JP6703493B2 - Photoelectric conversion element and method for manufacturing photoelectric conversion element - Google Patents

Photoelectric conversion element and method for manufacturing photoelectric conversion element Download PDF

Info

Publication number
JP6703493B2
JP6703493B2 JP2016570679A JP2016570679A JP6703493B2 JP 6703493 B2 JP6703493 B2 JP 6703493B2 JP 2016570679 A JP2016570679 A JP 2016570679A JP 2016570679 A JP2016570679 A JP 2016570679A JP 6703493 B2 JP6703493 B2 JP 6703493B2
Authority
JP
Japan
Prior art keywords
film
conductive
conductive film
electrode
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016570679A
Other languages
Japanese (ja)
Other versions
JPWO2016117598A1 (en
Inventor
大輔 時田
大輔 時田
俊介 功刀
俊介 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2016117598A1 publication Critical patent/JPWO2016117598A1/en
Application granted granted Critical
Publication of JP6703493B2 publication Critical patent/JP6703493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、光電変換素子及び光電変換素子の製造方法に関する。
本願は、2015年1月20日に、日本に出願された特願2015−008497号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a photoelectric conversion element and a method for manufacturing a photoelectric conversion element.
The present application claims priority based on Japanese Patent Application No. 2015-008497 filed in Japan on January 20, 2015, and the content thereof is incorporated herein.

クリーンエネルギーの発電装置としてシリコン系太陽電池、色素増感型太陽電池等の光電変換素子が注目されている。近年では、工場その他の大型施設の屋上や遊休地等を用いるために、大出力の太陽電池への要求が大きく、太陽電池の大型化の研究が進められている。
太陽電池の大型化における課題の一つとしては、電極を構成する導電膜の抵抗値が比較的高いことから、モジュールの面積を大きくして発電量を増大させても集電効率が悪くなり依然として出力が大きくなり難いことがある。そこで、従来より、大型の太陽電池の集電効率を向上させるために、導電膜にメッシュ状の低抵抗な導通材を配する構成が開発されている。
このような色素増感太陽電池において、メッシュ状の金属層はヨウ素等の電解質を含む電解液と直接接触した場合、電解液によるメッシュ金属層の腐食や、メッシュ金属層から電解液への逆電子反応が生じてしまい、耐久性能、発電効率の観点で課題を有している。
そこで、従来の色素増感太陽電池(特許文献1)は、例えば、透明基材上に透明電極層を形成し、透明電極層上にメッシュ状の第一金属層を形成し、更に第一金属層上に第一金属層に用いた金属よりも耐腐食性の高い第二金属層を保護層として設けている。
また、特許文献2の色素増感太陽電池は、透明基材上に透明電極層を形成し、透明電極層上にメッシュ状の金属層を形成し、更に金属層上に樹脂製の保護層を設けている。
上記のようなメッシュ状の金属層を有する色素増感太陽電池は、それ以外の色素増感太陽電池と同様、従来より、酸化チタン又は酸化亜鉛等の酸化物微粒子を含むペーストを透明導電膜上に印刷し、その後焼成して半導体多孔質膜を形成していた。
Photoelectric conversion elements such as silicon-based solar cells and dye-sensitized solar cells have been attracting attention as clean energy power generators. In recent years, in order to use the rooftops of plants and other large-scale facilities, idle land, and the like, there is a great demand for high-power solar cells, and research into increasing the size of solar cells is underway.
One of the challenges in increasing the size of solar cells is that the resistance value of the conductive film forming the electrodes is relatively high, so even if the area of the module is increased and the amount of power generation is increased, the current collection efficiency will still deteriorate. The output may be difficult to increase. Therefore, conventionally, in order to improve the current collecting efficiency of a large-sized solar cell, a configuration in which a mesh-shaped low-resistance conducting material is arranged on the conductive film has been developed.
In such a dye-sensitized solar cell, when the mesh-shaped metal layer is in direct contact with an electrolytic solution containing an electrolyte such as iodine, the mesh metal layer is corroded by the electrolytic solution and the reverse electron from the mesh metal layer to the electrolytic solution is applied. Since a reaction occurs, there is a problem in terms of durability performance and power generation efficiency.
Therefore, in a conventional dye-sensitized solar cell (Patent Document 1), for example, a transparent electrode layer is formed on a transparent substrate, a mesh-shaped first metal layer is formed on the transparent electrode layer, and a first metal is further formed. A second metal layer having a higher corrosion resistance than the metal used for the first metal layer is provided on the layer as a protective layer.
In the dye-sensitized solar cell of Patent Document 2, a transparent electrode layer is formed on a transparent substrate, a mesh-shaped metal layer is formed on the transparent electrode layer, and a resin protective layer is further formed on the metal layer. It is provided.
Dye-sensitized solar cells having a mesh-like metal layer as described above are, like other dye-sensitized solar cells, conventionally a paste containing oxide fine particles such as titanium oxide or zinc oxide on a transparent conductive film. And then baked to form a semiconductor porous film.

特開2011−192631号公報JP, 2011-192631, A 特開2010―267557号公報JP, 2010-267557, A

しかしながら、メッシュ状の金属層を有した透明導電膜上に印刷法及び焼成により半導体多孔質膜を形成すると、メッシュ金属層に形成した保護層上にも半導体多孔質膜が形成されてしまう。
すなわち、従来のメッシュ状の金属層を有した色素増感太陽電池は、保護層上に半導体多孔質膜が形成されることにより、透明導電膜と対光対向導電膜との電極間距離(ギャップ)が大きくなり、発電効率が低下する課題があった。
また保護層上の半導体多孔質膜に光が照射された場合には、半導体多孔質膜で発生した電子を金属層又は透明導電膜上に取り出すことが出来ず、電解液への逆電子反応となってしまうことで、発電効率が低下するという課題があった。
また、集電効率を向上させるために細かい目のメッシュ状の金属層を形成した場合、金属層を避けて電極にのみ半導体多孔質膜を成膜するということは極めて難しいという課題があった。
そこで本発明は、製造容易性及び集電効率及び発電効率の良い光電変換素子及び光電変換素子の製造方法を提供する。
However, when the semiconductor porous film is formed on the transparent conductive film having the mesh-shaped metal layer by the printing method and firing, the semiconductor porous film is also formed on the protective layer formed on the mesh metal layer.
That is, in the conventional dye-sensitized solar cell having a mesh-shaped metal layer, the semiconductor porous film is formed on the protective layer, so that the inter-electrode distance (gap ) Becomes large and the power generation efficiency decreases.
Further, when the semiconductor porous film on the protective layer is irradiated with light, the electrons generated in the semiconductor porous film cannot be taken out onto the metal layer or the transparent conductive film, which causes a reverse electron reaction to the electrolytic solution. Therefore, there was a problem that the power generation efficiency was reduced.
In addition, when a fine mesh-shaped metal layer is formed in order to improve current collection efficiency, it is extremely difficult to form the semiconductor porous film only on the electrode while avoiding the metal layer.
Therefore, the present invention provides a photoelectric conversion element and a method for manufacturing the photoelectric conversion element, which are easy to manufacture and have good current collection efficiency and power generation efficiency.

