JP2009117337A - Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery - Google Patents

Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery Download PDF

Info

Publication number
JP2009117337A
JP2009117337A JP2008134860A JP2008134860A JP2009117337A JP 2009117337 A JP2009117337 A JP 2009117337A JP 2008134860 A JP2008134860 A JP 2008134860A JP 2008134860 A JP2008134860 A JP 2008134860A JP 2009117337 A JP2009117337 A JP 2009117337A
Authority
JP
Japan
Prior art keywords
corrosion
layer
resistant metal
electrode substrate
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134860A
Other languages
Japanese (ja)
Inventor
Shuji Hayase
修二 早瀬
Yoriji Yoshida
頼司 吉田
Kunihito Miyake
邦仁 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Sumitomo Chemical Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Sumitomo Chemical Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2008134860A priority Critical patent/JP2009117337A/en
Publication of JP2009117337A publication Critical patent/JP2009117337A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode substrate with high corrosion protection effect of a metal wiring layer electrically connected to a transparent conductive membrane, a photoelectric conversion element and a dye-sensitized solar battery. <P>SOLUTION: The dye-sensitized solar battery 22 includes an electrode substrate 10 equipped with a transparent substrate 12, a transparent conductive membrane 14, a metal wiring layer 16, a shielding layer 18, and a corrosion-resistant metal layer 20. A conductive substrate is provided to face the corrosion-resistant metal layer 20, and a porous semiconductor layer 28 with dye absorbed and an electrolyte 30 are provided between the transparent conductive membrane 14 and the conductive substrate. The shielding layer 18 is a deposition layer formed with metal having large corrosion resistance such as titanium or tungsten by sputtering. The corrosion-resistant metal layer 20 is a more precise layer than the shielding layer 18. For example, it is a deposition layer of which corrosion-resistant metallic vapor is changed into a plasma excitation state with the use of arc plasma, and vapor-deposited on a surface of the metal wiring layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極基板、光電変換素子および色素増感太陽電池に関する。   The present invention relates to an electrode substrate, a photoelectric conversion element, and a dye-sensitized solar cell.

色素増感太陽電池は、湿式太陽電池あるいはグレッツェル電池等と呼ばれ、シリコン半導体を用いることなくヨウ素溶液に代表される電気化学的なセル構造を持つ点に特徴がある。色素増感太陽電池は、具体的には、透明な導電性ガラス板(透明導電膜を積層した透明基板)に二酸化チタン粉末等を焼付け、これに色素を吸着させて形成したチタニア層等の多孔質半導体層と導電性基板からなる対極の間に電解液としてヨウ素溶液等を配置した、簡易な構造を有し、導電性ガラス板側から太陽光が入射することによって起電力を生じる。
色素増感太陽電池は、材料が安価であり、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として注目されている。
The dye-sensitized solar cell is called a wet solar cell or a Gretzel battery, and is characterized in that it has an electrochemical cell structure typified by an iodine solution without using a silicon semiconductor. Specifically, a dye-sensitized solar cell is made of porous material such as a titania layer formed by baking a titanium dioxide powder or the like on a transparent conductive glass plate (a transparent substrate on which a transparent conductive film is laminated) and adsorbing the dye to the titanium dioxide powder. A simple structure in which an iodine solution or the like is disposed as an electrolytic solution between a porous semiconductor layer and a conductive substrate, and an electromotive force is generated when sunlight enters from the conductive glass plate side.
Dye-sensitized solar cells are attracting attention as low-cost solar cells because they are inexpensive and do not require large-scale equipment for production.

大きな発電量を得るためには、多数のセルを用いてパネル化した大型の色素増感太陽電池が求められる。このような大型の色素増感太陽電池は、各セルが直列にあるいは必要に応じて並列に電気的に接続される。   In order to obtain a large amount of power generation, a large dye-sensitized solar cell that is made into a panel using a large number of cells is required. In such a large dye-sensitized solar cell, the cells are electrically connected in series or in parallel as necessary.

大型の色素増感太陽電池には、各セルを接続することにより生じる電気抵抗の増加を軽減して効率的に電力を引き出すために、透明導電膜に電気的に接続される導電性の金属配線層(金属配線パターン)が設けられる。
金属配線層は、例えば、白金や銅等の導電性の金属を用い、適宜の印刷法により格子状等の適宜のパターンに形成される。
そして、金属配線層の表面は、金属配線層の腐食や、電解質との短絡や漏れ電流等を抑制するために、酸化チタンやアルミナ等の酸化物半導体等からなる遮蔽層により被覆される。
For large dye-sensitized solar cells, conductive metal wiring that is electrically connected to a transparent conductive film to reduce the increase in electrical resistance caused by connecting each cell and efficiently draw out power A layer (metal wiring pattern) is provided.
The metal wiring layer is formed in an appropriate pattern such as a lattice shape by an appropriate printing method using, for example, a conductive metal such as platinum or copper.
The surface of the metal wiring layer is covered with a shielding layer made of an oxide semiconductor such as titanium oxide or alumina in order to suppress corrosion of the metal wiring layer, short circuit with the electrolyte, leakage current, or the like.

ところが、上記の遮蔽層は、透明導電膜や金属配線層の表面の微細な凹凸上に、スパッタ法(スパッタ蒸着法)、スプレー熱分解法あるいは塗布法等の薄膜形成法により形成されるため、緻密な遮蔽層を得ることが難しく、遮蔽層としての上記の効果を十分に得ることができない。   However, the shielding layer is formed on the fine irregularities on the surface of the transparent conductive film or metal wiring layer by a thin film forming method such as sputtering (sputter deposition), spray pyrolysis, or coating. It is difficult to obtain a dense shielding layer, and the above effect as the shielding layer cannot be sufficiently obtained.

なお、この課題を解決するために、金属配線層の表面に、例えばガラス成分を含む材料からなる絶縁層や耐熱セラミックスを主成分とする絶縁層を形成する技術が提案されている(特許文献1、2参照)。
特開2004−164970号公報 特開2005−78857号公報
In order to solve this problem, a technique has been proposed in which an insulating layer made of a material containing a glass component or an insulating layer mainly composed of heat-resistant ceramics is formed on the surface of a metal wiring layer (Patent Document 1). 2).
JP 2004-164970 A JP 2005-78857 A

上記のように、金属配線層の表面に酸化チタン等の酸化物半導体等からなる遮蔽層を設けた従来技術の場合、緻密な遮蔽層を得ることが難しく、遮蔽層としての効果を十分に得ることができない。また、ガラスやセラミックスを用いた絶縁層についても、斑ができやすいことから、金属配線層の腐食防止等の効果が十分ではない。   As described above, in the case of the conventional technique in which the shielding layer made of oxide semiconductor such as titanium oxide is provided on the surface of the metal wiring layer, it is difficult to obtain a dense shielding layer, and the effect as the shielding layer is sufficiently obtained. I can't. Moreover, since the insulating layer using glass or ceramics is likely to be spotted, the effect of preventing corrosion of the metal wiring layer is not sufficient.

