JP2003203683A - Conductive glass for photoelectronic conversion element - Google Patents

Conductive glass for photoelectronic conversion element

Info

Publication number
JP2003203683A
JP2003203683A JP2001400595A JP2001400595A JP2003203683A JP 2003203683 A JP2003203683 A JP 2003203683A JP 2001400595 A JP2001400595 A JP 2001400595A JP 2001400595 A JP2001400595 A JP 2001400595A JP 2003203683 A JP2003203683 A JP 2003203683A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
grid
conductive glass
conversion element
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001400595A
Other languages
Japanese (ja)
Inventor
Kenichi Okada
顕一 岡田
Hiroshi Matsui
浩志 松井
Nobuo Tanabe
信夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2001400595A priority Critical patent/JP2003203683A/en
Publication of JP2003203683A publication Critical patent/JP2003203683A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive glass for a photoelectronic conversion element used for a dye sensitive solar cell or the like of which, surface resistivity is reduced to a great extent and photoelectric conversion efficiency is heightened so as not to reduce the transmission quantity of light. <P>SOLUTION: The conductive glass for a photoelectric conversion element is formed by forming a transparent conductive film 12 made of FTO or the like on a glass plate 11, and forming a grid 13 made of metal thin film on the transparent conductive film 12, and covering the grid 13 and the transparent conductive film 12 by a protection thin film 17 with a thickness of 50 nm or less, made of tin oxide or the like. The grid 13 made of gold, silver, platinum, or the like with a thickness of 1-20 μm, of which, the plane shape is formed into a grid-shape, a comb tooth-shape or the like, and the open area ratio is 90-99%, is formed by a plating method. The sheet resistivity of the conductive glass is 1-0.01 Ω/square and the light transmission rate at the wave length of 550 nm is 60-90%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、色素増感太陽電
池などの光電変換素子に用いられる導電性ガラスに関す
る。
TECHNICAL FIELD The present invention relates to a conductive glass used for a photoelectric conversion element such as a dye-sensitized solar cell.

【0002】[0002]

【従来の技術】色素増感太陽電池は、スイスのグレツェ
ルらが開発したもので、光電変換効率が高く、製造コス
トが安いなどの利点があり、新しいタイプの太陽電池と
して注目を浴びている。図10は、この色素増感太陽電
池の一例(特公平8−15097号公報)を示すもので
ある。
2. Description of the Related Art A dye-sensitized solar cell, which was developed by Gretzell et al. In Switzerland, has advantages such as high photoelectric conversion efficiency and low manufacturing cost, and is attracting attention as a new type of solar cell. FIG. 10 shows an example of this dye-sensitized solar cell (Japanese Patent Publication No. 8-15097).

【0003】図中符号1は、透明基板となるガラス板で
あり、このガラス板1の一面にはインジュウムドープ酸
化スズ(ITO)、フッ素ドープ酸化スズ(FTO)な
どの厚さ1μm程度の透明導電膜2が形成されて、導電
性ガラス3となっている。この導電性ガラス3の透明導
電膜2の上には、酸化チタン、酸化ニオジムなどの酸化
物半導体微粒子からなり、光増感色素が担持された酸化
物半導体多孔質膜4が形成されている。
In the figure, reference numeral 1 is a glass plate serving as a transparent substrate, and one surface of the glass plate 1 is transparent such as indium-doped tin oxide (ITO) and fluorine-doped tin oxide (FTO) having a thickness of about 1 μm. The conductive film 2 is formed and becomes the conductive glass 3. On the transparent conductive film 2 of the conductive glass 3, an oxide semiconductor porous film 4 made of oxide semiconductor fine particles such as titanium oxide and niodymium oxide and carrying a photosensitizing dye is formed.

【0004】また、符号5は、対極となる導電性ガラス
であり、上記酸化物半導体多孔質膜4との間には、ヨウ
素/ヨウ素イオンなどのレドックス対を含む非水溶液か
らなる電解液が満たされ、電解質層6となっている。ま
た、電解質層6に代えて、ヨウ化銅、チオシアン銅など
の固体のp形半導体からなるホール輸送層を設けるもの
もある。この色素増感太陽電池では、太陽光などの光が
導電性ガラス3側から入射されると、透明導電膜2と対
極5との間に起電力が生じる。
Reference numeral 5 is a conductive glass serving as a counter electrode, and a space between the conductive glass and the oxide semiconductor porous film 4 is filled with an electrolytic solution composed of a non-aqueous solution containing a redox pair such as iodine / iodine ion. The electrolyte layer 6 is formed. Also, instead of the electrolyte layer 6, there is also one in which a hole transport layer made of a solid p-type semiconductor such as copper iodide or thiocyanate copper is provided. In this dye-sensitized solar cell, when light such as sunlight enters from the conductive glass 3 side, an electromotive force is generated between the transparent conductive film 2 and the counter electrode 5.

【0005】ところで、このような色素増感太陽電池に
あっては、導電性ガラス3には通常ガラス板としての耐
熱ガラス板の表面に透明導電膜2となる厚さ0.5〜1
μm程度のITOあるいはFTOを予め蒸着、スパッタ
などの薄膜形成法により被覆した市販の透明導電ガラス
が使用されている。
By the way, in such a dye-sensitized solar cell, the conductive glass 3 usually has a thickness of 0.5 to 1 to form the transparent conductive film 2 on the surface of a heat-resistant glass plate as a glass plate.
Commercially available transparent conductive glass coated with ITO or FTO of about μm in advance by a thin film forming method such as vapor deposition or sputtering is used.

【0006】しかしながら、この透明導電ガラスは、材
料コスト、加工コストが嵩み、かつ透明導電膜2をなす
ITO、FTOの比抵抗が10-4〜10-3Ω・cm程度
であり、銀、金などの金属の比抵抗の約100倍の値を
示すことから、透明導電膜2としたときの抵抗値が高
く、これにより太陽電池としての光電変換効率が低くな
る問題があった。
However, this transparent conductive glass has high material cost and processing cost, and the specific resistance of ITO and FTO forming the transparent conductive film 2 is about 10 −4 to 10 −3 Ω · cm, and silver, Since it exhibits a value about 100 times the specific resistance of metal such as gold, there is a problem that the resistance value of the transparent conductive film 2 is high, which lowers the photoelectric conversion efficiency of the solar cell.

