JP2012113839A - Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element - Google Patents

Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element Download PDF

Info

Publication number
JP2012113839A
JP2012113839A JP2010259395A JP2010259395A JP2012113839A JP 2012113839 A JP2012113839 A JP 2012113839A JP 2010259395 A JP2010259395 A JP 2010259395A JP 2010259395 A JP2010259395 A JP 2010259395A JP 2012113839 A JP2012113839 A JP 2012113839A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
thin film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010259395A
Other languages
Japanese (ja)
Inventor
Yoko Shida
陽子 志田
Masao Mizuno
雅夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010259395A priority Critical patent/JP2012113839A/en
Publication of JP2012113839A publication Critical patent/JP2012113839A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin metallic film having low electrical resistivity and high corrosion resistance for an electrolyte solution in a dye-sensitized solar cell.SOLUTION: In a dye-sensitized solar cell element in which a gap between a negative electrode and a positive electrode is filled with an electrolyte solution, at least one of a collecting electrode that comes into contact with the electrolyte solution and a thin metallic film constituting a conductive film is composed of at least one selected from the group consisting of metals of Ti and Ta, and nitride of the Ti. In a thin metallic film for a dye-sensitized solar cell, the nitride may include oxygen.

Description

本発明は色素増感型太陽電池に用いる金属薄膜、及び色素増感型太陽電池素子に関し、詳細には、耐電解質溶液腐食性に優れた低電気抵抗の色素増感型太陽電用金属薄膜、及び該金属薄膜を備えた色素増感型太陽電池素子に関するものである。   The present invention relates to a metal thin film used for a dye-sensitized solar cell and a dye-sensitized solar cell element, and more specifically, a low-electric resistance dye-sensitized solar metal thin film excellent in electrolyte solution corrosion resistance, And a dye-sensitized solar cell element including the metal thin film.

石油エネルギーの代替エネルギーの一つとして太陽エネルギーの利用が注目されており、特に太陽光を電力変換する方法として太陽電池を利用した技術開発が行われている。太陽電池としてはシリコン系太陽電池が実用化されているが、シリコン系太陽電池は発電コストが高いという問題がある。即ち、シリコン系太陽電池の原材料には高価な高純度シリコンを使用しているため、材料コストが高く、また製造プロセスにおいて高真空工程や高温工程が必要であり、設備投資費が高くなるなど、シリコン系太陽電池は製造コストが高いため、発電原価が高くなっていた。   The use of solar energy is attracting attention as one of alternative energy for petroleum energy, and in particular, technological development using solar cells is being performed as a method for converting sunlight into electric power. Silicon solar cells have been put to practical use as solar cells, but silicon solar cells have a problem of high power generation costs. That is, since high-purity silicon is used as a raw material for silicon-based solar cells, the material cost is high, and a high vacuum process and a high-temperature process are required in the manufacturing process, resulting in high capital investment costs, etc. Since silicon-based solar cells are expensive to produce, the power generation cost is high.

シリコン系太陽電池の製造コストを低減させる技術が提案されている一方で、シリコン以外の材料を用いた太陽電池が各種提案されている。   While techniques for reducing the manufacturing cost of silicon-based solar cells have been proposed, various types of solar cells using materials other than silicon have been proposed.

例えばシリコン以外の材料を用いた太陽電池として、近年、色素増感型太陽電池が注目を集めている。色素増感型太陽電池の製造プロセスでは、高真空工程等が不要なため設備投資費が安く、また色素増感型太陽電池の基本構造は、増感色素を担持させた半導体電極(負極)、対向電極(正極)、及び電極間に充填された電解質溶液で構成されており、構造が比較的単純であるため、量産がし易く製造コストを抑えることができる。更に色素増感型太陽電池ではシリコン等高価な材料を使用しないことから、材料コストも安いというメリットもある。   For example, as a solar cell using a material other than silicon, a dye-sensitized solar cell has recently attracted attention. The manufacturing process of the dye-sensitized solar cell does not require a high vacuum process, so the capital investment cost is low. The basic structure of the dye-sensitized solar cell is a semiconductor electrode (negative electrode) carrying a sensitizing dye, Since it is comprised with the counter electrode (positive electrode) and the electrolyte solution with which it filled between electrodes, and a structure is comparatively simple, mass production is easy and manufacturing cost can be held down. Furthermore, since dye-sensitized solar cells do not use expensive materials such as silicon, there is also an advantage that material costs are low.

図1は色素増感型太陽電池の一般的な構成を示す断面図である。この色素増感型太陽電池素子1は、増感色素を担持させる電極(負極)10と対向する電極(正極)20との間に電解質溶液5を充填したものである。負極10は基板2上に導電膜3、集電極7、酸化物半導体層6を有し、該酸化物半導体層6には増感色素(図示せず)が担持されている。また負極10と対向する正極20は基板2’上に導電膜3’と触媒層4を含む触媒電極を有している。電解質溶液5としては例えばヨウ素系の電解液が一般的に用いられている。   FIG. 1 is a cross-sectional view showing a general configuration of a dye-sensitized solar cell. This dye-sensitized solar cell element 1 is one in which an electrolyte solution 5 is filled between an electrode (negative electrode) 10 that carries a sensitizing dye and an opposite electrode (positive electrode) 20. The negative electrode 10 has a conductive film 3, a collector electrode 7, and an oxide semiconductor layer 6 on a substrate 2, and a sensitizing dye (not shown) is supported on the oxide semiconductor layer 6. The positive electrode 20 facing the negative electrode 10 has a catalyst electrode including the conductive film 3 ′ and the catalyst layer 4 on the substrate 2 ′. As the electrolytic solution 5, for example, an iodine-based electrolytic solution is generally used.

そして色素増感型太陽電池では、光を負極10に入射させると酸化物半導体層6に担持させた増感色素(図示せず)が励起されて電子(e)が放出され、増感色素は陽イオンとなる。一方、放出された電子(e)は酸化物半導体層6から集電極7を通じて導線等の外部回路(図示せず)を伝って正極20側に移動した後、正極20側の触媒電極(導電膜3’と触媒層4)を通じて電解質溶液5中のヨウ素(三ヨウ化物)と還元反応(I +2e→3I)を起こしてヨウ素イオン(I)が生成される。そしてこのヨウ素イオン(I)が再び電子を放出した増感色素(陽イオン)に電子を与えて、三ヨウ化物(3I→I +2e)に戻ると共に、増感色素は電子を得て元の状態に戻る。以上のサイクルが繰り返されることによって、色素増感型太陽電池では光を電力へと変換している。 In the dye-sensitized solar cell, when light is incident on the negative electrode 10, the sensitizing dye (not shown) carried on the oxide semiconductor layer 6 is excited and electrons (e ) are emitted, and the sensitizing dye is emitted. Becomes a cation. On the other hand, the emitted electrons (e ) travel from the oxide semiconductor layer 6 to the positive electrode 20 side through the collector electrode 7 through an external circuit (not shown) such as a conducting wire, and then the catalyst electrode (conductive) on the positive electrode 20 side. Through the membrane 3 ′ and the catalyst layer 4), iodine (triiodide) in the electrolyte solution 5 undergoes a reduction reaction (I 3 + 2e → 3I ) to generate iodine ions (I ). The iodine ion (I ) gives electrons again to the sensitizing dye (cation) from which electrons have been released, and returns to triiodide (3I → I 3 + 2e ). To get back to the original state. By repeating the above cycle, the dye-sensitized solar cell converts light into electric power.

もっとも、色素増感型太陽電池はシリコン系太陽電池と比べて発電効率が低いことから、発電効率の向上が求められていた。色素増感型太陽電池の発電効率が低い原因の一つとして導電膜3の電気抵抗率が高いことが指摘されている。上記の様に色素増感型太陽電池では電解質溶液としてヨウ素が一般的に用いられているが、ヨウ素は電子を1つ受け取ることで安定化するため(オクテット則)、電極を構成する金属薄膜中の金属と反応性が高く、該反応が生じると金属薄膜に腐食が生じることが知られている。そのため導電膜3や集電極7などに用いる金属薄膜には、ヨウ素に対して腐食しない性質を有する材料を用いなければならない。例えば透明導電膜には耐電解質腐食性(耐食性)と透光性を兼備した材料としてFTO(フッ素ドープ酸化錫)が汎用されているが、FTOは電気抵抗率が高いという問題があった。   However, since dye-sensitized solar cells have lower power generation efficiency than silicon-based solar cells, improvement in power generation efficiency has been demanded. It has been pointed out that the electrical resistivity of the conductive film 3 is high as one of the causes of the low power generation efficiency of the dye-sensitized solar cell. As described above, iodine is generally used as an electrolyte solution in a dye-sensitized solar cell. However, since iodine is stabilized by receiving one electron (octet rule), it is contained in a metal thin film constituting an electrode. It is known that when the reaction occurs, the metal thin film is corroded. Therefore, the metal thin film used for the conductive film 3 and the collector electrode 7 must be made of a material that does not corrode against iodine. For example, although FTO (fluorine-doped tin oxide) is widely used as a material having both electrolytic corrosion resistance (corrosion resistance) and translucency for transparent conductive films, FTO has a problem of high electrical resistivity.