本発明は、上記の課題に鑑みてなされたものであり、透明導電膜に電気的に接続される金属配線層の腐食防止効果の大きい電極基板、光電変換素子および色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an electrode substrate, a photoelectric conversion element, and a dye-sensitized solar cell, which have a large corrosion prevention effect on a metal wiring layer electrically connected to a transparent conductive film. For the purpose.

本発明に係る電極基板は、透明基板と、該透明基板の表面に設けられる透明導電膜と、該透明導電膜の表面に設けられる金属配線層と、該金属配線層上に設けられる緻密な第一の耐食性金属層と、該金属配線層と該第一の耐食性金属層の間に、および/または該第一の耐食性金属層の表面に設けられる遮蔽層を有することを特徴とする。   An electrode substrate according to the present invention includes a transparent substrate, a transparent conductive film provided on the surface of the transparent substrate, a metal wiring layer provided on the surface of the transparent conductive film, and a dense second electrode provided on the metal wiring layer. And a shielding layer provided between the metal wiring layer and the first corrosion-resistant metal layer and / or on the surface of the first corrosion-resistant metal layer.

また、本発明に係る電極基板は、透明基板と、該透明基板の表面に設けられる透明導電膜と、該透明導電膜の表面に設けられる金属配線層と、アークプラズマを用いて耐食性金属蒸気をプラズマ励起状態にして該金属配線層上に蒸着して設けられる第一の耐食性金属層と、該金属配線層と該第一の耐食性金属層の間に、および/または該第一の耐食性金属層の表面に設けられる遮蔽層を有することを特徴とする。   The electrode substrate according to the present invention includes a transparent substrate, a transparent conductive film provided on the surface of the transparent substrate, a metal wiring layer provided on the surface of the transparent conductive film, and a corrosion-resistant metal vapor using arc plasma. A first corrosion-resistant metal layer provided by being deposited on the metal wiring layer in a plasma-excited state; and between and / or the first corrosion-resistant metal layer between the metal wiring layer and the first corrosion-resistant metal layer. It has the shielding layer provided in the surface of this.

また、本発明に係る電極基板は、好ましくは、前記第一の耐食性金属層の耐食性金属がチタンまたはタングステンであることを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the corrosion-resistant metal of the first corrosion-resistant metal layer is titanium or tungsten.

また、本発明に係る電極基板は、好ましくは、前記第一の耐食性金属層が酸化チタンまたは酸化タングステンを含むことを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the first corrosion-resistant metal layer contains titanium oxide or tungsten oxide.

また、本発明に係る電極基板は、好ましくは、前記第一の耐食性金属層の厚みが10nm以上であることを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the thickness of the first corrosion-resistant metal layer is 10 nm or more.

また、本発明に係る電極基板は、好ましくは、前記遮蔽層が前記第一の耐食性金属層よりも粗でかつ厚みの厚い第二の耐食性金属層であることを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the shielding layer is a second corrosion-resistant metal layer that is coarser and thicker than the first corrosion-resistant metal layer.

また、本発明に係る電極基板は、好ましくは、前記遮蔽層がスパッタ蒸着により設けられ、前記第一の耐食性金属層よりも厚みの厚い第二の耐食性金属層であることを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the shielding layer is a second corrosion-resistant metal layer having a thickness larger than that of the first corrosion-resistant metal layer, provided by sputtering deposition.

また、本発明に係る電極基板は、好ましくは、前記第二の耐食性金属層の耐食性金属がチタンまたはタングステンであることを特徴とする。   In the electrode substrate according to the present invention, preferably, the corrosion-resistant metal of the second corrosion-resistant metal layer is titanium or tungsten.

また、本発明に係る電極基板は、好ましくは、前記第二の耐食性金属層が酸化チタンまたは酸化タングステンを含むことを特徴とする。   The electrode substrate according to the present invention is preferably characterized in that the second corrosion-resistant metal layer contains titanium oxide or tungsten oxide.

また、本発明に係る光電変換素子は、上記の電極基板を有することを特徴とする。   In addition, a photoelectric conversion element according to the present invention includes the above electrode substrate.

また、本発明に係る色素増感太陽電池は、上記の電極基板と、該電極基板の金属配線層側に対向して設けられる導電性基板を備え、該電極基板と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有することを特徴とする。   A dye-sensitized solar cell according to the present invention includes the above electrode substrate and a conductive substrate provided to face the metal wiring layer side of the electrode substrate, and the electrode substrate and the conductive substrate are interposed between the electrode substrate and the conductive substrate. It has a porous semiconductor layer adsorbing a dye and an electrolyte.

本発明に係る電極基板は、透明基板と、透明基板の表面に設けられる透明導電膜と、透明導電膜の表面に設けられる金属配線層と、金属配線層上に設けられる緻密な第一の耐食性金属層と、金属配線層と第一の耐食性金属層の間に、および/または第一の耐食性金属層の表面に設けられる遮蔽層を有するため、または、透明基板と、透明基板の表面に設けられる透明導電膜と、透明導電膜の表面に設けられる金属配線層と、アークプラズマを用いて耐食性金属蒸気をプラズマ励起状態にして金属配線層上に蒸着して設けられる第一の耐食性金属層と、金属配線層と第一の耐食性金属層の間に、および/または第一の耐食性金属層の表面に設けられる遮蔽層を有するため、金属配線層の腐食防止効果の大きい電極基板を得ることができる。
また、本発明に係る光電変換素子および本発明に係る色素増感太陽電池は、それぞれ上記の電極基板を有するため、上記電極基板の効果を好適に得ることができ、良好な変換効率を長時間維持することができる。
The electrode substrate according to the present invention includes a transparent substrate, a transparent conductive film provided on the surface of the transparent substrate, a metal wiring layer provided on the surface of the transparent conductive film, and a dense first corrosion resistance provided on the metal wiring layer. To provide a shielding layer provided between the metal layer and the metal wiring layer and the first corrosion-resistant metal layer and / or on the surface of the first corrosion-resistant metal layer, or provided on the surface of the transparent substrate and the transparent substrate A transparent conductive film, a metal wiring layer provided on the surface of the transparent conductive film, and a first corrosion-resistant metal layer provided by depositing a corrosion-resistant metal vapor in a plasma-excited state using arc plasma on the metal wiring layer; Since the shield layer is provided between the metal wiring layer and the first corrosion-resistant metal layer and / or on the surface of the first corrosion-resistant metal layer, it is possible to obtain an electrode substrate having a large corrosion prevention effect on the metal wiring layer. it can.
Moreover, since the photoelectric conversion element according to the present invention and the dye-sensitized solar cell according to the present invention each have the above electrode substrate, the effect of the electrode substrate can be suitably obtained, and good conversion efficiency can be obtained for a long time. Can be maintained.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