本発明の光電変換素子は、第1基板と、この第1基板上に成膜された導電膜と、前記導電膜の表面に、前記導電膜と導通可能に配され、保護膜で表面が被覆された導通材と、前記導電膜上に成膜された半導体多孔質膜とを有した第1電極と、第2基板と、この第2基板上に成膜された対向導電膜とを有する第2電極とを備え、前記第1電極と前記第2電極は、前記導電膜と前記対向導電膜とが対向するように配置されている。
前記保護膜の表面には、前記半導体多孔質膜が形成されていないことが好ましい。
ここで、「前記保護膜の表面には、前記半導体多孔質膜が形成されていない」とは、前記保護膜の少なくとも前記対向導電膜に対向する部分の表面には、半導体多孔質膜が形成されていないことを意味する。
この構成によれば、保護膜の表面に半導体多孔質膜が形成されていないため、第一電極と第二基電極間の電極間距離が短くなり、発電効率が良く、また、逆電子反応が誘発され難い。
In the photoelectric conversion element of the present invention, a first substrate, a conductive film formed on the first substrate, the conductive film is disposed on the surface of the conductive film so as to be conductive with the conductive film, and the surface is covered with a protective film. A first electrode having a conductive material formed on the conductive film, a semiconductor porous film formed on the conductive film, a second substrate, and a counter conductive film formed on the second substrate. Two electrodes are provided, and the first electrode and the second electrode are arranged such that the conductive film and the counter conductive film face each other.
It is preferable that the semiconductor porous film is not formed on the surface of the protective film.
Here, “the semiconductor porous film is not formed on the surface of the protective film” means that the semiconductor porous film is formed on at least the surface of the protective film facing the counter conductive film. Means not been done.
According to this configuration, since the semiconductor porous film is not formed on the surface of the protective film, the distance between the electrodes between the first electrode and the second base electrode is shortened, the power generation efficiency is good, and the reverse electron reaction does not occur. Hard to be triggered.

本発明の前記導通材は縞状又は網状に配されていてもよい。
この構成によれば、集電効率を高めやすい。
The conductive material of the present invention may be arranged in a stripe pattern or a net pattern.
According to this configuration, it is easy to improve the current collection efficiency.

本発明の前記保護膜は、絶縁性部材であることが好ましい。
本発明の前記保護膜は、弾性のある部材により形成されていてもよい。
この構成によれば、半導体多孔質膜をエアロゾルデポジション法により成膜する場合に、保護膜上に半導体多孔質膜が形成されるのを防止することができる。
The protective film of the present invention is preferably an insulating member.
The protective film of the present invention may be formed of an elastic member.
According to this structure, when the semiconductor porous film is formed by the aerosol deposition method, it is possible to prevent the semiconductor porous film from being formed on the protective film.

本発明の前記保護膜で表面が被覆された前記導通材の高さが、前記半導体多孔質膜の厚さより大きくてもよい。
この構成によれば、保護膜が半導体多孔質膜と対向導電膜との間に空間を形成するスペーサの役割を果たすことができる。
The height of the conductive material whose surface is coated with the protective film of the present invention may be greater than the thickness of the semiconductor porous film.
According to this structure, the protective film can function as a spacer that forms a space between the semiconductor porous film and the counter conductive film.

本発明の光電変換素子の製造方法は、導電膜が成膜された第1基板の前記導電膜の表面に導通材を配し、この導通材の表面を保護膜で被覆する第1工程と、エアロゾルデポジション法によって、前記導電膜の表面に対して半導体粒子を含むエアロゾルを吹き付け、それにより前記導電膜の表面の前記保護膜が存在しない領域に前記半導体多孔質膜を形成する第2工程と、を有する。
この構成によれば、保護膜により被覆された導通材を細かく配することにより導電膜が露出する目が細かく形成されても、保護膜の表面に半導体多孔質膜を形成することなく、導電膜表面の露出した領域のみに効率的に半導体多孔質膜を形成することができる。
The photoelectric conversion element manufacturing method of the present invention includes a first step of disposing a conductive material on the surface of the conductive film of the first substrate on which the conductive film is formed, and coating the surface of the conductive material with a protective film. A second step of spraying an aerosol containing semiconductor particles onto the surface of the conductive film by an aerosol deposition method, thereby forming the semiconductor porous film on a region of the surface of the conductive film where the protective film does not exist; , With.
According to this structure, even if the conductive film covered with the protective film is finely arranged to form fine openings for exposing the conductive film, the conductive film is not formed on the surface of the protective film, and the conductive film is not formed. The semiconductor porous film can be efficiently formed only in the exposed region of the surface.

本発明の前記導通材は、縞状又は網状に配してもよい。
この構成によれば、導通材を細かく配することができる。
The conductive material of the present invention may be arranged in a striped shape or a net shape.
According to this structure, the conductive material can be finely arranged.

本発明は、製造容易性及び集電効率及び発電効率を向上させることができるという効果を奏する。 INDUSTRIAL APPLICABILITY The present invention has an effect that it is possible to improve manufacturability, current collection efficiency, and power generation efficiency.

本発明の一実施形態の光電変換素子を模式的に示した断面図である。It is sectional drawing which showed typically the photoelectric conversion element of one Embodiment of this invention. 本発明の一実施形態の光電変換素子の第1電極を示した平面図である。It is a top view showing the 1st electrode of the photoelectric conversion element of one embodiment of the present invention. 図2の拡大図である。FIG. 3 is an enlarged view of FIG. 2.

以下、図を参照して本発明の光電変換素子の実施形態について、光電変換素子が色素増感太陽電池である場合を例として説明する。
図1に示すように、本実施形態の色素増感太陽電池(光電変換素子)(以下「太陽電池」と称する)1は、第1基板2と、第1基板2の表面2aに成膜された導電膜3と、この導電膜3の表面3aに配され、保護膜4で表面が被覆された導通材5と、導電膜3の表面に成膜された半導体多孔質膜(以下「多孔質膜」という)6とを有する第1電極7と、第2基板8と、第2基板8の表面8aに成膜された対向導電膜9とを有する第2電極10とを備えている。そして、導電膜3と対向導電膜9とを対向させて第1電極7と第2電極10とが封止材11を用いて接着され、内部空間Sに不図示の電解液が封入されている。
Hereinafter, an embodiment of a photoelectric conversion element of the present invention will be described with reference to the drawings, taking a case where the photoelectric conversion element is a dye-sensitized solar cell as an example.
As shown in FIG. 1, a dye-sensitized solar cell (photoelectric conversion element) (hereinafter referred to as “solar cell”) 1 of the present embodiment is formed on a first substrate 2 and a surface 2 a of the first substrate 2. Conductive film 3, a conductive material 5 disposed on the surface 3a of the conductive film 3 and covered with a protective film 4, and a semiconductor porous film formed on the surface of the conductive film 3 (hereinafter referred to as "porous film"). A second film 8 and a second electrode 10 having a second substrate 8 and a counter conductive film 9 formed on the surface 8 a of the second substrate 8. Then, the conductive film 3 and the counter conductive film 9 are opposed to each other, the first electrode 7 and the second electrode 10 are adhered to each other by using the sealing material 11, and the internal space S is filled with an electrolytic solution (not shown). ..

