JP2021012949A - Transparent electrode substrate and solar battery - Google Patents

Transparent electrode substrate and solar battery Download PDF

Info

Publication number
JP2021012949A
JP2021012949A JP2019126359A JP2019126359A JP2021012949A JP 2021012949 A JP2021012949 A JP 2021012949A JP 2019126359 A JP2019126359 A JP 2019126359A JP 2019126359 A JP2019126359 A JP 2019126359A JP 2021012949 A JP2021012949 A JP 2021012949A
Authority
JP
Japan
Prior art keywords
transparent electrode
electrode substrate
layer
surface layer
hour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019126359A
Other languages
Japanese (ja)
Inventor
高橋 亮
Akira Takahashi
亮 高橋
浩司 牛久保
Koji Ushikubo
浩司 牛久保
隆文 冨田
Takafumi Tomita
隆文 冨田
雄志 松井
Takeshi Matsui
雄志 松井
勇介 森嶋
Yusuke Morishima
勇介 森嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2019126359A priority Critical patent/JP2021012949A/en
Priority to CN202010631914.3A priority patent/CN112186048A/en
Publication of JP2021012949A publication Critical patent/JP2021012949A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a transparent electrode substrate which is used as a cathode of a solar battery, can uniformly cover a very thin film such as an n-type layer, and can realize high battery efficiency.SOLUTION: A transparent electrode substrate used for a solar battery includes a glass substrate and a transparent conductive film, and the transparent conductive film includes a conductive layer located on the glass substrate side and a surface layer, and has a substantially hemispherical convex portion on the surface of the surface layer.SELECTED DRAWING: Figure 4

Description

本発明は太陽電池に用いられる透明電極基板及び当該透明電極基板を有する太陽電池に関する。 The present invention relates to a transparent electrode substrate used for a solar cell and a solar cell having the transparent electrode substrate.

太陽電池は、太陽からの光エネルギーを直接電気エネルギーに変換する半導体の一種である。光照射により発生した正孔はp型半導体(p型層)へ、電子はn型半導体(n型層)へとそれぞれ移動することにより、p型層とn型層とを結ぶ外部回路に電流が流れるようになる。このように、太陽電池ではp型層が陽極側、n型層が陰極側として作用する。 A solar cell is a type of semiconductor that directly converts light energy from the sun into electrical energy. Holes generated by light irradiation move to a p-type semiconductor (p-type layer), and electrons move to an n-type semiconductor (n-type layer), so that a current flows through the external circuit connecting the p-type layer and the n-type layer. Will flow. As described above, in the solar cell, the p-type layer acts as the anode side and the n-type layer acts as the cathode side.

太陽電池はシリコン系、化合物系、III−V族系、有機系に大別されるが、化合物系のひとつに、Cd・Teを原料とするCdTe太陽電池が挙げられる。CdTe太陽電池は省資源で量産可能であり、さらに製造コストも比較的低いことから実用化されており、様々な研究も行われている。 Solar cells are roughly classified into silicon-based, compound-based, III-V group-based, and organic-based solar cells. One of the compound-based solar cells is a CdTe solar cell made from Cd / Te as a raw material. CdTe solar cells can be mass-produced with resource saving, and their manufacturing cost is relatively low, so they have been put into practical use, and various studies have been conducted.

一般的にCdTe太陽電池は、透明電極(陰極)、n型層、p型層及び電極(陽極)が順に積層された構成を取る。例えば特許文献1は、透明電極を構成するガラス基板に着目し、CdTe太陽電池の変換効率(発電効率)の向上を図ったものである。すなわち、特許文献1では、CdTe太陽電池用のガラス基板が、特定の組成及び物性を満たすことにより、高い透過率、高いガラス転移点温度、所定の平均熱膨張係数、高いガラス強度、低いガラス密度、板ガラス生産時の溶解性、成形性、失透防止の特性をバランスよく有することができ、CdTe太陽電池の発電効率を高くできることが開示されている。 Generally, a CdTe solar cell has a structure in which a transparent electrode (cathode), an n-type layer, a p-type layer, and an electrode (anode) are laminated in this order. For example, Patent Document 1 focuses on a glass substrate constituting a transparent electrode and aims to improve the conversion efficiency (power generation efficiency) of a CdTe solar cell. That is, in Patent Document 1, a glass substrate for a CdTe solar cell satisfies a specific composition and physical properties, so that it has a high transmittance, a high glass transition temperature, a predetermined average coefficient of thermal expansion, a high glass strength, and a low glass density. It is disclosed that the properties of solubility, moldability, and devitrification prevention during the production of flat glass can be well-balanced, and the power generation efficiency of the CdTe solar cell can be increased.

国際公開第2013/047246号International Publication No. 2013/0472446

CdTe太陽電池の発電原理は、太陽光等の光エネルギーが透明電極基板の側から入射し、p型層で光が吸収されて、電子やホール(正孔)といったキャリアが生成されることによる。すなわち、生成されたキャリアがp型層、n型層にそれぞれ移動して流れることで、電気エネルギーとして取り出される。 The power generation principle of a CdTe solar cell is that light energy such as sunlight is incident from the transparent electrode substrate side, light is absorbed by the p-type layer, and carriers such as electrons and holes are generated. That is, the generated carriers move to and flow into the p-type layer and the n-type layer, respectively, and are extracted as electrical energy.

このうち、p型層の厚みは一般的に3〜5μm程度であるのに対し、n型層の厚みは一般的に30nm〜50nm程度と非常に薄い。そのため、n型層である膜の透明電極基板上での膜形成状態が、電池特性に非常に敏感に影響を及ぼすと考えられる。
仮に、CdS等のn型層である膜に関し、透明電極基板表面を十分に被覆できていない場合、被覆はできているものの当該n型層の膜厚に大きなムラがある場合、又は、n型層である膜の一部に欠陥がある場合等は、電子が流れにくくなり、電池効率が低下する要因となる。さらに、被覆ができていない部分や欠陥がある部分等の微細な部分を介して、電池が短絡する現象が発生するおそれもあり、その場合には、電池効率が大きく低下する。この傾向は、CdTe太陽電池に限らず、透明電極基板表面に形成される層が非常に薄い太陽電池にも見られる。
Of these, the thickness of the p-type layer is generally about 3 to 5 μm, while the thickness of the n-type layer is generally very thin, about 30 nm to 50 nm. Therefore, it is considered that the film formation state of the n-type film on the transparent electrode substrate has a very sensitive effect on the battery characteristics.
Assuming that the surface of the transparent electrode substrate is not sufficiently coated with respect to the film which is an n-type layer such as CdS, the film thickness of the n-type layer is significantly uneven although the coating is performed, or the n-type is formed. If there is a defect in a part of the film that is the layer, it becomes difficult for electrons to flow, which causes a decrease in battery efficiency. Further, there is a possibility that the battery may be short-circuited through a minute portion such as an uncoated portion or a defective portion, and in that case, the battery efficiency is greatly reduced. This tendency is seen not only in CdTe solar cells but also in solar cells having a very thin layer formed on the surface of the transparent electrode substrate.

そこで本発明は、太陽電池の陰極として用いられ、n型層等の非常に薄い膜を均一に被覆でき、高い電池効率を実現可能な透明電極基板を提供することを目的とする。 Therefore, an object of the present invention is to provide a transparent electrode substrate that is used as a cathode of a solar cell, can uniformly cover a very thin film such as an n-type layer, and can realize high battery efficiency.