まず、本実施の形態に係る電極基板について、図1を参照して説明する。
本実施の形態に係る電極基板10は、透明基板12と、透明基板12の表面に設けられる透明導電膜14を備える。さらに、透明導電膜14の表面に金属配線層16が設けられ、金属配線層16上に耐食性金属層(第一の耐食性金属層)20が設けられる。また、金属配線層16と耐食性金属層20の間に遮蔽層18が設けられる。なお、遮蔽層18は、耐食性金属層20の表面に設けてもよい。また、遮蔽層18を、金属配線層16と耐食性金属層20の間および耐食性金属層20の表面の双方の箇所に設けてもよい。
First, an electrode substrate according to the present embodiment will be described with reference to FIG.
The electrode substrate 10 according to the present embodiment includes a transparent substrate 12 and a transparent conductive film 14 provided on the surface of the transparent substrate 12. Further, a metal wiring layer 16 is provided on the surface of the transparent conductive film 14, and a corrosion-resistant metal layer (first corrosion-resistant metal layer) 20 is provided on the metal wiring layer 16. A shielding layer 18 is provided between the metal wiring layer 16 and the corrosion-resistant metal layer 20. The shielding layer 18 may be provided on the surface of the corrosion resistant metal layer 20. Further, the shielding layer 18 may be provided at both locations between the metal wiring layer 16 and the corrosion-resistant metal layer 20 and on the surface of the corrosion-resistant metal layer 20.

透明基板12は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよい。光の透過性ができるだけ高い材料を用いることが好ましい。透明基板12は、例えば1〜40mm程度の適宜の厚みに形成される。
透明導電膜14は、例えば、ITO(スズをドープしたインジウム膜)であってもよく、またFTO(フッ素をドープした酸化スズ膜)であってもよく、あるいはまたSnO等であってもよい。透明導電膜14は、例えばスパッタ法等の薄膜形成法により、光の透過性と導電性のバランスを考慮して例えば0.5μm程度の適宜の厚みに形成される。
The transparent substrate 12 may be a glass plate or a plastic plate, for example. It is preferable to use a material having as high a light transmittance as possible. The transparent substrate 12 is formed to have an appropriate thickness of about 1 to 40 mm, for example.
The transparent conductive film 14 may be, for example, ITO (indium film doped with tin), FTO (tin oxide film doped with fluorine), or SnO 2 or the like. . The transparent conductive film 14 is formed to have an appropriate thickness of, for example, about 0.5 μm, for example, by a thin film formation method such as sputtering, in consideration of the balance between light transmittance and conductivity.

金属配線層16は、透明導電膜14に電気的に接続されて、低い電気抵抗で効率的に電力あるいは電流を電極基板10から外部に導通するものである。金属配線層16は、例えば銀や白金等のペーストを、スクリーン印刷法やメタルマスク法等の適宜の印刷法により塗布、印刷した後、乾燥することで形成する。金属配線層16は、例えば1〜10μm程度の適宜の厚みを有する、格子状等の適宜のパターン形状に形成する。   The metal wiring layer 16 is electrically connected to the transparent conductive film 14 and efficiently conducts power or current from the electrode substrate 10 to the outside with low electrical resistance. The metal wiring layer 16 is formed by, for example, applying and printing a paste such as silver or platinum by an appropriate printing method such as a screen printing method or a metal mask method, and then drying. The metal wiring layer 16 is formed in an appropriate pattern shape such as a lattice shape having an appropriate thickness of about 1 to 10 μm, for example.

耐食性金属層20は、緻密な層である。このような緻密な耐食性金属層20は、耐食性金属蒸気をアークプラズマを用いてプラズマ励起状態にして金属配線層の表面に蒸着する方法により、好適に形成することができる。この薄膜形成方法は、熱、電子ビーム、アーク放電等により材料蒸発源を加熱することで生成する耐食性金属蒸気(蒸着粒子)を、アークプラズマで形成したプラズマ層でイオン化した状態で遮蔽層18あるいは金属配線層16に蒸着する、イオンプレーティング法であってもよく、また、アークプラズマで形成したプラズマ状態の耐食性金属蒸気(ガス)を遮蔽層18あるいは金属配線層16に蒸着する、プラズマCVD法であってもよい。また、緻密な層を形成することができる限り、適宜の他の薄膜形成方法で耐食性金属層20を形成してもよい。
金属配線層16を緻密な耐食性金属層20で被覆することにより、金属配線層16の腐食を好適に防止することができる。また、耐食性金属層20は、電力あるいは電流を電池から外に引き出すときの電気抵抗の低減にも寄与する。
The corrosion resistant metal layer 20 is a dense layer. Such a dense corrosion-resistant metal layer 20 can be suitably formed by a method in which a corrosion-resistant metal vapor is plasma-excited using arc plasma and deposited on the surface of the metal wiring layer. In this thin film forming method, the corrosion-resistant metal vapor (evaporated particles) generated by heating the material evaporation source by heat, electron beam, arc discharge or the like is ionized by the plasma layer formed by arc plasma, or the shielding layer 18 or An ion plating method may be used for vapor deposition on the metal wiring layer 16, or a plasma CVD method in which a corrosion-resistant metal vapor (gas) in a plasma state formed by arc plasma is deposited on the shielding layer 18 or the metal wiring layer 16. It may be. Further, as long as a dense layer can be formed, the corrosion-resistant metal layer 20 may be formed by any other appropriate thin film forming method.
By covering the metal wiring layer 16 with the dense corrosion-resistant metal layer 20, corrosion of the metal wiring layer 16 can be suitably prevented. In addition, the corrosion-resistant metal layer 20 contributes to a reduction in electrical resistance when power or current is drawn out from the battery.

