の下側から上側に向かって下屋根金属折板21と発泡樹脂層22と保護層24とが順に並ぶ積層構造を有する。また、この下屋根金属折板21の接合部7の継ぎ目には、下屋根金属折板21の上面に設けられた発泡樹脂層22の一部がシール層として介在している。なお、下屋根金属折板21を構成する折板屋根部材自体の構成は、山谷の構造及び金属素材等、上述した実施形態1における折板屋根部材15(図2参照)と同じである。
発泡樹脂層22は、発泡樹脂体からなる断熱層である。上述した実施形態1では、上屋根金属折板11の下面に発泡樹脂層12(図1参照)が設けられていたが、本実施形態2では、発泡樹脂層22の配置が実施形態1とは異なる。詳細には、本実施形態2において、発泡樹脂層22は、下屋根用の発泡樹脂層の一例であり、図4に示すように、下屋根金属折板21の上面に設けられている。発泡樹脂層22は、繊維系断熱層3よりも上下方向D1の下側の断熱層を形成し、この点で、上述した実施形態1における発泡樹脂層12(繊維系断熱層3よりも上下方向D1の上側の断熱層)とは異なる。なお、発泡樹脂層22を構成する発泡樹脂体は、独立気泡の割合、発泡倍率および厚さ等、上述した実施形態1における上屋根1の発泡樹脂層12と同様である。
保護層24は、発泡樹脂層22を保護する層であり、発泡樹脂層22における繊維系断熱層3側の面に設けられている。上述した実施形態1では、発泡樹脂層12の下面に保護層14(図1参照)が設けられ、下方の繊維系断熱層3と保護層14とが接していたが、本実施形態2では、発泡樹脂層22及び繊維系断熱層3に対する保護層24の相対的な配置が実施形態1とは異なる。詳細には、本実施形態2において、図4に示すように、保護層24は、発泡樹脂層22の上面に直接的に設けられており、且つ、繊維系断熱層3の下面と接触した状態にある。保護層24自体の構成は、上述した実施形態1における上屋根1の保護層14と同様であり、例えば、アルミニウム等の金属を含有する層(好ましくはアルミニウム箔又はアルミニウム蒸着樹脂フィルム)である。
本実施形態2における上屋根1A及び下屋根2Aの配置は、上述した実施形態1における上屋根1及び下屋根2とは異なり、上下方向D1の下側から上側に向かって下屋根金属折板21と発泡樹脂層22と保護層24と繊維系樹脂層3と上屋根金属折板11とが順に並ぶ積層構造をなすものである。詳細には、本実施形態2において、上屋根1Aの下面4aが上屋根金属折板11の下面であり、且つ、下屋根2Aの上面4bが保護層24の上面である。本実施形態2における繊維系断熱層3は、上述した実施形態1と同様の繊維系断熱材によって構成され、図4に示すように、上屋根金属折板11の下面と対向(詳細には接触)するように、保護層24の上面に設けられている。一方、上屋根1Aの製造方法は、上述した実施形態1における下屋根2の製造方法と同様である。下屋根2Aの製造方法は、下屋根金属折板21の上面側に発泡樹脂層22及び保護層24が設けられている点で、上述した実施形態1における上屋根1の製造方法とは異なる。下屋根2Aの製造方法は、上記の点以外、例えば、折板屋根部材同士の接合、当該接合の継ぎ目へのシール層の介在及び山谷の構造形成等の点で、上述した実施形態1における上屋根1の製造方法と同様である。また、上屋根1Aと下屋根2Aとによる2重屋根10Aの形成方法は、下屋根2A側の保護層24の上面に繊維系断熱材を敷設して繊維系断熱層3を形成する点及び上屋根1Aとして上屋根金属折板11を配置する点で、上述した実施形態1における2重屋根10とは異なる。2重屋根10Aの形成方法は、上記の点以外、例えば、上屋根1Aと下屋根2Aとの固定構造、山部同士且つ谷部同士の対向配置、及び上屋根1Aと下屋根2Aとの間に繊維系断熱層3が充填密着される等の点で、上述した実施形態1における2重屋根10と同じである。
以上、説明したように、本実施形態2に係る2重屋根10Aの断熱構造では、下屋根金属折板21の上面に発泡樹脂層22を設け且つ発泡樹脂層22の上面に保護層24を設けて下屋根2Aを構成し、上屋根金属折板11からなる上屋根1の下面4aと下屋根2Aの上面4bとの間に繊維系断熱材を充填して繊維系断熱層3を形成するようにし、その他を実施形態1と同様に構成している。このため、上述した実施形態1と同様の作用効果を享受するとともに、下屋根金属折板21に発泡樹脂層22を設けていることから、夏場における熱侵入を防止する断熱性能に加えて、特に、冬場又は寒冷地等、室外側の温度が室外側の温度に比べて低い環境下において、下屋根2A側(室内側)から上屋根1A側に向かう熱に対する高い断熱性能を発揮することができ、この結果、冷暖房費用の低減及び室内環境の改善に寄与することができる。
また、本実施形態2に係る2重屋根10Aの断熱構造では、下屋根2A側の保護層24と繊維系断熱層3とを接触させているので、上屋根1A側及び繊維系断熱層3からの輻射熱を保護層24によって反射して、下屋根2A側の発泡樹脂層22への当該輻射熱を低減することができる。この結果、2重屋根10Aの断熱性能(特に上屋根1A側から下屋根2A側への断熱性能)を向上させることができる。
また、本実施形態2に係る2重屋根10Aの断熱構造では、下屋根金属折板21を構成する複数の折板屋根部材同士の接合するための被係合部と係合部との間に発泡樹脂層22の一部をシール層として介在させ、これらの被係合部と係合部との係合によって、これらの被係合部と係合部との間にシール層を圧縮しながら、折板屋根部材同士を接合している。このため、折板屋根部材同士の接合部7の継ぎ目をシール層によって塞ぐことができ、これにより、下屋根金属折板21の接合部7を含む下屋根全域を気密状態にすることができる。この結果、2重屋根10Aの内部の防水性能及び結露防止性能を高めることができ、湿度の高い室内から下屋根2Aを通って2重屋根10Aの内部に、湿気等の水分が侵入することを防止することができる。なお、本実施形態2のように、下屋根金属折板の上面に発泡樹脂層を設ける場合には、上述した実施形態1の場合とは異なり、L字型の被係合部の内面と、コの字型の係合部の外面とに発泡樹脂層が配置される。このため、折板屋根部材同士の接合(被係合部と係合部との接合)時には、コの字型の係合部の発泡樹脂層は、折板屋根部材同士の接合部の外周に配置され、L字型の被係合部の内面に配置された発泡樹脂層のみが、当該接合部の隙間を塞ぐシール層を形成することになる。したがって、上屋根金属折板11の下面に発泡樹脂層12を設ける場合に限らず、下屋根金属折板21の上面に発泡樹脂層22を設けても、この発泡樹脂層22はシール層としての役割を果たすことができる。
また、本実施形態2に係る2重屋根10Aの断熱構造では、下屋根金属折板21と発泡樹脂層22と保護層24との積層構造を有するように下屋根2Aを構成し、この保護層24を金属箔(アルミニウム箔等)又は金属蒸着樹脂フィルムによって構成している。このため、放射率が小さいアルミニウム等の金属を含有する保護層24によって、下屋根2Aに対する輻射熱を反射することができ、これにより、下屋根金属折板21自体の温度上昇を抑制することができる。この結果、下屋根2Aの耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、下屋根2Aにおける下屋根金属折板21の接合部のシール性を高めて、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態3]