金属薄膜の腐食を防止して抵抗率を低減させる技術として例えば特許文献1には、抵抗率の低いAgを用いると共に、ヨウ素による溶解から保護するためにAgに保護膜を形成する技術が提案されている。しかしながら、Agなどの電極を利用する場合、保護膜の形成が必須となり、太陽電池素子の製造が複雑となり、製造コストが高くなる。   As a technique for reducing the resistivity by preventing the corrosion of the metal thin film, for example, Patent Document 1 proposes a technique of using a low resistivity Ag and forming a protective film on Ag in order to protect it from dissolution by iodine. ing. However, when an electrode such as Ag is used, it is essential to form a protective film, which complicates the production of the solar cell element and increases the production cost.

特開2008−186692号公報JP 2008-186692 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、色素増感型太陽電池において、電気抵抗率が低く、且つ電解質溶液(ヨウ素)に対する高い耐腐食性を有する金属薄膜を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the object thereof is a dye-sensitized solar cell having a low electrical resistivity and a high corrosion resistance against an electrolyte solution (iodine). It is to provide a metal thin film.

上記課題を解決し得た本発明とは、負極と正極の間に電解質溶液が充填されている色素増感型太陽電池素子において、前記電解質溶液と接触する集電極、及び導電膜を構成する金属薄膜の少なくとも1種は、TiおよびTaの金属、並びに前記Tiの窒化物よりなる群から選択される少なくとも一種で構成されており、前記窒化物は酸素を含んでいても良い色素増感型太陽電池用金属薄膜である。   The present invention that has solved the above problems is a dye-sensitized solar cell element in which an electrolyte solution is filled between a negative electrode and a positive electrode, and a metal that constitutes a collector electrode that contacts the electrolyte solution and a conductive film At least one of the thin films is composed of at least one selected from the group consisting of Ti and Ta metals and Ti nitrides, and the nitrides may contain oxygen. It is a metal thin film for batteries.

前記金属薄膜は、耐食性材料で被覆されていないことも本発明の好ましい実施態様である。   It is also a preferred embodiment of the present invention that the metal thin film is not coated with a corrosion resistant material.

本発明は、上記色素増感型太陽電池用金属薄膜を用いた色素増感型太陽電池素子も好ましい実施態様である。   In the present invention, a dye-sensitized solar cell element using the metal thin film for dye-sensitized solar cell is also a preferred embodiment.

本発明によれば、集電極、及び導電膜を構成する金属薄膜の少なくとも1種は、Ti、Ta、並びに前記Tiの窒化物の少なくとも1種(酸素を含んでいてもよい)を用いることによって、電解質溶液に対する耐腐食性に優れているだけでなく、電気抵抗率も従来のFTOと同等若しくはそれ以下の値を有する色素増感型太陽電池素子用金属薄膜を提供できた。したがって本発明の金属薄膜を用いた色素増感型太陽電池素子は、従来のFTOを用いた色素増感型太陽電池素子と比べて耐食性及び発電効率に優れた特性を有する。   According to the present invention, at least one of the collector electrode and the metal thin film constituting the conductive film is at least one of Ti, Ta, and a nitride of Ti (which may contain oxygen). In addition, it was possible to provide a metal thin film for a dye-sensitized solar cell element having not only excellent corrosion resistance to an electrolyte solution but also having an electric resistivity equal to or lower than that of a conventional FTO. Therefore, the dye-sensitized solar cell element using the metal thin film of the present invention has characteristics excellent in corrosion resistance and power generation efficiency as compared with the conventional dye-sensitized solar cell element using FTO.

図1は、色素増感型太陽電池素子の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a dye-sensitized solar cell element. 図2aは、表1のNo.5のXPS分析モンタージュスペクトル図である。FIG. 5 is an XPS analysis montage spectrum diagram of No. 5. 図2bは、表1のNo.5の金属薄膜の深さ方向の組成分布図である。FIG. 5 is a composition distribution diagram in the depth direction of the metal thin film No. 5; 図3aは、表1のNo.6のXPS分析モンタージュスペクトル図である。FIG. 6 is an XPS analysis montage spectrum diagram of No. 6. FIG. 図3bは、表1のNo.6の金属薄膜の深さ方向の組成分布図である。FIG. 6 is a composition distribution diagram in the depth direction of the metal thin film No. 6;

本発明者らは色素増感型太陽電池の発電効率を高めるため、色素増感型太陽電池に用いられる集電極や、導電膜を構成する金属薄膜の電気抵抗率を低減し得ることを前提にして、しかも耐食性にも優れた技術を提供するため鋭意研究を重ねた。   In order to increase the power generation efficiency of the dye-sensitized solar cell, the present inventors presuppose that the collector electrode used in the dye-sensitized solar cell and the electrical resistivity of the metal thin film constituting the conductive film can be reduced. In addition, earnest research was repeated to provide technology with excellent corrosion resistance.

まず、電気抵抗率が低い金属薄膜として汎用されているAgやAlを用いて、電解質溶液(ヨウ素)に対する耐腐食性について検討したところ、AgやAlは電解質溶液によって溶解されてしまうことが確認された(後記実施例1参照)。本発明者らは更に様々な金属について調べた結果、Ti、Ta、及びTi窒化物は電解質溶液(ヨウ素)に対して高い耐腐食性を有するだけでなく、電気抵抗率や光透過性など色素増感型太陽電池に用いる金属薄膜に要求される特性を満足することを見出し本発明に至った。   First, using Ag or Al, which is widely used as a metal thin film with low electrical resistivity, the corrosion resistance against an electrolyte solution (iodine) was examined, and it was confirmed that Ag and Al would be dissolved by the electrolyte solution. (See Example 1 below). As a result of further investigations on various metals, the present inventors have found that Ti, Ta, and Ti nitride not only have high corrosion resistance to an electrolyte solution (iodine) but also dyes such as electrical resistivity and light transmittance. The present inventors have found that the characteristics required for a metal thin film used for a sensitized solar cell are satisfied, and have reached the present invention.

まず、本発明に係る色素増感型太陽電池用金属薄膜について説明する。   First, the metal thin film for dye-sensitized solar cell according to the present invention will be described.

本発明の金属薄膜は、TiおよびTaの金属、並びに上記Tiの窒化物よりなる群から選択されている。   The metal thin film of the present invention is selected from the group consisting of Ti and Ta metals and Ti nitrides.

このうちTiおよびTaの金属は、電解質溶液(ヨウ素)に対する耐食性が高く、しかも膜厚によっては光透過性を有し、且つ該金属を用いた金属薄膜の電気抵抗率は従来から汎用されているFTOと同程度以下であるから色素増感型太陽電池素子を構成する電極等に用いる金属薄膜として好適である。   Among these metals, Ti and Ta metals have high corrosion resistance to an electrolyte solution (iodine), and have optical transparency depending on the film thickness, and electrical resistivity of metal thin films using the metal has been widely used. Since it is about the same as or lower than FTO, it is suitable as a metal thin film used for an electrode or the like constituting a dye-sensitized solar cell element.