耐食性金属層20に使用する耐食性金属は、チタンまたはタングステンが好ましいが、これに限定するものではない。また、耐食性金属層20にチタンまたはタングステンを用いる場合、酸化チタンまたは酸化タングステンを含むものが好ましい。
耐食性金属層20の厚みは、金属配線層16の腐食防止に効果のある限り、適宜の厚みとすることができ、10nm以上とすれば十分である。なお、製造工程の煩雑さや経済性を考慮すると、過度に厚い膜厚とする必要はない。
The corrosion resistant metal used for the corrosion resistant metal layer 20 is preferably titanium or tungsten, but is not limited thereto. In addition, when titanium or tungsten is used for the corrosion-resistant metal layer 20, it is preferable to include titanium oxide or tungsten oxide.
The thickness of the corrosion-resistant metal layer 20 can be set to an appropriate thickness as long as it is effective in preventing the corrosion of the metal wiring layer 16, and it is sufficient that the thickness is 10 nm or more. In view of the complexity of the manufacturing process and economy, it is not necessary to make the film thickness excessively thick.

耐食性金属層20とともに設けられる遮蔽層18は、ガラス粒子やセラミック粒子を含むペーストを印刷法等により塗布して形成する塗布層であってもよいが、金属配線層16等の被蒸着層の表面にマスクをした状態でチタンやタングステン等の耐食性の大きい金属をスパッタ法(スパッタ蒸着法)で形成した蒸着層(第二の耐食性金属層)であることがより好ましい。遮蔽層18は、金属としてチタンやタングステン等を用いる場合、酸化チタンや酸化タングステン等の金属酸化物を含むものが好ましい。
遮蔽層18を設けることにより、金属配線層16の腐食をより好適に防止することができる。また、遮蔽層18として蒸着層(第二の耐食性金属層)を設けるときは、耐食性金属層20とともに電力あるいは電流を電池から外に引き出すときの電気抵抗の低減にも寄与する。さらにまた、スパッタ法により形成する蒸着層(第二の耐食性金属層)は、アークプラズマを用いて形成する第一の耐食性金属層よりも簡易に厚みを厚くすることができるので、金属配線層16の表面側が好適に平坦化される。
遮蔽層18の厚みは特に限定するものではなく、例えば、10〜500nm程度とすることができる。
The shielding layer 18 provided together with the corrosion-resistant metal layer 20 may be a coating layer formed by coating a paste containing glass particles or ceramic particles by a printing method or the like, but the surface of the deposition layer such as the metal wiring layer 16 or the like. More preferably, it is a vapor-deposited layer (second corrosion-resistant metal layer) formed by sputtering (sputter vapor deposition) with a metal having high corrosion resistance such as titanium or tungsten in the state of being masked. When titanium, tungsten, or the like is used as the metal, the shielding layer 18 preferably includes a metal oxide such as titanium oxide or tungsten oxide.
By providing the shielding layer 18, corrosion of the metal wiring layer 16 can be more suitably prevented. Further, when the vapor deposition layer (second corrosion resistant metal layer) is provided as the shielding layer 18, it contributes to the reduction of the electric resistance when drawing the electric power or current from the battery together with the corrosion resistant metal layer 20. Furthermore, the vapor deposition layer (second corrosion resistant metal layer) formed by the sputtering method can be easily made thicker than the first corrosion resistant metal layer formed using arc plasma. The surface side of is preferably flattened.
The thickness of the shielding layer 18 is not particularly limited, and can be, for example, about 10 to 500 nm.

以上説明した本実施の形態に係る電極基板10は、金属配線層16が耐食性金属層20で被覆されその上部に遮蔽層18を有し、あるいはまた、金属配線層16が遮蔽層18および耐食性金属層20で被覆されるので、金属配線層16の腐食防止効果が大きい。   In the electrode substrate 10 according to the present embodiment described above, the metal wiring layer 16 is covered with the corrosion-resistant metal layer 20 and has the shielding layer 18 on the upper part thereof. Alternatively, the metal wiring layer 16 includes the shielding layer 18 and the corrosion-resistant metal. Since it is covered with the layer 20, the corrosion prevention effect of the metal wiring layer 16 is great.

つぎに、本実施の形態に係る光電変換素子について、色素増感太陽電池を例にとって説明する。   Next, the photoelectric conversion element according to this embodiment will be described by taking a dye-sensitized solar cell as an example.

例えば図2に模式的に示すように、本実施の形態に係る色素増感太陽電池22は、透明基板12と、透明基板12の表面に設けられる透明導電膜14と、透明導電膜14の表面に設けられる金属配線層16と、金属配線層16上に設けられる耐食性金属層20を備える、上記本実施の形態に係る電極基板10を有する。なお、電極基板10は、図2に示すように、金属配線層16と耐食性金属層20の間に遮蔽層18を設けてもよい。また、遮蔽層18を、金属配線層16と耐食性金属層20の間および耐食性金属層20の表面の双方の箇所に設けてもよい。
透明導電膜14と対向して、言い換えれば耐食性金属層20と対向して導電性基板(対極。図2では、導電性基板は、導電膜24および基板26で構成される。)が設けられる。透明導電膜14と導電性基板の間に色素(図2では図示せず。)を吸着した多孔質半導体層28と電解質30を有する。なお、図1中、参照符号32は電池内に電解質30を密閉するために設けられる封止材を示す。
色素増感太陽電池の場合、上記の構成の電極基板10に多孔質半導体層28を設けたものを作用極と呼ぶこともある。
For example, as schematically shown in FIG. 2, the dye-sensitized solar cell 22 according to the present embodiment includes a transparent substrate 12, a transparent conductive film 14 provided on the surface of the transparent substrate 12, and a surface of the transparent conductive film 14. The electrode substrate 10 according to the present embodiment includes the metal wiring layer 16 provided on the metal wiring layer 16 and the corrosion-resistant metal layer 20 provided on the metal wiring layer 16. The electrode substrate 10 may be provided with a shielding layer 18 between the metal wiring layer 16 and the corrosion-resistant metal layer 20 as shown in FIG. Further, the shielding layer 18 may be provided at both locations between the metal wiring layer 16 and the corrosion-resistant metal layer 20 and on the surface of the corrosion-resistant metal layer 20.
A conductive substrate (counter electrode. In FIG. 2, the conductive substrate is composed of a conductive film 24 and a substrate 26) is provided facing the transparent conductive film 14, in other words, facing the corrosion-resistant metal layer 20. Between the transparent conductive film 14 and the conductive substrate, a porous semiconductor layer 28 and an electrolyte 30 adsorbing a dye (not shown in FIG. 2) are provided. In FIG. 1, reference numeral 32 indicates a sealing material provided to seal the electrolyte 30 in the battery.
In the case of a dye-sensitized solar cell, the electrode substrate 10 having the above-described configuration provided with the porous semiconductor layer 28 may be called a working electrode.