本発明は、以下の[1]〜[8]に係るものである。
[1]太陽電池に用いられる透明電極基板であって、ガラス基板と透明導電膜とを含み、前記透明導電膜は、前記ガラス基板側に位置する導電層と、表面層とから構成され、前記表面層の表面に略半球状の凸部を有する透明電極基板。
[2]前記表面層について、原子間力顕微鏡を用いて任意の8μm角の1024×1024点で測定を行った際のデータを、SPIPイメージ解析ソフトウェアを用いて処理して得られる尖り度(クルトシス):Skuの値が3.00より小さい、前記[1]に記載の透明電極基板。
[3]前記ガラス基板側から測定したヘーズ率が4%以下である前記[1]又は[2]に記載の透明電極基板。
[4]前記表面層の表面粗さが25nm以下である前記[1]〜[3]のいずれか1に記載の透明電極基板。
[5]前記導電層がSnOを主成分とする層である前記[1]〜[4]のいずれか1に記載の透明電極基板。
[6]前記透明導電膜の膜厚が300〜800nmであり、前記表面層の厚さが10〜80nmである前記[1]〜[5]のいずれか1に記載の透明電極基板。
[7]前記ガラス基板と前記透明導電膜との間に、アンダーコート層をさらに含む前記[1]〜[6]のいずれか1に記載の透明電極基板。
[8]前記[1]〜[7]のいずれか1に記載の透明電極基板を有する太陽電池。
The present invention relates to the following [1] to [8].
[1] A transparent electrode substrate used in a solar cell, which includes a glass substrate and a transparent conductive film, and the transparent conductive film is composed of a conductive layer located on the glass substrate side and a surface layer. A transparent electrode substrate having substantially hemispherical protrusions on the surface of the surface layer.
[2] The sharpness (Kurtosis) obtained by processing the data obtained by measuring the surface layer at 1024 × 1024 points of an arbitrary 8 μm square using an atomic force microscope using SPIP image analysis software. ): The transparent electrode substrate according to the above [1], wherein the value of Sk is smaller than 3.00.
[3] The transparent electrode substrate according to the above [1] or [2], wherein the haze ratio measured from the glass substrate side is 4% or less.
[4] The transparent electrode substrate according to any one of [1] to [3], wherein the surface roughness of the surface layer is 25 nm or less.
[5] The transparent electrode substrate according to any one of [1] to [4], wherein the conductive layer is a layer containing SnO 2 as a main component.
[6] The transparent electrode substrate according to any one of [1] to [5], wherein the transparent conductive film has a film thickness of 300 to 800 nm and the surface layer has a thickness of 10 to 80 nm.
[7] The transparent electrode substrate according to any one of [1] to [6], further comprising an undercoat layer between the glass substrate and the transparent conductive film.
[8] A solar cell having the transparent electrode substrate according to any one of [1] to [7] above.

本発明に係る透明電極基板によれば、表面層が略半球状の凸部を有する表面形状を有するため、膜厚が非常に薄いn型層等の膜であっても、欠陥なく十分に、かつ均一に被覆することができる。そのため、太陽電池としての電子の流れを妨げることなく、また、短絡も防止でき、高い電池効率を実現することができる。 According to the transparent electrode substrate according to the present invention, since the surface layer has a surface shape having substantially hemispherical protrusions, even a film such as an n-type layer having a very thin film thickness can be sufficiently without defects. And it can be coated uniformly. Therefore, it is possible to prevent a short circuit without obstructing the flow of electrons as a solar cell, and to realize high battery efficiency.

図1は、透明電極基板の構成を表す模式断面図である。FIG. 1 is a schematic cross-sectional view showing the configuration of a transparent electrode substrate. 図2は、表面層の表面形状である略半球状の凸部について尖り度(クルトシス):Skuを説明するためのイメージ図である。FIG. 2 is an image diagram for explaining the sharpness (Kurtosis): Sku of a substantially hemispherical convex portion which is the surface shape of the surface layer. 図3は、CdTe太陽電池の構成を表す模式断面図である。FIG. 3 is a schematic cross-sectional view showing the configuration of a CdTe solar cell. 図4は、実施例1の透明電極基板における表面層の、試料傾斜角を60°とした際の走査型電子顕微鏡(SEM)画像である。FIG. 4 is a scanning electron microscope (SEM) image of the surface layer of the transparent electrode substrate of Example 1 when the sample inclination angle is 60 °. 図5は、実施例2の透明電極基板における表面層の、試料傾斜角を60°とした際のSEM画像である。FIG. 5 is an SEM image of the surface layer of the transparent electrode substrate of Example 2 when the sample inclination angle is 60 °. 図6は、実施例3の透明電極基板における表面層の、試料傾斜角を60°とした際のSEM画像である。FIG. 6 is an SEM image of the surface layer of the transparent electrode substrate of Example 3 when the sample inclination angle is 60 °. 図7は、比較例1の透明電極基板における表面層の、試料傾斜角を60°とした際のSEM画像である。FIG. 7 is an SEM image of the surface layer of the transparent electrode substrate of Comparative Example 1 when the sample inclination angle is 60 °. 図8は、比較例2の透明電極基板における表面層の、試料傾斜角を60°とした際のSEM画像である。FIG. 8 is an SEM image of the surface layer of the transparent electrode substrate of Comparative Example 2 when the sample inclination angle is 60 °. 図9は、比較例3の透明電極基板における表面層の、試料傾斜角を60°とした際のSEM画像である。FIG. 9 is an SEM image of the surface layer of the transparent electrode substrate of Comparative Example 3 when the sample inclination angle is 60 °.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また、数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention. Further, "~" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.

図1に示すように、本発明に係る透明電極基板1は、ガラス基板10と透明導電膜20とを含み、前記透明導電膜20は、前記ガラス基板10側に位置する導電層21と、表面層22とから構成され、前記表面層22の表面に略半球状の凸部を有するものであり、太陽電池、好ましくはCdTe太陽電池等の透明電極基板表面に非常に薄い層を形成する太陽電池に用いられる。また、所望により、ガラス基板10と透明導電膜20との間にアンダーコート層30が設けられていてもよい。 As shown in FIG. 1, the transparent electrode substrate 1 according to the present invention includes a glass substrate 10 and a transparent conductive film 20, and the transparent conductive film 20 includes a conductive layer 21 located on the glass substrate 10 side and a surface thereof. A solar cell composed of a layer 22 and having a substantially hemispherical convex portion on the surface of the surface layer 22, and forming a very thin layer on the surface of a transparent electrode substrate such as a solar cell, preferably a CdTe solar cell. Used for. Further, if desired, an undercoat layer 30 may be provided between the glass substrate 10 and the transparent conductive film 20.

(表面層)
CdTe太陽電池の場合、n型層としてCdSやCdSe等の薄膜が用いられるが、n型層の厚みは30〜50nmと非常に薄い。そのため、陰極となる透明電極基板上への膜形成状態が電池特性に非常に敏感に影響を及ぼす。
(Surface layer)
In the case of a CdTe solar cell, a thin film such as CdS or CdSe is used as the n-type layer, but the thickness of the n-type layer is as thin as 30 to 50 nm. Therefore, the state of film formation on the transparent electrode substrate serving as the cathode has a very sensitive effect on the battery characteristics.

透明電極基板の最表面の表面形状に着目すると、従来は、円錐や角錐のように、尖った頂点を有する山形の表面形状となっていた。
このような表面形状であると、非常に薄いn型層等の薄膜を製膜した際、当該山形の谷部分が被覆されにくく、被覆されないか、又は、被覆されても山形の頂点付近に集中して被覆されることから、膜厚にムラがあり不均一となりやすい。
Focusing on the surface shape of the outermost surface of the transparent electrode substrate, conventionally, it has been a chevron-shaped surface shape having sharp vertices like a cone or a pyramid.
With such a surface shape, when a thin film such as a very thin n-type layer is formed, it is difficult to cover the valley portion of the chevron, and it is not covered, or even if it is covered, it is concentrated near the apex of the chevron. Therefore, the film thickness is uneven and tends to be non-uniform.

これに対し、本発明に係る透明電極基板では、表面形状が略半球状の凸部を有する形状である表面層を透明導電膜の導電層の表面上に設けることにより、n型層等の薄膜を製膜する際に、その膜厚が非常に薄い場合であっても均一な被覆を可能としたものである。 On the other hand, in the transparent electrode substrate according to the present invention, a thin film such as an n-type layer is provided by providing a surface layer having a substantially hemispherical convex portion on the surface of the conductive layer of the transparent conductive film. When forming a film, even if the film thickness is very thin, uniform coating is possible.

表面形状が略半球状の凸部を有するとは、表面が微細な曲面形状を有することと同義であり、また、頂点が尖らずに曲線(又は曲面)となった円錐や角錐からなる山形の表面形状であることを意味する。
このような表面形状をとることで、山形の頂点付近にn型層等の薄膜が集中して被覆されることが抑制され、表面層の表面全領域が、ムラなくn型層等の薄膜で被覆されやすい。
Having a substantially hemispherical convex portion on the surface is synonymous with having a fine curved surface shape, and a chevron shape consisting of a cone or a pyramid whose apex is curved (or curved) without being sharpened. It means that it has a surface shape.
By adopting such a surface shape, it is possible to prevent the thin film such as the n-type layer from being concentratedly covered near the apex of the chevron, and the entire surface region of the surface layer is evenly covered with the thin film such as the n-type layer. Easy to be covered.

略半形状の凸部ひとつあたりの大きさは、角錐又は円錐の底面となる部分の外接円の直径が40〜330nm程度であり、その高さは50〜200nm程度である。 The size of each convex portion of the substantially semi-shaped shape is such that the diameter of the circumscribed circle of the portion that becomes the bottom surface of the pyramid or the cone is about 40 to 330 nm, and the height is about 50 to 200 nm.

