JP2021017260A - インク組成物容器 - Google Patents

インク組成物容器 Download PDF

Info

Publication number
JP2021017260A
JP2021017260A JP2019133419A JP2019133419A JP2021017260A JP 2021017260 A JP2021017260 A JP 2021017260A JP 2019133419 A JP2019133419 A JP 2019133419A JP 2019133419 A JP2019133419 A JP 2019133419A JP 2021017260 A JP2021017260 A JP 2021017260A
Authority
JP
Japan
Prior art keywords
ink composition
mass
nanocrystal particles
less
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019133419A
Other languages
English (en)
Inventor
直 義原
Sunao Yoshihara
直 義原
亜弥 石塚
Aya ISHIZUKA
亜弥 石塚
崇之 三木
Takayuki Miki
崇之 三木
佐々木 博友
Hirotomo Sasaki
博友 佐々木
育郎 清都
Ikuro Kiyoto
育郎 清都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2019133419A priority Critical patent/JP2021017260A/ja
Publication of JP2021017260A publication Critical patent/JP2021017260A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Packages (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

【課題】発光性ナノ結晶粒子を含有するインク組成物の品質劣化を抑制可能な容器を提供すること。【解決手段】発光性ナノ結晶粒子を含有するインク組成物を詰め、更に輸送及び/又は貯蔵するために用いられる容器であって、光に対して不透過性を有する容器本体を備える、容器。【選択図】図1

Description

本発明は、インク組成物容器に関する。
近年、ディスプレイの低消費電力化の観点から、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いて、液晶表示装置等のディスプレイにおける画素部(カラーフィルタ画素部)を形成させる方法が、活発に研究されている(例えば、特許文献1)。
国際公開第2008/001693号
発光性ナノ結晶粒子を含むカラーフィルタ画素部(以下、単に「画素部」ともいう。)の形成には、発光性ナノ結晶粒子を含有するインク組成物が用いられる。一方で、このインク組成物は、発光性ナノ結晶粒子を含有することにより、輸送及び/又は貯蔵の過程で品質(例えば、吐出安定性、並びに塗膜の外部量子効率及び平滑性)の劣化が発生する場合があった。
そこで、本発明の目的の一つは、発光性ナノ結晶粒子を含有するインク組成物の品質劣化を抑制可能な容器を提供することにある。
本発明の一側面は、発光性ナノ結晶粒子を含有するインク組成物を詰め、更に輸送及び/又は貯蔵するために用いられる容器であって、光に対して不透過性を有する容器本体を備える、容器に関する。
容器本体は、酸素及び水分に対して不透過性を有するものであってよい。また、容器本体は、有色であってよい。また、容器本体は、ガラス製であってよい。
インク組成物は、光重合性化合物を含有していてよい。また、インク組成物は、光散乱性粒子を含有していてよい。
容器本体は、インク組成物を収容するプラスチック製の第1の収容部材と、前記第1の収容部材を収容する金属製の第2の収容部材と、から構成されていてよい。
本発明によれば、発光性ナノ結晶粒子を含有するインク組成物の品質劣化を抑制可能な容器を提供することができる。
図1は、本発明の一実施形態の容器の正面図である。 図2は、本発明の一実施形態のインク組成物の輸送及び/又は貯蔵デバイスの模式図である。
以下、本発明の実施形態について詳細に説明する。なお、本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
<容器>
図1は、容器の一実施形態を示す正面図である。図1に示す容器10は、発光性ナノ結晶粒子を含有するインク組成物を詰め、更に輸送及び/又は貯蔵するために用いられる。図1に示す容器10は、開口を有する容器本体1と、開口を覆う着脱可能な蓋2と、容器本体1内に設けられた浸漬管3と、側板4とを備えている。
開口を有する容器本体1は、インク組成物を収容する第1の収容部材1aと、第1の収容部材1aを収容する第2の収容部材1bとから構成される。第1及び第2の収容部材1a,1bの収容部材は、異種材料から形成される部材である。第1及び第2の収容部材1a,1bの材料としては、例えば、非汚染性であり、摩耗を有しない、耐腐食性であり、又は錆非含有であるものを用いることができる。第1及び第2の収容部材1a,1bの材料としては、例えば、鋼、鉄、チタン、ガラス、ジルコニウム若しくはこれを含む合金、エナメル、セラミックス、酸化アルミニウム、ポリエチレン等のプラスチック、メタライズガラス、金属(例えば、ステンレス鋼)、又はこれらの組み合わせが挙げられる。プラスチックは、二酸化ケイ素で被覆されたプラスチックであってもよい。例えば、容器本体1は、第1の収容部材がプラスチック製であり、第2の収容部材が金属製であってよい。容器本体1の開口は、蓋2により密閉することができる。
容器本体1は、光に対して不透過性を有する。光に対して不透過性を有する容器本体1の波長450nmにおける光透過率は、4%以下であってよい。また、容器本体1の波長365nm、及び波長395nmにおける光透過率は、1%以下であってよい。
容器本体1は、光に対して不透過性を有することに加えて、酸素及び/又は水分に対して不透過性を有していてよい。この場合、インク組成物の塗膜の外部量子効率の低下を抑制する効果が特に顕著に奏されることとなる。
酸素に対して不透過性を有する容器本体1の酸素透過率は、150mL/m・日以下であってよい。容器本体1の酸素透過率は、例えば、容器材質の酸素透過率の文献値及び容器厚みから算出することができる。
水分に対して不透過性を有する容器本体1の水分透過率は、6.0×10−4g/cm・月以下であってよく、1.4×10−4g/cm・月以下であってよい。水分透過率は、容器本体にインク組成物10gを充填し、1か月後の水分増加量を測定し、水分増加量の測定値と、容器本体の表面積より算出することができる。
容器本体1の一部又は全部は、有色であってよい。容器本体1は、例えば、褐色、黒色、緑色、黄色、橙色、赤色であってよい。容器本体1の少なくとも一部には、充填レベルの監視等を容易にするための透明な領域を設けることもできる。
容器本体1の内表面は、例えば、電解研磨、酸洗処理等の方法により処理されていてもよく、1種又は2種以上の材料の被膜が設けられていてもよい。被膜の例としては、例えば、チタン若しくはチタンを含む合金による被膜、又は、蒸着、スパッタリング等の当業者に知られている方法により設けることができる被膜が挙げられる。
蓋2は、容器本体1を密閉可能に構成されていてよい。蓋2は、容器本体1と着脱自在であればその構造及び形状は特に限定されない。蓋2は、容器本体1と同様の性質(例えば、光、水分、酸素等に対する不透過性)を有するものであってよい。蓋2は、容器本体1と同種の材料を用いて形成されていてもよく、異種の材料を用いて形成されていてもよい。
容器10の容器本体1内には、外部装置と接続可能に構成された浸漬管3が設けられている。浸漬管3を介して、インク組成物の導入及び/又は排出を行うことができる。
容器10の容量は、10mL以上、100mL以上、1L以上、10L以上、50L以上、又は100L以上であってよい。容器10の容量は、例えば、500L以下、300L以下、又は200L以下であってよい。
容器10は、正圧及び負圧に対する気密性、衝撃に耐えうる剛直性、及び/又は圧力容器としての機能を有するものであってよい。容器10は、耐腐食性を有する圧力容器であってよい。このような圧力容器としては、例えば、特許第5318315号公報に記載されているものを用いることができる。また、圧力容器としては、NOWPak(登録商標)キャニスター(Entegris社製)を用いることもできる。
容器10は、外部装置を接続可能に構成されていてよい。容器本体1内を正圧にする場合、容器10は、容器本体1内に圧縮空気、又は、窒素ガス、アルゴンガス等の不活性ガスを封入するための分配器、及び、圧力計と接続される。容器本体1内を負圧にする場合、容器10は、真空ポンプによる減圧化を行うため配管(ライン)と接続される。
容器10は、配管(ライン)等を介して画素部の製造装置に連結可能に構成されていてよい。容器10の底には、輸送の際の移動を容易にするために底車等を取り付けることができる。
[インク組成物]
インク組成物は、発光性ナノ結晶粒子を含有する。インク組成物は、例えば、カラーフィルタ等が有する光変換層の画素部を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物である。
インク組成物は、フォトリソグラフィ方式用又はインクジェット方式用に適合するように適切に調製されたものであってよい。
(発光性ナノ結晶粒子)
発光性ナノ結晶粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの結晶体であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。発光性ナノ結晶粒子は、605〜665nmの範囲に発光ピーク波長を有する光(赤色光)を発する、赤色発光性のナノ結晶粒子(赤色発光性ナノ結晶粒子)であってよく、500〜560nmの範囲に発光ピーク波長を有する光(緑色光)を発する、緑色発光性のナノ結晶粒子(緑色発光性ナノ結晶粒子)であってよく、420〜480nmの範囲に発光ピーク波長を有する光(青色光)を発する、青色発光性のナノ結晶粒子(青色発光性ナノ結晶粒子)であってもよい。本実施形態のインク組成物は、これらの発光性ナノ結晶粒子のうちの少なくとも1種を含むものであってよい。また、発光性ナノ結晶粒子が吸収する光は、例えば、400nm以上500nm未満の範囲(特に、420〜480nmの範囲の波長の光)の波長の光(青色光)、又は、200nm〜400nmの範囲の波長の光(紫外光)であってよい。なお、発光性ナノ結晶粒子の発光ピーク波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができる。
赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下又は630nm以下に発光ピーク波長を有していてよく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上又は605nm以上に発光ピーク波長を有していてよい。これらの上限値及び下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。
緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下又は530nm以下に発光ピーク波長を有していてよく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上又は500nm以上に発光ピーク波長を有していてよい。
青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下又は450nm以下に発光ピーク波長を有していてよく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上又は420nm以上に発光ピーク波長を有していてよい。
発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。
発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であってよい。発光性半導体ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、発光性ナノ結晶粒子は、量子ドットであってよい。
発光性半導体ナノ結晶粒子は、第一の半導体材料を含むコアのみからなっていてよく、第一の半導体材料を含むコアと、第一の半導体材料とは異なる第二の半導体材料を含み、上記コアの少なくとも一部を被覆するシェルと、を有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルからなる構造(コア/シェル構造)であってもよい。また、発光性半導体ナノ結晶粒子は、第二の半導体材料を含むシェル(第一のシェル)の他に、第一及び第二の半導体材料とは異なる第三の半導体材料を含み、上記コアの少なくとも一部を被覆するシェル(第二のシェル)を更に有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアと第一のシェルと第二のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であってよい。
発光性ナノ結晶粒子は、半導体材料として、II−VI族半導体、III−V族半導体、I−III−VI族半導体、IV族半導体及びI−II−IV−VI族半導体からなる群より選択される少なくとも1種の半導体材料を含んでいてよい。
具体的な半導体材料としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgGaSe、AgGaS、C、Si及びGeが挙げられる。発光性半導体ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge及びCuZnSnSからなる群より選択される少なくとも1種を含んでいてよい。
赤色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がCdSeであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がZnSeであるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
緑色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
青色発光性の半導体ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSeであり内側のコア部がZnSであるナノ結晶粒子、CdSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
半導体ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、当該粒子から発光させるべき色を赤色にも緑色にも変えることができる。また、半導体ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ結晶粒子を発光性ナノ結晶粒子として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ結晶粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の発光性ナノ結晶粒子と組み合わせて用いることが好ましい。
発光性ナノ結晶粒子の形状は特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等であってもよい。しかしながら、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性及び流動性をより高められる点で好ましい。
発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上であってよく、1.5nm以上であってよく、2nm以上であってもよい。所望の発光波長が得られやすい観点から、40nm以下であってよく、30nm以下であってよく、20nm以下であってもよい。発光性ナノ結晶粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
発光性ナノ結晶粒子は、分散安定性の観点から、その表面に有機リガンドを有していてよい。有機リガンドは、例えば、発光性ナノ結晶粒子の表面に配位結合されていてよい。換言すれば、発光性ナノ結晶粒子の表面は、有機リガンドによってパッシベーションされていてよい。また、インク組成物が後述する高分子分散剤を更に含有する場合には、発光性ナノ結晶粒子は、その表面に高分子分散剤を有していてもよい。本実施形態では、例えば、上述の有機リガンドを有する発光性ナノ結晶粒子から有機リガンドを除去し、有機リガンドと高分子分散剤とを交換することで発光性ナノ結晶粒子の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光性ナノ結晶粒子に対して高分子分散剤が配合されてよい。
有機リガンドとしては、光重合性化合物、熱硬化性樹脂、有機溶剤等との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)と、を有する化合物であってよい。親和性基としては、置換又は無置換の脂肪族炭化水素基であってよい。当該脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、及び、2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基及びアルコキシシリル基が挙げられる。有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、及びオクチルホスフィン酸(OPA)が挙げられる。
一実施形態において、有機リガンドは、下記式(1−1)で表される有機リガンドであってもよい。
Figure 2021017260