導電膜24は、白金等を含むことが好ましく、これは基板26の表面に設けられたFTO等の導電膜上に積層されていてもよい。
基板26は、例えば、ガラス板であってもよくあるいはプラスチック板であってもよく、さらにまた、導電膜24を兼ねた厚みの厚い白金板等であってもよい。
The conductive film 24 preferably contains platinum or the like, which may be laminated on a conductive film such as FTO provided on the surface of the substrate 26.
The substrate 26 may be, for example, a glass plate or a plastic plate, and may be a thick platinum plate that also serves as the conductive film 24.

多孔質半導体層28に吸着させる色素は、400nm〜1000nmの波長に吸収を持つものであり、例えば、ルテニウム色素、フタロシアニン色素などの金属錯体、シアニン色素などの有機色素を挙げることができる。   The dye adsorbed on the porous semiconductor layer 28 has absorption at a wavelength of 400 nm to 1000 nm, and examples thereof include metal complexes such as ruthenium dye and phthalocyanine dye, and organic dyes such as cyanine dye.

電解質(電解液)30は、ヨウ素、リチウムイオン、イオン液体、t-ブチルピリジン等を含むものであり、例えばヨウ素の場合、ヨウ化物イオンおよびヨウ素の組み合わせからなる酸化還元体を用いることができる。酸化還元体は、これを溶解可能な適宜の溶媒を含む。   The electrolyte (electrolytic solution) 30 contains iodine, lithium ions, ionic liquid, t-butylpyridine, and the like. For example, in the case of iodine, an oxidation-reduction body composed of a combination of iodide ions and iodine can be used. The redox form contains an appropriate solvent that can dissolve the redox form.

多孔質半導体層28は、半導体材料として、例えば、チタン、スズ、ジルコニウム、亜鉛、インジウム、タングステン、鉄、ニッケルあるいは銀等の金属の酸化物を用いることができるが、このうち、チタン酸化物(チタニア)がより好ましい。
チタン酸化物の微粒子には、粒径が10nm以下の小さなものや20〜30nm程度の大きなものなどがある。前者で膜を作った場合、比較的緻密な膜ができ、一方、後者の微粒子で膜を作った場合には、多孔性の膜が形成される。透明導電膜14あるいは金属配線層16や耐食性金属層20が設けられた透明導電膜14の表面には凹凸があり、その凹凸をカバレッジ良く覆うために、比較的緻密な多孔質半導体層28を形成することが望ましい。このため、多孔質半導体層28を例えば2層構成とし、透明導電膜14の側、言い換えれば耐食性金属層20の側の第1層を粒径が小さいチタン酸化物の微粒子で形成し、第1層の表面に形成される第2層を粒径が第1層に比べて大きなチタン酸化物の微粒子で形成することは好ましい実施態様である。
For example, titanium, tin, zirconium, zinc, indium, tungsten, iron, nickel, or silver can be used as the semiconductor material for the porous semiconductor layer 28. Among these, titanium oxide ( Titania) is more preferred.
The fine particles of titanium oxide include small particles having a particle size of 10 nm or less and large particles having a particle size of about 20 to 30 nm. When the film is formed with the former, a relatively dense film is formed. On the other hand, when the film is formed with the latter fine particles, a porous film is formed. The surface of the transparent conductive film 14 provided with the transparent conductive film 14 or the metal wiring layer 16 or the corrosion-resistant metal layer 20 has irregularities, and a relatively dense porous semiconductor layer 28 is formed to cover the irregularities with good coverage. It is desirable to do. For this reason, the porous semiconductor layer 28 has, for example, a two-layer structure, and the first layer on the transparent conductive film 14 side, in other words, the corrosion-resistant metal layer 20 side, is formed with fine particles of titanium oxide having a small particle size. It is a preferred embodiment that the second layer formed on the surface of the layer is formed of fine particles of titanium oxide having a particle size larger than that of the first layer.

以上説明した本実施の形態に係る光電変換素子または色素増感太陽電池は、本実施の形態に係る電極基板10を備えるため、電解質30による金属配線層16の腐食が軽減され、良好な変換効率を長時間維持することができる。このため、大型の光電変換素子または色素増感太陽電池として好適である。   Since the photoelectric conversion element or the dye-sensitized solar cell according to the present embodiment described above includes the electrode substrate 10 according to the present embodiment, corrosion of the metal wiring layer 16 due to the electrolyte 30 is reduced, and good conversion efficiency is achieved. Can be maintained for a long time. For this reason, it is suitable as a large photoelectric conversion element or a dye-sensitized solar cell.

以上説明した本実施の形態例は、電極基板10は、透明基板12と、透明導電膜14と、金属配線層16と、遮蔽層18と、耐食性金属層20を上記所定の位置に備える構成である。
ただし、これに限らず、電極基板は、透明基板12と透明導電膜14の間に金属配線層16を有する構成であってもよい。このとき、金属配線層16と透明導電膜14の間に、または、透明導電膜14の多孔質半導体層28の側に、遮蔽層18および耐食性金属層20の2層を備える構成としてもよい。
In the embodiment described above, the electrode substrate 10 includes the transparent substrate 12, the transparent conductive film 14, the metal wiring layer 16, the shielding layer 18, and the corrosion-resistant metal layer 20 at the predetermined positions. is there.
However, the configuration is not limited thereto, and the electrode substrate may have a configuration in which the metal wiring layer 16 is provided between the transparent substrate 12 and the transparent conductive film 14. At this time, it is good also as a structure provided with two layers, the shielding layer 18 and the corrosion-resistant metal layer 20, between the metal wiring layer 16 and the transparent conductive film 14, or the porous semiconductor layer 28 side of the transparent conductive film 14.