略半球状の凸部は、表面層について原子間力顕微鏡(AFM)を用いて任意の8μm角の1024×1024点で測定を行った際のデータを、SPIPイメージ解析ソフトウェア(Image Metrology社)を用いて処理して得られる尖り度(クルトシス):Skuの値が、以下の関係を満たすことが好ましい。
Skuとは、ISO25178で規定される面粗さを表す指標のうち、下記式を用いて面内の二乗平均平方根高さSqの四乗によって無次元とした基準長さにおいて、z(x,y)の四乗平均を表す尖り度(クルトシス)を意味する。このSkuが3.00より小さい値(Sku<3.00)を示す表面形状(図2参照)であることが好ましく、Skuは2.90以下がより好ましい。
For the substantially hemispherical convex part, the data obtained when the surface layer is measured at an arbitrary 8 μm square 1024 × 1024 point using an atomic force microscope (AFM) is obtained by using SPIP image analysis software (Image Technology). It is preferable that the sharpness (Kurtosis): Sku value obtained by the treatment using the above satisfies the following relationship.
Sku is an index representing surface roughness defined by ISO25178, and has z (x, y) at a reference length that is dimensionless by the square of the root mean square height Sq in the plane using the following formula. ) Means the sharpness (Kurtosis) that represents the mean square. The surface shape (see FIG. 2) showing a value smaller than 3.00 (Sku <3.00) is preferable, and the Sku is more preferably 2.90 or less.

また、n型層等の薄膜で被覆する際に、よりムラなく均一に被覆する観点から、表面層の表面粗さは25nm以下が好ましく、20nm以下がより好ましい。
表面層の表面粗さはAFMにより測定することができる。
Further, when coating with a thin film such as an n-type layer, the surface roughness of the surface layer is preferably 25 nm or less, more preferably 20 nm or less, from the viewpoint of more even and uniform coating.
The surface roughness of the surface layer can be measured by AFM.

表面層は、透明電極基板としての透光性を有するものであれば特に限定されない。具体的には、SnO、ZnO、Inが好ましく、SnO又はZnOがより好ましく、SnOがさらに好ましい。また、導電層と同じ成分であってもよく、例えば主成分が、SnO、ZnO、Inであることが好ましく、SnO又はZnOがより好ましく、SnOがさらに好ましく、ドーパントがドープされていてもよい。
なお、表面層の組成はX線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定することができる。
The surface layer is not particularly limited as long as it has translucency as a transparent electrode substrate. Specifically, SnO 2 , ZnO, and In 2 O 3 are preferable, SnO 2 or ZnO is more preferable, and SnO 2 is even more preferable. Further, it may be the same component as the conductive layer, for example, the main components are preferably SnO 2 , ZnO, In 2 O 3 , more preferably SnO 2 or ZnO, further preferably SnO 2 , and the dopant is doped. It may have been.
The composition of the surface layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).

表面層は、好ましい表面形状を実現するために、組成や厚みを調整して、導電層の上に形成している。
表面層の好ましい厚さは、表面層の組成によって異なる。例えば、表面層の比抵抗が0.1Ωcm以上と高い場合には、抵抗が大きくなり電極の機能である電子移動を妨げるおそれがあることから、表面層の厚さは100nm以下が好ましく、80nm以下がより好ましい。また、例えば表面層の比抵抗が0.001Ωcm以下と低い場合には、表面層の厚さは特に限定されないが、通常10nm以上である。
なお、表面層の厚さは触針式段差計や蛍光X線分析装置、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により測定することができる。
The surface layer is formed on the conductive layer by adjusting the composition and thickness in order to realize a preferable surface shape.
The preferred thickness of the surface layer depends on the composition of the surface layer. For example, when the specific resistance of the surface layer is as high as 0.1 Ωcm or more, the resistance increases and may hinder the electron transfer which is a function of the electrode. Therefore, the thickness of the surface layer is preferably 100 nm or less, preferably 80 nm or less. Is more preferable. Further, for example, when the specific resistance of the surface layer is as low as 0.001 Ωcm or less, the thickness of the surface layer is not particularly limited, but is usually 10 nm or more.
The thickness of the surface layer can be measured by a stylus type step meter, a fluorescent X-ray analyzer, X-ray photoelectron spectroscopy (XPS), or secondary ion mass spectrometry (SIMS).

(導電層)
導電層は、透明電極基板としての透光性と導電性を有していれば特に限定されないが、例えば主成分が、SnO、ZnO、Inであることが好ましく、SnO又はZnOがより好ましく、SnOがさらに好ましい。なお、導電層の主成分とは、導電層を構成する成分のうち、50重量%以上であることを意味し、導電層全体に対して70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、上限は特に限定されないが、主成分にドーパントがドープされる場合には、99.9重量%以下が好ましい。
(Conductive layer)
The conductive layer is not particularly limited as long as it has translucency and conductivity as a transparent electrode substrate, but for example, the main components are preferably SnO 2 , ZnO, In 2 O 3 , and SnO 2 or ZnO. Is more preferable, and SnO 2 is further preferable. The main component of the conductive layer means that it is 50% by weight or more of the components constituting the conductive layer, preferably 70% by weight or more, and 85% by weight or more with respect to the entire conductive layer. Is more preferable. The upper limit is not particularly limited, but when the main component is doped with a dopant, it is preferably 99.9% by weight or less.

(透明導電膜)
透明導電膜は、ガラス基板側に位置する導電層と、表面層とから構成される。
透明導電膜の比抵抗は、電極として電子の流れを妨げないようにすることから導電層と、表面層の全体として、0.001Ωcm以下が好ましく、0.0008Ωcm以下がより好ましく、0.0006Ωcm以下がさらに好ましい。また、透明導電膜の比抵抗は低いほど好ましいが、0.0001Ωcm以上が実際的である。
なお、本明細書において、透明導電膜の比抵抗(R)は、透明電極基板に対してホール効果測定装置を用いることで、測定することができる。
(Transparent conductive film)
The transparent conductive film is composed of a conductive layer located on the glass substrate side and a surface layer.
The specific resistance of the transparent conductive film is preferably 0.001 Ωcm or less, more preferably 0.0008 Ωcm or less, and 0.0006 Ωcm or less as a whole of the conductive layer and the surface layer because it does not obstruct the flow of electrons as an electrode. Is even more preferable. Further, the lower the specific resistance of the transparent conductive film, the more preferable, but 0.0001 Ωcm or more is practical.
In the present specification, the resistivity ( Rt ) of the transparent conductive film can be measured by using a Hall effect measuring device with respect to the transparent electrode substrate.

透明導電膜の膜厚は、高透過率を確保する観点から800nm以下が好ましく、600nm以下がより好ましい。また、抵抗を高くしすぎない観点から300nm以上が好ましく、400nm以上がより好ましい。なお透明導電膜の膜厚は、触針式段差計や蛍光X線分析装置を用いて測定することができる。 The film thickness of the transparent conductive film is preferably 800 nm or less, more preferably 600 nm or less, from the viewpoint of ensuring high transmittance. Further, from the viewpoint of not increasing the resistance too much, 300 nm or more is preferable, and 400 nm or more is more preferable. The film thickness of the transparent conductive film can be measured by using a stylus type step meter or a fluorescent X-ray analyzer.

また、透明導電膜の電気特性としては、シート抵抗が重要であり、これは、比抵抗/膜厚で定義される実質的な電極膜としての電気抵抗である。前述の比抵抗と膜厚を調整することにより、シート抵抗を好ましい値にすることができる。CdTe太陽電池用の透明導電膜のシート抵抗としては、20Ω/□以下が、配線での電圧ロスを下げる観点から好ましく、12Ω/□以下が更に好ましい。 Further, sheet resistance is important as the electrical characteristics of the transparent conductive film, and this is the electrical resistance as a substantial electrode film defined by specific resistance / film thickness. By adjusting the above-mentioned specific resistance and film thickness, the sheet resistance can be set to a preferable value. The sheet resistance of the transparent conductive film for a CdTe solar cell is preferably 20 Ω / □ or less, and more preferably 12 Ω / □ or less from the viewpoint of reducing voltage loss in wiring.

(ガラス基板)
ガラス基板は、従来太陽電池に用いられているものと同様のものを用いることができる。例えば、SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOを母組成として含むガラス基板が挙げられる。より具体的には、酸化物基準のモル百分率表示で、SiOを60〜75%、Alを1〜7.5%、Bを0〜1%、MgOを8.5〜12.5%、CaOを1〜6.5%、SrOを0〜3%、BaOを0〜3%、ZrOを0〜3%、NaOを1〜8%、KOを2〜12%含有するガラス基板が挙げられる。ただし、これら組成に限定されるものではない。
(Glass substrate)
As the glass substrate, the same one as that conventionally used for a solar cell can be used. For example, a glass substrate containing SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O and K 2 O as a mother composition can be mentioned. More specifically, in the oxide-based molar percentage display, SiO 2 is 60 to 75%, Al 2 O 3 is 1 to 7.5%, B 2 O 3 is 0 to 1%, and Mg O is 8.5. ~ 12.5%, CaO 1 to 6.5%, SrO 0 to 3%, BaO 0 to 3%, ZrO 2 0 to 3%, Na 2 O 1 to 8%, K 2 O Examples thereof include a glass substrate containing 2 to 12%. However, the composition is not limited to these.