【0007】このため、透明導電ガラスの透明導電膜2
の抵抗を下げるために、透明導電膜2の厚さを厚くする
ことが考えられるが、透明導電膜2の膜厚を5μm程度
に厚くすると、透明導電膜2による光吸収が大きくな
り、これによって透明導電ガラスの光線透過率が約75
%程度から約20%程度にまで低下し、酸化物半導体多
孔質膜3に届く光が減少し、これによっても太陽電池と
した際の光電変換効率が低下することになる。
Therefore, the transparent conductive film 2 of transparent conductive glass is used.
It is conceivable to increase the thickness of the transparent conductive film 2 in order to reduce the resistance of the transparent conductive film 2. However, if the thickness of the transparent conductive film 2 is increased to about 5 μm, the light absorption by the transparent conductive film 2 becomes large, which causes Light transmittance of transparent conductive glass is about 75
% To about 20%, the light reaching the oxide semiconductor porous film 3 is reduced, and this also reduces the photoelectric conversion efficiency of the solar cell.

【0008】[0008]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、ガラス表面に設けられ、電子の通路として機
能する導電層の電気抵抗値が低く、しかも透明性の高い
光電変換素子用導電性ガラスを得ることにある。
Therefore, an object of the present invention is to provide a conductive glass for a photoelectric conversion element, which is provided on the glass surface and has a low electric resistance value of a conductive layer which functions as an electron passage and has high transparency. Is to get.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決するた
めに、請求項1にかかる発明は、ガラス表面に透明導電
膜が設けられ、この透明導電膜上に金属薄膜からなるグ
リッドが設けられ、少なくともグリッドが保護薄膜で被
覆されたことを特徴とする光電変換素子用導電性ガラス
である。
In order to solve such a problem, the invention according to claim 1 provides a transparent conductive film on a glass surface, and a grid made of a metal thin film is provided on the transparent conductive film. At least the grid is coated with a protective thin film, which is a conductive glass for a photoelectric conversion element.

【0010】請求項2にかかる発明は、グリッドの平面
形状が、格子状または櫛歯状であることを特徴とする請
求項12記載の光電変換素子用導電性ガラスである。請
求項3にかかる発明は、グリッドの開口率が90〜99
%であることを特徴とする請求項1記載の光電変換素子
用導電性ガラスである。請求項4にかかる発明は、グリ
ッドをなす金属が、金、銀、白金、クロム、ニッケルの
いずれかまたはこれらの2種以上の合金であることを特
徴とする請求項1記載の光電変換素子用導電性ガラスで
ある。
According to a second aspect of the present invention, the conductive glass for a photoelectric conversion element according to the twelfth aspect is characterized in that the planar shape of the grid is a lattice shape or a comb tooth shape. In the invention according to claim 3, the grid aperture ratio is 90 to 99.
% Is the conductive glass for a photoelectric conversion element according to claim 1. The invention according to claim 4 is characterized in that the metal forming the grid is any one of gold, silver, platinum, chromium, nickel, or an alloy of two or more kinds of these, for the photoelectric conversion element according to claim 1. It is a conductive glass.

【0011】請求項5にかかる発明は、グリッドが、メ
ッキ法により形成されたものであることを特徴とする請
求項1記載の光電変換素子用導電性ガラスである。請求
項6にかかる発明は、グリッドの厚さが、1〜20μm
であることを特徴とする請求項1記載の光電変換素子用
導電性ガラスである。
The invention according to claim 5 is the conductive glass for a photoelectric conversion element according to claim 1, characterized in that the grid is formed by a plating method. In the invention according to claim 6, the grid has a thickness of 1 to 20 μm.
The conductive glass for a photoelectric conversion element according to claim 1, wherein

【0012】請求項7にかかる発明は、保護薄膜が、酸
化スズまたは酸化チタンからなることを特徴とする請求
項1記載の光電変換素子用導電性ガラスである。請求項
8にかかる発明は、保護薄膜をなす酸化チタンの厚さ
が、50nm以下であることを特徴とする請求項1記載
の光電変換素子用導電性ガラスである。
The invention according to claim 7 is the conductive glass for a photoelectric conversion element according to claim 1, wherein the protective thin film is made of tin oxide or titanium oxide. The invention according to claim 8 is the conductive glass for a photoelectric conversion element according to claim 1, characterized in that the thickness of the titanium oxide forming the protective thin film is 50 nm or less.

【0013】請求項9にかかる発明は、シート抵抗が、
1〜0.01Ω/□であることを特徴とする請求項1記
載の光電変換素子用導電性ガラスである。請求項10に
かかる発明は、波長550nmでの光線透過率が、60
〜90%であることを特徴とする請求項1記載の光電変
換素子用導電性ガラスである。
According to a ninth aspect of the invention, the sheet resistance is
It is 1-0.01 ohms / square, It is the electroconductive glass for photoelectric conversion elements of Claim 1 characterized by the above-mentioned. The invention according to claim 10 has a light transmittance of 60 at a wavelength of 550 nm.
The conductive glass for a photoelectric conversion element according to claim 1, wherein the conductive glass is about 90%.

【0014】請求項11にかかる発明は、請求項1ない
し10のいずれかに記載の光電変換素子用導電性ガラス
を用いてなる光電変換素子である。請求項12にかかる
発明は、色素増感太陽電池である請求項11記載の光電
変換素子である。
The invention according to claim 11 is a photoelectric conversion element comprising the conductive glass for photoelectric conversion element according to any one of claims 1 to 10. The invention according to claim 12 is the photoelectric conversion element according to claim 11, which is a dye-sensitized solar cell.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳しく説明する。図1は、本発明の光電変換素子用導
電性ガラスの一例を示すものである。図1において、符
号11はガラス板を示す。このガラス板11は、厚さ1
〜5mm程度のソーダガラス、耐熱ガラス、石英ガラス
などのガラスからなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on embodiments. FIG. 1 shows an example of the conductive glass for a photoelectric conversion element of the present invention. In FIG. 1, reference numeral 11 indicates a glass plate. This glass plate 11 has a thickness of 1
It is made of glass such as soda glass, heat resistant glass, and quartz glass having a size of about 5 mm.

【0016】このガラス板11の上には、このガラス板
11の全面を被覆する透明導電膜12が設けられてい
る。この透明導電膜12は、ITO、FTOなどの透明
性を有し導電性を示す薄膜からなるもので、厚さが0.
2〜1μm程度のもので、スパッタ法、CVD法などの
薄膜形成方法により形成されたものである。
A transparent conductive film 12 is provided on the glass plate 11 to cover the entire surface of the glass plate 11. The transparent conductive film 12 is made of a transparent and conductive thin film such as ITO or FTO and has a thickness of 0.
It has a thickness of about 2 to 1 μm and is formed by a thin film forming method such as a sputtering method or a CVD method.

【0017】この透明導電膜12上には、金属薄膜から
なるグリッド13がこれに密着して設けられている。こ
のグリッド13は、この導電性ガラスを色素増感太陽電
池などに用いた際に酸化物半導体多孔質膜で発生した電
子の通路として、上記透明導電膜12とともに働くもの
である。
On the transparent conductive film 12, a grid 13 made of a metal thin film is provided in close contact with it. The grid 13 works together with the transparent conductive film 12 as a passage for electrons generated in the oxide semiconductor porous film when the conductive glass is used in a dye-sensitized solar cell or the like.