実施例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   The present invention will be further described with reference to examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例1)
10センチ角のF/SnO2透明導電膜を具備するガラス基板の透明導電膜上に、銀ペースト(市販品)を、印刷法により、0.8mm間隔で、2mm幅で塗布し、金属配線層(銀配線)を形成した。100℃で乾燥後、未配線部分をマスクし、銀配線をチタンスパッタで保護した(厚み400nm)。チタンスパッタは、ハイレートスパッタ装置(アルバック社製 SH-250-T04)を用い、チャンバ内圧2×10−3Paのアルゴン雰囲気下、チタンをターゲットとして、高周波電源(周波数13.56MHz、出力100W)によりプラズマを発生させ、室温下、40分間行った。このときのスパッタ処理膜の写真を図3に示す。その後、チタンプラスマアーク処理(チタンアークプラスマ処理)により、チタンの緻密膜を形成し(厚み50nm) 電極基板を得た。チタンプラスマアーク処理は、アークイオンプレーティング方式のアークプラズマガン装置(アルバック社社製 APG‐1000)を用い、1000pulseの条件で、チャンバ内圧4×10−4Pa下、チタンをターゲットとして、アーク放電によりターゲットから発生するチタン粒子をアークプラズマ雰囲気下でイオン化し、成膜した。このときのプラスマアーク処理膜(チタンの緻密膜)の写真を図4に示す。
得られた電極基板上にチタニアペースト(粒径10nm、アナターゼ社製)を塗布し、450℃で30分加熱することにより、ポーラスなチタニア電極(作用極、電極基板)を得た(厚み500nm)。このチタニア電極をイソプロポキシアルミニウムのアルコール溶液(1%)に浸漬し、30分、室温で保持した。その後、450度15分加熱することにより、ポーラスチタニア表面に酸化物薄膜を形成した。作製したチタニア電極をルテニウム色素(N719)が溶解したエチルアルコール溶液(0.3%)に12時間浸漬した。溶液から取り出し、アルコールでリンスした後、室温で乾燥した。さらに、チタニア電極の上に白金電極(対極)を作製し、電極セルを得た。
この電極セルに電解液(ヨウ素50mM, ヨウ化リチウム 500mM, t-butyl pyridine 580mM in methylpropylimidazolium iodide and methyl ethylimidazolium tetracyanoborate (1:1))を注入後、封止し、色素増感太陽電池セルを得た。
得られた色素増感太陽電池セルについて、AM1.5, 100mW/cm2のソーラーシミュレーターを用いて、太陽光変換効率を測定したところ、5.4%であった。
本セルを1000時間室温で発電を続けたところ、5.2%の性能を維持しており、また、目視観察したところ、銀配線の劣化はまったくなかった。
本セルのチタンの緻密膜をオージェ電子スペクトロメーターで成分分析したところ、緻密膜を作製した直後はTi:Oが1:1であったが、酸化物薄膜を形成するために450℃で加熱した後にはTi:Oの比率が1:2となった。さらに、450℃で加熱後のXPSスペクトルはチタニアと一致した。これらの事実から、加熱後には緻密膜はTiO2となっていると考えられる。
Example 1
A silver paste (commercially available) is applied on a transparent conductive film of a glass substrate having a 10 cm square F / SnO2 transparent conductive film by a printing method with a spacing of 0.8 mm and a width of 2 mm, and a metal wiring layer (silver) Wiring) was formed. After drying at 100 ° C., the non-wiring portion was masked and the silver wiring was protected by titanium sputtering (thickness 400 nm). Titanium sputtering is performed with a high-frequency power source (frequency 13.56 MHz, output 100 W) using a high-rate sputtering system (SH-250-T04 manufactured by ULVAC, Inc.) and using titanium as a target in an argon atmosphere with a chamber internal pressure of 2 × 10 −3 Pa. For 40 minutes at room temperature. A photograph of the sputtered film at this time is shown in FIG. Thereafter, a titanium dense film was formed by titanium plasma arc treatment (titanium arc plasma treatment) (thickness 50 nm) to obtain an electrode substrate. The titanium plasma arc treatment uses an arc ion plating type arc plasma gun apparatus (APG-1000 manufactured by ULVAC, Inc.) and arc discharge using titanium as a target under a chamber internal pressure of 4 × 10 −4 Pa under the condition of 1000 pulses. The titanium particles generated from the target were ionized under an arc plasma atmosphere to form a film. A photograph of the plasma arc-treated film (dense titanium film) at this time is shown in FIG.
A porous titania electrode (working electrode, electrode substrate) was obtained by applying a titania paste (particle size 10 nm, manufactured by Anatase) on the obtained electrode substrate and heating at 450 ° C. for 30 minutes (thickness 500 nm). . This titania electrode was immersed in an alcohol solution (1%) of isopropoxyaluminum and kept at room temperature for 30 minutes. Then, the oxide thin film was formed in the porous titania surface by heating at 450 degreeC for 15 minutes. The produced titania electrode was immersed in an ethyl alcohol solution (0.3%) in which ruthenium dye (N719) was dissolved for 12 hours. After removing from the solution and rinsing with alcohol, it was dried at room temperature. Furthermore, a platinum electrode (counter electrode) was produced on the titania electrode to obtain an electrode cell.
An electrolyte solution (iodine 50 mM, lithium iodide 500 mM, t-butyl pyridine 580 mM in methylpropylimidazolium iodide and methyl ethylimidazolium tetracyanoborate (1: 1)) was injected into this electrode cell and sealed to obtain a dye-sensitized solar cell. .
With respect to the obtained dye-sensitized solar cell, the solar conversion efficiency was measured using a solar simulator of AM1.5, 100 mW / cm2 and found to be 5.4%.
When this cell was continuously generated at room temperature for 1000 hours, it maintained a performance of 5.2%, and when visually observed, there was no deterioration of the silver wiring.
When the component of the dense titanium film in this cell was analyzed with an Auger electron spectrometer, Ti: O was 1: 1 immediately after producing the dense film, but it was heated at 450 ° C to form an oxide thin film. Later, the Ti: O ratio became 1: 2. Furthermore, the XPS spectrum after heating at 450 ° C. was consistent with titania. From these facts, it is considered that the dense film becomes TiO 2 after heating.