ガラス基板は、太陽電池の発電効率を考慮すると、波長500〜800nmの光に対する平均透過率が、2mm厚み換算で90.3%以上が好ましく、90.4%以上がより好ましく、90.5%以上がさらに好ましい。 Considering the power generation efficiency of the solar cell, the glass substrate preferably has an average transmittance of 90.3% or more, more preferably 90.4% or more, and 90.5% in terms of 2 mm thickness for light having a wavelength of 500 to 800 nm. The above is more preferable.

また、太陽電池を作製する際に、透明電極基板に対して熱処理を行うこと場合があることから、ガラス基板は良好な耐熱性を有することが好ましい。
具体的には、ガラス転移温度(Tg)は640℃以上が好ましく、645℃以上がより好ましく、655℃以上がさらに好ましい。一方、溶解時の粘性を上げすぎないようにするため、ガラス転移温度は750℃以下が好ましく、720℃以下がより好ましく、690℃以下がさらに好ましい。
Further, since the transparent electrode substrate may be heat-treated when the solar cell is manufactured, it is preferable that the glass substrate has good heat resistance.
Specifically, the glass transition temperature (Tg) is preferably 640 ° C. or higher, more preferably 645 ° C. or higher, and even more preferably 655 ° C. or higher. On the other hand, the glass transition temperature is preferably 750 ° C. or lower, more preferably 720 ° C. or lower, and even more preferably 690 ° C. or lower so as not to increase the viscosity at the time of melting too much.

また、ガラス基板の50〜350℃における平均熱膨張係数は、モジュール化する際にモジュールが反るのを抑制する点から70×10−7/℃以上が好ましく、80×10−7/℃以上がより好ましい。一方、剥がれ等を抑制する点から、90×10−7/℃以下が好ましく、85×10−7/℃以下がより好ましい。 The average coefficient of thermal expansion of the glass substrate at 50 to 350 ° C. is preferably 70 × 10-7 / ° C. or higher, preferably 80 × 10-7 / ° C. or higher, from the viewpoint of suppressing warping of the module during modularization. Is more preferable. On the other hand, from the viewpoint of suppressing peeling and the like, 90 × 10 -7 / ° C. or lower is preferable, and 85 × 10 -7 / ° C. or lower is more preferable.

ガラス基板の厚さは、特に限定されないが、強度と透過率の観点から、0.7mm以上が好ましく、1.1mm以上がより好ましく、また、6.0mm以下が好ましく、4.0mm以下がより好ましい。 The thickness of the glass substrate is not particularly limited, but from the viewpoint of strength and transmittance, 0.7 mm or more is preferable, 1.1 mm or more is more preferable, 6.0 mm or less is preferable, and 4.0 mm or less is more preferable. preferable.

(アンダーコート層)
ガラス基板と透明導電膜との間には、図1に示すように、所望によりアンダーコート層30をさらに含んでいてもよい。アンダーコート層30は、光の反射を防止することで変換効率を向上することができる。また、太陽電池の作製に際し、熱処理を行った場合であっても、ガラス基板10からのアルカリの拡散を防止し、導電層21の変質を防ぐことができる。
アンダーコート層には、従来公知のものを用いることができる。例えばSiO、SiOxCy、SnO、TiO等が挙げられる。
(Undercoat layer)
As shown in FIG. 1, an undercoat layer 30 may be further included between the glass substrate and the transparent conductive film, if desired. The undercoat layer 30 can improve the conversion efficiency by preventing the reflection of light. Further, even when heat treatment is performed in the production of the solar cell, it is possible to prevent the diffusion of alkali from the glass substrate 10 and prevent the deterioration of the conductive layer 21.
As the undercoat layer, a conventionally known one can be used. For example, SiO 2 , SiOxCy, SnO 2 , TiO 2 and the like can be mentioned.

アンダーコート層の厚みは、上記効果が好適に得られる点から10nm以上が好ましく、20nm以上がより好ましい。また、材料自体の光吸収を抑制する観点から100nm以下が好ましく、80nm以下がより好ましい。 The thickness of the undercoat layer is preferably 10 nm or more, and more preferably 20 nm or more from the viewpoint that the above effects can be preferably obtained. Further, from the viewpoint of suppressing light absorption of the material itself, 100 nm or less is preferable, and 80 nm or less is more preferable.

<透明電極基板の製造方法>
透明電極基板1は、ガラス基板10上に、導電層21、表面層22を順に積層することにより得ることができる。また、導電層21を積層する前に、所望によりアンダーコート層30を積層してもよい。
具体的には、ガラス基板は、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程により得ることができる。また、溶融ガラスをブロック状に成形し、徐冷した後に、切断、研磨を経てガラス基板を製造してもよい。
<Manufacturing method of transparent electrode substrate>
The transparent electrode substrate 1 can be obtained by laminating the conductive layer 21 and the surface layer 22 in this order on the glass substrate 10. Further, the undercoat layer 30 may be laminated if desired before the conductive layer 21 is laminated.
Specifically, the glass substrate has a melting step of heating a glass raw material to obtain molten glass, a clarification step of removing bubbles from the molten glass, a molding step of forming a molten glass into a plate shape to obtain a glass ribbon, and a glass ribbon at room temperature. It can be obtained by a slow cooling step of slowly cooling to a state. Further, the molten glass may be formed into a block shape, slowly cooled, and then cut and polished to produce a glass substrate.

上記各工程は、従来公知の各方法を用いることができる。その一例を以下に示すが、製造方法はこれら実施形態に限定されず、本発明の目的を達成できる範囲で適宜変形や改良等が可能である。 For each of the above steps, conventionally known methods can be used. An example thereof is shown below, but the manufacturing method is not limited to these embodiments, and modifications and improvements can be made as appropriate within the range in which the object of the present invention can be achieved.

ガラス基板上に所望によりアンダーコート層を形成した後、透明導電膜である導電層及び表面層を順に形成していく。
アンダーコート層、導電層、表面層はいずれも、CVD(Chemical Vapor Deposition:化学気相蒸着)法やスパッタリング法、化学メッキ法、湿式塗布法等により形成することができ、CVD法が好ましい。なお、スパッタリング法は製板されたガラス基板上に製膜する方法であり、化学メッキ法は鏡を作る方法である。
After forming an undercoat layer on the glass substrate as desired, the conductive layer and the surface layer, which are transparent conductive films, are formed in this order.
The undercoat layer, the conductive layer, and the surface layer can all be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like, and the CVD method is preferable. The sputtering method is a method of forming a film on a plate-made glass substrate, and the chemical plating method is a method of forming a mirror.

CVD法には、オンラインCVD法とオフラインCVD法がある。
オンラインCVD法とはフロートライン上でガラス基板の製造過程中に、ガラスの表面に直接、膜を製膜する方法である。すなわち、一旦、ガラス基板を得た後に透明導電膜等を製膜するオフラインCVD法と異なり、ガラス基板を得る工程の途中で透明導電膜等を製膜する。
具体的には、ガラス基板の製造の際、ガラスリボンが溶融錫浴の上を移動した後、徐冷されることで、連続的にガラス基板が製造されるが、このガラスリボンの移動中に、ガラスリボンの上面に、所望する層の製膜工程を連続的に実施するものである。
The CVD method includes an online CVD method and an offline CVD method.
The online CVD method is a method of forming a film directly on the surface of glass during the manufacturing process of a glass substrate on a float line. That is, unlike the offline CVD method in which a transparent conductive film or the like is formed once after obtaining the glass substrate, the transparent conductive film or the like is formed in the middle of the process of obtaining the glass substrate.
Specifically, when the glass substrate is manufactured, the glass ribbon moves on the molten tin bath and then is slowly cooled to continuously manufacture the glass substrate. During the movement of the glass ribbon, the glass ribbon is continuously manufactured. , The process of forming a desired layer is continuously carried out on the upper surface of the glass ribbon.