第1基板2及び第2基板8は、それぞれ導電膜3及び対向導電膜9の基台となる部材であり、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)等の透明の熱可塑性樹脂材料により形成されているか又はガラス基板等であってもよい。第1基板2及び第2基板8の少なくとも一方は透明な基材により形成されている。なお、第1基板2及び第2基板8は、フィルム状に形成されたものであってもよい。 The first substrate 2 and the second substrate 8 are members that are bases of the conductive film 3 and the counter conductive film 9, respectively, and are transparent thermoplastic resins such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET). It may be formed of a material or may be a glass substrate or the like. At least one of the first substrate 2 and the second substrate 8 is formed of a transparent base material. The first substrate 2 and the second substrate 8 may be formed in a film shape.

導電膜3は、第1基板2の表面2aの略全体に成膜されている。
導電膜3の材料には、例えば、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、アルミドープ酸化亜鉛(AZO)、アンチモンドープ酸化スズ(ATO)、酸化インジウム/酸化亜鉛(IZO)、ガリウムドープ酸化亜鉛(GZO)等が用いられる。
The conductive film 3 is formed on substantially the entire surface 2a of the first substrate 2.
Examples of the material of the conductive film 3 include tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), antimony-doped tin oxide (ATO), indium oxide/zinc oxide (IZO), Gallium-doped zinc oxide (GZO) or the like is used.

図3に示すように、導通材5は、縦、横及び/又は斜め方向に配された網状(メッシュ状ともいう)の金属材であり、図1に示すように導電膜3の表面3aに貼着している。図1、図3に示すように導通材5の表面には保護膜4が被覆されている。
導通材5の断面形状は、図1においては四角形であるが、これに限定されず、半円形や三角形等であっても良い。また、保護膜4で被覆された状態の導通材5の断面形状も、図1においては四角形であるが、これに限定されず、半円形や三角形等であっても良い。
導通材5は、金、銀、銅、アルミ、マグネシウム、ステンレス、クロム、チタン、白金、ニッケル、クロム等の透明導電膜3よりも低抵抗な線状の金属材により形成されている。
導通材5は単一金属のみで形成されていてもよいし、2種以上の金属の合金若しくは2種以上の金属の積層により形成されていてもよい。
集電効率、電極間距離の観点から、導通材5の厚さは、0.1μm〜100μmの範囲に設定されるが、1μm〜50μmの範囲に設けられることが好ましい。
集電効率、開口率(導電膜の全面積における導通材が占める領域以外の領域の面積の割合)の観点から、保護膜4で被覆されていない状態の導通材5の線幅は、0.01mm〜5mmの範囲に設定されるが、0.05mm〜2mmの範囲に設けられることが好ましい。
As shown in FIG. 3, the conductive material 5 is a net-like (also referred to as mesh-like) metal material arranged in the vertical, horizontal and/or diagonal directions, and is formed on the surface 3a of the conductive film 3 as shown in FIG. It is attached. As shown in FIGS. 1 and 3, the surface of the conductive material 5 is covered with a protective film 4.
The cross-sectional shape of the conductive material 5 is a quadrangle in FIG. 1, but is not limited to this, and may be a semicircle, a triangle, or the like. Further, the cross-sectional shape of the conductive material 5 covered with the protective film 4 is also a quadrangle in FIG. 1, but is not limited to this, and may be a semicircle, a triangle, or the like.
The conductive material 5 is formed of a linear metal material having a resistance lower than that of the transparent conductive film 3 such as gold, silver, copper, aluminum, magnesium, stainless steel, chromium, titanium, platinum, nickel and chromium.
The conductive material 5 may be formed of only a single metal, or may be formed of an alloy of two or more kinds of metals or a laminated layer of two or more kinds of metals.
From the viewpoint of current collection efficiency and the distance between electrodes, the thickness of the conductive material 5 is set in the range of 0.1 μm to 100 μm, but is preferably set in the range of 1 μm to 50 μm.
From the viewpoints of current collection efficiency and aperture ratio (ratio of the area of the area other than the area occupied by the conductive material in the total area of the conductive film), the line width of the conductive material 5 not covered with the protective film 4 is 0. Although it is set in the range of 01 mm to 5 mm, it is preferably provided in the range of 0.05 mm to 2 mm.

図1に示すように、保護膜4は、導通材5と導電膜3とが接触している部分以外の導通材5の表面全体に設けられている。すなわち、導通材5と導電膜3とは直接に接しており、保護膜4は導通材5が導電膜3と接触している部分には被覆されていない。これにより、導通材5は導電膜3と導通可能な状態となっている。
保護膜4には、エポキシ系樹脂、アクリル系樹脂、オレフィン系樹脂、ウレタン系樹脂、その他の弾性を有する絶縁材料を用いることができる。
As shown in FIG. 1, the protective film 4 is provided on the entire surface of the conductive material 5 except for the portion where the conductive material 5 and the conductive film 3 are in contact with each other. That is, the conductive material 5 and the conductive film 3 are in direct contact with each other, and the protective film 4 is not covered in the portion where the conductive material 5 is in contact with the conductive film 3. As a result, the conductive material 5 is in a state capable of being electrically connected to the conductive film 3.
For the protective film 4, an epoxy resin, an acrylic resin, an olefin resin, a urethane resin, or another insulating material having elasticity can be used.

保護膜4の厚さは、0.1μm〜1000μmの範囲に設定されるが、1μm〜500μmの範囲が好ましく、2μm〜50μmの範囲で設けられることが更に好ましい。
集電効率、開口率の観点から、保護膜4の線幅(保護膜4の幅)は、0.02mm〜15mmの範囲に設定されるが、0.1mm〜6mmの範囲に設けられることが好ましい。
いずれの範囲にある場合でも、保護膜4は、導通材5と導電膜3とが接触している部分以外の導通材5を、その高さ(厚さ)及び幅方向に略完全に覆っている。
保護膜4の線幅は、導通材の幅方向の長さの0.1〜10倍の範囲に設定されるが、0.5〜5倍の範囲に設定されるのが好ましく、2〜3倍の範囲に設定されることがより好ましい。
The thickness of the protective film 4 is set in the range of 0.1 μm to 1000 μm, preferably in the range of 1 μm to 500 μm, and more preferably in the range of 2 μm to 50 μm.
From the viewpoint of current collection efficiency and aperture ratio, the line width of the protective film 4 (width of the protective film 4) is set in the range of 0.02 mm to 15 mm, but may be provided in the range of 0.1 mm to 6 mm. preferable.
In any of the ranges, the protective film 4 covers the conductive material 5 other than the portion where the conductive material 5 and the conductive film 3 are in contact with each other substantially completely in the height (thickness) and the width direction. There is.
The line width of the protective film 4 is set in the range of 0.1 to 10 times the length of the conductive material in the width direction, but is preferably set in the range of 0.5 to 5 times, and 2 to 3 times. It is more preferable to set the double range.

保護膜4は、第1電極7において、多孔質膜6に覆われることなく多孔質膜6の表面6a側で露出している。言い換えると、保護膜4の表面に多孔質膜6は形成されていない。多孔質膜6で発生した電子は、透明導電膜3上を短い距離で通過し、導通材5に達した方が集電効率が高くなる為、導通材5を含む保護膜4,4同士の間の寸法は、0.01mmから50mmの範囲で設定可能であり、0.1mmから10mmの範囲で設定されることが好ましい。あるいは、導通材5及び保護膜4により囲繞された導電膜3の面積は、0.0001mm2から2500mm2の範囲で設定可能であり、0.1mm2から100mm2の範囲で設定されることが好ましい。The protective film 4 is exposed on the surface 6 a side of the porous film 6 without being covered with the porous film 6 in the first electrode 7. In other words, the porous film 6 is not formed on the surface of the protective film 4. Electrons generated in the porous film 6 pass through the transparent conductive film 3 for a short distance and reach the conductive material 5 so that the current collection efficiency is higher. The size of the space can be set in the range of 0.01 mm to 50 mm, and is preferably set in the range of 0.1 mm to 10 mm. Alternatively, the area of the conductive film 3, which is surrounded by conductive material 5 and the protective layer 4 is settable in the range of 0.0001 mm 2 to 2500 mm 2, be set within a range from 0.1 mm 2 to 100 mm 2 preferable.