【0018】このグリッド13は、その平面形状が、例
えば図2に示すような格子状のものや、図3に示すよう
な櫛歯状のものである。図2に示す格子状のグリッド1
3では、縦450〜2000μm、横2000〜200
00μmの長方形状の開口部14、14・・・が無数形
成されており、格子をなす縦横の金属薄膜からなる線1
5の線幅は10〜1000μmとなっている。また、そ
の一辺には集電用の幅広の集電極16が縦方向に伸びて
形成されている。
The grid 13 has a planar shape, for example, a grid shape as shown in FIG. 2 or a comb tooth shape as shown in FIG. The grid 1 shown in FIG.
3, the vertical length is 450 to 2000 μm and the horizontal width is 2000 to 200.
A large number of 00 μm rectangular openings 14, 14, ... Are formed, and a line 1 made of a metal thin film in the vertical and horizontal directions forming a lattice.
The line width of 5 is 10 to 1000 μm. In addition, a wide collector electrode 16 for collecting current is formed on one side thereof so as to extend in the vertical direction.

【0019】図3に示す櫛歯状のグリッド13では、櫛
歯をなす金属薄膜からなる幅10〜1000μmの線1
5、15・・・が無数に互いに平行に450〜2000
μmの間隔をあけて形成されて、無数の開口部14、1
4・・・が形成されており、それらの一端には集電用の
幅広の集電極16が形成されている。グリッド13の平
面形状は、図2および図3に示した格子状および櫛歯状
に限られるものではないことは言うまでもない。
In the comb-tooth-shaped grid 13 shown in FIG. 3, the wire 1 having a width of 10 to 1000 μm and made of a metal thin film forming the comb teeth.
5, 15 ... Infinitely parallel to each other 450-2000
Innumerable openings 14, 1 formed at intervals of μm
4 are formed, and a wide collector electrode 16 for collecting current is formed at one end thereof. It goes without saying that the planar shape of the grid 13 is not limited to the lattice shape and the comb tooth shape shown in FIGS. 2 and 3.

【0020】このグリッド13は、後述するように例え
ばメッキ法などで形成されたものであり、金、銀、白
金、クロム、ニッケルなどの金属の1種または2種以上
の合金からなり、その線15の厚さは1〜20μm、好
ましくは3〜10μmとなっている。この厚さが1μm
未満では導電性向上の効果が少なく、20μmを越えて
もかかる効果は頭打ちとなり、この上に設けられる酸化
物半導体多孔質膜よりも厚くなり好ましくない。
As will be described later, the grid 13 is formed by, for example, a plating method, and is made of one or more alloys of metals such as gold, silver, platinum, chromium, nickel, etc. The thickness of 15 is 1 to 20 μm, preferably 3 to 10 μm. This thickness is 1 μm
If it is less than 20 μm, the effect of improving the conductivity is small, and even if it exceeds 20 μm, such an effect is reached, and it is not preferable because it becomes thicker than the oxide semiconductor porous film provided thereon.

【0021】また、このグリッド13の開口率は、90
〜99%とされる。ここでの開口率とは、単位面積中に
占める線15の全面積の比で定義されるものである。こ
の開口率が90%未満では光線透過率が低下して入射光
量が低下し、99%を超えると導電性の向上が不十分な
ものとなる。
The aperture ratio of the grid 13 is 90
~ 99%. The aperture ratio here is defined by the ratio of the total area of the line 15 occupied in the unit area. If the aperture ratio is less than 90%, the light transmittance is reduced and the amount of incident light is reduced, and if it exceeds 99%, the improvement in conductivity becomes insufficient.

【0022】さらに、透明導電膜12およびグリッド1
3は、保護薄膜17でその全体が被覆されている。この
保護薄膜17は、この導電性ガラスを色素増感太陽電池
などに用いた場合に、電解液によってグリッド13が侵
食されることを防止するためのバリアーの機能を有する
とともに、光を透過させて内部の酸化物半導体多孔質膜
に十分な光量が届くようにするためのものである。
Furthermore, the transparent conductive film 12 and the grid 1
3 is entirely covered with a protective thin film 17. This protective thin film 17 has a function of a barrier for preventing the grid 13 from being eroded by an electrolytic solution when this conductive glass is used for a dye-sensitized solar cell or the like, and also transmits light. This is for ensuring that a sufficient amount of light reaches the internal oxide semiconductor porous film.

【0023】この保護薄膜17は、酸化スズ、酸化チタ
ン、酸化ケイ素、酸化亜鉛などのセラミックからなる透
明な薄膜からなる厚さ50nm以下、好ましくは20〜
50nmのものである。この厚さが20nm未満では保
護効果が不足する。また、50nmを越えても保護効果
が頭打ちとなり、電流が流れにくくなる。保護薄膜17
が酸化スズからなるときは、その厚さは50nm以上で
あってもよい。この保護薄膜17は、CVD法、SPD
法、スパツタ法、蒸着法などの薄膜形成手段によって形
成される。この保護薄膜17は、セラミック以外に透明
なポリマー薄膜でもよい。
The protective thin film 17 is a transparent thin film made of a ceramic such as tin oxide, titanium oxide, silicon oxide or zinc oxide and has a thickness of 50 nm or less, preferably 20 to 50 nm.
50 nm. If this thickness is less than 20 nm, the protective effect is insufficient. Further, even if the thickness exceeds 50 nm, the protective effect reaches a peak and the current hardly flows. Protective thin film 17
When is made of tin oxide, its thickness may be 50 nm or more. This protective thin film 17 is formed by CVD method, SPD
Method, a sputtering method, a vapor deposition method, or the like. The protective thin film 17 may be a transparent polymer thin film other than ceramic.

【0024】図4は、この発明の導電ガラスの他の例を
示すもので、図1に示したものと同一構成部分には同一
符号を付してその説明を省略する。この例では、保護薄
膜17がグリッド13のみを被覆するように、すなわち
グリッド13の各線15、15・・・の上面および両側
面が保護薄膜17で被覆され、透明導電膜12の表面は
保護薄膜17で被覆されていない点が、先の例と異なる
ところである。
FIG. 4 shows another example of the conductive glass of the present invention. The same components as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In this example, the protective thin film 17 covers only the grid 13, that is, the upper surface and both side surfaces of each line 15, 15 ... Of the grid 13 are covered with the protective thin film 17, and the surface of the transparent conductive film 12 is the protective thin film. It is different from the previous example in that it is not covered with 17.