オンラインCVD法により表面層を形成する際、コーティングビームから供給する原材料の組成比を制御することで、表面が略半球状の凸部を有する表面層を形成することができる。
例えば、表面層としてSnOを形成する場合、原材料となるモノブチル錫トリクロライド、酸素、及び水のうち、酸素の供給量を減じることにより、略半球状の凸部を有する表面形状とすることができる。
モノブチル錫トリクロライドと酸素の混合ガス中のモル比率としては、酸素/モノブチル錫トリクロライドを、2.5以下とすることが好ましく、2.0以下がより好ましい。なお、SnOを形成するためには、当該モル比率を0.5以上とする必要がある。
When the surface layer is formed by the online CVD method, the surface layer having a substantially hemispherical convex portion can be formed by controlling the composition ratio of the raw material supplied from the coating beam.
For example, when SnO 2 is formed as a surface layer, the surface shape having substantially hemispherical protrusions can be obtained by reducing the supply amount of oxygen among the raw materials of monobutyltin trichloride, oxygen, and water. it can.
The molar ratio of oxygen / monobutyltin trichloride in the mixed gas of monobutyltin trichloride and oxygen is preferably 2.5 or less, more preferably 2.0 or less. In addition, in order to form SnO 2 , the molar ratio needs to be 0.5 or more.

モノブチル錫トリクロライドに代えて、テトラブチル錫を用いる場合には、テトラブチル錫と酸素の混合ガス中のモル比率としては、酸素/テトラブチル錫を、15以下とすることが好ましく、SnOを形成するためには、1.0以上とする必要がある。
そのほかに、テトラメチル錫や塩化錫など、SnOとなるプリカーサー(前駆体)も使用することができ、その際の混合ガス中の好ましいモル比率は当該プリカーサーの種類によって異なる。
When tetrabutyltin is used instead of monobutyltin trichloride, the molar ratio of tetrabutyltin and oxygen in the mixed gas is preferably oxygen / tetrabutyltin of 15 or less, in order to form SnO 2. Must be 1.0 or higher.
In addition, a precursor that becomes SnO 2 , such as tetramethyltin or tin chloride, can also be used, and the preferable molar ratio in the mixed gas at that time differs depending on the type of the precursor.

アンダーコート層及び導電層についても、オンラインCVD法を用いることにより、ガラス基板を製造する一連の工程の中で同層を形成することができることから、製造コストを低く抑えることができるため好ましい。この場合、オンラインでの製膜となることから、製膜する層の組成は限定される。例えば、アンダーコート層をSiOやSiOxCyとし、導電層をフッ素ドープされたSnOとし、表面層をSnOとすることが好ましい態様として挙げられる。 As for the undercoat layer and the conductive layer, by using the online CVD method, the same layer can be formed in a series of steps for manufacturing the glass substrate, which is preferable because the manufacturing cost can be kept low. In this case, since the film is formed online, the composition of the layer to be formed is limited. For example, it is preferable that the undercoat layer is SiO 2 or SiOxCy, the conductive layer is fluorine-doped SnO 2 , and the surface layer is SnO 2 .

上記成形工程及びオンラインCVD法による導電層及び表面層等の形成の後、徐冷工程にて、得られたガラスリボンを室温状態まで制御された冷却条件にて冷却する。次いで、徐冷したガラスリボンを切断することで、透明電極基板が得られる。 After forming the conductive layer, the surface layer, and the like by the molding step and the online CVD method, the obtained glass ribbon is cooled to a room temperature state in a slow cooling step under controlled cooling conditions. Then, the slowly cooled glass ribbon is cut to obtain a transparent electrode substrate.

上記で得られた透明電極基板は、良好な電池効率を得る観点から、ガラス基板側から測定したヘーズ率は4%以下が好ましく、3%以下がより好ましい。ヘーズ率は、透明電極基板を構成するガラス基板、アンダーコート層、透明導電膜の組成や、表面層の表面粗さや表面形状によって制御することができる。
なお、ヘーズ率とは、JIS K 7136:2000年に準拠してヘーズメーターにより測定される値である。
From the viewpoint of obtaining good battery efficiency, the transparent electrode substrate obtained above preferably has a haze ratio of 4% or less, more preferably 3% or less, as measured from the glass substrate side. The haze ratio can be controlled by the composition of the glass substrate, the undercoat layer, and the transparent conductive film constituting the transparent electrode substrate, and the surface roughness and surface shape of the surface layer.
The haze rate is a value measured by a haze meter in accordance with JIS K 7136: 2000.

<太陽電池>
本発明は上記透明電極基板を有する太陽電池にも関する。当該透明電極基板の構成や好ましい態様は、上記<透明電極基板>で記載したものと同様である。
なお、本発明の太陽電池とは、透明電極基板表面に形成される層が非常に薄い太陽電池が好ましく、その一例として、透明電極基板表面にn型層が形成されるCdTe太陽電池が挙げられる。以下にCdTe太陽電池の場合の詳細を説明するが、これは、上記透明電極基板をその他の太陽電池に適用することを何ら排除するものではない。
<Solar cell>
The present invention also relates to a solar cell having the transparent electrode substrate. The configuration and preferred embodiment of the transparent electrode substrate are the same as those described in the above <transparent electrode substrate>.
The solar cell of the present invention is preferably a solar cell having a very thin layer formed on the surface of the transparent electrode substrate, and an example thereof is a CdTe solar cell in which an n-type layer is formed on the surface of the transparent electrode substrate. .. The details in the case of the CdTe solar cell will be described below, but this does not exclude the application of the transparent electrode substrate to other solar cells.

CdTe太陽電池は、透明電極基板1の表面層22側の表面上に、n型層40、p型層50、及び裏面電極(陽極)60が順に積層された構成である。 The CdTe solar cell has a configuration in which an n-type layer 40, a p-type layer 50, and a back surface electrode (anode) 60 are laminated in this order on the surface of the transparent electrode substrate 1 on the surface layer 22 side.

透明電極基板の表面層側の表面上にはn型層の薄膜が形成されるが、n型層としては、従来公知のものを用いることができ、例えばCdS、CdSe等が挙げられ、CdSが好ましい。
n型層の厚みは30nm以上が好ましく、また、100nm以下が好ましい。
n型層は近接昇華法により形成することができ、昇華速度を変更したり、基板温度を変更することにより、その厚みや膜質を調整することができる。
A thin film of an n-type layer is formed on the surface of the transparent electrode substrate on the surface layer side. As the n-type layer, conventionally known ones can be used, and examples thereof include CdS, CdSe, and the like. preferable.
The thickness of the n-type layer is preferably 30 nm or more, and preferably 100 nm or less.
The n-type layer can be formed by the proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or the substrate temperature.

p型層はCdTeが一般的である。p型層の厚みは3μm以上が好ましく、また、15μm以下が好ましい。
p型層は近接昇華法により形成することができ、昇華速度を変更したり、基板温度を変更すること、その厚みや膜質を調整することができる。
CdTe is generally used for the p-type layer. The thickness of the p-type layer is preferably 3 μm or more, and preferably 15 μm or less.
The p-type layer can be formed by the proximity sublimation method, and the sublimation rate can be changed, the substrate temperature can be changed, and the thickness and film quality thereof can be adjusted.

裏面電極は陽極として作用するが、従来公知のものを用いることができる。例えば、銀(Ag)やモリブデン(Mo)等の金属材料膜が積層された構造の電極や、Cuをドープしたカーボン電極等が挙げられる。また、裏面電極上にさらに裏板ガラスを有していてもよい。裏板ガラスは耐水性や耐酸素透過性を有していればよく、裏板ガラスに代えて樹脂からなるバックフィルムを用いてもよい。
裏面電極と裏板ガラス又はバックフィルムとの間は、樹脂封入や接着用の樹脂により接着される。
裏面電極の厚みは100nm以上が好ましく、また、1000nm以下が好ましい。裏板ガラス又はバックフィルムの厚みは1mm以上が好ましく、また、3mm以下が好ましい。
The back electrode acts as an anode, but conventionally known ones can be used. For example, an electrode having a structure in which a metal material film such as silver (Ag) or molybdenum (Mo) is laminated, a carbon electrode doped with Cu, or the like can be mentioned. Further, a back plate glass may be further provided on the back electrode. The back plate glass may have water resistance and oxygen permeability, and a back film made of resin may be used instead of the back plate glass.
The back electrode and the back plate glass or the back film are bonded with a resin for sealing or bonding.
The thickness of the back surface electrode is preferably 100 nm or more, and preferably 1000 nm or less. The thickness of the back plate glass or the back film is preferably 1 mm or more, and preferably 3 mm or less.

CdTeからなるp型層の端部又はCdTe太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば、前記透明電極基板におけるガラス基板と同じ組成を有するガラスや、その他の組成のガラス、樹脂等が挙げられる。 The end of the p-type layer made of CdTe or the end of the CdTe solar cell may be sealed. Examples of the material for sealing include glass having the same composition as the glass substrate in the transparent electrode substrate, glass having other compositions, resin and the like.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[実施例1]
以下に示すように、フロート法によりガラス基板を製造すると同時に、オンライン常圧CVD(化学気相)法によりアンダーコート層、導電層及び表面層を形成することで、透明電極基板を得た。
[Example 1]
As shown below, a transparent electrode substrate was obtained by producing a glass substrate by the float method and at the same time forming an undercoat layer, a conductive layer and a surface layer by an online atmospheric pressure CVD (chemical vapor deposition) method.