つぎに、本発明の実施形態3に係る2重屋根の断熱構造について説明する。図5は、本発明の実施形態3に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図5に示すように、本実施形態3に係る2重屋根10Bは、上述した実施形態1に係る2重屋根10の下屋根2に代えて下屋根2Aを備える。なお、下屋根2Aは、上述した実施形態2と同様のもの(図4参照)である。この2重屋根10Bの断熱構造は、上屋根1と下屋根2Aと繊維系断熱層3とによって構成される。その他の構成は実施形態1と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態3における上屋根1及び下屋根2Aの配置は、実施形態1の下屋根2が実施形態2の下屋根2Aに置き換えられたこと以外、上述した実施形態1と同様である。すなわち、本実施形態3では、図4に示すように、上屋根1の下面4aは、上屋根金属折板11側の保護層14の下面である。下屋根2Aの上面4bは、下屋根金属折板21側の保護層24の上面である。
また、発泡樹脂層12、22は、上屋根金属折板11の下面と下屋根金属折板21の上面とに各々設けられている。保護層14、24は、上屋根金属折板11の発泡樹脂層12における繊維系断熱層3側の面と、下屋根金属折板21の発泡樹脂層22における繊維系断熱層3側の面とに各々設けられている。詳細には、保護層14は発泡樹脂層12の下面に直接的に設けられ、保護層24は発泡樹脂層22の上面に直接的に設けられ、2つの保護層14、24が繊維系断熱層3を挟み込むように配置されている。繊維系断熱層3は、上屋根金属折板11側の保護層14の下面と対向(詳細には接触)するように、下屋根金属折板21側の保護層24の上面に設けられている。
また、上屋根1と下屋根2Aとによる2重屋根10Bの形成方法は、下屋根2A側の保護層24の上面に繊維系断熱材を敷設して繊維系断熱層3を形成すること以外、上述した実施形態1における2重屋根10と同じである。
以上、説明したように、本実施形態3に係る2重屋根10Bの断熱構造では、実施形態1の上屋根1と実施形態2の下屋根2Aとを上下方向D1に配置し、上屋根1の下面4a(保護層14の下面)と下屋根2Aの上面4b(保護層24の上面)との間に繊維系断熱材を充填して繊維系断熱層3を形成するようにし、その他を実施形態1と同様に構成している。このため、上述した実施形態1と同様の作用効果を享受するとともに、上述した実施形態2と同様の作用効果を享受し、季節等、外部環境によらず、上屋根1側(室外側)から下屋根2A側(室内側)に向かう熱に対する高い断熱性能と、下屋根2A側から上屋根1側に向かう熱に対する高い断熱性能とを発揮することができ、この結果、冷暖房費用の低減及び室内環境の改善に寄与することができる。
また、本実施形態3に係る2重屋根10Bの断熱構造では、繊維系断熱層3の上下両面に保護層14、24を各々接触させているので、繊維系断熱層3の上下両面について、繊維系断熱層3の表面の保護、結露の防止、帯電による異物付着の防止、紫外線による劣化の防止等の効果を得ることができ、繊維系断熱層3の更なる長寿命化及び性能向上を図ることができる。本実施形態3では、放射率が小さいアルミニウム等の金属を含有する保護層14及び保護層24の各々によって、上屋根1及び下屋根2Aに対する輻射熱を反射することができ、これにより、上屋根金属折板11及び下屋根金属折板21自体の温度上昇を抑制することができる。この結果、上屋根1及び下屋根2Aの耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、本実施形態3では、上屋根1における折板屋根部材同士の接合部と、下屋根2Aにおける折板屋根部材同士の接合部との各々においても、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態4]
つぎに、本発明の実施形態4に係る2重屋根の断熱構造について説明する。図6は、本発明の実施形態4に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図6に示すように、本実施形態4に係る2重屋根10Cは、上述した実施形態2に係る2重屋根10Aの下屋根2Aに代えて下屋根2Bを備える。この2重屋根10Cの断熱構造は、上屋根1Aと下屋根2Bと繊維系断熱層3とによって構成される。その他の構成は実施形態2と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
下屋根2Bは、上屋根1Aの下方に位置し、少なくとも下屋根金属折板を有する屋根の一例である。本実施形態4において、下屋根2Bは、上述した実施形態2における下屋根2Aの積層位置を上下反転させた積層構造を有する。すなわち、図6に示すように、下屋根2Bは、上下方向D1の上側から下側に向かう順に、下屋根金属折板21と発泡樹脂層22と保護層24とを有する。発泡樹脂層22は、下屋根金属折板21の下面に設けられている。保護層24は、この発泡樹脂層22における繊維系断熱層3とは反対側の面(本実施形態4では下面)に設けられている。本実施形態4において、下屋根金属折板21は、その下面に発泡樹脂層22が設けられていること以外、上述した実施形態2と同じである。すなわち、この下屋根金属折板21の接合部7の継ぎ目には、実施形態1における上屋根金属折板11の接合部6と同様に、下屋根金属折板21の下面に設けられた発泡樹脂層22の一部がシール層として介在している。
本実施形態4における上屋根1A及び下屋根2Bの配置は、下屋根金属折板21の下面側に発泡樹脂層22及び保護層24が設けられていること以外、上述した実施形態2と同様である。すなわち、本実施形態4では、図6に示すように、上屋根1Aの下面4aは、上屋根金属折板11の下面である。下屋根2Bの上面4bは、下屋根金属折板21の上面である。繊維系断熱層3は、上屋根金属折板11の下面と対向(詳細には接触)するように、下屋根金属折板21の上面に設けられている。
また、下屋根2Bの製造方法は、同じ積層構造を有する実施形態1の上屋根1の製造方法と同様である。上屋根1Aと下屋根2Bとによる2重屋根10Cの形成方法は、下屋根金属折板21の上面に繊維系断熱材を敷設して繊維系断熱層3を形成すること以外、上述した実施形態2における2重屋根10Aと同じである。