上記の範囲で多孔質膜6が保護膜4の間に形成されていることにより、保護材4がギャップ材(すなわち電極間距離の保持材)としての役割を果たし得る。また、第1基板2及び第2基板8が可撓性のあるフィルム材により形成されている場合で、第1基板2及び第2基板8が屈曲した場合でも、短絡を生じにくくさせることができる。 Since the porous film 6 is formed between the protective films 4 in the above range, the protective material 4 can serve as a gap material (that is, a material for holding the distance between the electrodes). Further, in the case where the first substrate 2 and the second substrate 8 are formed of a flexible film material, even if the first substrate 2 and the second substrate 8 are bent, a short circuit can be made difficult to occur. .

多孔質膜6は、後述する増感色素から電子を受け取り輸送する機能を有するものであり、金属酸化物からなる半導体により、保護膜4により被覆された導通材5が設けられた部分以外の導電膜3の表面3a全体に形成されている。金属酸化物としては、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等が用いられる。
多孔質膜6は、保護膜4により被覆された導通材5高さ(厚さ)以下の厚さに形成されていることが好ましい。このような構成により、保護膜4で被覆された導通材5自体がスペーサ(すなわちギャップの確保)の役割を果たすことも可能となる。
The porous film 6 has a function of receiving and transporting electrons from a sensitizing dye described later, and is made of a semiconductor made of a metal oxide, and has conductivity other than a portion provided with the conductive material 5 covered with the protective film 4. It is formed on the entire surface 3 a of the film 3. As the metal oxide, for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ) or the like is used.
The porous film 6 is preferably formed with a thickness equal to or less than the height (thickness) of the conductive material 5 covered with the protective film 4. With such a configuration, the conductive material 5 itself covered with the protective film 4 can also serve as a spacer (that is, ensure a gap).

多孔質膜6は、増感色素を担持している。増感色素は、有機色素または金属錯体色素で構成されている。有機色素としては、例えば、クマリン系、ポリエン系、シアニン系、ヘミシアニン系、チオフェン系等の各種有機色素を用いることができる。金属錯体色素としては、例えば、シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)、該シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)のビス−テトラブチルアンモニウム塩(以下、N719という)等が挙げられる。ルテニウム錯体等が好適に用いられる。
多孔質膜6における増感色素の吸着量は、1×10-9mol/cm2以上1×10-5mol/cm2以下であることが好ましく、5×10-9mol/cm2以上5×10-6mol/cm2以下であることがより好ましい。多孔質膜6における色素化合物の吸着量が1×10-8mol/cm2未満であれば、光電変換効率の低下を招くおそれがある。一方、多孔質膜6における増感色素の吸着量が1×10-6mol/cm2を超えると、開放電圧が低下するという不具合を招くことがある。
このように、第1基板2の一方の表面2aに導電膜3を成膜し、導電膜3の表面3aに保護膜4に被覆された導通材5及び多孔質膜6を設けて第1電極7が構成されている。
The porous film 6 carries a sensitizing dye. The sensitizing dye is composed of an organic dye or a metal complex dye. As the organic dye, for example, various organic dyes such as coumarin-based, polyene-based, cyanine-based, hemicyanine-based, and thiophene-based can be used. Examples of the metal complex dye include, for example, cis-di(thiocyanato)-bis(2,2′-bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) and the cis-di(thiocyanato)-bis(2,2). Examples include bis-tetrabutylammonium salt of ruthenium (II) ('-bipyridyl-4,4'-dicarboxylic acid) (hereinafter referred to as N719). A ruthenium complex or the like is preferably used.
The adsorption amount of the sensitizing dye on the porous film 6 is preferably 1×10 −9 mol/cm 2 or more and 1×10 −5 mol/cm 2 or less, and 5×10 −9 mol/cm 2 or more 5 More preferably, it is not more than ×10 −6 mol/cm 2 . If the amount of the dye compound adsorbed on the porous film 6 is less than 1×10 −8 mol/cm 2 , the photoelectric conversion efficiency may decrease. On the other hand, if the adsorption amount of the sensitizing dye on the porous film 6 exceeds 1×10 −6 mol/cm 2 , the open circuit voltage may be lowered.
Thus, the conductive film 3 is formed on one surface 2a of the first substrate 2, and the conductive material 5 and the porous film 6 covered with the protective film 4 are provided on the surface 3a of the conductive film 3 to form the first electrode. 7 are configured.

対向導電膜9は、第2基板8の表面8aの略全体に成膜されている。
対向導電膜9の材料には、例えば、白金やカーボン電極、導電性ポリマー電極など、電解液中の酸化還元対に対する触媒作用と、電気伝導性を持った材料が用いられる。また、対向導電膜9と基板8の間には、導電性を上げる目的で金属層や透明導電膜などの導電層が設けられていてもよい。
The counter conductive film 9 is formed on almost the entire surface 8 a of the second substrate 8.
As the material of the counter conductive film 9, for example, a material having a catalytic action for the redox couple in the electrolytic solution and an electrical conductivity, such as platinum, carbon electrode, or conductive polymer electrode, is used. Further, a conductive layer such as a metal layer or a transparent conductive film may be provided between the counter conductive film 9 and the substrate 8 for the purpose of increasing conductivity.

第1基板2及び第2基板8のうち、少なくともいずれかは透明な基材及び透明導電膜により形成されていれば良いが、多孔質膜6が形成された導電膜3が透明な基材及び透明導電膜により形成されていることが好ましい。 At least one of the first substrate 2 and the second substrate 8 may be formed of a transparent base material and a transparent conductive film, but the conductive film 3 on which the porous film 6 is formed is a transparent base material and a transparent base material. It is preferably formed of a transparent conductive film.

第1電極7と第2電極10とは、封止材11により接着されている。
封止材11としては、ホットメルト樹脂や熱硬化性樹脂、UV硬化性樹脂等が用いられている。
封止材11は、導電膜3の外周及びこれに対向する対向導電膜9の外周に沿って枠状に配され、第1電極7と第2電極10との間に不図示の電解液を充填した状態で内部空間Sを封止している。
なお、不図示の端子は、導通材5に接続されている。
The first electrode 7 and the second electrode 10 are adhered by a sealing material 11.
As the sealing material 11, a hot melt resin, a thermosetting resin, a UV curable resin or the like is used.
The encapsulating material 11 is arranged in a frame shape along the outer circumference of the conductive film 3 and the outer circumference of the counter conductive film 9 facing the conductive film 3, and an electrolytic solution (not shown) is provided between the first electrode 7 and the second electrode 10. The internal space S is sealed in the filled state.
The terminals (not shown) are connected to the conductive material 5.