ソーダライムシリカガラス組成からなる溶融ガラスを1500〜1600℃のフロートバス中に流し込み、連続的にガラスリボンを流しながら板上ガラスの成形を行った。
ガラスリボンの温度が700℃となる最上流側に位置する第1のコーティングビームから、モノシラン(SiH)、エチレン、及びCOのガスを供給し、ガラスリボン上に膜厚30nmのSiOC膜であるアンダーコート層を製膜した。
続いて、ガラスリボンが600℃となる下流側に位置する第2のコーティングビームから、モノブチル錫トリクロライド、酸素、水、窒素、硝酸及びトリフロロ酢酸からなる混合ガスを供給し、SiOC膜上に膜厚400nmのSnO:Fを成分とする導電層(フッ素ドープ酸化錫膜)を製膜した。
さらに、そのすぐ下流にある第3のコーティングビームから、モノブチル錫トリクロライド、酸素、水及び窒素からなる混合ガスを供給し、膜厚が15nmのSnOを成分とする表面層を製膜することで、透明電極基板を得た。なお、ガラス基板の板厚は3.2mmであった。
Fused glass having a soda lime silica glass composition was poured into a float bath at 1500 to 1600 ° C., and the glass on the plate was formed while continuously flowing a glass ribbon.
Monosilane (SiH 4 ), ethylene, and CO 2 gases are supplied from the first coating beam located on the most upstream side where the temperature of the glass ribbon reaches 700 ° C., and a SiOC film having a thickness of 30 nm is formed on the glass ribbon. A certain undercoat layer was formed.
Subsequently, a mixed gas composed of monobutyltin trichloride, oxygen, water, nitrogen, nitrate and trifluoroacetic acid is supplied from the second coating beam located on the downstream side where the glass ribbon reaches 600 ° C., and the film is coated on the SiOC film. A conductive layer (fluorine-doped tin oxide film) containing SnO 2 : F having a thickness of 400 nm was formed.
Further, a mixed gas composed of monobutyltin trichloride, oxygen, water and nitrogen is supplied from a third coating beam immediately downstream thereof to form a surface layer containing SnO 2 having a film thickness of 15 nm. A transparent electrode substrate was obtained. The thickness of the glass substrate was 3.2 mm.

なお、導電層及び表面層を製膜する際の混合ガスはいずれも、各物質を液相又は気相状態でミキサーに供給し、そこで加熱気化しながら混合して混合ガスとした。
導電層を製膜する際の第2のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド23.5L/時間(液相)、酸素35.7Nm/時間、水101.6kg/時間、硝酸23.8L/時間(液相)、トリフロロ酢酸3.8L/時間(液相)であった。
表面層を製膜する際の第3のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド2.9L/時間(液相)、酸素0.62Nm/時間、水21.7kg/時間であった。
As the mixed gas for forming the conductive layer and the surface layer, each substance was supplied to the mixer in a liquid phase or a gas phase state, and mixed while being heated and vaporized to obtain a mixed gas.
The amount of each raw material supplied from the second coating beam when forming the conductive layer is monobutyltin trichloride 23.5 L / hour (liquid phase), oxygen 35.7 Nm 3 / hour, water 101.6 kg / hour. , Nitric acid was 23.8 L / hour (liquid phase), and trifluoroacetic acid was 3.8 L / hour (liquid phase).
The amount of each raw material supplied from the third coating beam when forming the surface layer was 2.9 L / hour (liquid phase) of monobutyltin trichloride, 0.62 Nm 3 / hour of oxygen, and 21.7 kg / hour of water. Met.

得られた透明電極基板の表面層について、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ製:S4800)を用いて、加速電圧15.0kVで測定した。この際、試料傾斜角を60°とした。得られたSEM画像を図4に示す。これにより、表面層が略半球状の凸部を有する表面形状を有することが分かる。
また、走査型プローブ顕微鏡として原子間力顕微鏡(AFM、SIIテクノロジー製:S−image)を用いて、任意の8μm角視野の凸部の測定を行った。そのデータを、SPIPイメージ解析ソフトウェア(Image Metrology社)を用いて処理し、尖り度(クルトシス):Skuを計算したところ、Skuは、2.78であった。
また、透明電極基板のガラス基板側から、ヘーズメーターによりJIS K 7136:2000年に準拠して測定したヘーズ率は2.0%であり、AFMにより測定した表面層の表面粗さは16.7nmであった。
The surface layer of the obtained transparent electrode substrate was measured at an acceleration voltage of 15.0 kV using a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation: S4800). At this time, the sample inclination angle was set to 60 °. The obtained SEM image is shown in FIG. From this, it can be seen that the surface layer has a surface shape having substantially hemispherical protrusions.
In addition, an atomic force microscope (AFM, manufactured by SII Technology: S-image) was used as a scanning probe microscope to measure the convex portion of an arbitrary 8 μm square field of view. The data was processed using SPIP image analysis software (Image Metrology), and the sharpness (Kurtosis): Sku was calculated. As a result, the Sku was 2.78.
Further, the haze ratio measured from the glass substrate side of the transparent electrode substrate in accordance with JIS K 7136: 2000 by a haze meter is 2.0%, and the surface roughness of the surface layer measured by AFM is 16.7 nm. Met.

[実施例2]
第2のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド23.9L/時間(液相)、酸素35.7Nm/時間、水107.6kg/時間、硝酸15.1L/時間(液相)、トリフロロ酢酸3.84L/時間(液相)へと変更し、導電層の膜厚を400nmとし、第3のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド3.85L/時間(液相)、酸素0.52Nm/時間、水29.1kg/時間へと変更し、表面層の膜厚を15nmとした以外は実施例1と同様にして、透明電極基板を得た。
得られた透明電極基板の表面層について、実施例1と同様にSEM観察及びAFM観察を行った。試料傾斜角を60°とした際のSEM画像を図5に示すが、表面層が略半球状の凸部を有する表面形状を有することが分かる。また、実施例1と同様にSkuを計算したところ、Skuは、2.89であった。さらに、実施例1と同様にして測定したヘーズ率は2.1%であり、表面層の表面粗さは16.1nmであった。
[Example 2]
The amount of each raw material supplied from the second coating beam was 23.9 L / hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 / hour of oxygen, 107.6 kg / hour of water, and 15.1 L / hour of acetic acid. Liquid phase), trifluoroacetic acid 3.84 L / hour (liquid phase), the film thickness of the conductive layer was 400 nm, and the amount of each raw material supplied from the third coating beam was 3.85 L of monobutyltin trichloride. A transparent electrode substrate was obtained in the same manner as in Example 1 except that the surface layer was changed to 15 nm / hour (liquid phase), oxygen 0.52 Nm 3 / hour, and water 29.1 kg / hour. It was.
The surface layer of the obtained transparent electrode substrate was subjected to SEM observation and AFM observation in the same manner as in Example 1. The SEM image when the sample inclination angle is 60 ° is shown in FIG. 5, and it can be seen that the surface layer has a surface shape having substantially hemispherical protrusions. Moreover, when the Sku was calculated in the same manner as in Example 1, the Sku was 2.89. Further, the haze ratio measured in the same manner as in Example 1 was 2.1%, and the surface roughness of the surface layer was 16.1 nm.

[実施例3]
第2のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド19.5L/時間(液相)、酸素35.7Nm/時間、水84.3kg/時間、硝酸19.8L/時間(液相)、トリフロロ酢酸4.47L/時間(液相)へと変更し、導電層の膜厚を420nmとし、第3のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライドに代えてテトラブチル錫を14.4L/時間(液相)、酸素11.62Nm/時間、水18.7kg/時間へと変更し、表面層の膜厚を20nmとした以外は実施例1と同様にして、透明電極基板を得た。
得られた透明電極基板の表面層について、実施例1と同様にSEM観察及びAFM観察を行った。試料傾斜角を60°とした際のSEM画像を図6に示すが、表面層が略半球状の凸部を有する表面形状を有することが分かる。また、実施例1と同様にSkuを計算したところ、Skuは、2.90であった。さらに、実施例1と同様にして測定したヘーズ率は2.6%であり、表面層の表面粗さは19.4nmであった。
[Example 3]
The amount of each raw material supplied from the second coating beam was 19.5 L / hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 / hour of oxygen, 84.3 kg / hour of water, and 19.8 L / hour of acetic acid (19.8 L / hour). Liquid phase), trifluoroacetic acid 4.47 L / hour (liquid phase), the film thickness of the conductive layer was 420 nm, and the amount of each raw material supplied from the third coating beam was replaced with monobutyltin trichloride. The same as in Example 1 except that tetrabutyltin was changed to 14.4 L / hour (liquid phase), oxygen 11.62 Nm 3 / hour, and water 18.7 kg / hour, and the thickness of the surface layer was 20 nm. , A transparent electrode substrate was obtained.
The surface layer of the obtained transparent electrode substrate was subjected to SEM observation and AFM observation in the same manner as in Example 1. The SEM image when the sample inclination angle is 60 ° is shown in FIG. 6, and it can be seen that the surface layer has a surface shape having substantially hemispherical protrusions. Moreover, when the Sku was calculated in the same manner as in Example 1, the Sku was 2.90. Further, the haze ratio measured in the same manner as in Example 1 was 2.6%, and the surface roughness of the surface layer was 19.4 nm.