【0025】このような構造の導電性ガラスにあって
は、その全表面におけるグリッド13と透明導電膜12
とを加味した全体の表面抵抗(シート抵抗と言う。)
は、1〜0.01Ω/□となり、従来のITO、FTO
などの透明導電膜を設けた透明導電ガラスに比べて、約
10〜1000分の1となっている。このため、極めて
導電性の高い導電性ガラスと言うことができる。
In the conductive glass having such a structure, the grid 13 and the transparent conductive film 12 on the entire surface thereof.
The total surface resistance that takes into account (and called sheet resistance)
Is 1 to 0.01 Ω / □, and conventional ITO and FTO
It is about 10 to 1/1000 of the transparent conductive glass provided with the transparent conductive film. Therefore, it can be said to be a conductive glass having extremely high conductivity.

【0026】さらに、この導電性ガラスでは、全表面の
平均した光線透過率を高くすることができる。すなわ
ち、グリッド13の存在により導電性が格段に向上する
ので、透明性の劣る透明導電膜12の厚さを薄くするこ
とができ、しかもグリッド13の開口率が90〜99%
であるので、グリッド13の存在による入射光の遮断も
ほとんどなく、保護薄膜17の厚さも極めて薄いためで
ある。したがって、波長550nmでの光線透過率を9
0%程度にまで高めることができる。
Furthermore, in this conductive glass, the average light transmittance of the entire surface can be increased. That is, since the conductivity is remarkably improved by the existence of the grid 13, the thickness of the transparent conductive film 12 having poor transparency can be reduced, and the aperture ratio of the grid 13 is 90 to 99%.
Therefore, the existence of the grid 13 hardly blocks the incident light, and the thickness of the protective thin film 17 is extremely thin. Therefore, the light transmittance at a wavelength of 550 nm is 9
It can be increased to about 0%.

【0027】つぎに、このような導電性ガラスの製造方
法の一例について説明する。まず、図5に示す市販のI
TO、FTOなどの透明導電膜12が設けられた透明導
電ガラス18を用意する。このような透明導電ガラス1
8は、例えば旭硝子(株)、日本板硝子(株)などから
入手できる。
Next, an example of a method for producing such a conductive glass will be described. First, the commercially available I shown in FIG.
A transparent conductive glass 18 provided with a transparent conductive film 12 such as TO or FTO is prepared. Such a transparent conductive glass 1
8 can be obtained from Asahi Glass Co., Ltd., Nippon Sheet Glass Co., Ltd., etc.

【0028】この透明導電ガラス18の透明導電膜12
の表面をプラズマ洗浄などにより洗浄したのち、この上
に銀、クロム、ニッケルまたは金をスパッタしてシード
層19とする(図5)。ついで、このシード層19上に
ドライレジストフィルムを貼り、露光、現像して、図6
に示すように、グリッド13の平面形状のパターンを有
するマスク20を形成し、さらにベーキング、活性化処
理を施す。
The transparent conductive film 12 of this transparent conductive glass 18
After the surface of is cleaned by plasma cleaning or the like, silver, chromium, nickel or gold is sputtered thereon to form a seed layer 19 (FIG. 5). Then, a dry resist film is attached on the seed layer 19, exposed and developed, and then, as shown in FIG.
As shown in FIG. 5, a mask 20 having a planar pattern of the grid 13 is formed, and baking and activation processing are further performed.

【0029】この後、マスク20から露出しているシー
ド層19上に、このシード層19を一方の電極として厚
さ1〜20μmの金メッキを施し、図7に示すように、
グリッド13となる金層21を形成する。この金メッキ
には、初めに高電流密度でのストライクメッキを行い、
ついで通常の電流密度でのメッキを行う方法が密着性が
向上して好ましい。
After that, gold plating with a thickness of 1 to 20 μm is applied to the seed layer 19 exposed from the mask 20 using this seed layer 19 as one electrode, and as shown in FIG.
A gold layer 21 to be the grid 13 is formed. For this gold plating, first strike plating with a high current density,
Then, a method of plating at a normal current density is preferable because the adhesion is improved.

【0030】この後、図8に示すように、残っているマ
スク20を剥離、除去し、マスク20の下に残ったシー
ド層19をエッチング除去した後、全面に常圧CVD法
などにより厚さ20〜50nmの酸化スズなどを成膜し
て保護薄膜17を設け、全体を洗浄するなどして、図1
に示す構造の導電性ガラスが製造される。
Thereafter, as shown in FIG. 8, the remaining mask 20 is peeled off and removed, and the seed layer 19 remaining under the mask 20 is removed by etching. Then, the entire surface is thickened by atmospheric pressure CVD or the like. By forming a protective thin film 17 by depositing a film of tin oxide having a thickness of 20 to 50 nm and cleaning the whole,
A conductive glass having the structure shown in is produced.

【0031】図9は、本発明の導電性ガラスを用いた光
電変換素子としての色素増感太陽電池の例を示すもので
ある。図9において、符号31は、図1に示した導電性
ガラスである。この導電性ガラス31の保護薄膜17上
には酸化物半導体多孔質膜32が設けられている。
FIG. 9 shows an example of a dye-sensitized solar cell as a photoelectric conversion element using the conductive glass of the present invention. In FIG. 9, reference numeral 31 is the conductive glass shown in FIG. An oxide semiconductor porous film 32 is provided on the protective thin film 17 of the conductive glass 31.

【0032】この酸化物半導体多孔質膜32は、酸化チ
タン、酸化スズ、酸化タングステン、酸化亜鉛、酸化ジ
ルコニウム、酸化ニオブなどの半導性を示す金属酸化物
微粒子が結合されて構成され、内部に無数の微細な空孔
を有し、表面に微細な凹凸を有する多孔質体であって、
その厚みが5〜50μmものである。この酸化物半導体
多孔質膜32は、図9に示すように、グリッド13の開
口部14、14・・・に対応する凹部を埋め、かつ保護
薄膜17の表面全体を覆うようにして、保護薄膜17と
一体的に結合されている。
The oxide semiconductor porous film 32 is formed by combining metal oxide fine particles having semiconductivity such as titanium oxide, tin oxide, tungsten oxide, zinc oxide, zirconium oxide, niobium oxide, etc. A porous body having innumerable fine pores and fine irregularities on the surface,
The thickness is 5 to 50 μm. As shown in FIG. 9, the oxide semiconductor porous film 32 fills the concave portions corresponding to the openings 14, 14, ... Of the grid 13 and covers the entire surface of the protective thin film 17 to form the protective thin film. It is integrally connected with 17.

【0033】この酸化物半導体多孔質膜32の形成は、
上記金属酸化物の平均粒径5〜50nmの微粒子を分散
したコロイド液や分散液等を保護薄膜17の表面に、ス
クリーンプリント、インクジェットプリント、ロールコ
ート、ドクターコート、スプレーコートなどの塗布手段
により塗布し、300〜800℃で焼結する方法などで
行われる。
This oxide semiconductor porous film 32 is formed by
A colloidal liquid or dispersion liquid in which fine particles of the metal oxide having an average particle diameter of 5 to 50 nm are dispersed is applied to the surface of the protective thin film 17 by a coating means such as screen printing, inkjet printing, roll coating, doctor coating, or spray coating. Then, it is performed by a method such as sintering at 300 to 800 ° C.