電解液は、色素増感太陽電池において電気を流すための酸化還元反応を生ずる酸化還元対を含む溶液である。このような酸化還元対としては、例えばヨウ素とヨウ化ジメチルプロピルイミダゾリウム、ヨウ化リチウム等のヨウ化塩物との組合せ(ヨウ化物イオン(I)/三ヨウ化物イオン(I ))や臭素と臭化ジメチルプロピルイミダゾリウム、臭化リチウム等の臭化塩物との組み合わせ(臭化物イオン(Br)/三臭化物イオン(Br )等が挙げられる。
電解液の溶媒としては、例えば、アセトニトリルやプロピオニトリル、γ―ブチロラクトン等の非水系溶媒、エチルメチルイミダゾリウムテトラシアノボレートやエチルメチルイミダゾリウムジシアナミド等のイオン液体が挙げられる。また、電解液20はポリアクリロニトリル等のゲル化剤によってゲル化されていても構わない。
また、電解液は、逆電子移動反応を防止するため、t−ブチルピリジン等の添加材を含むものであってもよい。
The electrolytic solution is a solution containing a redox couple that causes a redox reaction for passing electricity in the dye-sensitized solar cell. As such a redox couple, for example, a combination of iodine and an iodide salt such as dimethylpropylimidazolium iodide or lithium iodide (iodide ion (I )/triiodide ion (I 3 )) And a combination of bromine and a bromine salt such as dimethylpropylimidazolium bromide and lithium bromide (bromide ion (Br )/tribromide ion (Br 3 )).
Examples of the solvent for the electrolytic solution include nonaqueous solvents such as acetonitrile, propionitrile, and γ-butyrolactone, and ionic liquids such as ethylmethylimidazolium tetracyanoborate and ethylmethylimidazolium dicyanamide. Further, the electrolytic solution 20 may be gelled with a gelling agent such as polyacrylonitrile.
Further, the electrolytic solution may contain an additive such as t-butylpyridine in order to prevent the reverse electron transfer reaction.

第1電極7と第2電極10との間には、多孔質膜6と対向導電膜9との間に隙間を形成するためのスペーサ又はセパレータを配してもよい。 A spacer or a separator for forming a gap between the porous film 6 and the counter conductive film 9 may be arranged between the first electrode 7 and the second electrode 10.

次に、太陽電池1の製造方法について説明する。
本発明の太陽電池1の製造方法は、(I)第1基板2の表面2aに形成された導電膜3の表面3aに導通材5を配し、導通材5の表面を保護膜4で被覆する第1工程と、(II)エアロゾルデポジション法によって、表面2aに対して半導体粒子を含むエアロゾルを吹き付け、それにより保護膜4が存在しない領域に多孔質膜6を形成する第2工程とを有している。そして、第2工程の後は、第1電極7と第2電極10とを封止材11により貼り合せ、内部空間Sに不図示の電解液を充填して太陽電池1としている。
以下、各工程について説明する。
Next, a method for manufacturing the solar cell 1 will be described.
In the method for manufacturing the solar cell 1 of the present invention, (I) the conductive material 5 is arranged on the surface 3a of the conductive film 3 formed on the surface 2a of the first substrate 2, and the surface of the conductive material 5 is covered with the protective film 4. And the second step (II) of spraying an aerosol containing semiconductor particles onto the surface 2a by the aerosol deposition method, thereby forming the porous film 6 in the region where the protective film 4 does not exist. Have Then, after the second step, the first electrode 7 and the second electrode 10 are pasted together with the sealing material 11, and the internal space S is filled with an electrolytic solution (not shown) to form the solar cell 1.
Hereinafter, each step will be described.

(I)第1工程
第1工程では、図1に示すように、第1基板2の導電膜3の表面3aに導通材5を配し、導通材5の表面を保護膜4で被覆する。
導通材5は、金属の粒子を溶媒に分散させてペースト状又はインク状にし、図1、図3に示すように第1基板2の導電膜3の表面3aにスクリーン印刷、グラビア印刷等の印刷法により形成する方法、スパッタ、蒸着法により形成する方法、又は予めメッシュ状等に形成しておいた金属部材を導電膜3の表面に貼着させる方法等により配する。
保護膜4は、印刷法等により樹脂を導通材5(図1参照)の表面に設けて、導通材5を図2、図3に示すように被覆する。
(I) First Step In the first step, as shown in FIG. 1, the conductive material 5 is arranged on the surface 3 a of the conductive film 3 of the first substrate 2, and the surface of the conductive material 5 is covered with the protective film 4.
The conductive material 5 is obtained by dispersing metal particles in a solvent to form a paste or an ink, and printing such as screen printing or gravure printing on the surface 3a of the conductive film 3 of the first substrate 2 as shown in FIGS. It is arranged by a method of forming by a method, a method of forming by a sputtering method, an evaporation method, a method of attaching a metal member previously formed in a mesh shape or the like to the surface of the conductive film 3, or the like.
The protective film 4 is formed by providing a resin on the surface of the conductive material 5 (see FIG. 1) by a printing method or the like and covering the conductive material 5 as shown in FIGS. 2 and 3.

(II)第2工程
第2工程では、エアロゾルデポジション法によって、保護膜4により被覆された導通材5が配された導電膜3の表面3aの表面に半導体粒子を吹き付け、それにより保護膜4が存在しない領域に多孔質膜6を形成する。
エアロゾルデポジション法とは、微粒子の粉体、特にナノサイズの粉体をガスで配管内を移送させ、粉体を気体中に分散させてなるエアロゾルを基材に吹き付けて付着させることで、衝撃固化現象により低い温度条件と高い成膜速度で成膜する方法である。
(II) Second Step In the second step, semiconductor particles are sprayed onto the surface 3a of the conductive film 3 on which the conductive material 5 covered with the protective film 4 is arranged by the aerosol deposition method, whereby the protective film 4 is formed. The porous film 6 is formed in a region where no film exists.
The aerosol deposition method is a method in which a fine particle powder, especially a nano-sized powder is transported in a pipe by a gas, and an aerosol formed by dispersing the powder in the gas is sprayed and adhered to a base material to give an impact. It is a method of forming a film under a low temperature condition and a high film forming rate due to a solidification phenomenon.

半導体微粒子の平均一次粒子径は、基材表面に多孔質体を形成でき、且つ保護膜4の少なくとも対向導電膜9に対向する部分の表面に多孔質膜6が形成されない条件であれば特に制限されないが、1nm〜1000nmの範囲が好ましく、10nm〜500nmの範囲がより好ましい。
多孔質粒子の密度は特に制限されないが、3.0〜5.0g/cm3が好ましく、3.5〜4.5g/cm3がより好ましい。
上記範囲の密度であると、多孔度の高い多孔質膜6を容易に得ることができる。
The average primary particle diameter of the semiconductor fine particles is particularly limited as long as a porous body can be formed on the surface of the base material and the porous film 6 is not formed on the surface of at least the portion of the protective film 4 facing the counter conductive film 9. However, the range of 1 nm to 1000 nm is preferable, and the range of 10 nm to 500 nm is more preferable.
Although the density of the porous particles is not particularly limited but is preferably 3.0~5.0g / cm 3, 3.5~4.5g / cm 3 is more preferable.
When the density is within the above range, the porous film 6 having high porosity can be easily obtained.