[比較例1]
第2のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド13.5L/時間(液相)、酸素35.7Nm/時間、水58.4kg/時間、硝酸13.7L/時間(液相)、トリフロロ酢酸3.10L/時間(液相)へと変更し、導電層の膜厚を300nmとし、第3のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド3.26L/時間(液相)、酸素1.23Nm/時間、水24.7kg/時間へと変更し、表面層の膜厚を19nmとした以外は実施例1と同様にして、透明電極基板を得た。
得られた透明電極基板の表面層について、実施例1と同様にSEM観察及びAFM観察を行った。試料傾斜角を60°とした際のSEM画像を図7に示すが、表面層が略半球状の凸部を有する表面形状を有しておらず、頂点が尖った角錐又は円錐状の凸部を有していることが分かる。また、実施例1と同様にSkuを計算したところ、Skuは、4.07であった。さらに、実施例1と同様にして測定したヘーズ率は1.2%であり、表面層の表面粗さは14.7nmであった。
[Comparative Example 1]
The amount of each raw material supplied from the second coating beam was 13.5 L / hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 / hour of oxygen, 58.4 kg / hour of water, and 13.7 L / hour of acetic acid (13.7 L / hour). Liquid phase), trifluoroacetic acid 3.10 L / hour (liquid phase), the film thickness of the conductive layer is 300 nm, and the amount of each raw material supplied from the third coating beam is 3.26 L of monobutyltin trichloride. A transparent electrode substrate was obtained in the same manner as in Example 1 except that the thickness of the surface layer was changed to 19 nm by changing to / hour (liquid phase), oxygen 1.23 Nm 3 / hour, and water 24.7 kg / hour. It was.
The surface layer of the obtained transparent electrode substrate was subjected to SEM observation and AFM observation in the same manner as in Example 1. An SEM image when the sample inclination angle is 60 ° is shown in FIG. 7. The surface layer does not have a surface shape having a substantially hemispherical convex portion, and a pyramid or a conical convex portion having a sharp apex. It can be seen that it has. Moreover, when the Sku was calculated in the same manner as in Example 1, the Sku was 4.07. Further, the haze ratio measured in the same manner as in Example 1 was 1.2%, and the surface roughness of the surface layer was 14.7 nm.

[比較例2]
第2のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド23.5L/時間(液相)、酸素35.7Nm/時間、水101.6kg/時間、硝酸23.8L/時間(液相)、トリフロロ酢酸3.77L/時間(液相)へと変更し、導電層の膜厚を400nmとし、第3のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド2.87L/時間(液相)、酸素3.85Nm/時間、水21.7kg/時間へと変更し、表面層の膜厚を15nmとした以外は実施例1と同様にして、透明電極基板を得た。
得られた透明電極基板の表面層について、実施例1と同様にSEM観察及びAFM観察を行った。試料傾斜角を60°とした際のSEM画像を図8に示すが、表面層が略半球状の凸部を有する表面形状を有しておらず、頂点が尖った角錐又は円錐状の凸部を有していることが分かる。また、実施例1と同様にSkuを計算したところ、Skuは、3.02であった。さらに、実施例1と同様にして測定したヘーズ率は2.4%であり、表面層の表面粗さは20.3nmであった。
[Comparative Example 2]
The amount of each raw material supplied from the second coating beam was 23.5 L / hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 / hour of oxygen, 101.6 kg / hour of water, and 23.8 L / hour of acetic acid. Liquid phase), trifluoroacetic acid 3.77 L / hour (liquid phase), the film thickness of the conductive layer was 400 nm, and the amount of each raw material supplied from the third coating beam was 2.87 L of monobutyltin trichloride. A transparent electrode substrate was obtained in the same manner as in Example 1 except that the surface layer was changed to 15 nm / hour (liquid phase), oxygen 3.85 Nm 3 / hour, and water 21.7 kg / hour. It was.
The surface layer of the obtained transparent electrode substrate was subjected to SEM observation and AFM observation in the same manner as in Example 1. An SEM image when the sample inclination angle is 60 ° is shown in FIG. 8. The surface layer does not have a surface shape having substantially hemispherical protrusions, and a pyramid or a conical convex portion having a sharp apex. It can be seen that it has. Moreover, when the Sku was calculated in the same manner as in Example 1, the Sku was 3.02. Further, the haze ratio measured in the same manner as in Example 1 was 2.4%, and the surface roughness of the surface layer was 20.3 nm.

[比較例3]
第2のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド17.2L/時間(液相)、酸素35.7Nm/時間、水74.3kg/時間、硝酸17.4L/時間(液相)、トリフロロ酢酸3.94L/時間(液相)へと変更し、導電層の膜厚を415nmとし、第3のコーティングビームから供給した各原料の量を、モノブチル錫トリクロライド2.77L/時間(液相)、酸素3.72Nm/時間、水21.0kg/時間へと変更し、表面層の膜厚を15nmとした以外は実施例1と同様にして、透明電極基板を得た。
得られた透明電極基板の表面層について、実施例1と同様にSEM観察及びAFM観察を行った。なお、SEMには日立ハイテクノロジーズ製:S3400を用い、加速電圧は20.0kVとした。試料傾斜角を60°とした際のSEM画像を図9に示すが、表面層が略半球状の凸部を有する表面形状を有しておらず、頂点が尖った角錐又は円錐状の凸部を有していることが分かる。また、実施例1と同様にSkuを計算したところ、Skuは、3.74であった。さらに、実施例1と同様にして測定したヘーズ率は1.5%であり、表面層の表面粗さは16.2nmであった。
[Comparative Example 3]
The amount of each raw material supplied from the second coating beam was 17.2 L / hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 / hour of oxygen, 74.3 kg / hour of water, and 17.4 L / hour of nitrate (17.4 L / hour). Liquid phase), trifluoroacetic acid 3.94 L / hour (liquid phase), the film thickness of the conductive layer was 415 nm, and the amount of each raw material supplied from the third coating beam was 2.77 L of monobutyltin trichloride. A transparent electrode substrate was obtained in the same manner as in Example 1 except that the surface layer was changed to 15 nm / hour (liquid phase), oxygen 3.72 Nm 3 / hour, and water 21.0 kg / hour. It was.
The surface layer of the obtained transparent electrode substrate was subjected to SEM observation and AFM observation in the same manner as in Example 1. Hitachi High-Technologies Corporation: S3400 was used as the SEM, and the acceleration voltage was set to 20.0 kV. An SEM image when the sample inclination angle is 60 ° is shown in FIG. 9. The surface layer does not have a surface shape having substantially hemispherical convex portions, and a pyramid or a conical convex portion having a sharp apex. It can be seen that it has. Moreover, when the Sku was calculated in the same manner as in Example 1, the Sku was 3.74. Further, the haze ratio measured in the same manner as in Example 1 was 1.5%, and the surface roughness of the surface layer was 16.2 nm.

図4〜9から分かるように、表面層を形成する際に、原料の組成比を制御することで、形成される表面層の表面形状を制御できることが分かった。すなわち、表面層としてSnOを形成する場合には、原料のうち酸素の比率を減らすことにより、略半球状の凸部を有する表面形状とすることができた。 As can be seen from FIGS. 4 to 9, it was found that the surface shape of the formed surface layer can be controlled by controlling the composition ratio of the raw materials when forming the surface layer. That is, when SnO 2 is formed as the surface layer, the surface shape having substantially hemispherical convex portions can be obtained by reducing the ratio of oxygen in the raw materials.

本発明に係る透明電極基板は、太陽電池に適用した際、非常に薄いn型層等の膜であっても、欠陥なく十分に、かつ均一に被覆することができる。これにより、電子の流れを妨げることなく、また、短絡も防止でき、高い電池効率を実現することができることから、太陽電池用の透明電極として優れており、非常に有用である。 When applied to a solar cell, the transparent electrode substrate according to the present invention can sufficiently and uniformly cover even a very thin film such as an n-type layer without defects. As a result, short circuits can be prevented without obstructing the flow of electrons, and high battery efficiency can be realized. Therefore, it is excellent as a transparent electrode for a solar cell and is very useful.