【0034】また、この酸化物半導体多孔質膜32に
は、光増感色素が坦持されている。この光増感色素に
は、ビピリジン構造、ターピリジン構造などの配位子を
含むルテニウム錯体、ポルフィリン、フタロシアニンな
どの金属錯体、エオシン、ローダミン、メロシアニンな
どの有機色素などが用いられ、用途、金属酸化物半導体
の種類等に応じて適宜選択することができる。
Further, the oxide semiconductor porous film 32 carries a photosensitizing dye. As the photosensitizing dye, ruthenium complexes containing ligands such as bipyridine structure and terpyridine structure, metal complexes such as porphyrin and phthalocyanine, and organic dyes such as eosin, rhodamine, and merocyanine are used. It can be appropriately selected depending on the type of semiconductor and the like.

【0035】また、符号33は、対極である。この例で
の対極33は、ポリイミド、ポリエチレンテレフタレー
トなどのプラスチックフィルムの一方の面に銅箔、ニッ
ケル箔などの金属箔を積層した金属箔積層フィルム33
aの金属箔の表面に、白金、金などの導電薄膜33bを
蒸着、スパッタなどにより形成したものが用いられ、こ
れの導電薄膜33bがこの太陽電池の内面側になるよう
に配置されて、この例の色素増感太陽電池となってい
る。
Reference numeral 33 is a counter electrode. The counter electrode 33 in this example is a metal foil laminated film 33 in which a metal foil such as a copper foil or a nickel foil is laminated on one surface of a plastic film such as polyimide or polyethylene terephthalate.
A conductive thin film 33b made of platinum, gold or the like is formed on the surface of the metal foil a by vapor deposition, sputtering, or the like, and the conductive thin film 33b is arranged so as to be on the inner surface side of the solar cell. It is an example of dye-sensitized solar cell.

【0036】また、対極33としては、これ以外に、金
属板などの導電性基板あるいはガラス板などの非伝導性
基板33a上に白金、金、炭素などの導電膜33bを形
成したものを用いてもよい。また、p型半導体をホール
輸送層とする場合には、p型半導体が固体であるため、
この上に直接白金などの導電薄膜を蒸着、スパッタなど
により形成してこの導電薄膜を対極23とすることもで
きる。
In addition, as the counter electrode 33, a conductive substrate such as a metal plate or a non-conductive substrate 33a such as a glass plate on which a conductive film 33b such as platinum, gold or carbon is formed is used. Good. Further, when the p-type semiconductor is used as the hole transport layer, since the p-type semiconductor is solid,
It is also possible to directly form a conductive thin film of platinum or the like by vapor deposition, sputtering or the like, and use this conductive thin film as the counter electrode 23.

【0037】この対極33と導電性ガラス21の酸化物
半導体多孔質膜32との間には電解液が充填されて電解
質層34となっている。この電解液としては、レドック
ス対を含む非水系電解液であれば、特に限定されるもの
ではない。溶媒としては、例えばアセトニトリル、メト
キシアセトニトリル、プロピオニトリル、炭酸エチレ
ン、炭酸プロピレン、γ−ブチロラクトンなどが用いら
れる。
An electrolytic solution is filled between the counter electrode 33 and the oxide semiconductor porous film 32 of the conductive glass 21 to form an electrolyte layer 34. The electrolytic solution is not particularly limited as long as it is a non-aqueous electrolytic solution containing a redox couple. As the solvent, for example, acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, γ-butyrolactone, etc. are used.

【0038】レドックス対としては、例えばヨウ素/ヨ
ウ素イオン、臭素/臭素イオンなどの組み合わせを選ぶ
ことができ、これを塩として添加する場合の対イオンと
しては、上記レドックス対にリチウムイオン、テトラア
ルキルイオン、イミダゾリウムイオンなどを用いること
ができる。また、必要に応じてヨウ素などを添加しても
よい。また、このような電解液を適当な高分子マトリッ
クスによりゲル化させた固体状のものを用いてもよい。
As the redox pair, for example, a combination of iodine / iodine ion, bromine / bromine ion and the like can be selected. When adding this as a salt, the counter ion is a lithium ion or a tetraalkyl ion in addition to the above redox pair. , Imidazolium ions, etc. can be used. Further, iodine or the like may be added if necessary. Further, a solid electrolyte obtained by gelling such an electrolytic solution with an appropriate polymer matrix may be used.

【0039】また、電解質層34に代えて、p型半導体
からなるホール輸送層を用いてもよい。このp型半導体
には、例えばヨウ化銅、チオシアン銅などの1価銅化合
物やポリピロールなどの導電性高分子を用いることがで
き、なかでもヨウ化銅が好ましい。このp型半導体から
なる固体のホール輸送層やゲル化した電解質を用いたも
のでは、電解液の漏液の恐れがない。
Instead of the electrolyte layer 34, a hole transport layer made of a p-type semiconductor may be used. For this p-type semiconductor, for example, a monovalent copper compound such as copper iodide or copper thiocyanate or a conductive polymer such as polypyrrole can be used, and among them, copper iodide is preferable. With a solid hole transport layer made of this p-type semiconductor or a gelled electrolyte, there is no risk of electrolyte leakage.

【0040】このような構成の導電性ガラスにあって
は、電気伝導性が高い金属薄膜からなるグリッド13が
設けられているので、導電性ガラス全体としての電気抵
抗値が低くなり、色素増感太陽電池などの光電変換素子
に用いた場合には、光電変換効率が高いものとなる。
In the conductive glass having such a structure, since the grid 13 made of a metal thin film having high electric conductivity is provided, the electric resistance value of the conductive glass as a whole becomes low, and the dye sensitization is performed. When used in a photoelectric conversion element such as a solar cell, the photoelectric conversion efficiency is high.

【0041】また、低抵抗のグリッド13が存在してい
るので、透明性の劣る透明導電膜12の厚さを薄くで
き、これの透明性を高めることができ、グリッド13の
存在により光が遮断されることがないことにも起因し
て、光の透過量が増加し、色素増感太陽電池に用いた際
に、酸化物半導体多孔質膜22に入射される光が増加し
て、これによっても光電変換効率が向上する。さらに、
色素増感太陽電池などに用いた際に、保護薄膜17が設
けられているため、金属からなるグリッド13が電解液
に浸食されることがない。
Further, since the grid 13 having a low resistance is present, the thickness of the transparent conductive film 12 having poor transparency can be reduced and the transparency thereof can be enhanced, and the existence of the grid 13 blocks light. Also, the amount of light transmitted is increased, and the amount of light incident on the oxide semiconductor porous film 22 is increased when the dye-sensitized solar cell is used. Also improves the photoelectric conversion efficiency. further,
When used in a dye-sensitized solar cell or the like, since the protective thin film 17 is provided, the grid 13 made of metal is not corroded by the electrolytic solution.