[式(1−1)中、pは0〜50の整数を示し、qは0〜50の整数を示す。]
式(1−1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であってよく、p及びqの両方が1以上であってよい。
有機リガンドは、例えば、下記式(1−2)で表される有機リガンドであってもよい。
Figure 2021017260
式(1−2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシル基を含む1価の基を示し、Rは、水素原子、メチル基、又はエチル基を示し、Lは、置換又は無置換のアルキレン基を示し、rは0以上の整数を示す。カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であってよく、2個以上4個以下であってよく、2個であってよい。Lで示されるアルキレン基の炭素数は、例えば、1〜10であってよい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。rは、例えば、1〜100の整数であってよく、10〜20の整数であってもよい。
有機リガンドは、画素部(インク組成物の硬化物)の外部量子効率に優れる観点から、下記式(1−2A)で表される有機リガンドであってもよい。
Figure 2021017260
式(1−2A)中、rは上記と同義である。
インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子の分散安定性の観点及び発光特性維持の観点から、発光性ナノ結晶粒子100質量部に対して、15質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上又は40質量部以上であってよい。インク組成物における有機リガンドの含有量は、インク組成物の粘度を低く保ちやすい観点から、発光性ナノ結晶粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下又は30質量部以下であってよい。
発光性ナノ結晶粒子としては、有機溶剤、光重合性化合物等の中にコロイド形態で分散しているものを用いることができる。有機溶剤中で分散状態にある発光性ナノ結晶粒子の表面は、上述の有機リガンドによってパッシベーションされていてよい。有機溶剤としては、インク組成物に含有される後述の有機溶剤が用いられる。
発光性ナノ結晶粒子としては、市販品を用いることができる。発光性ナノ結晶粒子の市販品としては、例えば、NN−ラボズ社の、インジウムリン/硫化亜鉛、D−ドット、CuInS/ZnS、アルドリッチ社の、InP/ZnS等が挙げられる。
発光性ナノ結晶粒子の含有量は、画素部の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは5質量部以上であり、10質量部以上、15質量部以上、20質量部以上又は30質量部以上であってもよい。発光性ナノ結晶粒子の含有量は、吐出安定性及び画素部の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計に対して、好ましくは80質量部以下であり、75質量部以下、70質量部以下又は60質量部以下であってもよい。なお、本明細書中、「インク組成物に含まれる有機溶剤以外の成分」は、インク組成物の硬化物に含有させるべき成分と言い換えてもよい。「インク組成物に含まれる有機溶剤以外の成分の合計」は、例えば、発光性ナノ結晶粒子と、有機リガンドと、光重合性化合物及び/又は熱硬化性樹脂と、光散乱性粒子と、の合計であってよい。本明細書において「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤成分を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて得られるものである。乾燥後のインク組成物の硬化物中には、有機溶剤が含まれなくてよい。
インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、外部量子効率がより向上する観点から、15質量%以上、18質量%以上又は20質量%以上であってよい。インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、吐出安定性及び外部量子効率を向上させる観点から、35質量%以下、32質量%以下又は30質量%以下であってよい。
インク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子及び青色発光性ナノ結晶粒子のうちの1種又は2種以上を含んでいてよい。インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、10質量%以下であってよく、0質量%であってよい。インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、10質量%以下であってよく、0質量%であってよい。
(光重合性化合物)
インク組成物は、光重合性化合物を含有してよい。光重合性化合物は、光の照射によって重合する化合物であり、例えば、光ラジカル重合性化合物又は光カチオン重合性化合物である。光重合性化合物は、光重合性のモノマー又はオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光ラジカル重合性化合物は光ラジカル重合開始剤と共に用いられ、光カチオン重合性化合物は光カチオン重合開始剤と共に用いられる。言い換えれば、インク組成物は、光重合性化合物及び光重合開始剤を含む光重合性成分を含有していてよく、光ラジカル重合性化合物及び光ラジカル重合開始剤を含む光ラジカル重合性成分を含有していてもよく、光カチオン重合性化合物及び光カチオン重合開始剤を含む光カチオン重合性成分を含有していてもよい。光ラジカル重合性化合物と光カチオン重合性化合物とを併用してもよく、光ラジカル重合性と光カチオン重合性を具備した化合物を用いてもよく、光ラジカル重合開始剤と光カチオン重合開始剤とを併用してもよい。光重合性化合物は1種を単独で用いてもよいし、2種以上を併用してもよい。
光ラジカル重合性化合物としては、例えば、エチレン性不飽和基を有するモノマー(以下、「エチレン性不飽和モノマー」ともいう。)、イソシアネート基を有するモノマー等が挙げられる。ここで、エチレン性不飽和モノマーとは、エチレン性不飽和結合(炭素−炭素二重結合)を有するモノマーを意味する。エチレン性不飽和モノマーとしては、例えば、ビニル基、ビニレン基、ビニリデン基等のエチレン性不飽和基を有するモノマーが挙げられる。これらの基を有するモノマーは、「ビニルモノマー」と称される場合がある。
エチレン性不飽和モノマーにおけるエチレン性不飽和結合の数(例えばエチレン性不飽和基の数)は、例えば、1〜3である。エチレン性不飽和モノマーは1種を単独で用いてよく、複数種を組み合わせて用いてもよい。光重合性化合物は、優れた吐出安定性と優れた硬化性を両立することが容易となる観点、及び、外部量子効率がより向上する観点から、エチレン性不飽和基を1個又は2個有するモノマーと、エチレン性不飽和基を2個又は3個有するモノマーと、を含んでいてよい。すなわち、エチレン性不飽和モノマーは、単官能モノマーと二官能モノマー、単官能モノマーと三官能モノマー、二官能モノマーと二官能モノマー、及び、二官能モノマーと三官能モノマーからなる群より選択される少なくとも1種の組み合わせを含んでいてよい。
エチレン性不飽和基としては、ビニル基、ビニレン基及びビニリデン基の他、(メタ)アクリロイル基等が挙げられる。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及びそれに対応する「メタクリロイル基」を意味する。「(メタ)アクリレート」、「(メタ)アクリルアミド」との表現についても同様である。
光重合性化合物は、エチレン性不飽和基として(メタ)アクリロイル基を有する化合物を含んでいてよく、(メタ)アクリレート化合物であってよい。
単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、コハク酸モノ(2−アクリロイルオキシエチル)、コハク酸モノ(2−メタクリロイルオキシエチル)、N−[2−(アクリロイルオキシ)エチル]フタルイミド、N−[2−(アクリロイルオキシ)エチル]テトラヒドロフタルイミド、4−ヒドロキシブチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシエチルアクリレート等が挙げられる。これらの中でも、エトキシエトキシエチル(メタ)アクリレートが用いられてよい。
エチレン性不飽和基を2個有するモノマー(二官能モノマー)の具体例としては、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,5−ペンタンジオールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8−オクタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ−ルヒドロキシピバリン酸エステルジアクリレ−ト、トリス(2−ヒドロキシエチル)イソシアヌレートの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレートなどが挙げられる。これらの中でも、ジプロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジアクリレートが用いられてよい。
エチレン性不飽和基を3個有するモノマー(三官能モノマー)の具体例としては、グリセリントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート等が挙げられる。これらの中でも、グリセリントリ(メタ)アクリレートが用いられてよい。
光カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。
エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フェノールノボラック型エポキシ化合物、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の脂肪族系エポキシ化合物、1,2−エポキシ−4−ビニルシクロへキサン、1−メチル−4−(2−メチルオキシラニル)−7−オキサビシクロ[4.1.0]ヘプタン等の脂環式エポキシ化合物などが挙げられる。
エポキシ化合物として市販品を使用することも可能である。エポキシ化合物の市販品としては、例えば、ダイセル化学工業株式会社製の「セロキサイド2000」、「セロキサイド3000」、「セロキサイド4000」等を用いることができる。
カチオン重合性のオキセタン化合物としては、2―エチルヘキシルオキセタン、3−ヒドロキシメチル−3−メチルオキセタン、3−ヒドロキシメチル−3−エチルオキセタン、3−ヒドロキシメチル−3−プロピルオキセタン、3−ヒドロキシメチル−3−ノルマルブチルオキセタン、3−ヒドロキシメチル−3−フェニルオキセタン、3−ヒドロキシメチル−3−ベンジルオキセタン、3−ヒドロキシエチル−3−メチルオキセタン、3−ヒドロキシエチル−3−エチルオキセタン、3−ヒドロキシエチル−3−プロピルオキセタン、3−ヒドロキシエチル−3−フェニルオキセタン、3−ヒドロキシプロピル−3−メチルオキセタン、3−ヒドロキシプロピル−3−エチルオキセタン、3−ヒドロキシプロピル−3−プロピルオキセタン、3−ヒドロキシプロピル−3−フェニルオキセタン、3−ヒドロキシブチル−3−メチルオキセタン等が挙げられる。
オキセタン化合物として市販品を使用することも可能である。オキセタン化合物の市販品としては、例えば、東亜合成株式会社製のアロンオキセタンシリーズ(「OXT−101」、「OXT−212」、「OXT−121」、「OXT−221」等);ダイセル化学工業株式会社製の「セロキサイド2021」、「セロキサイド2021A」、「セロキサイド2021P」、「セロキサイド2080」、「セロキサイド2081」、「セロキサイド2083」、「セロキサイド2085」、「エポリードGT300」、「エポリードGT301」、「エポリードGT302」、「エポリードGT400」、「エポリードGT401」及び「エポリードGT403」;ダウ・ケミカル日本株式会社製の「サイラキュアUVR−6105」、「サイラキュアUVR−6107」、「サイラキュアUVR−6110」、「サイラキュアUVR−6128」、「ERL4289」及び「ERL4299」などを用いることができる。また、公知のオキセタン化合物(例えば、特開2009−40830等に記載のオキセタン化合物)を使用することもできる。
ビニルエーテル化合物としては、2−ヒドロキシエチルビニルエーテル、トリエチレングリコールビニルモノエーテル、テトラエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
また、本実施形態における光重合性化合物として、特開2013−182215号公報の段落0042〜0049に記載の光重合性化合物を用いることもできる。
光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、10質量%以下、又は3質量%以下であってよい。