以上、説明したように、本実施形態4に係る2重屋根10Cの断熱構造では、下屋根金属折板21の下面に発泡樹脂層22を設け且つ発泡樹脂層22の下面に保護層24を設けて下屋根2Bを構成し、上屋根金属折板11の下面と下屋根金属折板21の上面との間に繊維系断熱材を充填して繊維系断熱層3を形成するようにし、その他を実施形態2と同様に構成している。このため、上述した実施形態2と同様の作用効果を享受するとともに、室内側の熱源からの輻射熱を保護層24によって反射することができ、これにより、下屋根金属折板21自体の温度上昇を抑制することができる。この結果、下屋根2Bの耐火性能(特に室内で発生した炎等の熱に対する耐火性能)を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。さらに、本実施形態4では、下屋根2Bにおける折板屋根部材同士の接合部において、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。また、下屋根2Bの上面4bに繊維系断熱層3を設け、この繊維系断熱層3の上面に上屋根金属折板11を設けているので、既設された下屋根2Bによって構成される1重屋根を2重屋根10Cに改修する屋根改修工事を容易に行うことができる。
[実施形態5]
つぎに、本発明の実施形態5に係る2重屋根の断熱構造について説明する。図7は、本発明の実施形態5に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図7に示すように、本実施形態5に係る2重屋根10Dは、上述した実施形態3に係る2重屋根10Bの下屋根2Aに代えて下屋根2Bを備える。なお、下屋根2Bは、上述した実施形態4と同様のもの(図6参照)である。この2重屋根10Dの断熱構造は、上屋根1と下屋根2Bと繊維系断熱層3とによって構成される。その他の構成は実施形態3と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態5における上屋根1及び下屋根2Bの配置は、実施形態3の下屋根2Aが実施形態4の下屋根2Bに置き換えられたこと以外、上述した実施形態3と同様である。すなわち、本実施形態5では、図7に示すように、上屋根1の下面4aは、上屋根金属折板11側の保護層14の下面である。下屋根2Bの上面4bは、下屋根金属折板21の上面である。
また、発泡樹脂層12、22は、上屋根金属折板11の下面と下屋根金属折板21の下面とに各々設けられている。保護層14、24は、上屋根金属折板11の発泡樹脂層12における繊維系断熱層3側の面と、下屋根金属折板21の発泡樹脂層22における繊維系断熱層3とは反対側の面とに各々設けられている。詳細には、保護層14は発泡樹脂層12の下面に直接的に設けられ、保護層24は発泡樹脂層22の下面に直接的に設けられている。繊維系断熱層3は、上屋根金属折板11側の保護層14の下面と対向(詳細には接触)し且つ上屋根金属折板11側の保護層14と下屋根金属折板21の上面とで挟み込むように、下屋根金属折板21の上面に設けられている。
また、上屋根1と下屋根2Bとによる2重屋根10Dの形成方法は、下屋根金属折板21の上面に繊維系断熱材を敷設して繊維系断熱層3を形成すること以外、上述した実施形態3における2重屋根10Bと同じである。
以上、説明したように、本実施形態5に係る2重屋根10Dの断熱構造では、実施形態3の上屋根1と実施形態4の下屋根2Bとを上下方向D1に配置し、上屋根1の下面4a(保護層14の下面)と下屋根2Bの上面4b(下屋根金属折板21の上面)との間に繊維系断熱材を充填して繊維系断熱層3を形成するようにし、その他を実施形態3と同様に構成している。このため、上述した実施形態3と同様の作用効果を享受するとともに、上述した実施形態4と同様の作用効果を享受し、さらには、上屋根1及び下屋根2Bの双方とも、上下方向D1の上側から下側に向かって金属折板と発泡樹脂層と保護層とが並ぶ積層構造を有することから、保護層14、24による輻射熱の反射により、金属折板自体の温度上昇を抑制することができる。この結果、上屋根1及び下屋根2B双方の耐火性能(特に室内で発生した炎等の熱に対する耐火性能)を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。さらに、本実施形態5では、上屋根1における折板屋根部材同士の接合部と、下屋根2Bにおける折板屋根部材同士の接合部との各々においても、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態6]
つぎに、本発明の実施形態6に係る2重屋根の断熱構造について説明する。図8は、本発明の実施形態6に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図8に示すように、本実施形態6に係る2重屋根10Eは、上屋根1の下面4aと下屋根2の上面4bとの間に、繊維系断熱層3と空気層8とを備える。この2重屋根10Eの断熱構造は、上屋根1と下屋根2と繊維系断熱層3と空気層8とによって構成される。その他の構成は実施形態1と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態6において、上屋根1及び下屋根2は、図8に示すように、下屋根2の上面4bに設けられた繊維系断熱層3の上面と上屋根1の下面4aとが互いに対向して上下方向D1に離間するように配置されている。
詳細には、上屋根1及び下屋根2は、互いの山部同士及び谷部同士が対向するように、上下方向D1に所定の距離離間して配置されている。望ましくは、上屋根1及び下屋根2は、互いに平行に配置されている。上屋根1の下面4aと下屋根2の上面4bとの上下方向D1の離間距離は、2重屋根10Eの設計に応じて所望の距離とすることが可能である。また、上屋根1と下屋根2とは、不図示の固定金具によって固定されている。これらの上屋根1及び下屋根2は、図1に示すように、上屋根1の下面4aと下屋根2の上面4bとの間であって下屋根金属折板21の上面に繊維系断熱層3を有し、この繊維系断熱層3の上面と上屋根1の下面4aとの間に空気層8を形成している。空気層8は、上屋根1及び下屋根2の山部(例えば頂面部5a)と谷部(例えば底面部5b)と斜面部5cとを含む全域に亘り、繊維系断熱層3の上面と上屋根1の下面4aとの間で連続した空間となっている。本実施形態6において、上屋根1の下面4aは、発泡樹脂層12に設けられた保護層14の下面である。下屋根2の上面4bは、下屋根金属折板21の上面である。
このような空気層8の間隔には、上屋根1及び下屋根2における山部の頂面部5aでの間隔L1と、谷部の底面部5bでの間隔L2と、これらの斜面部5cでの間隔L3とが含まれる。本実施形態6において、これらの間隔L1、L2、L3は、繊維系断熱層3の上面と保護層14の下面との間における面直方向の離間距離である。
本発明者らは、2重屋根10Eの断熱性能に及ぼす空気層8での対流の影響について鋭意検討した結果、空気層8の全域のうち斜面部5cにおける空気の対流が断熱性能の低下に最も影響するという知見を得た。空気層8における空気の対流は空気層8の間隔が小さいほど起こり難いことから、2重屋根10Eの断熱性能を向上させるためには、空気層8の間隔L1、L2、L3を小さくすることが有効である。特に、空気層8の間隔L1、L2、L3のうち、斜面部5cでの間隔L3を所定値以下に調整することが有効である。