また、上記Tiの窒化物も、耐食性に優れ、低い電気抵抗率を有している。Tiの窒化物には、酸素が含まれていても良い。後記する実施例に示すように、窒化物中に酸素が含まれていても、電解質溶液に対する良好な耐食性を維持できるが、酸素量が多くなると、電気抵抗率が増大する傾向にあることから、酸素を実質的に含まない窒化物とするか、または、金属薄膜中の酸素量が好ましくは30%以下に低減されている酸素含有窒化物(例えば酸窒化物)とすることが好ましい。なお、このような酸素含有窒化物は、本発明の好ましい成膜過程(詳細は後述する。)において、不可避的に生成され得るものである。すなわち、上記金属の窒化物を成膜するに当たり、本発明では、窒素含有ガス含有雰囲気下にてスパッタリング法で成膜することが推奨されるが、成膜時に、上記金属中に窒素のほか酸素が含まれることがあるが、本発明では、電気抵抗率に悪影響を及ぼさない限り、酸素含有窒化物も含むという意味である。また、成膜条件によっては、酸素以外の元素が不可避的に含まれる場合があるが、これらの元素を含む窒化物も、本発明における窒化物の範囲内に包含される。   The Ti nitride is also excellent in corrosion resistance and has a low electrical resistivity. The nitride of Ti may contain oxygen. As shown in the examples described later, even if oxygen is contained in the nitride, good corrosion resistance to the electrolyte solution can be maintained, but as the amount of oxygen increases, the electrical resistivity tends to increase. It is preferable to use nitride that does not substantially contain oxygen, or oxygen-containing nitride (for example, oxynitride) in which the amount of oxygen in the metal thin film is preferably reduced to 30% or less. Such an oxygen-containing nitride can be inevitably generated in the preferred film formation process of the present invention (details will be described later). That is, when forming the metal nitride film, in the present invention, it is recommended to form a film by a sputtering method under an atmosphere containing a nitrogen-containing gas. In the present invention, it means that an oxygen-containing nitride is also included as long as the electrical resistivity is not adversely affected. Depending on the film formation conditions, elements other than oxygen may inevitably be included, but nitrides containing these elements are also included within the scope of nitrides in the present invention.

ただし、窒化物中の酸素の量が増大するにしたがって電気抵抗率が増大することから、酸素の量はできるだけ少ない方が良い。具体的には、電気抵抗率を低減する観点から、金属薄膜をXPS(X−ray Photoelectron Spectroscopy)分析によって得られるXPSモンタージュスペクトルに基づき算出したときに、金属薄膜に含まれる酸素の割合が好ましくは30%以下、より好ましくは10%以下、更に好ましくは0%であることが望ましい。   However, since the electrical resistivity increases as the amount of oxygen in the nitride increases, the amount of oxygen should be as small as possible. Specifically, from the viewpoint of reducing electrical resistivity, when the metal thin film is calculated based on an XPS montage spectrum obtained by XPS (X-ray Photoelectron Spectroscopy) analysis, the proportion of oxygen contained in the metal thin film is preferably It is desirable that it is 30% or less, more preferably 10% or less, and still more preferably 0%.

これらの中でも、電気抵抗率低減の観点から好ましいのはTi、Ta、及びTiN(酸素含有率が10%以下)であり、FTOよりも電気抵抗率が低くなるTiN(酸素含有率10%以下、より好ましくは酸素含有率0%)が最も好ましい。また、耐食性の観点から好ましいのも同様である。   Among these, Ti, Ta, and TiN (oxygen content is 10% or less) are preferable from the viewpoint of electric resistivity reduction, and TiN (oxygen content is 10% or less, lower than FTO). More preferably, the oxygen content is 0%. The same is preferable from the viewpoint of corrosion resistance.

本発明の上記金属薄膜は、具体的には色素増感型太陽電池素子を構成する集電極および/または導電膜に採用することによって、色素増感型太陽電池素子の電気抵抗率を低減できる。上記金属薄膜を集電極および/または導電膜に用いると、金属薄膜に要求される光透過性などの特性を維持しつつ(但し、膜厚による)、優れた電解質溶液に対する耐食性を示すと共に、電気抵抗率低減効果も発揮するため望ましい。   Specifically, the metal thin film of the present invention can be used for the collector electrode and / or the conductive film constituting the dye-sensitized solar cell element, thereby reducing the electrical resistivity of the dye-sensitized solar cell element. When the metal thin film is used for a collector electrode and / or a conductive film, while maintaining the properties such as light transmittance required for the metal thin film (however, depending on the film thickness), it exhibits excellent corrosion resistance against an electrolyte solution, It is desirable because it also exhibits a resistivity reduction effect.

本発明の上記金属薄膜は、電解質溶液に対して優れた耐食性を有しているので、金属薄膜を電解質溶液から保護するために樹脂や金属等の耐食性材料で被覆して保護層を設ける必要はない。したがって、本発明の上記金属薄膜を用いれば保護膜を形成する場合と比べて、成膜プロセスが簡易となり、製造コストも低減できる。   Since the metal thin film of the present invention has excellent corrosion resistance against the electrolyte solution, it is necessary to provide a protective layer by coating with a corrosion resistant material such as resin or metal in order to protect the metal thin film from the electrolyte solution. Absent. Therefore, when the metal thin film of the present invention is used, the film forming process is simplified and the manufacturing cost can be reduced as compared with the case where the protective film is formed.

以下では、上記図1を参照しながら、本発明の金属薄膜の好ましい実施形態1〜3について説明する。ただし、本発明はこれに限定する趣旨ではない。特に言及のない構成部材については後記する具体的な色素増感型太陽電池素子の説明を参考にして適宜選択すればよい。   Hereinafter, preferred embodiments 1 to 3 of the metal thin film of the present invention will be described with reference to FIG. However, the present invention is not limited to this. Components not particularly mentioned may be appropriately selected with reference to the description of a specific dye-sensitized solar cell element to be described later.

好ましい実施形態1は、負極10を構成する集電極7に本発明の金属薄膜を用いた構成である。集電極7は、太陽電池を大型化する際に形成することが多い部材であって、必須の構成ではない。上記したように本発明の金属薄膜は、耐食性に優れているだけでなく、電気抵抗率も低いため、集電極7に用いることによって色素増感型太陽電池素子の発電効率を高めることができる。   Preferred Embodiment 1 is a configuration in which the metal thin film of the present invention is used for the collector electrode 7 constituting the negative electrode 10. The collector electrode 7 is a member that is often formed when the solar cell is enlarged, and is not an essential component. As described above, the metal thin film of the present invention not only has excellent corrosion resistance, but also has a low electrical resistivity. Therefore, when used for the collector electrode 7, the power generation efficiency of the dye-sensitized solar cell element can be increased.

好ましい実施形態2は、負極10を構成する(透明)導電膜3に従来のFTOに代わり、本発明の金属薄膜を用いた構成である。上記実施形態1と同様、本発明の金属薄膜は、耐食性、及び電気抵抗率に優れているため、(透明)導電膜3に本発明の金属薄膜を用いると色素増感型太陽電池素子の発電効率を高めることができる。特に導電膜3には耐食性の他、高い透光性が要求されるが、電気抵抗の低いTiNなどを用いることにより、薄膜化できるため、透光性も高められる。   Preferred Embodiment 2 is a configuration in which the metal thin film of the present invention is used for the (transparent) conductive film 3 constituting the negative electrode 10 instead of the conventional FTO. As in the first embodiment, the metal thin film of the present invention is excellent in corrosion resistance and electrical resistivity. Therefore, when the metal thin film of the present invention is used for the (transparent) conductive film 3, the power generation of the dye-sensitized solar cell element is performed. Efficiency can be increased. In particular, the conductive film 3 is required to have high translucency in addition to corrosion resistance. However, the use of TiN or the like having a low electric resistance can reduce the thickness of the conductive film 3, thereby improving the translucency.

好ましい実施形態3は、正極20の触媒電極を構成する導電膜3’に本発明の金属薄膜を用いたものである。図示例では触媒電極は触媒層4と、該触媒(層)4を担持する導電膜3’からなり、本発明の金属薄膜は導電膜3’に用いられている。触媒電極を構成する導電膜3’に本発明の金属薄膜を用いると、正極側から電解質溶液に供給される電子の損失を抑制できるため、色素増感型太陽電池素子の発電効率を高めることができる。   In a preferred embodiment 3, the metal thin film of the present invention is used for the conductive film 3 ′ constituting the catalyst electrode of the positive electrode 20. In the illustrated example, the catalyst electrode includes a catalyst layer 4 and a conductive film 3 ′ supporting the catalyst (layer) 4, and the metal thin film of the present invention is used for the conductive film 3 ′. When the metal thin film of the present invention is used for the conductive film 3 ′ constituting the catalyst electrode, the loss of electrons supplied to the electrolyte solution from the positive electrode side can be suppressed, so that the power generation efficiency of the dye-sensitized solar cell element can be increased. it can.