光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよい。光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、20質量部以下であってもよい。
(光重合開始剤)
インク組成物は、光重合開始剤を含有してよい。光重合開始剤は、例えば光ラジカル重合開始剤又は光カチオン重合開始剤である。光ラジカル重合開始剤としては、例えば、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤を用いることができる。
分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド、(2,4,6−トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が挙げられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1−ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン及び2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オンを併用してもよい。
水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4−フェニルベンゾフェノン、イソフタルフェノン、4−ベンゾイル−4’−メチル−ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。
光カチオン重合開始剤として市販品を用いることもできる。市販品としては、サンアプロ社製の「CPI−100P」等のスルホニウム塩系光カチオン重合開始剤、BASF社製の「Lucirin TPO」等のアシルフォスフィンオキサイド化合物、BASF社製の「Irgacure 907」、「Irgacure 819」、「Irgacure 379EG」「、Irgacure 184」及び「Irgacure PAG290」などが挙げられる。
光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよく、3質量部以上であってもよく、5質量部以上であってもよい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。
(熱硬化性樹脂)
インク組成物は、熱硬化性樹脂を含有してよい。本実施形態において、熱硬化性樹脂とは、熱により架橋し硬化する樹脂である。熱硬化性樹脂は、例えば、硬化物中においてバインダーとして機能する樹脂である。熱硬化性樹脂は、硬化性基を有する。硬化性基としては、エポキシ基、オキセタン基、イソシアネート基、アミノ基、カルボキシル基、メチロール基等が挙げられ、インク組成物の硬化物の耐熱性及び保存安定性に優れる観点、及び、遮光部(例えばブラックマトリックス)及び基材への密着性に優れる観点から、エポキシ基が好ましい。熱硬化性樹脂は、1種の硬化性基を有していてもよく、二種以上の硬化性基を有していてもよい。
なお、熱硬化性樹脂の中には、光ラジカル重合性を有する(光ラジカル重合開始剤と共に用いられた場合に光の照射によって重合する)樹脂、及び、光カチオン重合性を有する(光カチオン重合開始剤と共に用いられた場合に光の照射によって重合する)樹脂が含まれる。インク組成物が、光ラジカル重合性を有する熱硬化性樹脂及び光ラジカル重合開始剤を含有する場合、その光ラジカル重合性を有する熱硬化性樹脂は光ラジカル重合性化合物(光重合性化合物)に分類されるものとする。インク組成物が、光カチオン重合性を有する熱硬化性樹脂及び光カチオン重合開始剤を含有する場合、その光カチオン重合性を有する熱硬化性樹脂は光カチオン重合性化合物(光重合性化合物)に分類されるものとする。
熱硬化性樹脂は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、熱硬化性樹脂は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。
熱硬化性樹脂としては、1分子中に熱硬化性基を2個以上有する化合物が用いられ、通常、硬化剤と組み合わせて用いられる。熱硬化性樹脂を用いる場合、熱硬化反応を促進できる触媒(硬化促進剤)を更に添加してもよい。言い換えれば、インク組成物は、熱硬化性樹脂(並びに、必要に応じて用いられる硬化剤及び硬化促進剤)を含む熱硬化性成分を含有していてよい。また、これらに加えて、それ自体は重合反応性のない重合体を更に用いてもよい。
1分子中に熱硬化性基を2個以上有する化合物として、例えば、1分子中にエポキシ基を2個以上有するエポキシ樹脂(以下、「多官能エポキシ樹脂」ともいう。)を用いてよい。「エポキシ樹脂」には、モノマー性エポキシ樹脂及びポリマー性エポキシ樹脂の両方が含まれる。多官能性エポキシ樹脂が1分子中に有するエポキシ基の数は、2〜50個であってよく、2〜20個であってよい。エポキシ基は、オキシラン環構造を有する構造であればよく、例えば、グリシジル基、オキシエチレン基、エポキシシクロヘキシル基等であってよい。エポキシ樹脂としては、カルボン酸により硬化しうる公知の多価エポキシ樹脂を挙げることができる。このようなエポキシ樹脂は、例えば、新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社刊(昭和62年)等に広く開示されており、これらを用いることが可能である。
エポキシ基を有する熱硬化性樹脂(多官能エポキシ樹脂を含む)としては、オキシラン環構造を有するモノマーの重合体、オキシラン環構造を有するモノマーと他のモノマーとの共重合体が挙げられる。具体的な多官能エポキシ樹脂としては、ポリグリシジルメタクリレート、メチルメタクリレート−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、n−ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、スチレン−グリシジルメタクリレート等が挙げられる。また、本実施形態の熱硬化性樹脂として、特開2014−56248号公報の段落0044〜0066の記載の化合物を用いることもできる。
また、多官能エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、3官能型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA含核ポリオール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリオキザール型エポキシ樹脂、脂環型エポキシ樹脂、複素環型エポキシ樹脂などを使用できる。
より具体的には、商品名「エピコート828」(ジャパンエポキシレジン社製)などのビスフェノールA型エポキシ樹脂、商品名「YDF−175S」(東都化成社製)などのビスフェノールF型エポキシ樹脂、商品名「YDB−715」(東都化成社製)などの臭素化ビスフェノールA型エポキシ樹脂、商品名「EPICLON EXA1514」(DIC株式会社製)などのビスフェノールS型エポキシ樹脂、商品名「YDC−1312」(東都化成社製)などのハイドロキノン型エポキシ樹脂、商品名「EPICLON EXA4032」、「HP−4770」、「HP−4700」、「HP−5000」(DIC株式会社製)などのナフタレン型エポキシ樹脂、商品名「エピコートYX4000H」(ジャパンエポキシレジン社製)などのビフェニル型エポキシ樹脂、商品名「エピコート157S70」(ジャパンエポキシレジン社製)などのビスフェノールA型ノボラック系エポキシ樹脂、商品名「エピコート154」(ジャパンエポキシレジン社製)、商品名「YDPN−638」(東都化成社製)などのフェノールノボラック型エポキシ樹脂、商品名「YDCN−701」(東都化成社製)などのクレゾールノボラック型エポキシ樹脂、商品名「EPICLON HP−7200」、「HP−7200H」(DIC株式会社製)などのジシクロペンタジエンフェノール型エポキシ樹脂、商品名「エピコート1032H60」(ジャパンエポキシレジン社製)などのトリスヒドロキシフェニルメタン型エポキシ樹脂、商品名「VG3101M80」(三井化学社製)などの3官能型エポキシ樹脂、商品名「エピコート1031S」(ジャパンエポキシレジン社製)などのテトラフェニロールエタン型エポキシ樹脂、商品名「デナコールEX−411」(ナガセ化成工業社製)などの4官能型エポキシ樹脂、商品名「ST−3000」(東都化成社製)などの水添ビスフェノールA型エポキシ樹脂、商品名「エピコート190P」(ジャパンエポキシレジン社製)などのグリシジルエステル型エポキシ樹脂、商品名「YH−434」(東都化成社製)などのグリシジルアミン型エポキシ樹脂、商品名「YDG−414」(東都化成社製)などのグリオキザール型エポキシ樹脂、商品名「エポリードGT−401」(ダイセル化学社製)などの脂環式多官能エポキシ化合物、トリグリシジルイソシアネート(TGIC)などの複素環型エポキシ樹脂などを例示することができる。また、必要であれば、エポキシ反応性希釈剤として、商品名「ネオトートE」(東都化成社製)などを混合することができる。
また、多官能エポキシ樹脂としては、DIC株式会社製の「ファインディックA−247S」、「ファインディックA−254」、「ファインディックA−253」、「ファインディックA−229−30A」、「ファインディックA−261」、「ファインディックA249」、「ファインディックA−266」、「ファインディックA−241」「ファインディックM−8020」、「EPICLON N−740」、「EPICLON N−770」、「EPICLON N−865」、「EPICLON EXA−4850−150」(商品名)等を用いることができる。
熱硬化性樹脂の重量平均分子量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、750以上であってよく、1000以上であってもよく、2000以上であってよい。インクジェットインクとしての適正な粘度とする観点から、500000以下であってよく、300000以下であってもよく、200000以下であってもよい。ただし、架橋後の分子量に関してはこの限りでない。
熱硬化性樹脂の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、5質量部以上であってよく、10質量部以上であってよく、15質量部以上であってもよく、20質量部以上であってもよい。熱硬化性樹脂の含有量は、インク組成物の粘度が高くなりすぎず、画素部の厚さが光変換機能に対して厚くなりすぎない観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、20質量部以下であってもよい。
[硬化剤]
熱硬化性樹脂を硬化させるために用いられる硬化剤としては、例えば、酸無水物、フェノール系化合物、アミン系化合物等が挙げられる。これらの硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化剤は、酸無水物、フェノール系化合物及びアミン系化合物からなる群より選択される少なくとも1種を含んでいてよい。また、エポキシ樹脂を熱硬化性樹脂として用いる場合、オニウム塩類、有機金属錯体、3級アミン、イミダゾール類等を用いて自己重合させてもよい。
酸無水物(酸無水物系硬化剤)としては、4−メチルシクロヘキサン−1,2−ジカルボン酸無水物(4M−HHPA)、3−メチルシクロヘキサン−1,2−ジカルボン酸無水物、シクロヘキサン−1,2−ジカルボン酸無水物、1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、メチル−3,6 エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、3,6 エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸等が挙げられる。
フェノール系化合物(フェノール系硬化剤)としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール、ハイドロキノン、フルオレンビスフェノール、4,4’−ビフェノール、4,4’,4”−トリヒドロキシトリフェニルメタン、ナフタレンジオール、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、カリックスアレーン、ノボラック型フェノール樹脂(例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ビスフェノールSノボラック樹脂、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ナフトールノボラック樹脂、並びに、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物))、アラルキル型フェノール樹脂(例えば、ザイロック樹脂等のフェノールアラルキル樹脂及びナフトールアラルキル樹脂)、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミン等でフェノール核が連結された多価フェノール化合物)などの多価フェノール化合物などが挙げられる。外部量子効率の向上効果に優れる観点から、フェノール系化合物は、ノボラック型フェノール樹脂を含んでいてよい。ノボラック型フェノール樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂及びビスフェノールAノボラック樹脂を用いてよい。