(比較例1)
プラズマアーク処理を行わず、耐食性金属層を設けなかった点を除いて実施例1と同様にセルを作製した。得られたセルの太陽光変換効率の初期値は5.1%であり、一週間で発電しなくなった。目視観察したところ、銀配線の腐食が見られた。
(Comparative Example 1)
A cell was fabricated in the same manner as in Example 1 except that the plasma arc treatment was not performed and the corrosion-resistant metal layer was not provided. The initial value of solar conversion efficiency of the obtained cell was 5.1%, and power generation was stopped in a week. When visually observed, corrosion of the silver wiring was observed.

(比較例2)
スパッタ処理を行わず、遮蔽層を設けなかった点を除いて実施例1と同様にセルを作製した。得られたセルの太陽光変換効率の初期値は5.0%であり、一週間で発電しなくなった。目視観察したところ、銀配線の腐食が見られた。
(Comparative Example 2)
A cell was fabricated in the same manner as in Example 1 except that the sputtering process was not performed and the shielding layer was not provided. The initial value of solar conversion efficiency of the obtained cell was 5.0%, and power generation was stopped in a week. When visually observed, corrosion of the silver wiring was observed.

(実施例2)
チタンスパッタおよびチタンプラスマアーク処理に代えて、それぞれタングステンスパッタおよびタングステンプラズマアーク処理を行ったほかは実施例1と同様にセルを作製した。
得られたセルの太陽光変換効率の初期値は5.4%であり、本セルを1000時間室温で発電を続けた時点でも、5.2%の性能を維持できた。目視観察したところ、銀配線の劣化はまったくなかった。
(Example 2)
A cell was fabricated in the same manner as in Example 1 except that tungsten sputtering and tungsten plasma arc treatment were performed instead of titanium sputtering and titanium plasma arc treatment, respectively.
The initial value of the solar cell conversion efficiency of the obtained cell was 5.4%, and the performance of 5.2% could be maintained even when the power generation was continued for 1000 hours at room temperature. When visually observed, there was no deterioration of the silver wiring.

(比較例3)
プラズマアーク処理を行わず、耐食性金属層を設けなかった点を除いて実施例2と同様にセルを作製した。得られたセルの太陽光変換効率の初期値は5.0%であり、一週間で発電しなくなった。目視観察したところ、銀配線の腐食が見られた。
(Comparative Example 3)
A cell was fabricated in the same manner as in Example 2 except that the plasma arc treatment was not performed and the corrosion-resistant metal layer was not provided. The initial value of solar conversion efficiency of the obtained cell was 5.0%, and power generation was stopped in a week. When visually observed, corrosion of the silver wiring was observed.

(比較例4)
スパッタ処理を行わず、遮蔽層を設けなかった点を除いて実施例2と同様にセルを作製した。得られたセルの太陽光変換効率の初期値は4.9%であり、一週間で発電しなくなった。目視観察したところ、銀配線の腐食が見られた。
(Comparative Example 4)
A cell was fabricated in the same manner as in Example 2 except that the sputtering process was not performed and the shielding layer was not provided. The initial value of solar conversion efficiency of the obtained cell was 4.9%, and power generation was stopped in a week. When visually observed, corrosion of the silver wiring was observed.

本実施の形態に係る電極基板の概略構成を示す図である。It is a figure which shows schematic structure of the electrode substrate which concerns on this Embodiment. 本実施の形態に係る色素増感太陽電池の概略構成を示す図である。It is a figure which shows schematic structure of the dye-sensitized solar cell which concerns on this Embodiment. 実施例1のスパッタ処理膜の写真を示す図である。3 is a view showing a photograph of a sputtered film of Example 1. FIG. 実施例1のプラズマアーク処理膜の写真を示す図である。It is a figure which shows the photograph of the plasma arc process film | membrane of Example 1. FIG.

符号の説明Explanation of symbols

10 電極基板
12 透明基板
14 透明導電膜
16 金属配線層
18 遮蔽層
20 耐食性金属層
22 色素増感太陽電池
24 導電膜
26 基板
28 多孔質半導体層
30 電解質
32 封止材
DESCRIPTION OF SYMBOLS 10 Electrode substrate 12 Transparent substrate 14 Transparent conductive film 16 Metal wiring layer 18 Shielding layer 20 Corrosion-resistant metal layer 22 Dye-sensitized solar cell 24 Conductive film 26 Substrate 28 Porous semiconductor layer 30 Electrolyte 32 Sealing material

Claims (11)