なお、本発明の金属薄膜は電気抵抗率低減効果が従来のFTOよりも優れているため、上記実施形態1〜3を適宜組み合わせて用いることによって、より高い発電効率を得ることができる。例えば実施形態1と3との組み合わせ、実施形態1と2との組み合わせ、実施形態2と3との組み合わせ、実施形態1〜3全てを組み合わせた構成も好ましい実施形態であり、これらを組み合わせて色素増感型太陽電池素子を構成することによって、電気抵抗率低減効果を一層高めることができ、色素増感型太陽電池素子の発電効率もより高めることができる。   In addition, since the metal thin film of this invention is more excellent in the electrical resistivity reduction effect than conventional FTO, higher power generation efficiency can be obtained by using the said Embodiments 1-3 suitably. For example, a combination of Embodiments 1 and 3, a combination of Embodiments 1 and 2, a combination of Embodiments 2 and 3, and a combination of Embodiments 1 to 3 are also preferred embodiments. By configuring the sensitized solar cell element, the electric resistivity reduction effect can be further enhanced, and the power generation efficiency of the dye-sensitized solar cell element can be further increased.

以下、本発明に係る色素増感型太陽電池素子の構成について図1を参照しながら説明するが、本発明は図示例に限定されず、適宜変更を加えることができる。   Hereinafter, the configuration of the dye-sensitized solar cell element according to the present invention will be described with reference to FIG. 1, but the present invention is not limited to the illustrated examples and can be appropriately changed.

既に述べた様に、この色素増感型太陽電池1は、増感色素を担持している負極10と、該負極に対向する正極20との間に電解質溶液5が充填された構成となっている。   As already described, the dye-sensitized solar cell 1 has a configuration in which the electrolyte solution 5 is filled between the negative electrode 10 carrying the sensitizing dye and the positive electrode 20 facing the negative electrode. Yes.

負極10は基板2上に(透明)導電膜3、集電極7、酸化物半導体層6を有する構成であり、該酸化物半導体層6には増感色素(図示せず)が担持されている。このうち、負極10の基板2側から光を入射させる場合は、基板2は可視光域の透過率(光透過率)が高い材料を用いることが望ましい。このような材料としては例えばガラスが好ましいが、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)などの樹脂等、無色透明な材料を用いてもよい。尚、正極20の基板2’側から光を入射する場合は、負極側の基板2は光透過性を有さない材料(例えば銅などの金属や着色された樹脂など)を用いることもできる。   The negative electrode 10 includes a (transparent) conductive film 3, a collector electrode 7, and an oxide semiconductor layer 6 on a substrate 2, and a sensitizing dye (not shown) is supported on the oxide semiconductor layer 6. . Among these, when light is incident from the substrate 2 side of the negative electrode 10, it is desirable to use a material having a high transmittance (light transmittance) in the visible light region. As such a material, for example, glass is preferable, but a colorless and transparent material such as a resin such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) may be used. When light is incident from the substrate 2 ′ side of the positive electrode 20, a material that does not transmit light (for example, a metal such as copper or a colored resin) may be used for the substrate 2 on the negative electrode side.

負極側の基板2の表面には導電膜3が形成されている。導電膜3は、光照射により増感色素が励起されて放出した電子(e)を導通する機能を有するものであって、光透過率が高く、且つ導電性に優れた材料であれば特に限定されず、導電膜3としてFTOを用いることができるが、上記実施態様2で記載した如く、導電膜3として本発明の金属薄膜を用いることが好ましい。なお、負極の基板側から光を入射しない場合は、導電膜3は透光性を有さなくてもよい。 A conductive film 3 is formed on the surface of the substrate 2 on the negative electrode side. The conductive film 3 has a function of conducting electrons (e ) emitted when the sensitizing dye is excited by light irradiation, and has a high light transmittance and is excellent in conductivity. Although not limited, FTO can be used as the conductive film 3, but as described in Embodiment 2 above, it is preferable to use the metal thin film of the present invention as the conductive film 3. Note that in the case where light is not incident from the substrate side of the negative electrode, the conductive film 3 may not have translucency.

上記負極10側の導電膜3の厚みは特に限定されず、要求特性に応じて決定すればよいが、導電膜3の厚みが小さすぎると、十分な導電性が得られないことがあることから、好ましくは10nm以上とするのが望ましい。一方、導電膜3の厚みが大きすぎると、光透過性が低下したり、均質な導電膜の形成が困難になることがあるため、好ましくは50nm以下、より好ましくは30nm以下とすることが望ましい。   The thickness of the conductive film 3 on the negative electrode 10 side is not particularly limited and may be determined according to required characteristics. However, if the thickness of the conductive film 3 is too small, sufficient conductivity may not be obtained. The thickness is preferably 10 nm or more. On the other hand, if the thickness of the conductive film 3 is too large, the light transmission may be reduced or it may be difficult to form a homogeneous conductive film. Therefore, the thickness is preferably 50 nm or less, more preferably 30 nm or less. .

負極10側の導電膜3の上には集電極7が形成されており、集電極7は電子(e)を集めて外部回路に取り出す機能を有するものであって、導電率及び耐食性に優れた材料であれば特に限定されないが、集電効率を上げて、色素増感型太陽電池の発電効率を高めるには、集電極7の電気抵抗率が導電膜3の電気抵抗率よりも低いことが望ましく、実施形態1で記載した如く、本発明の金属薄膜を用いることが好ましい。例えばTiNはFTOよりも電気抵抗率が低いことから、FTOを導電膜3とし、TiNを集電極とすれば、集電効率を向上できると共に、電気抵抗率も低いため発電効率を高めることができる。また本発明の金属薄膜は電解質溶液に対する耐食性も高いため、電解質溶液に接触しないようにするための耐食性材料で被覆するなど保護膜を形成する必要がないため、AgやAlを集電極に用いる場合よりも発電効率に優れている。すなわち、AgやAlなど抵抗率の低い金属を集電極に用いることもできるが、AgやAlは電解質溶液に接触すると溶解してしまうなど耐食性に問題があることから上記のように保護膜を形成する必要があるため、発電効率が低下するため、本発明の金属薄膜を用いることが有用である。 A collector electrode 7 is formed on the conductive film 3 on the negative electrode 10 side. The collector electrode 7 has a function of collecting electrons (e ) and taking them out to an external circuit, and is excellent in conductivity and corrosion resistance. However, the electrical resistivity of the collector electrode 7 is lower than the electrical resistivity of the conductive film 3 in order to increase the current collection efficiency and increase the power generation efficiency of the dye-sensitized solar cell. As described in Embodiment 1, it is preferable to use the metal thin film of the present invention. For example, since TiN has a lower electrical resistivity than FTO, if FTO is used as conductive film 3 and TiN is used as a collector electrode, the current collection efficiency can be improved and the power generation efficiency can be increased because the electrical resistivity is also low. . In addition, since the metal thin film of the present invention has high corrosion resistance to the electrolyte solution, it is not necessary to form a protective film such as coating with a corrosion resistant material so as not to contact the electrolyte solution. Therefore, when Ag or Al is used for the collector electrode It has better power generation efficiency. That is, a metal having a low resistivity such as Ag or Al can be used for the collector electrode, but Ag or Al dissolves when it comes into contact with the electrolyte solution. Therefore, the protective film is formed as described above. Therefore, since the power generation efficiency is lowered, it is useful to use the metal thin film of the present invention.

なお、導電膜3と集電極7のいずれにも本発明の金属薄膜を用いる場合、集電極7に含まれる酸素量を透明導電膜3に含まれる酸素量よりも少なくすることによって、集電極7の電気抵抗率を低減できる。勿論、酸素量以外にも金属薄膜の構成元素を変更することによって(例えばTiとTiNなど)電気抵抗率を低減できる。   In addition, when using the metal thin film of this invention for both the electrically conductive film 3 and the collector electrode 7, the collector electrode 7 is made by making the amount of oxygen contained in the collector electrode 7 smaller than the amount of oxygen contained in the transparent conductive film 3. The electrical resistivity can be reduced. Of course, the electrical resistivity can be reduced by changing the constituent elements of the metal thin film in addition to the amount of oxygen (for example, Ti and TiN).

集電極7は、抵抗率の上昇を抑制しながら色素増感型太陽電池を大型化して効率的に電子を外部回路に取り出すためには設けることが望ましいが、必須の構成ではなく、色素増感型太陽電池の大きさや要求特性によっては集電極7を設けなくてもよい。   The collector electrode 7 is desirably provided in order to increase the size of the dye-sensitized solar cell while efficiently suppressing the increase in resistivity, and to efficiently extract electrons to the external circuit. Depending on the size and required characteristics of the solar cell, the collector electrode 7 may not be provided.

集電極7の厚みやサイズは特に限定されないが、集電極7の厚みが薄すぎると十分な導電性が得られないことがあるため、好ましくは100nm以上とするのがよい。   The thickness and size of the collector electrode 7 are not particularly limited. However, if the collector electrode 7 is too thin, sufficient conductivity may not be obtained.