前記微粒子の粉体は、平均一次粒子径が異なる2種以上の紛体が混合されていても構わない。
前記微粒子の粉体は、より緻密な膜を得る為に、エアロゾルデポジション法による成膜前に溶剤中での分散処理や、乾燥工程を経ていても構わない。
また前記微粒子の紛体は、前記粒子同士の結合を強化する目的で、エアロゾルデポジション法による成膜前に溶剤中での分散処理や、乾燥工程を経ていても構わない。
The powder of the fine particles may be a mixture of two or more kinds of powders having different average primary particle diameters.
In order to obtain a denser film, the fine particle powder may be subjected to a dispersion treatment in a solvent or a drying step before film formation by the aerosol deposition method.
In addition, the fine particle powder may be subjected to a dispersion treatment in a solvent or a drying step before film formation by the aerosol deposition method for the purpose of strengthening the bond between the particles.

成膜時の外気温、基材温度は特に制限されないが、基材の耐熱温度以下であることが好ましい。例えば基材にPET、PEN等の基材を用いた場合では、外気温、基材温度共に室温〜100℃以下であることが好ましい。
粒子(エアロゾル)の導電膜3への吹き付け速度は、導電膜3の表面3aに多孔質体を形成でき、且つ保護膜4上に多孔質膜6が形成されない条件であれば特に制限されないが、このような速度範囲としては、例えば1〜1000m/secに設定できる。
この際、保護膜4は弾性を有しているため、エアロゾルデポジション法によって吹き付けられた粒子は保護膜4に定着せず、よって保護膜4上に多孔質膜6は形成されない。
The outside air temperature and the substrate temperature at the time of film formation are not particularly limited, but are preferably not higher than the heat resistant temperature of the substrate. For example, when a base material such as PET or PEN is used as the base material, both the outside air temperature and the base material temperature are preferably room temperature to 100° C. or less.
The speed of spraying particles (aerosol) onto the conductive film 3 is not particularly limited as long as a porous body can be formed on the surface 3a of the conductive film 3 and the porous film 6 is not formed on the protective film 4. Such a speed range can be set to, for example, 1 to 1000 m/sec.
At this time, since the protective film 4 has elasticity, the particles sprayed by the aerosol deposition method do not settle on the protective film 4, so that the porous film 6 is not formed on the protective film 4.

多孔質膜6を形成した後、増感色素を溶剤に溶かした増感色素溶液に多孔質膜6を浸漬させ、多孔質膜6に増感色素を担持させる。なお、多孔質膜6に増感色素を担持させる方法は、上記に限定されず、増感色素溶液中に多孔質膜6を移動させながら連続的に投入、浸漬、引き上げを行う方法なども採用される。
以上により、図2、図3に示す第1電極7が得られる。
After forming the porous film 6, the porous film 6 is immersed in a sensitizing dye solution in which the sensitizing dye is dissolved in a solvent, and the sensitizing dye is supported on the porous film 6. The method of supporting the sensitizing dye on the porous film 6 is not limited to the above, and a method of continuously introducing, immersing, and lifting the porous film 6 in the sensitizing dye solution while moving it is also adopted. To be done.
As described above, the first electrode 7 shown in FIGS. 2 and 3 is obtained.

図1に示すように、第2電極10はポリエチレンテレフタレート(PET)等よりなる第2基板8の一方の表面8aに白金やカーボン電極、導電性ポリマー電極など、電解液中の酸化還元対に対する触媒作用と、電気伝導性を持った材料が用いられる。これらの材料の成膜はスパッタリングや真空蒸着法、またはスピンコート法などの塗布方法で形成することが出来る。また、対向導電膜9と基板8の間には、導電性を上げる目的で金属層や透明導電膜などの導電層が設けられていてもよい。 As shown in FIG. 1, the second electrode 10 is a catalyst for a redox couple in an electrolytic solution such as platinum, carbon electrode, conductive polymer electrode, etc. on one surface 8a of the second substrate 8 made of polyethylene terephthalate (PET) or the like. A material having an action and electrical conductivity is used. Films of these materials can be formed by a coating method such as a sputtering method, a vacuum evaporation method, or a spin coating method. Further, a conductive layer such as a metal layer or a transparent conductive film may be provided between the counter conductive film 9 and the substrate 8 for the purpose of increasing conductivity.

その後、第1電極7と第2電極10とを封止材11により貼り合せ、内部空間Sに不図示の電解液を充填して太陽電池(光電変換素子)1とする。 After that, the first electrode 7 and the second electrode 10 are attached to each other with the sealing material 11, and the internal space S is filled with an electrolytic solution (not shown) to obtain the solar cell (photoelectric conversion element) 1.

以上の構成を有することにより、光電変換素子1は、可及的に細かい目の導通材5を配しつつ、保護膜4上に多孔質膜6を形成することなく導電膜3の表面3aに多孔質膜6を形成することができる。
したがって、光電変換素子1は、集電効率を可及的に向上させることができるとともに、逆電子反応及び酸化還元反応の低下を防止して、発電効率を向上させることができるという効果を奏する。
With the above-described structure, the photoelectric conversion element 1 has the conductive material 5 having finest mesh and can be formed on the surface 3a of the conductive film 3 without forming the porous film 6 on the protective film 4. The porous film 6 can be formed.
Therefore, the photoelectric conversion element 1 has an effect that the current collection efficiency can be improved as much as possible, and the reduction of the reverse electron reaction and the redox reaction can be prevented to improve the power generation efficiency.

また、本願の光電変換素子1の製造方法は、保護膜4に弾性のある部材を用いた上で、エアロゾルデポジション法により多孔質膜6を形成する方法を採用しているため、保護膜4上に多孔質膜6が形成されることを極めて容易に回避することができる。したがって、本願の光電変換素子1の製造方法は、導通材5のピッチを可及的に小さくして、言い換えると多孔質膜6を形成する目を細かく設定しても、保護膜4の表面に多孔質膜6を形成せずに導電膜3の表面3aに多孔質膜6を容易に形成することができるという効果を奏する。 Further, since the method for manufacturing the photoelectric conversion element 1 of the present application adopts a method of forming the porous film 6 by the aerosol deposition method after using an elastic member for the protective film 4, the protective film 4 The formation of the porous film 6 on the top can be very easily avoided. Therefore, according to the method for manufacturing the photoelectric conversion element 1 of the present application, even if the pitch of the conductive material 5 is made as small as possible, in other words, the eyes for forming the porous film 6 are set finely, the surface of the protective film 4 is not removed. It is possible to easily form the porous film 6 on the surface 3 a of the conductive film 3 without forming the porous film 6.

なお、本発明は、上記実施形態において保護膜4を被覆させた導通材5を格子状に形成した例を用いて説明したがこれに限定されるものではない。具体的には、光電変換素子1の保護膜4及び導通材5は、縞状の他、導通材5及び保護膜4により囲繞される領域がドット状又は多角形状に形成されるように配されていてもよい。要するには、集電効率がよくなるように導電膜3に導通材5が一定間隔で形成されていれば、どのような模様に配されていてもよい。 Although the present invention has been described by using the example in which the conductive material 5 coated with the protective film 4 is formed in a lattice shape in the above-described embodiment, the invention is not limited to this. Specifically, the protective film 4 and the conductive material 5 of the photoelectric conversion element 1 are arranged such that the area surrounded by the conductive material 5 and the protective film 4 is formed in a dot shape or a polygonal shape in addition to the stripe shape. May be. In short, any pattern may be provided as long as the conductive material 5 is formed on the conductive film 3 at regular intervals so as to improve the current collecting efficiency.