本実施形態6において、上屋根1の下面4aと下屋根2の上面4bとの離間距離は、50mm以上100mm以下であることが好ましい。また、繊維系断熱層3の断熱特性及び吸音特性の観点から、下屋根2の上面4bに設ける繊維系断熱層3の厚さは、50mm以上100mm以下であることが好ましい。発泡樹脂層12の断熱特性、吸音特性及び衝撃エネルギーの吸収特性の観点から、発泡樹脂層12の厚さは、2mm以上12mm以下であることが好ましい。
例えば、上屋根金属折板11の下面と下屋根金属折板21の上面との上下方向D1における離間距離は、100mmとする。下屋根2の上面4bに設けられた繊維系断熱層3の厚さが50mmである場合、上屋根金属折板11の下面と下屋根金属折板21の上面との間の空間は、この繊維系断熱層3によって狭められることとなる。すなわち、頂面部5a及び底面部5bにおいて、繊維系断熱層3の上面と上屋根金属折板11の下面との間の面直方向の離間距離(以下、面間隔と適宜いう)は、当該空間の面間隔(=100mm)から繊維系断熱層3の厚さ(=50mm)を減じた値、すなわち、50mmとなる。また、上屋根金属折板11の下面側に設けられた発泡樹脂層12及び保護層14の合計厚さ(主として発泡樹脂層の厚さ)が8mmである場合、空気層8の頂面部5aにおける間隔L1は、上記の面間隔(=50mm)から当該合計厚さを減じた値、すなわち、42mmとなる。空気層8の底面部5bにおける間隔L2は、上記頂面部5aにおける間隔L1と同様である。
一方、上屋根1及び下屋根2の斜面部5cにおいて、上屋根金属折板11の下面と下屋根金属折板21の上面との間の空間の面間隔は、頂面部5a及び底面部5bにおける面間隔が上述した100mmである場合、折板屋根の場合に斜面部5cは所定の傾きを有するため、約70mmとなる。この場合、斜面部5cにおいて、繊維系断熱層3の上面と上屋根金属折板11の下面との面間隔は、約20mmとなる。また、上屋根金属折板11の下面側に設けられた発泡樹脂層12及び保護層14の合計厚さ(=8mm)を加味すると、空気層8の斜面部5cにおける間隔L3は、約12mmとなる。すなわち、この場合に、頂面部5a及び底面部5bにおける面間隔は、ともに42mmとなり、斜面部5cにおける面間隔を12mmとすることができる。
ここで、空気層8での空気の対流は、空気の密度差による流れ、所謂、密度流である。このため、2重屋根10Eの断熱性能に及ぼす対流の影響は、空気層8の全域のうち斜面部5cにおいて最も大きいと考えられる。したがって、2重屋根10Eの断熱性能に及ぼす対流の影響を抑制する上では、空気層8の斜面部5cにおける間隔L3を調整することが有効である。すなわち、当該対流の影響を抑制するためには、熱輸送に供する空気の体積を小さくする必要がある。また、空気層8内で流動する空気を保護層14又は繊維系断熱層3と接触させて、この空気の接触界面における摩擦抵抗を増大させることは、当該対流の影響を抑制する上で有効である。
以上より、空気層8の斜面部5cにおける間隔L3は、当該対流の影響を抑制するという観点から、より小さい方が良い。例えば、空気層8の斜面部5cにおける間隔L3は、空気層8の全域のうち最も間隔が狭い部分(すなわち最狭部)の間隔であり、上記空気の摩擦抵抗を加味して20mm以下であることが好ましく、16mm以下であることがより好ましい。また、空気層8の頂面部5a及び底面部5bにおける間隔L1、L2は、50mm以下であることが好ましい。
なお、本実施形態6における2重屋根10Eの形成方法は、上屋根1の下面4a(保護層14の下面)と繊維系断熱層3の上面との間に空気層8が形成されるように、上屋根1と下屋根2とを上下方向D1に離間して固定すること以外、上述した実施形態1における2重屋根10の形成方法と同様である。
以上、説明したように、本実施形態6に係る2重屋根10Eの断熱構造では、上屋根1の下面4aと下屋根2の上面4bとの間に繊維系断熱層3と空気層8とを形成して、空気層8が、上屋根1の保護層14の下面と繊維系断熱層3の上面との間に挟まれた空間をなすようにし、その他を実施形態1と同様に構成している。このため、上述した実施形態1と同様の作用効果を享受するとともに、繊維系断熱層3及び発泡樹脂層12の少なくとも一方の厚さを調整することにより、空気層8の間隔L1、L2、L3(特に斜面部5cにおける間隔L3)を、空気の対流を抑制するために適した面間隔に容易に調整でき、さらには、空気層8に面する保護層14又は繊維系断熱層3によって空気層8内の空気の摩擦抵抗を増大させることができる。これにより、空気層8での空気の対流を効率よく抑制できることから、2重屋根10Eの断熱性能に及ぼす空気層8での対流の影響を低減することができる。この結果、空気層8での対流の影響によって2重屋根10Eの断熱性能が低下する事態を回避するとともに、上側から下側に向かって発泡樹脂層12と保護層14と空気層8と繊維系断熱層3とを含む複合型の断熱層を形成して、2重屋根10Eの断熱性能を向上させることができる。
また、本実施形態6に係る2重屋根10Eの断熱構造では、上屋根1の発泡樹脂層12の下面に設けた保護層14と、下屋根2の上面4bに設けた繊維系断熱層3とを、空気層8を介して対向させている。このため、繊維系断熱層3から空気層8を介して伝わる輻射熱を保護層14で反射して、発泡樹脂層12への当該輻射熱を低減することができ、この結果、2重屋根10Eの断熱性能(特に下屋根2側から上屋根1側への断熱性能)を向上させることができる。この結果、上屋根1の耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、上屋根1における折板屋根部材同士の接合部のシール性を高めて、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態7]
つぎに、本発明の実施形態7に係る2重屋根の断熱構造について説明する。図9は、本発明の実施形態7に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図9に示すように、本実施形態7に係る2重屋根10Fは、上述した実施形態6に係る2重屋根10Eの上屋根1に代えて上屋根1Aを備え、下屋根2に代えて下屋根2Aを備える。上屋根1A及び下屋根2Aは、上述した実施形態2と同様のもの(図4参照)である。この2重屋根10Fの断熱構造は、上屋根1Aと下屋根2Aと繊維系断熱層3と空気層8とによって構成される。その他の構成は実施形態6と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態7では、図9に示すように、繊維系断熱層3は、下屋根2Aの上面4bに設けられている。下屋根2Aの上面4bは、上述した実施形態2と同様に保護層24の上面である。空気層8は、この繊維系断熱層3の上面と上屋根1Aの下面4aとの間に形成されている。上屋根1Aの下面4aは、上述した実施形態2と同様に上屋根金属折板11の下面である。本実施形態7における2重屋根10Fの形成方法は、上屋根金属折板11の下面と繊維系断熱層3の上面との間に空気層8をなす空間を開けること以外、上述した実施形態2における2重屋根10Aと同様である。