また集電極7の厚みが厚すぎると発電する面積が小さくなり、得られる電力値が低下することがあるため、好ましくは500nm以下、より好ましく300nm以下とすることが望ましい。   Moreover, since the area which generate | occur | produces electricity will become small if the thickness of the collector electrode 7 is too thick, and the electric power value obtained may fall, Preferably it is 500 nm or less, It is desirable to set it as 300 nm or less more preferably.

集電極7の上には酸化物半導体層6が形成されている。酸化物半導体層6は増感色素を含有(担持)する多孔質の層である。本発明において、酸化物半導体層6の種類は、特に限定されず、例えばTiO、ZnO、SnO、WOなど各種公知の金属酸化物を用いることができ、これら金属酸化物の微粒子は多孔質の酸化物半導体層6を形成するのに適している。また導電率が高く、電解質溶液に対する安定性に優れ、且つ多孔質層を形成するのに適しているTiOが特に好ましい。 An oxide semiconductor layer 6 is formed on the collector electrode 7. The oxide semiconductor layer 6 is a porous layer containing (supporting) a sensitizing dye. In the present invention, the type of the oxide semiconductor layer 6 is not particularly limited, and various known metal oxides such as TiO 2 , ZnO, SnO 2 , and WO 3 can be used. The fine particles of these metal oxides are porous. It is suitable for forming a high quality oxide semiconductor layer 6. Further, TiO 2 having a high conductivity, excellent stability with respect to an electrolyte solution, and suitable for forming a porous layer is particularly preferable.

金属酸化物微粒子の粒径としては、特に限定されるものではないが、表面積を持つこれらの粒子上に多くの色素を吸着させることによって変換効率が向上することから例えば10〜100nm程度の微粒子を用いることが望ましい。   The particle diameter of the metal oxide fine particles is not particularly limited, but the conversion efficiency is improved by adsorbing many dyes on these particles having a surface area. It is desirable to use it.

酸化物半導体層6の厚みは、特に限定されないが、酸化物半導体層6の厚みが小さすぎると、増感色素を十分に担持させることができず、光電変換効率が劣ることがあるため好ましくは2μm以上とすることが望ましい。一方、酸化物半導体層6の厚みが大きすぎると、酸化物半導体層6の電気抵抗率が高くなるため、好ましくは15μm以下、より好ましくは5μm以下とすることが望ましい。   The thickness of the oxide semiconductor layer 6 is not particularly limited. However, if the thickness of the oxide semiconductor layer 6 is too small, the sensitizing dye cannot be sufficiently supported, and the photoelectric conversion efficiency may be inferior. It is desirable to be 2 μm or more. On the other hand, if the thickness of the oxide semiconductor layer 6 is too large, the electrical resistivity of the oxide semiconductor layer 6 is increased. Therefore, the thickness is preferably 15 μm or less, more preferably 5 μm or less.

上記酸化物半導体層6に担持される増感色素としては特に限定されず、光によって励起されて電子を放出する作用を有するものであればよく、例えば各種公知の有機色素または金属錯体色素を用いることができる。例えば有機色素としては、アゾ系色素、インジゴ系色素、クマリン系色素などが例示される。また例えば金属錯体色素としては、ルテニウム系色素を挙げることができ光電変換効率が高いので望ましい。   The sensitizing dye supported on the oxide semiconductor layer 6 is not particularly limited as long as it has an action of emitting electrons when excited by light. For example, various known organic dyes or metal complex dyes are used. be able to. For example, examples of the organic dye include azo dyes, indigo dyes, and coumarin dyes. For example, as the metal complex dye, a ruthenium-based dye can be mentioned, which is desirable because of high photoelectric conversion efficiency.

電解質溶液5は負極10と対向する正極20との間に充填され、酸化物半導体層6に担持されている増感色素と正極20に形成した触媒層4との間の電子輸送を担う性質を有するものである。色素増感型太陽電池に用いる電解質溶液5としては特に限定されないが、電解質としては、酸化還元反応により、色素に電子を授受できる機構をもつ材料であれば、利用が可能であるが、Ru色素のLUMOとのエネルギーレベルがよく一致する事から、ヨウ素を含む電解液で、最も発電効率向上が図られると考えられ、好ましい。   The electrolyte solution 5 is filled between the negative electrode 10 and the positive electrode 20 facing the negative electrode 10, and has a property of transporting electrons between the sensitizing dye supported on the oxide semiconductor layer 6 and the catalyst layer 4 formed on the positive electrode 20. It is what you have. The electrolyte solution 5 used in the dye-sensitized solar cell is not particularly limited, but any electrolyte can be used as long as it has a mechanism capable of giving and receiving electrons to the dye by an oxidation-reduction reaction. Therefore, it is considered that the power generation efficiency can be most improved with an electrolyte containing iodine.

また電解液には例えばヨウ素−ヨウ素化合物などの酸化還元対を用いることができる。溶媒としては、アセトニトリル、エチレンカーボネートの混合液など各種溶媒を用いることができる。   In addition, an oxidation-reduction pair such as an iodine-iodine compound can be used as the electrolytic solution. As the solvent, various solvents such as a mixed solution of acetonitrile and ethylene carbonate can be used.

正極20は導電性を有し、且つ電解質中に存在する酸化還元対を還元させる触媒機能(例えばI イオンをIイオンに還元する)を有するものであればよく、正極20の構成は特に限定されず、例えば図示するように基板2’の負極側表面に導電膜3’と触媒層4からなる触媒電極を備えた構成でもよい。 The positive electrode 20 only needs to have conductivity and have a catalytic function (for example, to reduce I 3 ions to I ions) that reduces a redox pair present in the electrolyte. The configuration is not particularly limited, and for example, a configuration in which a catalyst electrode composed of a conductive film 3 ′ and a catalyst layer 4 is provided on the negative electrode side surface of the substrate 2 ′ may be used.

正極20に用いる基板2’は特に限定されず、上記負極10の基板2と同じものでよい。また正極20側から光を入射させない場合は、特に透明な材料でなくても導電性を有していればよく、このような材料として例えば銅薄板や導電性の樹脂などを用いることができる。   The substrate 2 ′ used for the positive electrode 20 is not particularly limited, and may be the same as the substrate 2 of the negative electrode 10. Further, when light is not incident from the positive electrode 20 side, it is only necessary to have conductivity even if it is not a transparent material. For example, a copper thin plate or a conductive resin can be used as such a material.

また正極20の導電膜3’についても特に限定されず導電性を有するものであればよく、例えば上記負極10の導電膜3と同様のものを用いてもよい。また正極側から光の入射をしないのであれば、透光性についても特に問わない。このような導電膜3’としては、FTO等の公知の材料を用いてもよいが、本発明の上記金属薄膜は、電解質溶液に対する耐食性に優れており、また電気抵抗率も低いことから好適である。   The conductive film 3 ′ of the positive electrode 20 is not particularly limited as long as it has conductivity. For example, the same conductive film 3 as that of the negative electrode 10 may be used. Further, as long as light is not incident from the positive electrode side, the light-transmitting property is not particularly limited. As such a conductive film 3 ′, a known material such as FTO may be used, but the metal thin film of the present invention is suitable because it is excellent in corrosion resistance to an electrolyte solution and has a low electrical resistivity. is there.

この導電膜3’の表面には触媒層4が形成されており、還元性能を高める機能を有している。触媒層4としては特に限定されないが、例えばPt、カーボン、酸化物など触媒として機能する各種公知の材料を用いることができる。   A catalyst layer 4 is formed on the surface of the conductive film 3 'and has a function of improving the reduction performance. Although it does not specifically limit as the catalyst layer 4, For example, various well-known materials which function as catalysts, such as Pt, carbon, an oxide, can be used.

本発明の色素増感型太陽電池素子は上記各構成部材を樹脂等からなる容器内に密閉してもよいし、或いは電解質溶液を封止するように正極と負極とを貼り合わせてもよく、公知の構成を採用できる。また色素増感型太陽電池素子の形状は特に限定されず、所望の形状とすればよく、四角形、八角形などの多角形や円、楕円などの円形が例示される。   In the dye-sensitized solar cell element of the present invention, each of the above constituent members may be sealed in a container made of a resin or the like, or the positive electrode and the negative electrode may be bonded so as to seal the electrolyte solution, A known configuration can be employed. The shape of the dye-sensitized solar cell element is not particularly limited, and may be a desired shape, and examples thereof include polygons such as quadrangles and octagons, and circles such as circles and ellipses.