ノボラック型フェノール樹脂の具体例としては、DIC株式会社製の「PHENOLITE TD−2131」、「PHENOLITE TD−2090」(商品名)、日本化薬株式会社製の「GPH−65」、「GPH−103」(商品名)等が挙げられる。
アミン系化合物(アミン系硬化剤)としては、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ペンタエチレンヘキサミンなどの脂肪族ポリアミン類、メタキシリレンジアミン、ジアミノジフェニルメタン、フェニレンジアミンなどの芳香族ポリアミン類、1,3−ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルナンジアミンなどの脂環族ポリアミン類等、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂が挙げられる。
硬化剤は、インク組成物の硬化物の外部量子効率の耐熱性の観点から、酸無水物系硬化剤であってよく、インク組成物の硬化物の硬化性及びインク組成物の粘度安定性の観点から、フェノール系硬化剤であってよい。
硬化剤の含有量は、例えば、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよく、1質量部以上であってよく、3質量部以上であってもよい。
(硬化促進剤(硬化触媒))
熱硬化性樹脂を硬化させるために用いられる硬化促進剤(硬化触媒)としては、例えば、リン系化合物、第3級アミン化合物、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。リン系化合物としては、例えばトリフェニルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、メチルトリブチルホスホニウムアイオダイドが挙げられる。第3級アミン化合物としては、例えばN,N−ジメチルベンジルアミン、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、1,5−ジアザビシクロ(4,3,0)ノネン−5、トリス(ジメチルアミノメチル)フェノールが挙げられる。イミダゾール化合物としては、例えば1−シアノエチル−2−エチル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾールが挙げられる。
熱硬化性樹脂は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であってよい。熱硬化性樹脂がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における熱硬化性樹脂の溶解量が、熱硬化性樹脂の全質量を基準として、30質量%以下であることを意味する。熱硬化性樹脂の上記溶解量は、10質量%以下、又は3質量%以下であってよい。
本実施形態において、インク組成物は、光重合性化合物及び熱硬化性樹脂のうちの少なくとも一方を含有してよく、光重合性化合物及び熱硬化性樹脂の両方を含有していてもよい。インク組成物は、光重合性化合物を含有する場合、熱硬化性樹脂を含有しなくてよい。また、インク組成物は、熱硬化性樹脂を含有する場合、光重合性化合物を含有しなくてよい。発光性ナノ結晶粒子(例えば量子ドット)を含有するインク組成物の保存安定性、及び、画素部(インク組成物の硬化物)の耐久性(湿熱安定性等)の観点では、光重合性化合物及び熱硬化性樹脂のうち、熱硬化性樹脂を用いてよく、発光性ナノ結晶粒子(例えば量子ドット)を含有するインク組成物の保存安定性、及び量子ドットの加熱による劣化を受けにくい低温での硬化が可能となる観点では、光ラジカル重合性化合物を用いてよく、硬化プロセスにおける酸素阻害を受けることなく画素部(インク組成物の硬化物)を形成できる観点では、光カチオン重合性化合物を用いてよい。
インク組成物が光重合性化合物及び熱硬化性樹脂を含む場合、光重合性化合物及び熱硬化性樹脂の含有量の合計は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、3質量部以上であってよく、5質量部以上であってもよく、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよい。また、光重合性化合物及び熱硬化性樹脂の含有量の合計は、インク組成物の粘度が高くなりすぎず、画素部の厚さが光変換機能に対して厚くなりすぎない観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、40質量部以下であってもよく、20質量部以下であってもよい。
[光散乱性粒子]
インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性(例えば外部量子効率)を得ることができる。
光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウム及びシリカからなる群より選択される少なくとも1種を含んでいてよく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選択される少なくとも1種を含んでいてよい。
光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高めることができ、優れた吐出安定性を得ることができる点で好ましい。
インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、0.05μm(50nm)以上であってよく、0.2μm(200nm)以上であってもよく、0.3μm(300nm)以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm(1000nm)以下であってもよく、0.6μm(600nm)以下であってもよく、0.4μm(400nm)以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05〜1.0μm、0.05〜0.6μm、0.05〜0.4μm、0.2〜1.0μm、0.2〜0.6μm、0.2〜0.4μm、0.3〜1.0μm、0.3〜0.6μm、又は0.3〜0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、0.05μm以上であってよく、1.0μm以下であってもよい。本明細書中、インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
インク組成物における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であってよく、1質量部以上であってもよく、3質量部以上であってもよい。光散乱性粒子の含有量は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、15質量部以下であってもよい。
インク組成物の全質量を基準とする光散乱性粒子の含有量は、画素部の外部量子効率をより向上させる観点から、3質量%以上、4質量%以上又は7質量%以上であってもよい。インク組成物の全質量を基準とする光散乱性粒子の含有量は、画素部の外部量子効率をより向上させる、及び、吐出安定性をより向上させる観点から、20質量%以下、18質量%以下又は15質量%以下であってもよい。
発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果に優れる観点から、0.1以上であってよく、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果により優れ、インクジェット印刷時の連続吐出性(吐出安定性)に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。
インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以上、25質量部以上、又は30質量部以上であってよい。インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、75質量部以下、65質量部以下、又は55質量部以下であってよい。
[高分子分散剤]
インク組成物は、高分子分散剤を更に含有してよい。高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物である。高分子分散剤は、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子をインク組成物中に分散させる。インク組成物が高分子分散剤を含む場合、光散乱性粒子の含有量を比較的多くした場合(例えば60質量%程度とした場合)であっても光散乱性粒子を良好に分散させることができる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していてよいが、発光性ナノ結晶粒子の表面に結合して発光性ナノ結晶粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。
酸性官能基としては、カルボキシル基(−COOH)、スルホ基(−SOH)、硫酸基(−OSOH)、ホスホン酸基(−PO(OH))、リン酸基(−OPO(OH))、ホスフィン酸基(−PO(OH)−)、メルカプト基(−SH)、が挙げられる。
塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。
非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(−SO−)、スルホニル基(−SO−)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。
高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、ポリイミドなどであってよい。
高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK−シリーズ、BASF社製のEfkaシリーズ等を使用することができる。
[有機溶剤]
インク組成物は有機溶剤を更に含有してよい。有機溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4−ブタンジオールジアセテート、グリセリルトリアセテート等が挙げられる。
有機溶剤の沸点は、インクジェットインクの連続吐出安定性の観点から、例えば、150℃以上、又は180℃以上である。また、画素部の形成時には、インク組成物の硬化前にインク組成物から溶剤を除去する必要があるため、有機溶剤を除去しやすい観点から、有機溶剤の沸点は300℃以下であってよい。
有機溶剤は、沸点が150℃以上のアセテート化合物を含んでいてよい。この場合、発光性ナノ結晶粒子と溶剤との間の親和性が向上し、発光性ナノ結晶粒子が優れた発光特性を発揮し得る。沸点が150℃以上のアセテート化合物の具体例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等のモノアセテート化合物、1,4−ブタンジオールジアセテート、プロピレングリコールジアセテート等のジアセテート化合物、グリセリルトリアセテート等のトリアセテート化合物などが挙げられる。
本実施形態のインク組成物では光重合性化合物が分散媒としても機能するため、無溶剤で光散乱性粒子及び発光性ナノ結晶粒子を分散させることが可能である。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる利点を有する。
インク組成物は、上述した成分以外の成分(例えば亜リン酸トリエステル化合物、酸化防止剤、有機亜鉛化合物等)を更に含有してもよい。
以上説明したインク組成物のインクジェット印刷時のインク温度(例えば25℃又は40℃)における粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上であってよく、5mPa・s以上であってもよく、7mPa・s以上であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、20mPa・s以下であってよく、15mPa・s以下であってもよく、12mPa・s以下であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、例えば、2〜20mPa・s、2〜15mPa・s、2〜12mPa・s、5〜20mPa・s、5〜15mPa・s、5〜12mPa・s、7〜20mPa・s、7〜15mPa・s、又は7〜12mPa・sであってもよい。本明細書中、インク組成物の粘度は、例えば、E型粘度計によって測定される粘度である。
インク組成物のインクジェット印刷時のインク温度における粘度が2mPa・s以上でである場合、吐出ヘッドのインク吐出孔の先端におけるインクジェットインクのメニスカス形状が安定するため、インクジェットインクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、インク組成物のインクジェット印刷時のインク温度における粘度が20mPa・s以下である場合、インク吐出孔からインクジェットインクを円滑に吐出させることができる。