以上、説明したように、本実施形態7に係る2重屋根10Fの断熱構造では、下屋根2Aの上面4b(保護層24の上面)に設けた繊維系断熱層3の上面と、上屋根1Aを構成する上屋根金属折板11の下面との間に、実施形態6と同様の間隔L1、L2、L3を有する空気層8を形成するようにし、その他を実施形態2と同様に構成している。このため、上述した実施形態2と同様の作用効果を享受するとともに、上述した実施形態6と同様に、空気層8での対流の影響によって2重屋根10Fの断熱性能が低下する事態を回避することができ、この結果、上側から下側に向かって空気層8と繊維系断熱層3と保護層24と発泡樹脂層22とを含む複合型の断熱層を形成して、2重屋根10Fの断熱性能を向上させることができる。
また、本実施形態7に係る2重屋根10Fの断熱構造では、下屋根金属折板21と発泡樹脂層22と保護層24との積層構造を有するように下屋根2Aを構成し、この保護層24を金属箔(アルミニウム箔等)又は金属蒸着樹脂フィルムによって構成している。このため、放射率が小さいアルミニウム等の金属を含有する保護層24によって、下屋根2Aに対する輻射熱を反射することができ、これにより、下屋根金属折板21自体の温度上昇を抑制することができる。この結果、下屋根2Aの耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、下屋根2Aにおける折板屋根部材同士の接合部のシール性を高めて、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態8]
つぎに、本発明の実施形態8に係る2重屋根の断熱構造について説明する。図10は、本発明の実施形態8に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図10に示すように、本実施形態8に係る2重屋根10Gは、上述した実施形態6に係る2重屋根10Eの下屋根2に代えて下屋根2Aを備える。なお、下屋根2Aは、上述した実施形態3と同様のもの(図5参照)である。この2重屋根10Gの断熱構造は、上屋根1と下屋根2Aと繊維系断熱層3と空気層8とによって構成される。その他の構成は実施形態6と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態8における上屋根1及び下屋根2Aの配置は、実施形態6の下屋根2が実施形態3の下屋根2Aに置き換えられたこと以外、上述した実施形態6と同様である。すなわち、本実施形態8では、図10に示すように、上屋根1の下面4aは、上屋根金属折板11側の保護層14の下面である。下屋根2Aの上面4bは、下屋根金属折板21側の保護層24の上面である。
また、図10に示すように、繊維系断熱層3は、下屋根2Aの上面4b(保護層24の上面)に設けられている。空気層8は、この繊維系断熱層3の上面と上屋根1Aの下面4a(保護層14の下面)との間に形成されている。本実施形態8における2重屋根10Gの形成方法は、上屋根1の保護層14の下面と繊維系断熱層3の上面との間に空気層8をなす空間を開けること以外、上述した実施形態3における2重屋根10Bと同じである。
以上、説明したように、本実施形態8に係る2重屋根10Gの断熱構造では、下屋根2Aの上面4b(保護層24の上面)に設けた繊維系断熱層3の上面と、上屋根1の下面4a(保護層14の下面)との間に、実施形態6と同様の間隔L1、L2、L3を有する空気層8を形成するようにし、その他を実施形態3と同様に構成している。このため、上述した実施形態3と同様の作用効果を享受するとともに、上述した実施形態6と同様に、空気層8での対流の影響によって2重屋根10Gの断熱性能が低下する事態を回避することができ、この結果、上側から下側に向かって発泡樹脂層12と保護層14と空気層8と繊維系断熱層3と保護層24と発泡樹脂層22とを含む複合型の断熱層を形成して、2重屋根10Gの断熱性能を向上させることができる。
また、本実施形態8では、放射率が小さいアルミニウム等の金属を含有する2つの保護層14、24の各々によって、上屋根1及び下屋根2Aに対する輻射熱を反射することができ、これにより、上屋根金属折板11及び下屋根金属折板21自体の温度上昇を抑制することができる。この結果、上屋根1及び下屋根2Aの耐火性能を、屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、本実施形態8では、上屋根1における折板屋根部材同士の接合部と、下屋根2Aにおける折板屋根部材同士の接合部との各々においても、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。
[実施形態9]
つぎに、本発明の実施形態9に係る2重屋根の断熱構造について説明する。図11は、本発明の実施形態9に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図11に示すように、本実施形態9に係る2重屋根10Hは、上述した実施形態7に係る2重屋根10Fの下屋根2Aに代えて下屋根2Bを備える。下屋根2Bは、上述した実施形態4と同様のもの(図6参照)である。この2重屋根10Hの断熱構造は、上屋根1Aと下屋根2Bと繊維系断熱層3と空気層8とによって構成される。その他の構成は実施形態7と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態9における上屋根1A及び下屋根2Bの配置は、下屋根金属折板21の下面側に発泡樹脂層22及び保護層24が設けられていること以外、上述した実施形態7と同様である。すなわち、本実施形態9では、図11に示すように、上屋根1Aの下面4aは、上屋根金属折板11の下面である。下屋根2Bの上面4bは、下屋根金属折板21の上面である。繊維系断熱層3は、上屋根金属折板11の下面と対向して離間するように、下屋根金属折板21の上面に設けられている。空気層8は、この繊維系断熱層3の上面と上屋根1Aの下面4aとの間に形成されている。
また、本実施形態9における2重屋根10Hの形成方法は、下屋根金属折板21の上面に繊維系断熱材を敷設して繊維系断熱層3を形成すること以外、上述した実施形態7における2重屋根10Fと同じである。
以上、説明したように、本実施形態9に係る2重屋根10Hの断熱構造では、実施形態4と同様の下屋根2Bの上面4bに繊維系断熱層3を形成し、この繊維系断熱層3の上面と上屋根金属折板11の下面との間に、実施形態7と同様の間隔L1、L2、L3を有する空気層8を形成するようにし、その他を実施形態7と同様に構成している。このため、上述した実施形態7と同様の作用効果を享受するとともに、上述した実施形態4と同様に、下屋根2Bの耐火性能(特に室内で発生した炎等の熱に対する耐火性能)を屋根耐火30分認定試験に合格し得るほどに向上させることができる。さらに、本実施形態9では、下屋根2Bにおける折板屋根部材同士の接合部において、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。また、下屋根2Bの上面4bに繊維系断熱層3を設け、この繊維系断熱層3の上面に上屋根1を設けているので、既設された下屋根2Bによって構成される1重屋根を2重屋根10Hに改修する屋根改修工事を容易に行うことができる。