【0042】以下、具体例を示す。厚さ2mmのガラス
板上に厚さ0.5μmのFTOが設けられた透明導電ガ
ラス(旭硝子(株)製)を準備した。この透明導電ガラ
スの上記FTO上に上述の製造方法により、金と銀との
合金からなる図2に示すような格子状のグリッドを設け
た。
Specific examples will be shown below. A transparent conductive glass (manufactured by Asahi Glass Co., Ltd.) in which an FTO having a thickness of 0.5 μm was provided on a glass plate having a thickness of 2 mm was prepared. On the FTO of this transparent conductive glass, a grid-like grid made of an alloy of gold and silver as shown in FIG. 2 was provided by the above-described manufacturing method.

【0043】このグリッドの線の厚さは、5μm、線の
幅は、40μm、開口部の大きさは、縦860μm、横
5000μmの長方形で、開口率は95%とした。つい
で、このグリッド上からガラス板全体に、常圧CVD法
により厚さ30nmの酸化スズからなる保護薄膜を形成
して、導電性ガラスとした。このようにして得られた導
電性ガラスのシート抵抗は、0.1Ω/□、波長550
nmでの光線透過率は75%であった。
The line thickness of this grid was 5 μm, the line width was 40 μm, the size of the opening was a rectangle of 860 μm in length and 5000 μm in width, and the aperture ratio was 95%. Then, a protective thin film made of tin oxide having a thickness of 30 nm was formed on the entire glass plate from above this grid by atmospheric pressure CVD method to obtain a conductive glass. The sheet resistance of the conductive glass thus obtained is 0.1 Ω / □, the wavelength is 550.
The light transmittance in nm was 75%.

【0044】ついで、この導電性ガラスの保護導電膜上
に酸化物半導体多孔質膜を形成した。この酸化物半導体
多孔質膜の形成は、粒径約20nmの酸化チタン微粒子
をアセチルニトリルに分散してペーストとし、これを上
記グリッド上にバーコード法により厚さ15μmに塗布
し、乾燥後400℃で1時間加熱焼成しておこなった。
焼成後の酸化物半導体多孔質膜にルテニウム色素を担持
した。
Then, an oxide semiconductor porous film was formed on the protective conductive film of the conductive glass. This porous oxide semiconductor film is formed by dispersing fine particles of titanium oxide having a particle diameter of about 20 nm in acetyl nitrile to form a paste, which is applied to the grid by a barcode method to a thickness of 15 μm, and dried at 400 ° C. It was heated and baked for 1 hour.
A ruthenium dye was supported on the baked oxide semiconductor porous film.

【0045】対極として、厚さ2mmのガラス板に厚さ
5μmのFTOを設けた透明導電ガラス(市販品)を用
意し、上記導電性ガラスと対極とを貼り合わせ、その間
隙にヨウ素/ヨウ化物の電解液を充填して電解質層とし
色素増感太陽電池を作製した。得られた太陽電池の平面
寸法は、100mm×100mmとした。
As a counter electrode, a transparent conductive glass (commercially available) having a glass plate having a thickness of 2 mm and FTO having a thickness of 5 μm was prepared, the conductive glass and the counter electrode were bonded together, and iodine / iodide was placed in the gap. A dye-sensitized solar cell was prepared by filling the electrolytic solution of No. 1 with an electrolyte layer. The planar dimension of the obtained solar cell was 100 mm × 100 mm.

【0046】この太陽電池について、人工太陽光(AM
1.5)を照射し、電流−電圧特性を測定し、その発電
効率(η)を求めた。その結果、発電効率は5%であつ
た。比較のため、グリッドおよび保護薄膜のない市販の
透明導電ガラスをそのまま用いて色素増感太陽電池を組
み立て、発電効率を求めたところ、0.07%であっ
た。
About this solar cell, artificial sunlight (AM
1.5) was irradiated, the current-voltage characteristic was measured, and the power generation efficiency (η) was obtained. As a result, the power generation efficiency was 5%. For comparison, a commercially available transparent conductive glass without a grid and a protective thin film was used as it was to assemble a dye-sensitized solar cell, and the power generation efficiency was calculated to be 0.07%.

【0047】[0047]

【発明の効果】以上説明したように、本発明の光電変換
素子用導電性ガラスは、ガラス表面に透明導電膜を設
け、この透明導電膜上に金属薄膜からなるグリッドを設
け、少なくともグリッドを保護薄膜で被覆したものであ
るので、導電性ガラスとしての電気伝導度が極めて高い
ものとなり、かつ透明導電膜の厚さを薄くすることがで
き、グリッドでの光の遮断がほとんどないため、光透過
率が高く、これにより光電変換素子としたときに光電変
換効率が高いものが得られる。
As described above, in the conductive glass for photoelectric conversion element of the present invention, a transparent conductive film is provided on the glass surface, a grid made of a metal thin film is provided on the transparent conductive film, and at least the grid is protected. Since it is coated with a thin film, it has extremely high electrical conductivity as conductive glass, and the thickness of the transparent conductive film can be made thin, so there is almost no blocking of light in the grid, so light transmission is possible. The photoelectric conversion element has a high rate, and thus a photoelectric conversion element having a high photoelectric conversion efficiency can be obtained.

【0048】また、この導電性ガラスを色素増感太陽電
池に用いた場合に、金属薄膜からなるグリッドが保護薄
膜で被覆されているので、電池の電解液で侵食されるこ
とがない。
When this conductive glass is used in a dye-sensitized solar cell, the grid made of a metal thin film is covered with the protective thin film, so that it is not eroded by the electrolytic solution of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換素子用導電性ガラスの一例を
示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a conductive glass for a photoelectric conversion element of the present invention.

【図2】本発明でのグリッドの一例を示す平面図であ
る。
FIG. 2 is a plan view showing an example of a grid according to the present invention.

【図3】本発明でのグリッドの他の例を示す平面図であ
る。
FIG. 3 is a plan view showing another example of the grid according to the present invention.

【図4】本発明の導電性ガラスの他の例を示す概略断面
図である。
FIG. 4 is a schematic cross-sectional view showing another example of the conductive glass of the present invention.

【図5】本発明の光電変換素子用導電性ガラスの製造方
法を示す概略断面図である。
FIG. 5 is a schematic sectional view showing a method for producing a conductive glass for a photoelectric conversion element of the present invention.

【図6】本発明の光電変換素子用導電性ガラスの製造方
法を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing a method for producing a conductive glass for a photoelectric conversion element of the present invention.