以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following description.

(第1電極7の形成)
透明導電膜3が成膜された第1基板2として、第1基板2の板面にITOが形成された、表面抵抗15Ω/□のPENフィルムを用意した。
導通材5として、スクリーン印刷法を用いて銀電極(膜厚5μm、線幅100μm)のメッシュパターンをITO膜上に形成し、120℃で10分間焼成を行った。この際、メッシュ1マスの寸法は1100μm×1100μmに設定した。
(Formation of the first electrode 7)
As the first substrate 2 on which the transparent conductive film 3 was formed, a PEN film having a surface resistance of 15Ω/□ in which ITO was formed on the plate surface of the first substrate 2 was prepared.
As the conductive material 5, a mesh pattern of silver electrodes (film thickness 5 μm, line width 100 μm) was formed on the ITO film by screen printing, and baked at 120° C. for 10 minutes. At this time, the size of one mesh was set to 1100 μm×1100 μm.

(保護膜4の形成)
第1電極7上に、スクリーン印刷法を用いてアクリル製UV硬化樹脂を用いて、保護膜4(膜厚10μm、線幅20μm)のメッシュパターンを形成し、3000mJ/cm2のUVを照射した。この際、メッシュ1マスの寸法は1000μ×1000μmに設定し、メッシュ状の銀電極が保護膜4で被覆されるように設定した。
(Formation of protective film 4)
A mesh pattern of the protective film 4 (film thickness 10 μm, line width 20 μm) was formed on the first electrode 7 using a screen-printing method using an acrylic UV curing resin, and UV of 3000 mJ/cm 2 was irradiated. At this time, the size of the mesh 1 was set to 1000 μm×1000 μm so that the mesh-shaped silver electrode was covered with the protective film 4.

(多孔質膜6の形成)
エアロゾルデポジション法を用いて、メッシュ状の銀電極が形成されたITO膜上に、酸化チタン粒子を吹き付け、半導体多孔質膜6を形成した。この際、AD法における成膜条件としては、搬送ガスとして窒素を用いるとともに、ガス流量を1L/min、温度を25℃、成膜室内の圧力を100Paとした。この際、酸化チタン粒子として、平均粒子径が約20nm及び約200nmのアナターゼ型TiO粒子を、重量比50:50の割合で混合した混合紛体を使用した。
(Formation of porous film 6)
Using the aerosol deposition method, titanium oxide particles were sprayed onto the ITO film on which the mesh-shaped silver electrode was formed to form the semiconductor porous film 6. At this time, as film forming conditions in the AD method, nitrogen was used as a carrier gas, the gas flow rate was 1 L/min, the temperature was 25° C., and the pressure in the film forming chamber was 100 Pa. At this time, as the titanium oxide particles, a mixed powder was used in which anatase-type TiO 2 particles having an average particle diameter of about 20 nm and about 200 nm were mixed at a weight ratio of 50:50.

(第2電極10の形成)
厚さ50μmのチタン箔上に白金をスパッタすることで第2電極10を形成した。その後、第2電極10に電解液注入用のφ1mm程度の穴を形成した。
(Formation of the second electrode 10)
The second electrode 10 was formed by sputtering platinum on a titanium foil having a thickness of 50 μm. After that, a hole having a diameter of about 1 mm for injecting an electrolytic solution was formed in the second electrode 10.

(酸化還元対を含む電解液の調液)
酸化還元対として0.05Mのヨウ素と、1.0Mの1,3−ジメチル−2−プロピルイミダゾリウムヨージドを含む、γ―ブチロラクトン溶液を調液した。
(Preparation of electrolyte containing redox couple)
A γ-butyrolactone solution containing 0.05 M iodine as a redox couple and 1.0 M 1,3-dimethyl-2-propylimidazolium iodide was prepared.

上述のようにして作製した第1電極7と第2電極10を対向させ、内部空間を残して封止材を配置し、熱処理等により封止材11を硬化させた。その後、事前に対極に形成した注入穴から電解液注入し、その後、注入穴を、封止材11を熱硬化させることで塞ぎ、色素増感太陽電池を作製した。 The first electrode 7 and the second electrode 10 produced as described above were opposed to each other, the sealing material was arranged leaving an internal space, and the sealing material 11 was cured by heat treatment or the like. Then, the electrolyte solution was injected through the injection hole formed in the counter electrode in advance, and then the injection hole was closed by thermosetting the sealing material 11 to manufacture a dye-sensitized solar cell.

(色素増感型太陽電池の発電性能の評価)
ソーラーシミュレーターを用い、光強度100mW/cm2の疑似太陽光照射下における光電変換効率を測定することにより、色素増感型太陽電池1の発電性能を評価した。結果を表1に示す。
(Evaluation of power generation performance of dye-sensitized solar cell)
The power generation performance of the dye-sensitized solar cell 1 was evaluated by measuring the photoelectric conversion efficiency under irradiation of pseudo sunlight with a light intensity of 100 mW/cm 2 using a solar simulator. The results are shown in Table 1.

第1電極7の形成において、銀電極の線幅を1000μm、メッシュ1マスの寸法を6000μm×6000μmに変更し且つ保護膜4の形成において、保護膜4の線幅を3000μm、メッシュ1マスの寸法を4000μm×4000μmに変更した以外は、上記実施例1と同様に作製、評価した。
[比較例1]
In forming the first electrode 7, the line width of the silver electrode is changed to 1000 μm, the size of the mesh 1 square is changed to 6000 μm×6000 μm, and in forming the protective film 4, the line width of the protective film 4 is 3000 μm and the size of the mesh 1 square. Was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 4000 μm×4000 μm.
[Comparative Example 1]

多孔質膜6の形成において、平均粒子径20nmの酸化チタン粒子を含む酸化チタンペーストを導電膜3上に印刷後、150℃で乾燥させた以外は、上記実施例1と同様に作製、評価した。 In the formation of the porous film 6, a titanium oxide paste containing titanium oxide particles having an average particle diameter of 20 nm was printed on the conductive film 3 and then dried at 150° C., and produced and evaluated in the same manner as in Example 1 above. .

Figure 0006703493
Figure 0006703493

(評価結果)
表1に示すとおり、実施例1、2の色素増感太陽電池1は、発電効率が2%以上と高かったが、比較例1の色素増感太陽電池は、発電効率が実施例1、2に比べて低度にとどまった。
以上より、保護膜4上に多孔質膜6が形成されていない場合は、保護膜4上に多孔質膜6が形成された場合に比べて発電効率が高くなることが分かった。
(Evaluation results)
As shown in Table 1, the dye-sensitized solar cell 1 of Examples 1 and 2 had a high power generation efficiency of 2% or more, but the dye-sensitized solar cell of Comparative Example 1 had a power generation efficiency of Examples 1 and 2 Stayed low compared to.
From the above, it was found that the power generation efficiency is higher when the porous film 6 is not formed on the protective film 4 than when the porous film 6 is formed on the protective film 4.