インク組成物の表面張力は、インクジェット方式に適した表面張力であってよく、具体的には、20〜40mN/mの範囲、又は25〜35mN/mであってよい。表面張力を当該範囲とすることで吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易になると共に、飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以上である場合、インク吐出孔周辺部がインクジェットインクで汚染することが防げるため、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。
本実施形態のインク組成物をインクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用してよい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、期待した通りの発光特性がより容易に得られやすい。
以上、インクジェット用インク組成物の一実施形態について説明したが、上述した実施形態のインクジェット用インク組成物は、インクジェット方式の他に、例えば、フォトリソグラフィ方式で用いることもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有する。
インク組成物をフォトリソグラフィ方式で用いる場合、まず、インク組成物を基材上に塗布し、更にインク組成物を乾燥させて塗布膜を形成する。このようにして得られる塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることでパターニングされる。この際、アルカリ現像液は、現像液の廃液処理の容易さ等の観点から、水溶液であることが大半を占めるため、インク組成物の塗布膜は水溶液で処理されることとなる。一方、発光性ナノ結晶粒子(量子ドット等)を用いたインク組成物の場合、発光性ナノ結晶粒子が水に対して不安定であり、発光性(例えば蛍光性)が水分により損なわれる。このため本実施形態においては、アルカリ現像液(水溶液)で処理する必要のない、インクジェット方式であってよい。
また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収しやすくなるため、時間が経過するにつれて発光性ナノ結晶粒子(量子ドット等)の発光性(例えば蛍光性)が損なわれてゆく。この観点から、本実施形態においては、インク組成物の塗布膜はアルカリ不溶性であってよい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であってよい。このようなインク組成物は、光重合性化合物及び熱硬化性樹脂として、アルカリ不溶性の光重合性化合物及び熱硬化性樹脂を用いることにより得ることができる。インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。インク組成物の塗布膜の上記溶解量は、10質量%以下、又は3質量%以下であってよい。なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認できる。
<インク組成物の製造方法>
上述した実施形態のインク組成物は、例えば、上述したインク組成物の構成成分(発光性ナノ結晶粒子(例えば有機リガンドを有する発光性ナノ結晶粒子)と、光重合性化合物及び/又は熱硬化性樹脂と、その他の任意成分)を混合する工程を備える。インク組成物の製造方法は、上記構成成分の混合物の分散処理を行う工程を更に備えてよい。以下では、一例として、光散乱性粒子を含有するインク組成物の製造方法を説明する。
光散乱性粒子を含有するインク組成物の製造方法は、例えば、光散乱性粒子を含有する、光散乱性粒子の分散体を用意する第1の工程と、光散乱性粒子の分散体及び発光性ナノ結晶粒子を混合する第2の工程と、を備える。光散乱性粒子の分散体は、高分子分散剤を更に含んでいてよい。この方法では、光散乱性粒子の分散体が光重合性化合物及び/又は熱重合性樹脂を更に含有してよく、第2の工程において、光重合性化合物及び/又は熱重合性樹脂を更に混合してもよい。上記方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。
光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、場合により、高分子分散剤と、光重合性化合物及び/又は熱重合性樹脂とを混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いてよい。発光性ナノ結晶粒子と光散乱性粒子とを混合する前に光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより充分に分散させることができる。
インク組成物の製造方法は、第2の工程の前に、発光性ナノ結晶粒子と、光重合性化合物及び/又は熱重合性樹脂と、を含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する。発光性ナノ結晶粒子の分散体を用意する工程では、発光性ナノ結晶粒子と、光重合性化合物及び/又は熱重合性樹脂と、を混合し、分散処理を行うことにより発光性ナノ結晶粒子分散体を調製してよい。発光性ナノ結晶粒子としては、その表面に有機リガンドを有する発光性ナノ結晶粒子を用いてよい。すなわち、発光性ナノ結晶粒子分散体は、有機リガンドを更に含んでいてもよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。発光性ナノ結晶粒子の分散性が良好となり、発光性ナノ結晶粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル、ペイントコンディショナー又はジェットミルを用いてよい。この方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。
この製造方法において、酸化防止剤、亜リン酸トリエステル、有機溶媒等の他の成分を用いる場合、これらの成分は、発光性ナノ結晶粒子分散体に含有させてもよく、光散乱性粒子分散体に含有させてもよく、発光性ナノ結晶粒子分散体と光散乱性粒子分散体とを混合して得られる組成物に混合してもよい。
<インク組成物の輸送及び/又は貯蔵デバイス>
上述した容器は、インク組成物の輸送及び/又は貯蔵デバイスとして用いることができる。当該デバイスは、インク組成物を輸送及び/又は貯蔵するために用いられる。
図2は、上述した容器を備える、インク組成物の輸送及び/又は貯蔵デバイス(以下、「輸送及び/又は貯蔵デバイス」ともいう。)の一実施形態を示す模式図である。図2に示す輸送及び/又は貯蔵デバイス100は、容器10と、容器10に接続された材料ライン20及びガスライン21と、を備えている。
材料ライン20は、容器本体1との接続部5を介して容器本体1内の浸漬管3と接続されている。インク組成物は、材料ライン20と浸漬管3とを介して導入(充填)及び回収される。材料ライン20には、弁40を有しており、弁40によりインク組成物の流量の調節を行うことができる。インク組成物の導入及び回収は、材料ライン20及び浸漬管3を介して、圧力、ポンプ輸送等を利用して実施することができる。
材料ライン20にはインク組成物に含まれ得る汚染物(例えば、粒子、水、水蒸気)を除去するフィルターユニット30が設けられている。これにより、インク組成物を容器本体1内へ導入する際に、又はインク組成物を回収する際に、汚染物を除去することができる。フィルターユニット30は、例えば、フィルター又はこれと同等の器具を1又は2以上有する装置である。フィルターとしては、当業者に知られているもの、例えば商業的に入手できるメンブランフィルターまたはカートリッジフィルターを用いることができる。複数のフィルターを組み合わせたフィルターユニットを用いることもできる。フィルターユニット30による汚染物の除去は、例えば、ポンプと組み合わせて行うことができる。
容器本体1は、完全に、ほぼ完全に、又は容積の90%を超える程度まで、インク組成物で満たしてよい。インク組成物を充填した容器本体1内におけるインク組成物が存在しない空間は保護ガスで満たしてよい。
ガスライン21により、容器本体1内に保護ガスが導入される。保護ガスとしては、例えば、アルゴン又は窒素が挙げられる。ガスライン21は、保護ガスを供給するガス供給ライン21aと、容器本体1内のガスを排気するガス排気ライン21bとを有している。ガス供給ライン21a及びガス排気ライン21bそれぞれには、保護ガスの流量を調節可能とする弁41,42が設けられている。ガス供給ライン21a及びガス排気ライン21bそれぞれは、外部装置との接続部51,52を介して、外部装置と接続可能に構成されている。
容器本体1内にインク組成物を導入及び/又は回収する際には、ガスライン21を介して、保護ガスを導入して、容器本体1内を加圧下にしてよい。ガスライン21を介して、容器本体1内の送気(掃気)、容器本体1内の圧力の均等化等を行うこともできる。ガスライン21には、フィルターユニットが設けられていてもよい。インク組成物は、容器本体1内で、脱ガスしてもよい。脱ガスは、例えば、容器本体1内を真空にし、その後、保護ガスを導入する操作を1回または2回以上繰り返すことにより実施することができる。
材料ライン20及びガスライン21に設けられている弁は、ガス、インク組成物の供給、回収等の調節を可能とする流量調節弁であり、例えば、膜弁である。
材料ライン20及びガスライン21は、剛性又は柔軟であることができる。材料ライン20及びガスライン21は、例えば、金属もしくはフッ素化プラスチック製のライン又は剛性を有するもしくは柔軟性を有するラインであることができる。
容器本体1内にインク組成物を導入した後に、容器本体1内に添加剤(または補助剤)を更に導入してもよい。これにより、詰める、輸送する、貯蔵する、回収する等の種々の段階におけるインク組成物の特性を調整することが容易になる。添加剤の例としては、安定剤、阻害剤、界面活性物質、可塑剤、湿潤剤、分散補助剤、流動制御剤、粘度低下剤、疎水化剤、接着剤、流動剤、消泡剤、脱気若しくは脱ガス剤、シンナー、又は染料が挙げられる。添加剤の混合量は、例えば、天秤、または充填レベル表示ユニット等の測定装置により監視することができる。
輸送及び/又は貯蔵デバイス100では、インク組成物の原料と、必要に応じ、添加剤とを容器本体1内に、任意の順番で、又は同時に導入することで、容器本体1内でインク組成物を直接製造することもできる。インク組成物の均一性を改善する観点から、容器10は、必要に応じて、混合に適する機器(例えば攪拌機)を備えることができる。インク組成物の原料を供給するシステム(原料供給システム)と、必要に応じて、添加剤を供給するシステム(添加剤供給システム)とを、任意の順番で、又は同時に、撹拌機を有する容器に接続し、容器本体1内に、インク組成物の原料と、場合により添加剤とを供給し、混合することができる。原料供給システム及び添加剤供給システムは可動可能に構成されていてもよい。
輸送及び/又は貯蔵デバイス100には、インク組成物の量を調節または測定する1又は2以上の流量計が設けられていてよい。
容器10は、使用後に、補修、洗浄等を行うことにより、再使用可能となる。これにより、無駄のない循環システムが形成されるようにすることができる。容器10の洗浄は、例えば、1種または2種以上の好適な洗浄剤で予め洗浄し、その後高温水、及び、必要に応じて1種または2種以上の洗浄剤で機械洗浄し、脱イオン水または脱塩水で更に洗浄し、乾燥することにより実施してよい。有機溶媒又は他の物質を洗浄のために更に用いることもできる。
<インク組成物を詰め、更に輸送し、及び/又は貯蔵する方法>
上述した容器10は、インク組成物を詰め、更に輸送及び/又は貯蔵する方法に用いることができる。
一実施形態における、インク組成物を詰め、更に輸送及び/又は貯蔵する方法は、発光性ナノ結晶粒子を含有するインク組成物を容器10の容器本体1内に導入し、その後、容器を密閉する方法である。当該方法において、容器10は、容器本体1内の表面を処理(電解研磨による処理)された容器を好適に用いることができる。当該方法において、インク組成物を容器10の容器本体1内に導入した後、容器本体1内の空気を保護ガスで置換してもよい。
以上、容器並びに輸送及び/又は貯蔵デバイスの一実施形態について説明したが、本発明は上記実施形態に限定されない。
上記実施形態では、容器本体1は、第1の収容部材1aと、第2の収容部材1bとから構成されているが、他の実施形態では、第1の収容部材を設けず、インク組成物を収容する第2の収容部材から構成されるものであってよい。上記実施形態では、容器10は、1つの浸漬管3を備えているが、容器10は浸漬管3を備えていなくてもよく、また、2つ以上の浸漬管を備えていてもよい。また、他の実施形態では、容器10は側板を備えていなくてもよい。
上記実施形態では、輸送及び/又は貯蔵デバイス100のガスライン21は、分岐を有しているが、他の実施形態では、ガスラインは分岐を有していなくてもよく、更なる分岐を有していてもよい。また、他の実施形態では、輸送及び/又は貯蔵デバイス100において、ガスライン、及び材料ライン以外のラインが1又は2以上設けられていてよい。他の実施形態では、輸送及び/又は貯蔵デバイス100は、弁(流量調節弁)が更に設けられていてもよい。