[実施形態10]
つぎに、本発明の実施形態10に係る2重屋根の断熱構造について説明する。図12は、本発明の実施形態10に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図12に示すように、本実施形態10に係る2重屋根10Iは、上述した実施形態8に係る2重屋根10Gの下屋根2Aに代えて下屋根2Bを備える。なお、下屋根2Bは、上述した実施形態4と同様のもの(図6参照)である。この2重屋根10Iの断熱構造は、上屋根1と下屋根2Bと繊維系断熱層3と空気層8とによって構成される。その他の構成は実施形態8と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
本実施形態10における上屋根1及び下屋根2Bの配置は、実施形態8の下屋根2Aが実施形態4の下屋根2Bに置き換えられたこと以外、上述した実施形態8と同様である。すなわち、本実施形態10では、図12に示すように、上屋根1の下面4aは、上屋根金属折板11側の保護層14の下面である。下屋根2Bの上面4bは、下屋根金属折板21の上面である。繊維系断熱層3は、上屋根金属折板11側の保護層14の下面と対向して離間するように、下屋根金属折板21の上面に設けられている。空気層8は、この繊維系断熱層3の上面と上屋根1の下面4aとの間に形成されている。
また、本実施形態10における2重屋根10Iの形成方法は、下屋根金属折板21の上面に繊維系断熱材を敷設して繊維系断熱層3を形成すること以外、上述した実施形態8における2重屋根10Gと同じである。
以上、説明したように、本実施形態10に係る2重屋根10Iの断熱構造では、実施形態4の下屋根2Bの上面4bに繊維系断熱層3を形成し、この繊維系断熱層3の上面と上屋根1の下面4a(保護層14の下面)との間に、実施形態8と同様の間隔L1、L2、L3を有する空気層8を形成するようにし、その他を実施形態8と同様に構成している。このため、上述した実施形態8と同様の作用効果を享受するとともに、上述した実施形態4と同様の作用効果を享受し、さらには、上述した実施形態5と同様に、上屋根1及び下屋根2B双方の耐火性能(特に室内で発生した炎等の熱に対する耐火性能)を屋根耐火30分認定試験に合格し得るほどに向上させることができる。また、本実施形態10では、上屋根1における折板屋根部材同士の接合部と、下屋根2Bにおける折板屋根部材同士の接合部との各々においても、発泡樹脂層がシール層として機能することで、2重屋根内部の防水性能及び結露防止性を高めることができる。さらに、下屋根2Bの上面4bに繊維系断熱層3を設け、この繊維系断熱層3の上面に上屋根1を設けているので、既設された下屋根2Bによって構成される1重屋根を2重屋根10Iに改修する屋根改修工事を容易に行うことができる。
[実施形態11]
つぎに、本発明の実施形態11に係る2重屋根の断熱構造について説明する。図13は、本発明の実施形態11に係る2重屋根の断熱構造の一構成例を示す断面模式図である。図13に示すように、本実施形態11に係る2重屋根10Jは、上述した実施形態1の上屋根1に代えて上屋根1Bを備える。この2重屋根10Jの断熱構造は、上屋根1Bと下屋根2と繊維系断熱層3とによって構成される。その他の構成は実施形態1と同じであり、同一構成部分には同一符号を付して、その詳細な説明は省略する。
図13に示すように、上屋根1Bは、実施形態1と同様の上屋根金属折板11と発泡樹脂層12と保護層14とを備え、さらに、この発泡樹脂層12の下面と保護層14の上面との間に補強層13を備える。補強層13は、発泡樹脂層12と保護層14との間に介在し、発泡樹脂層12を補強するものである。すなわち、本実施形態11において、保護層14は、補強層13を介して発泡樹脂層12の下面に間接的に設けられている。この際、補強層13は接着剤によって発泡樹脂層12の下面に接着固定され、保護層14は接着剤によって補強層13の下面に接着固定されている。なお、これら補強層13及び保護層14は、熱圧着又は熱融着によって発泡樹脂層12の下面側に順次固定されてもよい。
ここで、補強層13の発泡樹脂層12への接着は、鋼板(上屋根金属折板11の素材)と発泡樹脂層12とをプレスロールで貼合させた後、同様にプレスロールを通過させて行うことができる。また、保護層14の形成は、保護層14が補強層13に一体に形成された部材の、補強層13側の面を、発泡樹脂層12に貼付けることによって、効率良く行うことができる。
補強層13は、ポリエチレン系樹脂、ポリエステル系樹脂又はガラスによって構成されるクロスシートからなる層である。詳細には、補強層13に適用されるクロスシートとして、例えば、ポリエチレン系樹脂製クロスシート、ポリエステル系樹脂製クロスシート、又はガラス製クロスシートが挙げられる。なお、これらの材料を用いたクロスシートは、例えば、紐状の部材が交互に上下に編み込まれた織物状のクロスシートであるため、クロスシートの表面が凹凸形状に形成されている。そのため、補強層13の表面に凹凸を形成することができるから、上屋根金属折板11に対する補強層13の変形追従性が、ポリエチレン系樹脂製シート、塩化ビニル系樹脂シート及びポリエステル系樹脂シートなどよりも高い。そのため、補強層13としては、ポリエチレン系樹脂製クロスシート、ポリエステル系樹脂製クロスシート、又はガラス製クロスシート等の、樹脂製又はガラス製のクロスシートを用いることが望ましい。
このような樹脂製又はガラス製のクロスシートの厚さは、20μm以上300μm以下であることが好ましく、50μm以上100μm以下であることがより好ましい。また、発泡樹脂層12の下面に順次積層される補強層13及び保護層14の合計厚さ、例えば、補強層13を構成するクロスシートと保護層14を構成するアルミニウム箔(層)との合計厚さは、25μm以上450μm以下であることが好ましく、58μm以上300μm以下であることがより好ましい。
また、補強層13としては、クロスシートの代わりに、各種樹脂シートが利用できる。具体的には、補強層13に適用される樹脂シートとして、ポリエチレン系樹脂シート、ポリプロピレン系樹脂シート、塩化ビニル系樹脂シート、又はポリエステル系樹脂シート等が挙げられる。このような樹脂シートの厚さは、20μm以上500μm以下であることが好ましく、100μm以上200μm以下であることがより好ましい。通常、補強層13として、樹脂シートを用いる場合には、この樹脂シートの厚さは、クロスシートの厚さより厚い方が望ましい。
なお、本実施形態11における2重屋根10Jの形成方法は、補強層13を備えた上屋根1Bを用いること以外、上述した実施形態1における2重屋根10と同じである。