【図7】本発明の光電変換素子用導電性ガラスの製造方
法を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a method for producing a conductive glass for a photoelectric conversion element of the present invention.

【図8】本発明の光電変換素子用導電性ガラスの製造方
法を示す概略断面図である。
FIG. 8 is a schematic sectional view showing a method for producing a conductive glass for a photoelectric conversion element of the present invention.

【図9】本発明の光電変換素子用導電性ガラスを用いた
色素増感太陽電池の例を示す概略断面図である。
FIG. 9 is a schematic sectional view showing an example of a dye-sensitized solar cell using the conductive glass for a photoelectric conversion element of the present invention.

【図10】従来の色素増感太陽電池を示す概略断面図で
ある。
FIG. 10 is a schematic cross-sectional view showing a conventional dye-sensitized solar cell.

【符号の説明】[Explanation of symbols]

11・・・ガラス板、12・・・透明導電膜、13・・
・グリッド、17・・・保護薄膜、32・・・酸化物半
導体多孔質膜、33・・・対極、34・・・電解質層
11 ... Glass plate, 12 ... Transparent conductive film, 13 ...
-Grid, 17 ... Protective thin film, 32 ... Oxide semiconductor porous film, 33 ... Counter electrode, 34 ... Electrolyte layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田辺 信夫 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 Fターム(参考) 5F051 AA14 FA02 FA06 GA03 5H032 AA06 AS06 AS16 CC09 CC13 CC16 EE01 EE02 EE07 EE16 HH01 HH04 HH07 HH08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuo Tanabe             1-5-1 Kiba Stock Market, Koto-ku, Tokyo             Inside Fujikura F-term (reference) 5F051 AA14 FA02 FA06 GA03                 5H032 AA06 AS06 AS16 CC09 CC13                       CC16 EE01 EE02 EE07 EE16                       HH01 HH04 HH07 HH08

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】ガラス表面に透明導電膜が設けられ、この
透明導電膜上に金属薄膜からなるグリッドが設けられ、
少なくともグリッドが保護薄膜で被覆されたことを特徴
とする光電変換素子用導電性ガラス。
1. A transparent conductive film is provided on a glass surface, and a grid made of a metal thin film is provided on the transparent conductive film.
At least the grid is covered with a protective thin film, which is a conductive glass for a photoelectric conversion element.
【請求項2】グリッドの平面形状が、格子状または櫛歯
状であることを特徴とする請求項1記載の光電変換素子
用導電性ガラス。
2. The conductive glass for a photoelectric conversion element according to claim 1, wherein the planar shape of the grid is a lattice shape or a comb tooth shape.
【請求項3】グリッドの開口率が90〜99%であるこ
とを特徴とする請求項1記載の光電変換素子用導電性ガ
ラス。
3. The conductive glass for a photoelectric conversion element according to claim 1, wherein the grid has an aperture ratio of 90 to 99%.
【請求項4】グリッドをなす金属が、金、銀、白金、ク
ロム、ニッケルのいずれかまたはこれらの2種以上の合
金であることを特徴とする請求項1記載の光電変換素子
用導電性ガラス。
4. The conductive glass for a photoelectric conversion element according to claim 1, wherein the metal forming the grid is any one of gold, silver, platinum, chromium, nickel, or an alloy of two or more of these. .
【請求項5】グリッドが、メッキ法により形成されたも
のであることを特徴とする請求項1記載の光電変換素子
用導電性ガラス。
5. The conductive glass for a photoelectric conversion element according to claim 1, wherein the grid is formed by a plating method.
【請求項6】グリッドの厚さが、1〜20μmであるこ
とを特徴とする請求項1記載の光電変換素子用導電性ガ
ラス。
6. The conductive glass for a photoelectric conversion element according to claim 1, wherein the grid has a thickness of 1 to 20 μm.
【請求項7】保護薄膜が、酸化スズまたは酸化チタンか
らなることを特徴とする請求項1記載の光電変換素子用
導電性ガラス。
7. The conductive glass for a photoelectric conversion element according to claim 1, wherein the protective thin film is made of tin oxide or titanium oxide.
【請求項8】保護薄膜をなす酸化チタンの厚さが、50
nm以下であることを特徴とする請求項1記載の光電変
換素子用導電性ガラス。
8. The titanium oxide forming the protective thin film has a thickness of 50.
The conductive glass for a photoelectric conversion element according to claim 1, wherein the conductive glass has a thickness of not more than nm.
【請求項9】シート抵抗が、1〜0.01Ω/□である
ことを特徴とする請求項1記載の光電変換素子用導電性
ガラス。
9. The conductive glass for a photoelectric conversion element according to claim 1, which has a sheet resistance of 1 to 0.01 Ω / □.
【請求項10】波長550nmでの光線透過率が、60
〜90%であることを特徴とする請求項1記載の光電変
換素子用導電性ガラス。
10. The light transmittance at a wavelength of 550 nm is 60.
It is -90%, The electroconductive glass for photoelectric conversion elements of Claim 1 characterized by the above-mentioned.
【請求項11】請求項1ないし10のいずれかに記載の
光電変換素子用導電性ガラスを用いてなる光電変換素
子。
11. A photoelectric conversion element comprising the conductive glass for a photoelectric conversion element according to claim 1.
【請求項12】色素増感太陽電池である請求項11記載
の光電変換素子。
12. The photoelectric conversion element according to claim 11, which is a dye-sensitized solar cell.
JP2001400595A 2001-12-28 2001-12-28 Conductive glass for photoelectronic conversion element Withdrawn JP2003203683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400595A JP2003203683A (en) 2001-12-28 2001-12-28 Conductive glass for photoelectronic conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400595A JP2003203683A (en) 2001-12-28 2001-12-28 Conductive glass for photoelectronic conversion element

Publications (1)

Publication Number Publication Date
JP2003203683A true JP2003203683A (en) 2003-07-18

Family

ID=27639911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400595A Withdrawn JP2003203683A (en) 2001-12-28 2001-12-28 Conductive glass for photoelectronic conversion element

Country Status (1)