上記本発明の色素増感型太陽電池素子を複数配列して接続することによって大型の色素増感型太陽電池モジュールを作成することができる。   A large dye-sensitized solar cell module can be produced by arranging and connecting a plurality of the dye-sensitized solar cell elements of the present invention.

以下、本発明の上記金属薄膜の成膜方法について説明した後に、上記本発明の色素増感型太陽電池素子の製造方法について説明するが、下記製造方法に限定されず、適宜変更を加えることもできる。   Hereinafter, after describing the film forming method of the metal thin film of the present invention, the method of manufacturing the dye-sensitized solar cell element of the present invention will be described. However, the present invention is not limited to the following manufacturing method, and appropriate modifications may be made. it can.

本発明の金属薄膜の基本成分はTi、Ta、及びTiの窒化物よりなる群から選択される少なくとも一種であるが、これらは成膜過程で酸化され易く、多量の酸素を含むものは電気抵抗率が上昇するため、成膜に際しては雰囲気条件を制御することが重要である。   The basic component of the metal thin film of the present invention is at least one selected from the group consisting of Ti, Ta, and Ti nitrides, but these are easily oxidized during the film formation process, and those containing a large amount of oxygen have electrical resistance. Since the rate increases, it is important to control the atmospheric conditions during film formation.

例えば金属薄膜として純Ti膜および/または純Ta膜を形成する場合は、雰囲気をArガスなどによる不活性雰囲気とすることが望ましい。また金属配線膜としてTiの窒化物を成膜する際は、不活性ガスと窒素ガスの混合雰囲気とすることが望ましい。成膜した金属薄膜に含まれる酸素量を低減させるには、成膜に必要なガス中の窒素濃度をできるだけ高くすることが望ましく、好ましくは、N2分圧が全体の30%以上、より好ましくは70%以上である。 For example, when a pure Ti film and / or a pure Ta film is formed as a metal thin film, the atmosphere is preferably an inert atmosphere such as Ar gas. Further, when a Ti nitride film is formed as the metal wiring film, it is desirable to use a mixed atmosphere of an inert gas and a nitrogen gas. In order to reduce the amount of oxygen contained in the formed metal thin film, it is desirable to increase the nitrogen concentration in the gas necessary for the film formation as much as possible, and preferably the N 2 partial pressure is 30% or more of the whole, more preferably Is 70% or more.

雰囲気ガス流量を高めることによって成膜時に存在する酸素をより高いレベルで排除することができるため、成膜過程でTi、Ta等が酸素と反応する割合を減少できる。   By increasing the atmospheric gas flow rate, oxygen present at the time of film formation can be eliminated at a higher level, so that the rate at which Ti, Ta, etc. react with oxygen during the film formation process can be reduced.

上記のような成膜時の雰囲気制御がし易く、また均質、均一な膜厚の金属薄膜を形成する観点からはスパッタリング法を用いることが望ましい。特にTiNなどの窒化物薄膜を形成するには窒素ガスによる反応性スパッタリングを行うことが望ましい。上実施形態1で示した様に、負極の透明導電膜3上に形成する集電極7として本発明の金属薄膜を用いる場合は、集電極7の配線パターンに応じたマスクを透明導電膜3上に形成してからスパッタリングを行うことによって所望の配線パターンの集電極7を透明導電膜3上に形成できる。   From the viewpoint of easily controlling the atmosphere during film formation as described above and forming a metal thin film having a uniform and uniform film thickness, it is desirable to use a sputtering method. In particular, reactive sputtering using nitrogen gas is desirable to form a nitride thin film such as TiN. As shown in the first embodiment, when the metal thin film of the present invention is used as the collector electrode 7 formed on the negative transparent conductive film 3, a mask corresponding to the wiring pattern of the collector electrode 7 is provided on the transparent conductive film 3. The collector electrode 7 having a desired wiring pattern can be formed on the transparent conductive film 3 by performing sputtering after forming the transparent conductive film 3.

また上記実施形態2、3で示したように負極10を構成する基板2上に形成する導電膜3や、正極20を構成する基板2’上に形成する導電膜3’に本発明の金属薄膜を用いる場合は、純Tiおよび/または純Taのスパッタリングターゲットを用いてスパッタリング法によって基板上に所望の組成の金属薄膜を形成することこが望ましい。   Further, as shown in the second and third embodiments, the metal thin film of the present invention is applied to the conductive film 3 formed on the substrate 2 constituting the negative electrode 10 and the conductive film 3 ′ formed on the substrate 2 ′ constituting the positive electrode 20. Is used, it is desirable to form a metal thin film having a desired composition on the substrate by sputtering using a pure Ti and / or pure Ta sputtering target.

スパッタリング法を用いた場合の他のスパッタリング条件は特に限定されないが、基板温度は例えば室温でよく、ガス圧は例えば2〜3mTorr程度でよい。   Other sputtering conditions when the sputtering method is used are not particularly limited, but the substrate temperature may be, for example, room temperature, and the gas pressure may be, for example, about 2 to 3 mTorr.

本発明の色素増感型太陽電池素子の製造方法は本発明の金属薄膜を用いた際の成膜条件を制御する点に特徴を有しており、その他の構成部材の製造条件については特に限定されず、公知の製造条件を作用すればよい。   The method for producing a dye-sensitized solar cell element of the present invention is characterized in that the film formation conditions are controlled when the metal thin film of the present invention is used, and the production conditions of other components are particularly limited. What is necessary is just to operate well-known manufacturing conditions.

例えば負極10は、ガラス板などの基板2上にFTOなど透明導電膜を形成してもよいが、公知の材料を用いた場合の成膜方法は特に限定されず、例えばスピンコート法、スクリーン印刷法など公知の方法によって成膜すればよい。本発明の金属薄膜(導電膜3)を基板上に成膜する場合は、上記スパッタリング法を用いることが望ましい。   For example, the negative electrode 10 may be formed with a transparent conductive film such as FTO on the substrate 2 such as a glass plate, but the film forming method when a known material is used is not particularly limited, for example, spin coating method, screen printing The film may be formed by a known method such as a method. When the metal thin film (conductive film 3) of the present invention is formed on a substrate, it is desirable to use the above sputtering method.

また集電極7にAg等の従来の材料を用いる場合は、導電膜3上にAgペーストを用いてスクリーン印刷等で所望のパターンを形成し、その後熱処理を加えて集電極とすればよい。本発明の金属薄膜を導電膜3上に成膜する場合は、上記スパッタリング法を用いることが望ましい。   When a conventional material such as Ag is used for the collector electrode 7, a desired pattern may be formed on the conductive film 3 by screen printing or the like using an Ag paste, and then heat treatment is performed to form a collector electrode. When the metal thin film of the present invention is formed on the conductive film 3, it is desirable to use the above sputtering method.

酸化物半導体層6として酸化チタンを用いる場合は、酸化チタンペーストを用いてスクリーン印刷した後、熱処理を行うことによって、多孔質の酸化物半導体層を形成できる。その後、Ru金属錯体などの増感色素が溶解しているアルコール溶液に該多孔質半導体層6を浸漬することによって、酸化物半導体層6表面に増感色素を担持させることができる。   In the case where titanium oxide is used as the oxide semiconductor layer 6, a porous oxide semiconductor layer can be formed by performing a heat treatment after screen printing using a titanium oxide paste. Then, the sensitizing dye can be supported on the surface of the oxide semiconductor layer 6 by immersing the porous semiconductor layer 6 in an alcohol solution in which a sensitizing dye such as a Ru metal complex is dissolved.

また正極20では、基板上に触媒電極を構成する導電膜3’を形成するが、成膜方法は上記負極10の導電膜3と同じでよい。更に導電膜3’表面に触媒層4を形成するが、Ptなど所望の触媒材料を例えばスパッタリング法や蒸着法によって成膜すればよい。   In the positive electrode 20, the conductive film 3 ′ constituting the catalyst electrode is formed on the substrate, but the film forming method may be the same as that of the conductive film 3 of the negative electrode 10. Further, the catalyst layer 4 is formed on the surface of the conductive film 3 ′, and a desired catalyst material such as Pt may be formed by, for example, a sputtering method or a vapor deposition method.

電解質溶液5は一般に販売されているものを用いてもよく、或いは調製してもよい。例えばヨウ化銅(CuI)やヨウ素(I)をアセトニトリル等の溶媒に溶解して電解質溶液を調製してもよい。   The electrolyte solution 5 may be a commercially available one or may be prepared. For example, an electrolytic solution may be prepared by dissolving copper iodide (CuI) or iodine (I) in a solvent such as acetonitrile.