1 透明電極基板
2 CdTe太陽電池
10 ガラス基板
20 透明導電膜
21 導電層
22 表面層
30 アンダーコート層
40 n型層
50 p型層
60 裏面電極
1 Transparent electrode substrate 2 CdTe solar cell 10 Glass substrate 20 Transparent conductive film 21 Conductive layer 22 Surface layer 30 Undercoat layer 40 n-type layer 50 p-type layer 60 Back surface electrode

Claims (8)

太陽電池に用いられる透明電極基板であって、
ガラス基板と透明導電膜とを含み、
前記透明導電膜は、前記ガラス基板側に位置する導電層と、表面層とから構成され、
前記表面層の表面に略半球状の凸部を有する透明電極基板。
A transparent electrode substrate used in solar cells.
Including glass substrate and transparent conductive film
The transparent conductive film is composed of a conductive layer located on the glass substrate side and a surface layer.
A transparent electrode substrate having a substantially hemispherical convex portion on the surface of the surface layer.
前記表面層について、原子間力顕微鏡を用いて任意の8μm角の1024×1024点で測定を行った際のデータを、SPIPイメージ解析ソフトウェアを用いて処理して得られる尖り度(クルトシス):Skuの値が3.00より小さい、請求項1に記載の透明電極基板。 The sharpness (Kurtosis) obtained by processing the data obtained by measuring the surface layer at 1024 × 1024 points of an arbitrary 8 μm square using an atomic force microscope using SPIP image analysis software: Sku. The transparent electrode substrate according to claim 1, wherein the value of is less than 3.00. 前記ガラス基板側から測定したヘーズ率が4%以下である請求項1又は2に記載の透明電極基板。 The transparent electrode substrate according to claim 1 or 2, wherein the haze ratio measured from the glass substrate side is 4% or less. 前記表面層の表面粗さが25nm以下である請求項1〜3のいずれか1項に記載の透明電極基板。 The transparent electrode substrate according to any one of claims 1 to 3, wherein the surface roughness of the surface layer is 25 nm or less. 前記導電層がSnOを主成分とする層である請求項1〜4のいずれか1項に記載の透明電極基板。 The transparent electrode substrate according to any one of claims 1 to 4, wherein the conductive layer is a layer containing SnO 2 as a main component. 前記透明導電膜の膜厚が300〜800nmであり、前記表面層の厚さが10〜80nmである請求項1〜5のいずれか1項に記載の透明電極基板。 The transparent electrode substrate according to any one of claims 1 to 5, wherein the transparent conductive film has a film thickness of 300 to 800 nm and the surface layer has a thickness of 10 to 80 nm. 前記ガラス基板と前記透明導電膜との間に、アンダーコート層をさらに含む請求項1〜6のいずれか1項に記載の透明電極基板。 The transparent electrode substrate according to any one of claims 1 to 6, further comprising an undercoat layer between the glass substrate and the transparent conductive film. 請求項1〜7のいずれか1項に記載の透明電極基板を有する太陽電池。 A solar cell having the transparent electrode substrate according to any one of claims 1 to 7.
JP2019126359A 2019-07-05 2019-07-05 Transparent electrode substrate and solar battery Pending JP2021012949A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019126359A JP2021012949A (en) 2019-07-05 2019-07-05 Transparent electrode substrate and solar battery
CN202010631914.3A CN112186048A (en) 2019-07-05 2020-07-03 Transparent electrode substrate and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019126359A JP2021012949A (en) 2019-07-05 2019-07-05 Transparent electrode substrate and solar battery

Publications (1)

Publication Number Publication Date
JP2021012949A true JP2021012949A (en) 2021-02-04

Family

ID=73919184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019126359A Pending JP2021012949A (en) 2019-07-05 2019-07-05 Transparent electrode substrate and solar battery

Country Status (2)

Country Link
JP (1) JP2021012949A (en)
CN (1) CN112186048A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022123516A (en) * 2021-02-12 2022-08-24 Agc株式会社 Glass substrate for solar cells and solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634362A (en) * 1992-07-16 1994-02-08 Nippon Sheet Glass Co Ltd Method and device for quantification of surface unevenness shape
JPH11274539A (en) * 1998-01-21 1999-10-08 Canon Inc Substrate with transparent conductive layer and photovoltaic element
JP2001085722A (en) * 1999-09-17 2001-03-30 Mitsubishi Heavy Ind Ltd Method for manufacturing transparent electrode film and solar battery
JP2002237610A (en) * 2001-02-08 2002-08-23 Nippon Sheet Glass Co Ltd Photoelectric converter and its manufacturing method
JP2011522433A (en) * 2008-06-02 2011-07-28 サン−ゴバン グラス フランス Photovoltaic cell and photovoltaic cell substrate
JP2013006735A (en) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd Glass sheet with transparent conductive membrane and manufacturing method therefor
JP2016517169A (en) * 2013-03-12 2016-06-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. High haze underlayer for solar cells
WO2018071509A1 (en) * 2016-10-12 2018-04-19 First Solar, Inc. Photovoltaic device with transparent tunnel junction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158366A (en) * 2000-11-21 2002-05-31 Nippon Sheet Glass Co Ltd Photoelectric conversion device
JP2006005021A (en) * 2004-06-15 2006-01-05 Nippon Sheet Glass Co Ltd Substrate with rough thin-film and its manufacturing method
JPWO2012169602A1 (en) * 2011-06-08 2015-02-23 旭硝子株式会社 Substrate with transparent conductive film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634362A (en) * 1992-07-16 1994-02-08 Nippon Sheet Glass Co Ltd Method and device for quantification of surface unevenness shape
JPH11274539A (en) * 1998-01-21 1999-10-08 Canon Inc Substrate with transparent conductive layer and photovoltaic element
JP2001085722A (en) * 1999-09-17 2001-03-30 Mitsubishi Heavy Ind Ltd Method for manufacturing transparent electrode film and solar battery
JP2002237610A (en) * 2001-02-08 2002-08-23 Nippon Sheet Glass Co Ltd Photoelectric converter and its manufacturing method
JP2011522433A (en) * 2008-06-02 2011-07-28 サン−ゴバン グラス フランス Photovoltaic cell and photovoltaic cell substrate
JP2013006735A (en) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd Glass sheet with transparent conductive membrane and manufacturing method therefor
JP2016517169A (en) * 2013-03-12 2016-06-09 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. High haze underlayer for solar cells
WO2018071509A1 (en) * 2016-10-12 2018-04-19 First Solar, Inc. Photovoltaic device with transparent tunnel junction

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. SUJATHA LEKSHMY & K. JOY: "Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel techni", JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS, vol. 25, JPN6021052549, 2014, pages 1664 - 1672, ISSN: 0004679486 *
若林祐次ら: "透明アクリル樹脂板の表面性状が視覚のテクスチャに及ぼす影響", 色材協会誌, vol. 92巻, JPN6021052547, May 2019 (2019-05-01), pages 131 - 135, ISSN: 0004679487 *

Also Published As

Publication number Publication date
CN112186048A (en) 2021-01-05

Similar Documents

Publication Publication Date Title
TWI437720B (en) A solar cell and a manufacturing method thereof, and a solar cell module
JP4621427B2 (en) Method for producing CdTe / CdS thin film solar cells on a large scale
JPH02503615A (en) Substrate for solar cells
TW201338184A (en) Solar cell, manufacturing method thereof, and solar cell module
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
WO2007010735A1 (en) Chalcopyrite-type solar cell
WO2011010685A1 (en) Glass substrate with conductive film for solar cell
JP5610563B2 (en) Glass substrate for solar cell
JP2010143790A (en) Method for producing glass substrate for solar cell
JPWO2011013719A1 (en) Transparent conductive substrate for solar cell and solar cell
JP5072936B2 (en) Composite crucible and manufacturing method thereof
JP5812487B2 (en) Manufacturing method of solar cell
JP2021012949A (en) Transparent electrode substrate and solar battery
TW201500313A (en) Solar cell and paste composition for forming aluminum electrode for solar cell
JP5128570B2 (en) Composite crucible and manufacturing method thereof
JP2022123516A (en) Glass substrate for solar cells and solar cell
JP7020458B2 (en) Glass substrate with film and its manufacturing method
CN110676351B (en) Compound film, preparation method thereof and compound film solar cell
JP6011730B2 (en) Manufacturing method of laminate
JP2005347444A (en) Photovoltaic element
JP2021012948A (en) Transparent electrode substrate and solar battery
CN112174518A (en) Glass substrate for CSP mirror, method for manufacturing same, and CSP mirror
JP7396416B2 (en) Glass substrate with transparent conductive film and method for manufacturing the same
JP7160232B1 (en) Transparent electrode substrate and solar cell
JP2012113839A (en) Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111