Country Link
JP (1) JP2003203683A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100902A1 (en) * 2002-05-27 2003-12-04 Sony Corporation Photoelectric conversion device
WO2004032274A1 (en) * 2002-10-03 2004-04-15 Fujikura Ltd. Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
JP2005044544A (en) * 2003-07-23 2005-02-17 Fujikura Ltd Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
JP2005078857A (en) * 2003-08-28 2005-03-24 Fujikura Ltd Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP2005158727A (en) * 2003-11-07 2005-06-16 Dainippon Printing Co Ltd Dye-sensitized solar cell, electrode substrate therefor, and its manufacturing method
JP2005158726A (en) * 2003-11-07 2005-06-16 Dainippon Printing Co Ltd Dye-sensitized solar cell, electrode substrate therefor, and its manufacturing method
WO2008087192A2 (en) * 2007-01-17 2008-07-24 Osram Opto Semiconductors Gmbh Radiation-emitting apparatus, and method for the production of a radiation-emitting apparatus
JP2009252726A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Dye-sensitized solar cell
US7638807B2 (en) 2003-10-28 2009-12-29 Sumitomo Metal Mining Co., Ltd. Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
CN102324314A (en) * 2011-07-19 2012-01-18 彩虹集团公司 Preparation method of dye sensitization battery auxiliary electrode
KR101114254B1 (en) * 2008-09-11 2012-03-05 주식회사 이건창호 Dye-sensitized solar sell and manufacturing method thereof
KR101163789B1 (en) 2006-02-07 2012-07-09 삼성전자주식회사 Transparent electrode and praparation method thereof
JP2012248285A (en) * 2011-05-25 2012-12-13 Panasonic Corp Electrode formation substrate, manufacturing method for the same, and organic el device including the electrode formation substrate
US8916770B2 (en) 2009-11-05 2014-12-23 Samsung Sdi Co., Ltd. Photoelectric conversion device
CN105807527A (en) * 2015-01-16 2016-07-27 株式会社理光 Electrochromic apparatus, electrochromic element, and method of manufacturing electrochromic element
CN106887274A (en) * 2017-03-23 2017-06-23 广州新视界光电科技有限公司 A kind of flexible transparent conductive film and preparation method thereof
KR101878882B1 (en) * 2011-10-21 2018-07-17 엘지디스플레이 주식회사 Nano mesh type transparent conductive electrode and method for manufacturing the same, touch screen and display apparatus having the nano mesh type transparent conductive electrode

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100902A1 (en) * 2002-05-27 2003-12-04 Sony Corporation Photoelectric conversion device
WO2004032274A1 (en) * 2002-10-03 2004-04-15 Fujikura Ltd. Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
US8629346B2 (en) 2002-10-03 2014-01-14 Fujikura Ltd. Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
JP2005044544A (en) * 2003-07-23 2005-02-17 Fujikura Ltd Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
JP4578786B2 (en) * 2003-07-23 2010-11-10 株式会社フジクラ Method for producing dye-sensitized solar cell
JP4515061B2 (en) * 2003-08-28 2010-07-28 株式会社フジクラ Method for producing dye-sensitized solar cell
JP2005078857A (en) * 2003-08-28 2005-03-24 Fujikura Ltd Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
US7901538B2 (en) 2003-10-28 2011-03-08 Sumitomo Metal Mining Co., Ltd. Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
US7638807B2 (en) 2003-10-28 2009-12-29 Sumitomo Metal Mining Co., Ltd. Transparent conductive multi-layer structure, process for its manufacture and device making use of transparent conductive multi-layer structure
JP2005158726A (en) * 2003-11-07 2005-06-16 Dainippon Printing Co Ltd Dye-sensitized solar cell, electrode substrate therefor, and its manufacturing method
JP2005158727A (en) * 2003-11-07 2005-06-16 Dainippon Printing Co Ltd Dye-sensitized solar cell, electrode substrate therefor, and its manufacturing method
JP4759984B2 (en) * 2003-11-07 2011-08-31 大日本印刷株式会社 Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
KR101163789B1 (en) 2006-02-07 2012-07-09 삼성전자주식회사 Transparent electrode and praparation method thereof
WO2008087192A2 (en) * 2007-01-17 2008-07-24 Osram Opto Semiconductors Gmbh Radiation-emitting apparatus, and method for the production of a radiation-emitting apparatus
WO2008087192A3 (en) * 2007-01-17 2008-09-04 Osram Opto Semiconductors Gmbh Radiation-emitting apparatus, and method for the production of a radiation-emitting apparatus
EP2453498B1 (en) * 2007-01-17 2016-07-27 OSRAM OLED GmbH Radiation emitting device and method for manufacturing a radiation emitting device
JP2009252726A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Dye-sensitized solar cell
KR101114254B1 (en) * 2008-09-11 2012-03-05 주식회사 이건창호 Dye-sensitized solar sell and manufacturing method thereof
US8916770B2 (en) 2009-11-05 2014-12-23 Samsung Sdi Co., Ltd. Photoelectric conversion device
JP2012248285A (en) * 2011-05-25 2012-12-13 Panasonic Corp Electrode formation substrate, manufacturing method for the same, and organic el device including the electrode formation substrate
CN102324314A (en) * 2011-07-19 2012-01-18 彩虹集团公司 Preparation method of dye sensitization battery auxiliary electrode
KR101878882B1 (en) * 2011-10-21 2018-07-17 엘지디스플레이 주식회사 Nano mesh type transparent conductive electrode and method for manufacturing the same, touch screen and display apparatus having the nano mesh type transparent conductive electrode
CN105807527A (en) * 2015-01-16 2016-07-27 株式会社理光 Electrochromic apparatus, electrochromic element, and method of manufacturing electrochromic element
CN106887274A (en) * 2017-03-23 2017-06-23 广州新视界光电科技有限公司 A kind of flexible transparent conductive film and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1489628B1 (en) Conductive glass for photoelectric conversion device
TWI326920B (en) Electrode substrate, photoelectric transducer, conductive glass substrate and manufacturing method thereof, and dye-sensitized solar cell
JP2003203683A (en) Conductive glass for photoelectronic conversion element
JP2004128267A (en) Conductive glass substrate for photoelectric conversion element and method for manufacturing the same
TWM504354U (en) A dye-sensitized solar cell
CN101002292A (en) Photoelectrochemical photovoltaic panel and method to manufacture thereof
US20160379763A1 (en) Substrate and electrode for solar cells and the corresponding manufacturing process
JP2003203681A (en) Conductive glass for photoelectronic conversion element
US20110108104A1 (en) Photoelectric conversion device
JP4578786B2 (en) Method for producing dye-sensitized solar cell
JP2003203682A (en) Conductive glass for photoelectronic conversion element
CN101615514A (en) A kind of parallel component of dye-sensitized solar cell and preparation method thereof
JP2004164970A (en) Electrode substrate and photoelectric conversion element
JP4071428B2 (en) Dye-sensitized solar cell and method for producing the same
JP4416997B2 (en) Electrode substrate for dye-sensitized solar cell, photoelectric conversion element, and dye-sensitized solar cell
US20110126905A1 (en) Dye-sensitized solar cell including spacers
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4954855B2 (en) Manufacturing method of dye-sensitized solar cell
JP6703493B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2009117337A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar battery
JP2003123855A (en) Electrode for photoelectric conversion element
EP2690676B1 (en) Manufacturing process for a substrate and an electrode for solar cells
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
JP4841574B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2006083036A (en) Glass etching method, manufacturing method of transparent conductive substrate and photoelectric transducer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301