上記負極10の酸化物半導体層6側と正極20の触媒層4側が対向するように貼り合わせ、その間に公知の方法によって電解質溶液を充填すれば色素増感型太陽電池素子を作成することができる。   A dye-sensitized solar cell element can be prepared by pasting the anode 10 so that the oxide semiconductor layer 6 side of the negative electrode 10 and the catalyst layer 4 side of the positive electrode 20 face each other and filling the electrolyte solution by a known method therebetween. .

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

以下の様にして作製した試料を用いて、金属薄膜の電気抵抗率、及び電解質溶液に対する耐食性を調べた。   Using the sample prepared as follows, the electrical resistivity of the metal thin film and the corrosion resistance against the electrolyte solution were examined.

[試料の作成]
透明基板(コーニング社製、EAGLE XG、直径55.3mmの円形ガラス)上に表1に示す各種金属薄膜を以下の条件のスパッタリング法によって成膜した。尚、No.5〜7はNとの反応性スパッタリングにより成膜した。
[Sample preparation]
Various metal thin films shown in Table 1 were formed on a transparent substrate (Corning Corp., EAGLE XG, circular glass with a diameter of 55.3 mm) by sputtering under the following conditions. No. Films 5 to 7 were formed by reactive sputtering with N 2 .

スパッタリング条件
・ターゲット組成(不可避的不純物を含む)
No.1:純Ag
No.2:純Al
No.3:純Ta
No.4〜7:純Ti
No.8:FTO
・基板温度:室温
・ガス圧:2mTorr
・雰囲気
No.1〜4:Ar雰囲気
No.5〜7:Ar雰囲気(10sccm)+N雰囲気(5〜20sccm)
No.8:酸素分圧[O/(Ar+O)]=20%雰囲気
なお、No.5の窒素流量: 6sccm
No.6の窒素流量: 8sccm
No.7の窒素流量:10sccm
Sputtering conditions ・ Target composition (including inevitable impurities)
No. 1: Pure Ag
No. 2: Pure Al
No. 3: Pure Ta
No. 4-7: Pure Ti
No. 8: FTO
・ Substrate temperature: room temperature ・ Gas pressure: 2 mTorr
・ Atmosphere No. 1-4: Ar atmosphere 5-7: Ar atmosphere (10 sccm) + N 2 atmosphere (5-20 sccm)
No. 8: Oxygen partial pressure [O 2 / (Ar + O 2 )] = 20% atmosphere 5 Nitrogen flow: 6sccm
No. 6. Nitrogen flow rate: 8sccm
No. 7 Nitrogen flow: 10 sccm

金属薄膜の組成
得られた各試料の金属薄膜の組成をXPS分析(Physical Electronics社製:Quantera SXM)、及びAr+スパッタにより表面から深さ方向へ基板に到達するまでエッチングし、一定深さ毎に狭域光電子スペクトルを測定して金属薄膜の深さ方向の組成分布を調べて、解析した結果を表1に示す。またNo.5とNo.6のXPS分析したモンタージュスペクトル図を夫々図2a(No.5)、図3a(No.6)に示すと共に、深さ方向の組成分布を調べた結果を夫々図2bと図3bに示す。
Composition of metal thin film The composition of the metal thin film of each obtained sample was etched by XPS analysis (Physical Electronics: Quantera SXM) and Ar + sputter from the surface in the depth direction until reaching the substrate, and at constant depth. Table 1 shows the results of analyzing the composition distribution in the depth direction of the metal thin film by measuring a narrow-area photoelectron spectrum. No. 5 and No. 6A and 6B show the montage spectrum diagrams obtained by XPS analysis in FIGS. 2a and 3a, respectively, and the results of examining the composition distribution in the depth direction are shown in FIGS. 2b and 3b, respectively.

上記各試料を用いて下記方法で電気抵抗率と耐食性について調べた。   Using the above samples, the electrical resistivity and corrosion resistance were examined by the following methods.

[電気抵抗率(mΩcm)]
上記各試料の電気抵抗率は一般的に用いられる四探針法により、市販の測定器(日置電機株式会社製:3540ミリオームハイテスタ)を用いて薄膜のシート抵抗を測定し、これに膜厚を乗じることにより電気抵抗率を算出した。測定結果を表1に示す。
[Electric resistivity (mΩcm)]
The electrical resistivity of each of the above samples was measured by measuring the sheet resistance of the thin film using a commercially available measuring instrument (manufactured by Hioki Electric Co., Ltd .: 3540 mOhm HiTester) according to a commonly used four-point probe method. The electrical resistivity was calculated by multiplying by The measurement results are shown in Table 1.

各試料の電気抵抗率は以下の基準で評価した(表1には「抵抗値」で表す)。   The electrical resistivity of each sample was evaluated according to the following criteria (shown as “resistance value” in Table 1).

電気抵抗率が特に優れているとする評価基準(◎)としてNo.8(FTO)の電気抵抗率(mΩcm)を採用した(0.140)。また実用上好ましいレベルを○、実用上利用可能レベルを△とし、これらをFTOと同等と評価した。実用上ふさわしくないものは×とした。
◎:0.140(mΩcm)以下
○:0.140(mΩcm)超、0.3(mΩcm)以下
△:0.3(mΩcm)超、0.5(mΩcm)以下
×:0.5(mΩcm)超
As an evaluation standard ()) that the electrical resistivity is particularly excellent, No. An electrical resistivity (mΩcm) of 8 (FTO) was employed (0.140). In addition, a practically preferable level was set as ◯, and a practically usable level was set as △, and these were evaluated as equivalent to FTO. Those that were not suitable for practical use were marked with x.
◎: 0.140 (mΩcm) or less ○: 0.140 (mΩcm) or more, 0.3 (mΩcm) or less △: 0.3 (mΩcm) or more, 0.5 (mΩcm) or less ×: 0.5 (mΩcm) )Super

[電解質溶液に対する耐食性]
上記各試料を電解質溶液(ヨウ素100%溶液)に室温下で10日間浸漬させた後、洗浄してから、目視にて金属薄膜の溶解の有無を下記基準で評価した。
○:目視では金属薄膜の溶解が確認できなかった
×:金属薄膜が全部または一部が溶解して無くなっており、基板が露出していた
或いは金属薄膜が基板から剥離していた
[Corrosion resistance to electrolyte solution]
Each of the above samples was immersed in an electrolyte solution (100% iodine solution) at room temperature for 10 days, washed, and then visually evaluated for the presence or absence of dissolution of the metal thin film according to the following criteria.
○: The dissolution of the metal thin film could not be confirmed by visual observation. ×: The metal thin film was completely or partially dissolved and disappeared, and the substrate was exposed or the metal thin film was peeled off from the substrate.

表1より、本発明の金属薄膜であるNo.3(Ta)、No.4(Ti)、No.5、6(TiON)、No.7(TiN)はいずれも電解質溶液に対して溶解することなく、優れた耐食性を有していた。特に、Ti材料(No.4〜7)の電気抵抗率について着目すると、窒素ガス流量を高めて窒化物とする(No.7)か、酸素量が低く抑えられたもの(No.6)は、純Ti(No.4)に比べて電気抵抗率が低下し、基準となるFTOと同程度の抵抗率評価(◎)が得られた。なお、No.5のように酸素量が多くなると、電気抵抗率は増加した(評価△)が、本実施例の許容範囲内であった。以上の結果より、薄膜中の酸素量が少なくなるほど、電気抵抗率が低減されることが確認された。Ti材料と同様の傾向は、Taにも見られた。   From Table 1, No. which is a metal thin film of the present invention. 3 (Ta), No. 3 4 (Ti), No. 4 5, 6 (TiON), no. All 7 (TiN) did not dissolve in the electrolyte solution and had excellent corrosion resistance. In particular, focusing on the electrical resistivity of the Ti material (Nos. 4 to 7), the nitrogen gas flow rate is increased to form a nitride (No. 7), or the oxygen amount is kept low (No. 6). The electrical resistivity was lower than that of pure Ti (No. 4), and a resistivity evaluation (◎) comparable to that of the standard FTO was obtained. In addition, No. When the amount of oxygen increased as shown in FIG. 5, the electrical resistivity increased (evaluation Δ), but was within the allowable range of this example. From the above results, it was confirmed that the electrical resistivity decreased as the amount of oxygen in the thin film decreased. A tendency similar to that of Ti material was also observed in Ta.