透明基板と、該透明基板の表面に設けられる透明導電膜と、該透明導電膜の表面に設けられる金属配線層と、該金属配線層上に設けられる緻密な第一の耐食性金属層と、該金属配線層と該第一の耐食性金属層の間に、および/または該第一の耐食性金属層の表面に設けられる遮蔽層を有することを特徴とする電極基板。   A transparent substrate, a transparent conductive film provided on the surface of the transparent substrate, a metal wiring layer provided on the surface of the transparent conductive film, a dense first corrosion-resistant metal layer provided on the metal wiring layer, An electrode substrate comprising a shielding layer provided between a metal wiring layer and the first corrosion-resistant metal layer and / or on a surface of the first corrosion-resistant metal layer. 透明基板と、該透明基板の表面に設けられる透明導電膜と、該透明導電膜の表面に設けられる金属配線層と、アークプラズマを用いて耐食性金属蒸気をプラズマ励起状態にして該金属配線層上に蒸着して設けられる第一の耐食性金属層と、該金属配線層と該第一の耐食性金属層の間に、および/または該第一の耐食性金属層の表面に設けられる遮蔽層を有することを特徴とする電極基板。   A transparent substrate, a transparent conductive film provided on the surface of the transparent substrate, a metal wiring layer provided on the surface of the transparent conductive film, and an arc plasma to bring the corrosion-resistant metal vapor into a plasma-excited state on the metal wiring layer A first corrosion-resistant metal layer that is provided by vapor deposition, and a shielding layer provided between the metal wiring layer and the first corrosion-resistant metal layer and / or on the surface of the first corrosion-resistant metal layer. An electrode substrate. 前記第一の耐食性金属層の耐食性金属がチタンまたはタングステンであることを特徴とする請求項1または2記載の電極基板。   3. The electrode substrate according to claim 1, wherein the corrosion-resistant metal of the first corrosion-resistant metal layer is titanium or tungsten. 前記第一の耐食性金属層が酸化チタンまたは酸化タングステンを含むことを特徴とする請求項3記載の電極基板。   The electrode substrate according to claim 3, wherein the first corrosion-resistant metal layer contains titanium oxide or tungsten oxide. 前記第一の耐食性金属層の厚みが10nm以上であることを特徴とする請求項1〜4のいずれか1項に記載の電極基板。   The electrode substrate according to any one of claims 1 to 4, wherein the thickness of the first corrosion-resistant metal layer is 10 nm or more. 前記遮蔽層が前記第一の耐食性金属層よりも粗でかつ厚みの厚い第二の耐食性金属層であることを特徴とする請求項1〜5のいずれか1項に記載の電極基板。   The electrode substrate according to any one of claims 1 to 5, wherein the shielding layer is a second corrosion-resistant metal layer that is coarser and thicker than the first corrosion-resistant metal layer. 前記遮蔽層がスパッタ蒸着により設けられ、前記第一の耐食性金属層よりも厚みの厚い第二の耐食性金属層であることを特徴とする請求項1〜6のいずれか1項に記載の電極基板。   The electrode substrate according to any one of claims 1 to 6, wherein the shielding layer is a second corrosion-resistant metal layer that is provided by sputter deposition and is thicker than the first corrosion-resistant metal layer. . 前記第二の耐食性金属層の耐食性金属がチタンまたはタングステンであることを特徴とする請求項6または7記載の電極基板。   8. The electrode substrate according to claim 6, wherein the corrosion-resistant metal of the second corrosion-resistant metal layer is titanium or tungsten. 前記第二の耐食性金属層が酸化チタンまたは酸化タングステンを含むことを特徴とする請求項8に記載の電極基板。   The electrode substrate according to claim 8, wherein the second corrosion-resistant metal layer includes titanium oxide or tungsten oxide. 請求項1〜9のいずれか1項に記載の電極基板を有することを特徴とする光電変換素子。   A photoelectric conversion element comprising the electrode substrate according to claim 1. 請求項1〜9のいずれか1項に記載の電極基板と、該電極基板の金属配線層側に対向して設けられる導電性基板を備え、該電極基板と該導電性基板の間に色素を吸着した多孔質半導体層と電解質を有することを特徴とする色素増感太陽電池。   An electrode substrate according to any one of claims 1 to 9, and a conductive substrate provided facing the metal wiring layer side of the electrode substrate, wherein a dye is provided between the electrode substrate and the conductive substrate. A dye-sensitized solar cell comprising an adsorbed porous semiconductor layer and an electrolyte.
JP2008134860A 2007-10-17 2008-05-23 Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery Pending JP2009117337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134860A JP2009117337A (en) 2007-10-17 2008-05-23 Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007269584 2007-10-17
JP2008134860A JP2009117337A (en) 2007-10-17 2008-05-23 Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2009117337A true JP2009117337A (en) 2009-05-28

Family

ID=40784220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134860A Pending JP2009117337A (en) 2007-10-17 2008-05-23 Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2009117337A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620794B1 (en) * 2010-03-11 2011-01-26 大日本印刷株式会社 Dye-sensitized solar cell
JP2012113839A (en) * 2010-11-19 2012-06-14 Kobe Steel Ltd Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element
CN105051912A (en) * 2013-03-15 2015-11-11 阿科玛股份有限公司 Nitrogen-containing transparent conductive oxide cap layer composition
CN113690326A (en) * 2021-08-11 2021-11-23 浙江中晶新能源股份有限公司 Solar cell with long service life and strong conductivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620794B1 (en) * 2010-03-11 2011-01-26 大日本印刷株式会社 Dye-sensitized solar cell
JP2011192407A (en) * 2010-03-11 2011-09-29 Dainippon Printing Co Ltd Dye-sensitized solar cell
JP2012113839A (en) * 2010-11-19 2012-06-14 Kobe Steel Ltd Thin metallic film for dye-sensitized solar cell and dye-sensitized solar cell element
CN105051912A (en) * 2013-03-15 2015-11-11 阿科玛股份有限公司 Nitrogen-containing transparent conductive oxide cap layer composition
CN105051912B (en) * 2013-03-15 2017-07-25 阿科玛股份有限公司 Nitrogenous transparent conductive oxide cap rock composition
CN113690326A (en) * 2021-08-11 2021-11-23 浙江中晶新能源股份有限公司 Solar cell with long service life and strong conductivity

Similar Documents

Publication Publication Date Title
Jeong et al. Thickness effect of RF sputtered TiO2 passivating layer on the performance of dye-sensitized solar cells
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
JP5458271B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003323818A (en) Base material for transparent electrode
Lim et al. Aerosol assisted chemical vapour deposited (AACVD) of TiO2 thin film as compact layer for dye-sensitised solar cell
Choi et al. The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes
JP2004128267A (en) Conductive glass substrate for photoelectric conversion element and method for manufacturing the same
Park et al. Performance enhancement of dye-sensitized solar cell with a TiCl 4-treated TiO 2 compact layer
Gu et al. Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films
KR20090065175A (en) Dye-sensitized solar cells and method of manufacturing the same
Liu et al. Effects of RF and pulsed DC sputtered TiO2 compact layer on the performance dye-sensitized solar cells
Molla et al. Transparent conductive oxide‐less back contact dye‐sensitized solar cells using cobalt electrolyte
JP2006310252A (en) Transparent electrode, dye-sensitized solar cell having it and dye-sensitized solar cell module
JP2003203683A (en) Conductive glass for photoelectronic conversion element
Son et al. Improved long-term durability of a parallel-type dye-sensitized solar cell module using a platinum metal grid fabricated by direct current magnetron sputtering with heat treatment
JP2009117337A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery
Lin et al. Effect of post-heat-treated NiOx overlayer on performance of nanocrystalline TiO2 thin films for dye-sensitized solar cells
Behrouznejad et al. Monolithic dye sensitized solar cell with metal foil counter electrode
JP2002100418A (en) Coloring matter sensitizing solar battery and its manufacturing method
JP2003203682A (en) Conductive glass for photoelectronic conversion element
Abdullah et al. Novel ITO/arc-TiO2 antireflective conductive substrate for transmittance enhanced properties in dye-sensitized solar cells
Liang et al. Post-treatment on dye-sensitized solar cells with TiCl 4 and Nb 2 O 5
Kim et al. Effects of TiCl4 post-treatment on the performance of hole transport material-free, screen printable mesoscopic perovskite solar cells with carbon electrode
Dao Highly transparent Pt-TiO2 as an efficient catalyst for triiodide reduction of bifacial liquid-junction photovoltaic devices
Meen et al. Applications of vertically oriented TiO2 micro-pillars array on the electrode of dye-sensitized solar cell