以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお、実施例で用いた材料は全て、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものを用いた。酸化チタンについては、混合前に、1mmHgの減圧下、4時間、175℃で加熱し、アルゴンガス雰囲気下で放冷したものを用いた。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水して用いた。
<容器の準備>
・容器A(材質:ガラス、褐色ボトル、製品名:DURAN(登録商標)瓶、SCHOTT社製)
・容器B(材質:高密度ポリエチレン、黒色ボトル、製品名:JKボトル、アズワン株式会社製)
・容器C(材質:ポリプロピレン、透明ボトル、製品名:アイボーイ、アズワン株式会社製)
・容器D(材質:ガラス、透明ボトル、製品名:SV−50A、日電理化硝子株式会社製)
<光重合性化合物の用意>
[(メタ)アクリレート化合物]
・HDDA(1,6−ヘキサンジオールジアクリレート、大阪有機化学工業株式会社製、商品名:ビスコート#230)
<赤色発光性のInP/ZnSeS/ZnSナノ結晶粒子分散体の準備>
[ラウリン酸インジウム溶液の調製]
1−オクタデセン(ODE)10g、酢酸インジウム146mg(0.5mmol)及びラウリン酸300mg(1.5mmol)を反応フラスコに添加し混合物を得た。真空下において混合物を140℃にて2時間加熱することで透明な溶液(ラウリン酸インジウム溶液)を得た。この溶液は、必要になるまで室温でグローブボックス中に維持した。なお、ラウリン酸インジウムは室温では溶解性が低く沈殿しやすいため、ラウリン酸インジウム溶液を使用する際は、当該溶液(ODE混合物)中の沈殿したラウリン酸インジウムを約90℃に加熱して透明な溶液を形成した後、所望量を計量して用いた。
[赤色発光性ナノ結晶粒子のコア(InPコア)の作製]
トリオクチルホスフィンオキサイド(TOPO)5g、酢酸インジウム1.46g(5mmol)及びラウリン酸3.16g(15.8mmol)を反応フラスコに添加し混合物を得た。窒素(N)環境下において混合物を160℃にて40分間加熱した後、真空下で250℃にて20分間加熱した。次いで、反応温度(混合物の温度)を窒素(N)環境の下で300℃に昇温した。この温度で、1−オクタデセン(ODE)3gとトリス(トリメチルシリル)ホスフィン0.25g(1mmol)との混合物を反応フラスコに迅速に導入し、反応温度を260℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml及びエタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行いInPナノ結晶粒子を沈殿させた後、上澄みの傾瀉によってInPナノ結晶粒子を得た。次いで、得られたInPナノ結晶粒子をヘキサンに分散させた。これにより、InPナノ結晶粒子を5質量%含有する分散液(ヘキサン分散液)を得た。
上記で得られたInPナノ結晶粒子のヘキサン分散液、及びラウリン酸インジウム溶液を反応フラスコに仕込み、混合物を得た。InPナノ結晶粒子のヘキサン分散液及びラウリン酸インジウム溶液の仕込量は、それぞれ、0.5g(InPナノ結晶粒子が25mg)、5g(ラウリン酸インジウムが178mg)となるように調整した。真空下、室温にて混合物を10分間静置した後、窒素ガスでフラスコ内を常圧に戻し、混合物の温度を230℃に上げ、その温度で2時間保持してヘキサンをフラスコ内部から除去した。次いで、フラスコ内温を250℃まで昇温し、1−オクタデセン(ODE)3g及びトリス(トリメチルシリル)ホスフィン0.03g(0.125mmol)の混合物を反応フラスコに迅速に導入し、反応温度を230℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml、エタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行い、赤色発光性InP/ZnSeS/ZnSナノ結晶粒子のコアとなる、InPナノ結晶粒子(InPコア)を沈殿させた後、上澄みの傾瀉によって、InPナノ結晶粒子(InPコア)を得た。次いで、得られたInPナノ結晶粒子(InPコア)をヘキサンに分散させて、InPナノ結晶粒子(InPコア)を5質量%含有する分散液(ヘキサン分散液)を得た。
[赤色発光性ナノ結晶粒子のシェル(ZnSeS/ZnSシェル)の形成]
上記で得られたInPナノ結晶粒子(InPコア)のヘキサン分散液を反応フラスコに2.5g加えた後、室温にて、オレイン酸0.7gを反応フラスコに添加し、温度を80℃に上げて2時間保持した。次いで、この反応混合物中に、ODE1mlに溶解したジエチル亜鉛14mg、ビス(トリメチルシリル)セレニド8mg及びヘキサメチルジシラチアン7mg(ZnSeS前駆体溶液)を滴下し、200℃に昇温して10分保持することによって、厚さが0.5モノレイヤーのZnSeSシェルを形成させた。
次いで、温度を140℃に上げ、30分間保持した。次に、この反応混合物中に、ODE2mlにジエチル亜鉛69mg及びヘキサメチルジシラチアン66mgを溶解させて得られたZnS前駆体溶液を滴下し、温度を200℃に上げて30分保持することにより、厚さ2モノレイヤーのZnSシェルを形成させた。ZnS前駆体溶液の滴下の10分後に、ヒーターの除去により反応を停止させた。次いで、反応混合物を室温に冷却し、得られた白色沈殿物を遠心分離によって除去することにより、赤色発光性InP/ZnSeS/ZnSナノ結晶粒子が分散した透明なナノ結晶粒子分散液(InP/ZnSeS/ZnSナノ結晶粒子のODE分散液)を得た。
[InP/ZnSeS/ZnSナノ結晶粒子用の有機リガンドの合成]
(有機リガンドの合成)
ポリエチレングリコール|average Mn400|(Sigma−Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、そこにポリエチレングリコール|average Mn400|と等モル量の無水コハク酸(Sigma−Aldrich社製)を添加した。フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の粘稠な油状物として下記式(A)で表される有機リガンドを得た。
Figure 2021017260
[リガンド交換による赤色発光性InP/ZnSeS/ZnSナノ結晶粒子分散体の作製]
上記有機リガンド30mgを上記で得られたInP/ZnSeS/ZnSナノ結晶粒子のODE分散液1mlに添加した。次いで、90℃で5時間加熱することによりリガンド交換を行った。リガンド交換の進行に伴い、ナノ結晶粒子の凝集が見られた。リガンド交換終了後、上澄みの傾瀉を行い、ナノ結晶粒子を得た。次いで、得られたナノ結晶粒子にエタノール3mlを加え、超音波処理して再分散させた。得られたナノ結晶粒子のエタノール分散液3mLにn−ヘキサン10mlを添加した。続いて、遠心分離を行いナノ結晶粒子を沈殿させた後、上澄みの傾瀉及び真空下での乾燥によってナノ結晶粒子(上記有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を得た。有機リガンドで修飾されたナノ結晶粒子全量に占める有機リガンドの含有量は27.7質量%であった。得られたナノ結晶粒子(上記有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を、分散体中の含有量が50質量%となるように、HDDA中に分散させることにより、赤色発光性ナノ結晶粒子の分散体(QD分散体)を得た。
<光散乱性粒子分散体の準備>
アルゴンガスで満たした容器内で、酸化チタン(商品名:CR−60−2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を33.0gと、高分子分散剤(商品名:アジスパーPB−821、味の素ファインテクノ株式会社製)を1.0gと、HDDAを26.0g混合した後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体(酸化チタン含有量:55質量%)を得た。
[赤色インク組成物(インクジェットインク)の調製]
発光性ナノ結晶粒子分散体を7.0gと、光散乱性粒子分散体を0.9gと、光重合開始剤(フェニル(2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(IGM resin社製、商品名:Omnirad TPO))を0.3gと、亜リン酸エステル化合物(商品名:JPE−10、城北化学工業株式会社製)を0.3gと、HDDAを1.5gとをアルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。更に、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、インクジェットインクを得た。発光性ナノ結晶粒子、有機リガンド、光重合性化合物(HDDA)、並びに光散乱性粒子の合計含有量は、インクジェットインクの全質量を基準として100質量%であった。発光性ナノ結晶粒子及び有機リガンドの合計含有量は、発光性ナノ結晶粒子、有機リガンド、光重合性化合物(HDDA)、並びに光散乱性粒子の合計含有量100質量部に対して35質量部であった。
[品質評価]
容器A〜Dそれぞれの中にインク組成物10gを投入し、その後、容器に蓋をした。インク組成物を入れた容器を25℃、90%RHの空気中、蛍光灯下で、1カ月間保管した。保管後のインク組成物の塗膜の外部量子効率(EQE)の維持率及び平滑性並びにインクジェットインクの吐出安定性を以下に記載の方法で評価した。
<外部量量子効率(EQE)の維持率評価>
(外部量子効率評価用試料の作製)
保管前のインク組成物を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させて、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成した。これにより、評価用試料1を得た。同様に、保管後のインク組成物を用いることで、評価用試料2を得た。
(外部量子効率の測定)
面発光光源としてシーシーエス株式会社製の青色LED(ピーク発光波長:450nm)を用いた。測定装置は、大塚電子株式会社製の放射分光光度計(商品名「MCPD−9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。青色LEDと積分球との間に、作製した評価用試料を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
上記の測定装置で測定されるスペクトル及び照度より、以下のようにして外部量子効率を求めた。外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
EQE(%)=P1(Red)/E(Blue)×100
ここで、E(Blue)及びP1(Red)はそれぞれ以下を表す。
E(Blue):380〜490nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Red):500〜650nmの波長域における「照度×波長÷hc」の合計値を表す。
これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
(外部量子効率の維持率評価)
外部量子効率の維持率は、以下の式にて算出し、評価は以下に示す基準に基づいて実施した。
EQE維持率(%)=評価用試料2のEQE/評価用試料1のEQE×100A:95%以上
B:90%以上95%未満
C:90%以下
[平滑性の評価]
塗膜の平滑性の評価は、株式会社日立ハイテクサイエンス製の走査型白色干渉顕微鏡(商品名「VS1540」)にて、評価用試料2の算術平均高さSaを測定し、以下の基準に基づいて評価した。
A:算術平均高さSaが0.1μm未満
B:算術平均高さSaが0.1μm以上
<吐出安定性の評価>
保管後のインク組成物について、インクジェットプリンター(富士フイルムDimatix社製、商品名「DMP−2850」)を用いて吐出試験を実施した。吐出試験では、室温にてインク組成物を10分間連続で吐出させた。なお、本インクジェットプリンターのインクを吐出するヘッド部には16個のノズルが形成されており、1ノズル当たり、吐出一回あたりのインク組成物の使用量は10pLとした。実施例及び比較例のインク組成物の吐出安定性を以下の基準で評価した。
A:連続吐出可能(16個のノズル中、10ノズル以上で連続吐出可能)
B:連続吐出不可(16個のノズル中、連続吐出可能なノズル数が9ノズル以下)
インク組成物の品質の評価では、塗膜の外部量子効率(EQE)の維持率、塗膜の平滑性、及び吐出安定性の評価項目のすべてが評価A又はBであり、かつ、これらの評価項目のうちいずれか1以上が評価Aである場合、インク組成物の品質劣化を抑制されていると判断される。
Figure 2021017260
1…容器本体、1a…第1の収容部材、1b…第2の収容部材、10…容器。

Claims (7)

  1. 発光性ナノ結晶粒子を含有するインク組成物を詰め、更に輸送及び/又は貯蔵するために用いられる容器であって、
    光に対して不透過性を有する容器本体を備える、容器。
  2. 前記容器本体が、酸素及び水分に対して不透過性を有する、請求項1に記載の容器。
  3. 前記インク組成物が光重合性化合物を含有する、請求項1又は2に記載の容器。
  4. 前記インク組成物が光散乱性粒子を含有する、請求項1〜3のいずれか一項に記載の容器。
  5. 前記容器本体が有色である、請求項1〜4のいずれか一項に記載の容器。
  6. 前記容器本体がガラス製である、請求項1〜5のいずれか一項に記載の容器。
  7. 前記容器本体が、前記インク組成物を収容するプラスチック製の第1の収容部材と、前記第1の収容部材を収容する金属製の第2の収容部材と、から構成される、請求項1〜5のいずれか一項に記載の容器。

JP2019133419A 2019-07-19 2019-07-19 インク組成物容器 Pending JP2021017260A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133419A JP2021017260A (ja) 2019-07-19 2019-07-19 インク組成物容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133419A JP2021017260A (ja) 2019-07-19 2019-07-19 インク組成物容器

Publications (1)

Publication Number Publication Date
JP2021017260A true JP2021017260A (ja) 2021-02-15