また電気抵抗率もNo.5に比べて窒素ガス流量を高めたNo.6、7は酸素含有量が10%以下(図3a、図3b)であり(No.7は0%)、No.8(FTO)よりも低い電気抵抗率を示した。一方、窒素流量が低かったNo.5は酸素含有量が30%と高くなっており(図2a、図2b)、電気抵抗率が若干増加したが許容範囲内(△)であった。   The electrical resistivity is also No. No. 5 in which the nitrogen gas flow rate was increased compared to No.5. Nos. 6 and 7 have an oxygen content of 10% or less (FIGS. 3a and 3b) (No. 7 is 0%). The electrical resistivity was lower than 8 (FTO). On the other hand, no. No. 5 had an oxygen content as high as 30% (FIGS. 2a and 2b), and the electric resistivity slightly increased, but was within an allowable range (Δ).

またNo.3(Ta)及びNo.4(Ti)はNo.6、7よりも電気抵抗率は劣るが、FTOと同程度(○)の電気抵抗率を有していた。   No. 3 (Ta) and No. 3 4 (Ti) is No. Although the electrical resistivity was inferior to 6 and 7, it had an electrical resistivity comparable to that of FTO (◯).

No.1(Ag)とNo.2(Al)はNo.8よりも低い電気抵抗率を示したが、No.1は電解質溶液によって溶解され、またNo.2は基板から剥離し、いずれも耐食性が低下していた。   No. 1 (Ag) and No. 1 2 (Al) is No. An electrical resistivity lower than 8 was shown. No. 1 is dissolved by the electrolyte solution, and No. 1 No. 2 was peeled off from the substrate, and the corrosion resistance of both was lowered.

1 色素増感型太陽電池素子
2 基板(負極側)
2’ 基板(正極側)
3 (透明)導電膜(負極側)
3’ 導電膜(正極側)
4 触媒層
5 電解質溶液
6 増感色素(図示せず)を担持させた酸化物半導体層
7 集電極
10 負極
20 正極
1 Dye-sensitized solar cell element 2 Substrate (negative electrode side)
2 'substrate (positive electrode side)
3 (Transparent) conductive film (negative electrode side)
3 'conductive film (positive electrode side)
4 Catalyst layer 5 Electrolyte solution 6 Oxide semiconductor layer carrying a sensitizing dye (not shown) 7 Collector 10 Negative electrode 20 Positive electrode

Claims (3)

負極と正極の間に電解質溶液が充填されている色素増感型太陽電池素子において、前記電解質溶液と接触する集電極、及び導電膜を構成する金属薄膜の少なくとも1種は、TiおよびTaの金属、並びに前記Tiの窒化物よりなる群から選択される少なくとも一種で構成されており、前記窒化物は酸素を含んでいても良いことを特徴とする耐電解質溶液腐食性に優れた低電気抵抗の色素増感型太陽電池用金属薄膜。   In the dye-sensitized solar cell element in which the electrolyte solution is filled between the negative electrode and the positive electrode, at least one of the collector electrode in contact with the electrolyte solution and the metal thin film constituting the conductive film is a metal of Ti and Ta , And at least one selected from the group consisting of the nitrides of Ti, wherein the nitrides may contain oxygen, and have a low electrical resistance excellent in electrolytic solution corrosion resistance Metal thin film for dye-sensitized solar cells. 前記金属薄膜は、耐食性材料で被覆されていないものである請求項1に記載の色素増感型太陽電池用金属薄膜。   The metal thin film for a dye-sensitized solar cell according to claim 1, wherein the metal thin film is not coated with a corrosion-resistant material. 請求項1または2に記載の色素増感型太陽電池用金属薄膜を用いた色素増感型太陽電池素子。   A dye-sensitized solar cell element using the metal thin film for a dye-sensitized solar cell according to claim 1 or 2.
JP2010259395A 2010-11-19 2010-11-19 Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element Pending JP2012113839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259395A JP2012113839A (en) 2010-11-19 2010-11-19 Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259395A JP2012113839A (en) 2010-11-19 2010-11-19 Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element

Publications (1)

Publication Number Publication Date
JP2012113839A true JP2012113839A (en) 2012-06-14

Family

ID=46497847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259395A Pending JP2012113839A (en) 2010-11-19 2010-11-19 Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element

Country Status (1)

Country Link
JP (1) JP2012113839A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165090A (en) * 2013-02-27 2014-09-08 Osaka Gas Co Ltd Paste composition for photoelectric conversion element, electrode for photoelectric conversion element using the same, and photoelectric conversion element
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231942A (en) * 1999-02-12 2000-08-22 Nikon Corp Pigment sensitization solar battery
JP2005056613A (en) * 2003-08-07 2005-03-03 Sharp Corp Dye sensitized solar battery and module thereof
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2007335228A (en) * 2006-06-15 2007-12-27 Toyo Seikan Kaisha Ltd Solar cell and manufacturing method thereof
JP2009099435A (en) * 2007-10-18 2009-05-07 Oki Semiconductor Co Ltd Dye-sensitized solar battery
JP2009117337A (en) * 2007-10-17 2009-05-28 Kyushu Institute Of Technology Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery
JP2009129574A (en) * 2007-11-20 2009-06-11 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
JP2010129291A (en) * 2008-11-26 2010-06-10 Sony Corp Functional device, and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231942A (en) * 1999-02-12 2000-08-22 Nikon Corp Pigment sensitization solar battery
JP2005056613A (en) * 2003-08-07 2005-03-03 Sharp Corp Dye sensitized solar battery and module thereof
JP2006100068A (en) * 2004-09-29 2006-04-13 Kyocera Corp Photoelectric conversion device and photovoltaic power generator using the same
JP2006286434A (en) * 2005-04-01 2006-10-19 Kansai Pipe Kogyo Kk Electrode base for dye-sensitized solar cell, optical electrode and counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
JP2007335228A (en) * 2006-06-15 2007-12-27 Toyo Seikan Kaisha Ltd Solar cell and manufacturing method thereof
JP2009117337A (en) * 2007-10-17 2009-05-28 Kyushu Institute Of Technology Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery
JP2009099435A (en) * 2007-10-18 2009-05-07 Oki Semiconductor Co Ltd Dye-sensitized solar battery
JP2009129574A (en) * 2007-11-20 2009-06-11 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
JP2010129291A (en) * 2008-11-26 2010-06-10 Sony Corp Functional device, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165090A (en) * 2013-02-27 2014-09-08 Osaka Gas Co Ltd Paste composition for photoelectric conversion element, electrode for photoelectric conversion element using the same, and photoelectric conversion element
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery

Similar Documents

Publication Publication Date Title
Jin et al. Solution-processed yolk–shell-shaped WO 3/BiVO 4 heterojunction photoelectrodes for efficient solar water splitting
Dubale et al. Heterostructured Cu 2 O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction
Meng et al. Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode
JP5161967B2 (en) Dye-sensitized solar cell
EP2787029A1 (en) Transparent conductive film and electric device
JPWO2011152410A1 (en) CIGS type solar cell and substrate for CIGS type solar cell
Atli et al. Opaque Pt counter electrodes for dye‐sensitized solar cells
EP2061049A2 (en) Dye-sensitized solar cell including anode porous conductive layer
US20110220192A1 (en) Single-sided dye-sensitized solar cells having a vertical patterned structure
JP2010055935A (en) Dye-sensitized solar cell
KR100994584B1 (en) Photovoltaic cell with Ti-mesh/TiO2 nano tube
CN109267097A (en) The P-type silicon photolysis water hydrogen electrode and preparation method thereof of tantalum oxide protection
JP2008287900A (en) Photoelectric transfer element and manufacturing method therefor, and solar cell using the element
JP2008053042A (en) Pigment sensitized solar cell
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
TWI492442B (en) Substrate and secondary battery
JP2012113839A (en) Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element
WO2012150805A2 (en) Flexible ti-in-zn-o transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US9692052B2 (en) Electrode material for battery, electrode material paste for battery, and solar cell using same, storage battery, and method for manufacturing solar cell
TWI241029B (en) Dye sensitized solar cell electrode and solar cell having same
JP6010024B2 (en) Substrate with transparent conductive film and dye-sensitized solar cell
KR100998146B1 (en) Photovoltaic cell with Ti-Grid/TiO2 nano tube
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
Wattanawikkam et al. Phase evolution in annealed Ni-doped WO3 nanorod films prepared via a glancing angle deposition technique for enhanced photoelectrochemical performance
JPWO2012102118A1 (en) Photovoltaic device and hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225