以上、説明したように、本実施形態11に係る2重屋根10Jの断熱構造では、上屋根1Bにおいて、発泡樹脂層12の下面と保護層14の上面との間に補強層13を介在させ、その他を実施形態1と同様に構成している。このため、上述した実施形態1と同様の作用効果を享受し、さらには、補強層13により、外気の気温変動に起因する発泡樹脂層12の寸法変化を緩和して発泡樹脂層12の耐久性を向上させるとともに、折板加工時の発泡樹脂層12の表面を補強して、発泡樹脂層12の折板加工性を向上させることができる。なお、本実施形態11においても、詳細な記載は省くが、上述した実施形態1〜10と同様に、2重屋根は、耐火性やシール性を有している。
なお、上述した実施形態1〜10では、発泡樹脂層に保護層が直接設けられた場合を例示したが、本発明は、これに限定されるものではない。例えば、実施形態1〜10における発泡樹脂層と保護層との間に、実施形態11と同様の補強層13を介在させてもよい。
以上より、本発明に係る2重屋根の断熱構造によれば、上屋根と下屋根との間における空気の対流を抑制できるとともに、繊維系断熱層の熱抵抗と発泡樹脂層の熱抵抗との重畳により、2重屋根の断熱構造全体の熱抵抗を増大させることができる。この結果、対流空間を所定高さ以下の空間とするか、あるいは閉塞することができるから、2重屋根の断熱性能に及ぼす対流の影響を低減することができる。また、上屋根及び下屋根の少なくとも一方に設けた発泡樹脂層によって熱抵抗を増大させることで、上屋根と下屋根との間における輻射熱又は輻射熱の影響を低減することができる。また、発泡樹脂層上に形成された保護層による熱反射効果により、輻射熱を緩和することも可能となる。さらに、発泡樹脂層と繊維系断熱層との両者を形成することで、吸音性能だけでなく、制振機能を付与することができる。また、上屋根又は下屋根のいずれかの接合部にシール構造を付与することで、上屋根又は下屋根の防水性や結露防止性を高め、さらに、保護層の熱反射効果により、耐火性を30分耐火試験に合格し得る程度に高めることができる。また、本発明においては、発泡樹脂層には必ず一体的に保護層が形成されているため、発泡樹脂層の表面保護、劣化防止、耐火性改善、成形性改善、帯電による異物付着の防止、結露防止、紫外線による劣化の防止の効果を得ることができる。また、発泡樹脂層上に設けた保護層が繊維系断熱層に接している場合には、繊維系断熱層の少なくとも一方の面を保護することが可能になり、繊維系断熱層の長寿命化を計ることが可能になる。
また、上述した実施形態1〜11では、上屋根金属折板11及び下屋根金属折板21のうち発泡樹脂層が設けられた金属折板の接合部の継ぎ目に、当該発泡樹脂層の一部をシール層として介在させていたが、本発明は、これに限定されるものではない。例えば、上記金属折板の接合部の継ぎ目には、上述した断熱層をなす発泡樹脂層(具体的には発泡樹脂層12、22)とは独立した発泡樹脂体をシール部材として介在させてもよい。この場合、発泡樹脂層が設けられた金属折板のみならず、発泡樹脂層が設けられていない金属折板の接合部の継ぎ目に上記シール部材を介在させてもよい。
また、上述した実施形態1〜11により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施形態1〜11に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれる。
1、1A、1B 上屋根
2、2A、2B 下屋根
3 繊維系断熱層
4a 下面
4b 上面
5a 頂面部
5aa、5ab 部分頂面部
5b 底面部
5c 斜面部
6、7 接合部
8 空気層
10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J 2重屋根
11 上屋根金属折板
12 発泡樹脂層
12a、12b シール層
13 補強層
14 保護層
15、15−1、15−2 折板屋根部材
16a、16a−2 被係合部
16b、16b−1 係合部
21 下屋根金属折板
22 発泡樹脂層
24 保護層
D1 上下方向
D2 横方向
D3 縦方向

Claims (17)

  1. 少なくとも上屋根金属折板を有する上屋根と、
    前記上屋根の下方に位置し、少なくとも下屋根金属折板を有する下屋根と、
    前記上屋根の下面と対向するように前記下屋根の上面に設けられ、繊維系断熱材からなる断熱層である繊維系断熱層と、
    を備え、
    前記上屋根及び前記下屋根の少なくとも一方は、発泡樹脂体からなる断熱層である発泡樹脂層と、前記発泡樹脂層を保護する保護層とを更に有する、
    ことを特徴とする2重屋根の断熱構造。
  2. 前記発泡樹脂層は、前記上屋根金属折板の下面に設けられ、
    前記保護層は、前記発泡樹脂層における前記繊維系断熱層側の面に設けられ、
    前記繊維系断熱層は、前記保護層の下面と対向するように、前記下屋根金属折板の上面に設けられている、
    ことを特徴とする請求項1に記載の2重屋根の断熱構造。
  3. 前記発泡樹脂層は、前記下屋根金属折板の上面に設けられ、
    前記保護層は、前記発泡樹脂層における前記繊維系断熱層側の面に設けられ、
    前記繊維系断熱層は、前記上屋根金属折板の下面と対向するように、前記保護層の上面に設けられている、
    ことを特徴とする請求項1に記載の2重屋根の断熱構造。
  4. 前記発泡樹脂層は、前記上屋根金属折板の下面と前記下屋根金属折板の上面とに各々設けられ、
    前記保護層は、前記上屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面と、前記下屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面とに各々設けられ、
    前記繊維系断熱層は、前記上屋根金属折板側の前記保護層の下面と対向するように、前記下屋根金属折板側の前記保護層の上面に設けられている、
    ことを特徴とする請求項1に記載の2重屋根の断熱構造。
  5. 前記発泡樹脂層は、前記下屋根金属折板の下面に設けられ、
    前記保護層は、前記発泡樹脂層における前記繊維系断熱層とは反対側の面に設けられ、
    前記繊維系断熱層は、前記上屋根金属折板の下面と対向するように、前記下屋根金属折板の上面に設けられている、
    ことを特徴とする請求項1に記載の2重屋根の断熱構造。
  6. 前記発泡樹脂層は、前記上屋根金属折板の下面と前記下屋根金属折板の下面とに各々設けられ、
    前記保護層は、前記上屋根金属折板の前記発泡樹脂層における前記繊維系断熱層側の面と、前記下屋根金属折板の前記発泡樹脂層における前記繊維系断熱層とは反対側の面とに各々設けられ、
    前記繊維系断熱層は、前記上屋根金属折板側の前記保護層の下面と対向するように、前記下屋根金属折板の上面に設けられている、
    ことを特徴とする請求項1に記載の2重屋根の断熱構造。
  7. 前記上屋根及び前記下屋根は、前記下屋根の上面に設けられた前記繊維系断熱層の上面と前記上屋根の下面とが互いに対向して離間するように配置され、前記繊維系断熱層の上面と前記上屋根の下面との間に空気層を形成し、
    前記空気層の最狭部の間隔は、20mm以下である、
    ことを特徴とする請求項1〜6のいずれか一つに記載の2重屋根の断熱構造。
  8. 前記空気層は、前記上屋根及び前記下屋根の山部と谷部と斜面部とを含む全域に亘って連続し、
    前記山部の頂面部及び前記谷部の底面部における前記空気層の間隔は、50mm以下であり、
    前記山部及び前記谷部の斜面部における前記空気層の最狭部の間隔は、20mm以下である、
    ことを特徴とする請求項7に記載の2重屋根の断熱構造。
  9. 前記繊維系断熱層の厚さは、50mm以上100mm以下である、
    ことを特徴とする請求項1〜8のいずれか一つに記載の2重屋根の断熱構造。
  10. 前記上屋根金属折板及び前記下屋根金属折板は、各々、金属折板の単位構成部材である折板屋根部材を複数接合して構成され、
    前記発泡樹脂層の一部は、前記上屋根金属折板及び前記下屋根金属折板のうち前記発泡樹脂層が設けられた金属折板を構成する複数の前記折板屋根部材同士の接合部の継ぎ目を塞ぐ、
    ことを特徴とする請求項1〜9のいずれか一つに記載の2重屋根の断熱構造。
  11. 前記保護層は、金属箔、又は樹脂フィルム上に金属が蒸着された金属蒸着樹脂フィルムからなる層のいずれかである、
    ことを特徴とする請求項1〜10のいずれか一つに記載の2重屋根の断熱構造。
  12. 前記発泡樹脂層と前記保護層との間に介在し、前記発泡樹脂層を補強する補強層を更に備え、
    前記補強層は、ポリエチレン系樹脂、ポリエステル系樹脂又はガラスによって構成されるクロスシートからなる層である、
    ことを特徴とする請求項1〜11のいずれか一つに記載の2重屋根の断熱構造。
  13. 前記発泡樹脂体は、ポリオレフィン系樹脂又はポリウレタン系樹脂である、
    ことを特徴とする請求項1〜12のいずれか一つに記載の2重屋根の断熱構造。
  14. 前記発泡樹脂体は、含有する全気泡に対する独立気泡の割合が60%以上且つ発泡倍率が20倍以上50倍以下の軟質発泡樹脂体である、
    ことを特徴とする請求項1〜13のいずれか一つに記載の2重屋根の断熱構造。
  15. 前記発泡樹脂層の厚さは、2mm以上12mm以下である、
    ことを特徴とする請求項1〜14のいずれか一つに記載の2重屋根の断熱構造。
  16. 前記繊維系断熱材は、ガラスウール又はロックウールである、
    ことを特徴とする請求項1〜15のいずれか一つに記載の2重屋根の断熱構造。
  17. 前記繊維系断熱層は、断熱特性に加えて吸音特性を有し、
    前記発泡樹脂層は、断熱特性に加えて吸音特性と衝撃エネルギーの吸収特性とを有する、
    ことを特徴とする請求項1〜16のいずれか一つに記載の2重屋根の断熱構造。
JP2019146029A 2019-08-08 2019-08-08 2重屋根の断熱構造 Pending JP2021025366A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019146029A JP2021025366A (ja) 2019-08-08 2019-08-08 2重屋根の断熱構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019146029A JP2021025366A (ja) 2019-08-08 2019-08-08 2重屋根の断熱構造

Publications (1)

Publication Number Publication Date
JP2021025366A true JP2021025366A (ja) 2021-02-22

Family

ID=74662879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146029A Pending JP2021025366A (ja) 2019-08-08 2019-08-08 2重屋根の断熱構造

Country Status (1)

Country Link
JP (1) JP2021025366A (ja)

Similar Documents

Publication Publication Date Title
US4206267A (en) Composite structural material
KR100741951B1 (ko) 건축물 내·외벽용 반사단열재
WO2007082559A1 (en) Insulation material comprising phase change material (pcm) for buildings
US9297164B2 (en) VIP roofing insulation
WO2007082558A1 (en) Insulation material comprising reflection material for buildings
WO2008149090A1 (en) Thermal insulation structure
EP2256265B1 (en) Insulated multilayer sandwich panel
JPH08246609A (ja) 屋根構造
WO2008029462A1 (fr) Corps de mur extérieur
JP2009167728A (ja) シート防水屋根
KR101863614B1 (ko) 방화문의 단열구조
JP2021025366A (ja) 2重屋根の断熱構造
ES2528332T3 (es) Material de revestimiento de edificios aislante térmico y, preferentemente, también aislante acústico
KR20120066326A (ko) 조립식 지붕의 단열판넬구조
RU2258118C1 (ru) Строительная панель "ирта" (варианты)
JP3216266U (ja) 屋根構造
JP4653858B2 (ja) 耐火断熱壁、及び建築構造物
JP6928367B2 (ja) 外付け用遮熱パネルおよび遮熱パネルセット
JP5215531B2 (ja) 耐火フラット屋根
JP5157119B2 (ja) 建物の壁
RU2361984C1 (ru) Стеклопанель для заполнения проемов фасадных систем
JP3215222U (ja) 金属屋根用遮熱断熱積層体
KR101007757B1 (ko) 슬림형 단열 복합패널
JP2921366B2 (ja) 金属複合屋根材及びその施工方法
JP2008255733A (ja) 建造物の断熱構造及び断熱パネル