Family

ID=74563509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133419A Pending JP2021017260A (ja) 2019-07-19 2019-07-19 インク組成物容器

Country Status (1)

Country Link
JP (1) JP2021017260A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145252A1 (ja) * 2020-12-28 2022-07-07 Dic株式会社 発光性ナノ結晶粒子含有インクの印刷方法、カラーフィルタ画素部の形成方法、及び、カラーフィルタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157361A (ja) * 2003-11-21 2005-06-16 Merck Patent Gmbh 液晶を詰め、輸送し、貯蔵し、回収するための方法およびシステム
WO2018124760A1 (ko) * 2016-12-28 2018-07-05 주식회사 엘지화학 양이온성 중합성 조성물의 포장 용기 및 이를 사용한 포장 방법
JP2019511426A (ja) * 2016-03-15 2019-04-25 メルク パテント ゲーエムベーハー 少なくとも1種の有機半導体を含む配合物を含む容器
JP2019086745A (ja) * 2017-11-10 2019-06-06 Dic株式会社 インク組成物、光変換層及びカラーフィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157361A (ja) * 2003-11-21 2005-06-16 Merck Patent Gmbh 液晶を詰め、輸送し、貯蔵し、回収するための方法およびシステム
JP2019511426A (ja) * 2016-03-15 2019-04-25 メルク パテント ゲーエムベーハー 少なくとも1種の有機半導体を含む配合物を含む容器
WO2018124760A1 (ko) * 2016-12-28 2018-07-05 주식회사 엘지화학 양이온성 중합성 조성물의 포장 용기 및 이를 사용한 포장 방법
JP2019086745A (ja) * 2017-11-10 2019-06-06 Dic株式会社 インク組成物、光変換層及びカラーフィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145252A1 (ja) * 2020-12-28 2022-07-07 Dic株式会社 発光性ナノ結晶粒子含有インクの印刷方法、カラーフィルタ画素部の形成方法、及び、カラーフィルタ

Similar Documents

Publication Publication Date Title
JP7020016B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP6927305B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP7196392B2 (ja) カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
JP7318225B2 (ja) カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
JP2020015895A (ja) インク組成物、光変換層及びカラーフィルタ
JP7087775B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP6933311B2 (ja) カラーフィルタ用インクジェットインク、光変換層及びカラーフィルタ
TWI782061B (zh) 墨水組成物及其製造方法、光轉換層及濾色器
JP7020015B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP6972656B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP2021017260A (ja) インク組成物容器
JP7103535B2 (ja) 光変換層形成用インク組成物の印刷方法、光変換層の形成方法及び洗浄液
JP2021096323A (ja) カラーフィルタ用インク組成物、光変換層及びカラーフィルタ
JP2019026778A (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP2019218422A (ja) インク組成物セット、光変換層及びカラーフィルタ
JP6981082B2 (ja) インク組成物及びその製造方法、光変換層並びにカラーフィルタ
JP2021017481A (ja) インク組成物及びその製造方法、光変換層、並びに、カラーフィルタ
JP7180798B2 (ja) インク組成物、硬化物、光変換層、及びカラーフィルタ
JP7238445B2 (ja) インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
JP2021024946A (ja) インク組成物、光変換層、光変換部材及びバックライトユニット
JP2023092096A (ja) 光変換層形成用インク組成物の印刷方法、およびカラーフィルタ
JP2021128338A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2021152651A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置
JP2023132985A (ja) 半導体ナノ粒子含有組成物、硬化物、カラーフィルタ及び画像表示装置
JP2021152652A (ja) 半導体ナノ粒子含有組成物、カラーフィルタ、及び画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231121