1・・・太陽電池(光電変換素子)
2・・・第1基板
3・・・導電膜
4・・・保護膜
5・・・導通材
6・・・半導体多孔質膜
7・・・第1電極
8・・・第2基板
9・・・対向導電膜
10・・・第2電極
1-Solar cell (photoelectric conversion element)
2... First substrate 3... Conductive film 4... Protective film 5... Conductive material 6... Semiconductor porous film 7... First electrode 8... Second substrate 9... -Counter conductive film 10 ... second electrode

Claims (5)

第1基板と、この第1基板上に成膜された導電膜と、前記導電膜の表面に前記導電膜と導通可能に配され、保護膜で表面が被覆された導通材と、前記導電膜上に成膜された半導体多孔質膜とを有した第1電極と、
第2基板と、この第2基板上に成膜された対向導電膜とを有する第2電極とを備え、
前記保護膜は弾性を有する絶縁材料からなり、
前記第1電極と前記第2電極は、前記導電膜と前記対向導電膜とが対向するように配置され
前記保護膜の表面には、前記半導体多孔質膜が形成されていない光電変換素子。
A first substrate, a conductive film formed on the first substrate, a conductive material disposed on the surface of the conductive film so as to be conductive with the conductive film and having a surface covered with a protective film, and the conductive film A first electrode having a semiconductor porous film formed thereon;
A second electrode having a second substrate and a counter conductive film formed on the second substrate;
The protective film is made of an elastic insulating material,
The first electrode and the second electrode are arranged such that the conductive film and the counter conductive film face each other ,
A photoelectric conversion element in which the semiconductor porous film is not formed on the surface of the protective film .
前記導通材は縞状又は網状に配されている請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the conductive material is arranged in a stripe pattern or a mesh pattern. 前記保護膜で表面が被覆された前記導通材の高さが、前記半導体多孔質膜の厚さより大きい請求項1または2に記載の光電変換素子。 It said height of said conductive material whose surface is coated with a protective film, a photoelectric conversion device according to the greater thickness claim semiconductor porous film 1 or 2. 導電膜が成膜された第1基板の前記導電膜の表面に導通材を配し、この導通材の表面を、弾性を有する絶縁材料からなる保護膜で被覆する第1工程と、
エアロゾルデポジション法によって、前記弾性を有する絶縁材料からなる保護膜により被覆された導通材が配された導電膜の表面に対して半導体粒子を含むエアロゾルを吹き付け、それにより前記導電膜の表面の前記保護膜が存在しない領域に半導体多孔質膜を形成する第2工程と、を有する光電変換素子の製造方法。
A first step of disposing a conductive material on the surface of the conductive film of the first substrate on which the conductive film is formed, and coating the surface of the conductive material with a protective film made of an insulating material having elasticity ;
By the aerosol deposition method, an aerosol containing semiconductor particles is sprayed onto the surface of the conductive film on which the conductive material coated with the protective film made of the elastic insulating material is arranged , whereby the surface of the conductive film is method of manufacturing a photoelectric conversion device having a second step, the forming a semi-conductive porous membrane in a region where the protective film is not present.
前記導通材を縞状又は網状に配する請求項に記載の光電変換素子の製造方法。 The method for manufacturing a photoelectric conversion element according to claim 4 , wherein the conductive material is arranged in a stripe pattern or a mesh pattern.
JP2016570679A 2015-01-20 2016-01-20 Photoelectric conversion element and method for manufacturing photoelectric conversion element Expired - Fee Related JP6703493B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015008497 2015-01-20
JP2015008497 2015-01-20
PCT/JP2016/051563 WO2016117598A1 (en) 2015-01-20 2016-01-20 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPWO2016117598A1 JPWO2016117598A1 (en) 2017-11-02
JP6703493B2 true JP6703493B2 (en) 2020-06-03

Family

ID=56417139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570679A Expired - Fee Related JP6703493B2 (en) 2015-01-20 2016-01-20 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Country Status (5)

Country Link
JP (1) JP6703493B2 (en)
KR (1) KR20170106299A (en)
CN (1) CN107004511A (en)
TW (1) TW201639208A (en)
WO (1) WO2016117598A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053511A (en) * 2018-09-26 2020-04-02 積水化学工業株式会社 Brittle material film, photoelectrode, dye-sensitization type solar cell
JP2021181393A (en) * 2020-05-19 2021-11-25 株式会社リコー Metal oxide particle having p-type semiconductivity, electronic device using the same, method for manufacturing electronic device, and image forming apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606777B2 (en) * 2004-05-31 2011-01-05 株式会社フジクラ Wet solar cell
JP2006326523A (en) * 2005-05-27 2006-12-07 Canon Inc Film deposition method, piezoelectric film formed by the film deposition method, piezoelectric element with the piezoelectric film, and ink jet apparatus using the piezoelectric element
TW200935609A (en) * 2007-11-15 2009-08-16 Fujikura Ltd Electrode substrate for photoelectric conversion element, production method thereof, and photoelectric conversion element
JP5273709B2 (en) * 2008-07-02 2013-08-28 シャープ株式会社 Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2012174596A (en) * 2011-02-23 2012-09-10 Sony Corp Dye sensitized solar cell, method for manufacturing dye sensitized solar cell, and dye sensitized solar cell module
JP2012241244A (en) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial Science & Technology Film-formed body, photoelectrode provided with the film-formed body, and dye-sensitized solar cell provided with the photoelectrode
CN103597657A (en) * 2011-06-24 2014-02-19 索尼公司 Photoelectric conversion device, method for manufacturing same, dye adsorption device, liquid retaining jig used for dye adsorption device, and method for manufacturing photoelectric conversion element
JP2013008595A (en) * 2011-06-24 2013-01-10 Sony Corp Photoelectric conversion device and method for manufacturing the same

Also Published As

Publication number Publication date
CN107004511A (en) 2017-08-01
WO2016117598A1 (en) 2016-07-28
JPWO2016117598A1 (en) 2017-11-02
TW201639208A (en) 2016-11-01
KR20170106299A (en) 2017-09-20

Similar Documents

Publication Publication Date Title
US20100132785A1 (en) Dye-sensitized photoelectric conversion element module and a method of manufacturing the same, and photoelectric conversion element module and a method of manufacturing the same, and electronic apparatus
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2007095682A (en) Laminate type photovoltaic element and its manufacturing method
CN109478469B (en) Solar cell module
JP2009009866A (en) Dye-sensitized solar cell
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
WO2018025823A1 (en) Solar cell module
JP4868782B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2012059599A (en) Carbon based electrode and electrochemical device
JP5162346B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2005044544A (en) Substrate for transparent electrode, photoelectric conversion device, and dye-sensitized solar cell
JP6703493B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP2003203681A (en) Conductive glass for photoelectronic conversion element
JP2011146384A (en) Electrode substrate for dye-sensitized solar cell, and dye-sensitized solar cell equipped with this
JP2009110797A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2003203682A (en) Conductive glass for photoelectronic conversion element
JP5253476B2 (en) Photoelectric conversion element
JP2011108374A (en) Electrode for dye-sensitized solar cell, and dye-sensitized solar cell
WO2012173110A1 (en) Dye-sensitized solar cell, and method for preparing dye-sensitized solar cell
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP6201317B2 (en) Dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP2012174596A (en) Dye sensitized solar cell, method for manufacturing dye sensitized solar cell, and dye sensitized solar cell module
JP5687873B2 (en) Working electrode and dye-sensitized solar cell having the same
JP4841574B2 (en) Dye-sensitized solar cell module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200508

R151 Written notification of patent or utility model registration

Ref document number: 6703493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees