JP2001085722A - Method for manufacturing transparent electrode film and solar battery - Google Patents

Method for manufacturing transparent electrode film and solar battery

Info

Publication number
JP2001085722A
JP2001085722A JP26372599A JP26372599A JP2001085722A JP 2001085722 A JP2001085722 A JP 2001085722A JP 26372599 A JP26372599 A JP 26372599A JP 26372599 A JP26372599 A JP 26372599A JP 2001085722 A JP2001085722 A JP 2001085722A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
transparent electrode
film
substrate
electrode film
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26372599A
Other languages
Japanese (ja)
Inventor
Yoshimichi Yonekura
義道 米倉
Original Assignee
Mitsubishi Heavy Ind Ltd
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a transparent electrode film, having desired conductive performance and both reduction resistance and heat resistance for improving power generating efficiency, without generating defects in a power generating film to be laminated on this, and a solar battery using this method. SOLUTION: In this method for manufacturing a transparent electrode film, a process fluid with the steam of tin tetrachloride (SnCl4) and steam (H2O) as main materials, to which hydrofluoric(HF) gas is doped in a mol ratio of 0.5 or more to the steam of the tin tetrachloride, is mode to act in a state that a substrate or a substrate to which a thin film lower layer is attached, is heated and held in a temperature ranging from 420 deg.C to 500 deg.C. Thus, a transparent electrode film having tin oxide as the main components can be formed on the substrate or the substrate, to which the thin film lower layer is adhered.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、太陽光を利用した発電システムの太陽電池、および、太陽電池に使用する透明電極膜の製造方法に関する。 The present invention relates to a solar cell power generation system using solar, and a method for producing a transparent electrode film used for solar cells.

【0002】 [0002]

【従来の技術】従来の太陽電池の一例として非晶質シリコン太陽電池に採用されている構造を図10に示す。 BACKGROUND ART The structure employed in the amorphous silicon solar cell as an example of a conventional solar cell shown in FIG. 10. 図中の符号1はガラス基板、2は透明電極膜、3は非晶質シリコン発電膜、4は金属電極膜を示す。 Reference numeral 1 denotes the glass substrate in FIG, 2 is a transparent electrode film, 3 is an amorphous silicon generation film, 4 indicates a metal electrode film. 太陽光はガラス基板1側から入射し、透明電極膜2を透過して非晶質シリコン発電膜3に入射し、非晶質シリコン発電膜3に吸収され、これにより透明電極膜2と金属電極膜4との間に起電力が発生し、この電力が外部に取り出される。 Sunlight incident from the glass substrate 1 side, passes through the transparent electrode film 2 is incident on the amorphous silicon generation film 3, it is absorbed by the amorphous silicon power generation film 3, thereby a transparent electrode film 2 and the metal electrode electromotive force is generated between the membrane 4, the power is taken out.

【0003】ガラス基板1の厚みは約1mm、透明電極膜2の膜厚は0.6〜1.0μm、非晶質シリコン発電膜3の膜厚は0.3〜0.5μm、金属電極膜4の膜厚は0.3〜0.6μmである。 [0003] The thickness of approximately 1mm glass substrate 1, the thickness of the transparent electrode film 2 is 0.6~1.0Myuemu, the thickness of the amorphous silicon generation film 3 0.3 to 0.5 [mu] m, the metal electrode film 4 of the film thickness is 0.3~0.6μm.

【0004】従来の太陽電池用透明電極膜2には、四塩化錫蒸気と水蒸気を主原料とする化学蒸着法(CVD) [0004] Conventional solar cell transparent electrode film 2, a chemical vapor deposition method for a four tin chloride vapor and water vapor as a main material (CVD)
により成膜された酸化物(主成分は酸化錫)を採用している。 Oxide deposited by (main component tin oxide) is adopted. なお、酸化錫を主成分とする透明電極膜2の抵抗値を下げる目的から、CVD成膜用の原料ガスには弗素(F)が添加されることが多い。 Incidentally, for the purpose of lowering the resistance value of the transparent electrode film 2 composed mainly of tin oxide, a raw material gas for CVD deposition fluorine (F) it is often added. また、非晶質シリコン発電膜3はシランガスを原料とするプラズマCVD法により成膜したものを用いている。 Further, amorphous silicon generation film 3 is used as the film was formed by a plasma CVD method using silane gas as a raw material.

【0005】太陽電池の発電効率を向上させるためには、上記の透明電極膜2の表面に僅かな凹凸、例えば0.2〜0.5μm程度の高低差を設けることが有効である。 [0005] In order to improve the power generation efficiency of the solar cell, it is effective to provide a slight to the surface unevenness of the transparent electrode film 2, for example, a height difference of about 0.2 to 0.5 [mu] m. その理由は、太陽光が透明電極膜2と発電膜3との界面を通過するときに光路が曲げられて発電膜3に入射するようになり、これにより光路長が増加して太陽光の利用効率が上昇するからである。 The reason is that solar light is to be incident on the power generation film 3 optical path is bent as it passes through the interface between the transparent electrode film 2 and the power generation film 3, the use of solar Thus the light path length is increased efficiency is because the rise.

【0006】 [0006]

【発明が解決しようとする課題】しかし、従来の太陽電池の発電膜3の内部には、透明電極膜2に設けた凹凸表面形状の凹部(谷間)を起点としてガラス基板面に垂直な向きに延びる欠陥39が発生しやすく(図10にて符号39は発生した欠陥を表わす)、その欠陥39の密度は透明電極膜表面の凹部が急峻なほど高くなり、太陽電池の発電効率を下げる原因となっていた。 [SUMMARY OF THE INVENTION However, in the inside of the power generation film 3 of a conventional solar cell, in a direction perpendicular to the glass substrate surface recess of the uneven surface shape provided on the transparent electrode film 2 (valleys) starting defect 39 is likely to occur extending (reference numeral 39 in FIG. 10 represents a generated defect), recesses in density transparent electrode film surfaces of the defect 39 is, the higher steep, and causes to lower the power generation efficiency of the solar cell it is had.

【0007】従来の太陽電池では、ヘイズ率が10%以上の透明電極膜2に対して欠陥を生じることなく良い膜質の発電膜3を形成することが困難であった。 [0007] In a conventional solar cell, it is difficult to form a power generation film 3 good film quality without haze occurs a defect of more than 10% with respect to the transparent electrode film 2. ここで、 here,
透明電極膜2に設けた凹凸表面形状の度合いを表わすためにヘイズ率という評価指数を用いることとする。 And the use of the evaluation index that haze ratio to represent the degree of unevenness surface profile is provided on the transparent electrode film 2. ヘイズ率は、透明電極膜2を被着させたガラス基板の拡散透過率(光路が曲げられて透過した割合)が全光線透過率(光路の方向を問わず、透過した割合)に占める割合をいう。 Haze ratio, diffusion transmittance of the glass substrate obtained by depositing a transparent electrode film 2 (the ratio transmitted by the optical path is bent) is (whether the direction of the optical path, the transmitted ratio) total light transmittance percentage of Say.

【0008】また、凹凸表面形状が緩やかになるように透明電極膜2を形成し、ヘイズ率を5%程度にとどめることにより、発電膜3中の欠陥の発生を低減することはできるが、透明電極膜2のヘイズ率を小さくするためには、透明電極膜2を化学蒸着法により成膜する時の温度を下げるか、または、透明電極膜2の膜厚を薄くし、結晶粒が粗大化していない透明電極膜2を成膜する必要があった。 Further, uneven surface shape to form a transparent electrode film 2 so as to moderate, by keep the haze ratio of about 5%, although it is possible to reduce the occurrence of defects in the power generation film 3, transparent in order to reduce the haze of the electrode film 2, reduce the temperature at the time of depositing the transparent electrode film 2 by chemical vapor deposition, or by reducing the thickness of the transparent electrode film 2, the crystal grains are coarsened the transparent electrode film 2 not had to be deposited. この場合に、透明電極膜2の成膜温度を下げると、透明電極膜2の導電性能(抵抗率)が劣化するため、所定の抵抗値の透明電極が得られない。 In this case, lowering the deposition temperature of the transparent electrode film 2, since the conductive performance transparent electrode film 2 (resistivity) is deteriorated, not obtained a transparent electrode of a predetermined resistance value. また、透明電極膜2の膜厚を薄くした場合にも所定の抵抗値の透明電極が得られないという問題があり、太陽電池性能の改善が困難であるという問題があった。 Further, there is a problem that the transparent electrode of the predetermined resistance value even when the thin film thickness of the transparent electrode film 2 can not be obtained, there is a problem that improvement of the solar cell performance is difficult.

【0009】一方、上記の非晶質シリコン発電膜3の代わりに微結晶シリコンや多結晶シリコンなどの結晶系シリコンからなる薄膜を用いて発電層を構成することにより太陽電池の発電効率を向上させることができる。 On the other hand, to improve the power generation efficiency of the solar cell by forming the power generation layer using a thin film made of crystalline silicon such as microcrystalline silicon or polycrystalline silicon instead of amorphous silicon generation film 3 above be able to.

【0010】しかし、結晶系シリコン膜を成膜する場合は、水素ガスで希釈したシランガスを原料とするプラズマCVD法により形成する必要があり、このような還元性が強いプラズマに曝されると、透明電極膜2が還元され、その透明性が失われる。 [0010] However, the case of forming a crystalline silicon film, it is necessary to form a plasma CVD method using silane gas diluted with hydrogen gas as a starting material, when such reducible is exposed to a strong plasma, the transparent electrode film 2 is reduced, the transparency is lost.

【0011】従来の透明電極膜2の上に還元耐性に優れるZnO薄膜を0.01〜0.1μmの膜厚となるように積層し、還元耐性を向上させる方法が提案されている。 [0011] The conventional ZnO thin film excellent in the reducing resistance on the transparent electrode film 2 is laminated to a thickness of 0.01 to 0.1 m, a method of improving the reduction resistance is proposed.

【0012】しかし、プラズマCVDによる結晶系Si [0012] However, crystalline Si by plasma CVD
膜の成膜温度が300℃を超えると、ZnO膜の還元耐性が失われてしまい、その結果、透明電極膜2が還元され、その透明性が失われる。 When the deposition temperature of the film exceeds 300 ° C., it is lost reduced resistance of the ZnO film is, as a result, the transparent electrode film 2 is reduced, the transparency is lost.

【0013】本発明は上記課題を解決するためになされたものであり、その目的は、その上に積層される発電膜に欠陥を生じることなく所望の導電性能を有し、耐還元性と耐熱性とを兼ね備え、発電効率を向上させることができる透明電極膜の製造方法及びそれを用いた太陽電池を提供することにある。 [0013] The present invention has been made to solve the above problems, have the desired conductive performance without causing defects in the power generation film to be laminated thereon, reduction resistance and heat combines and sex, is to provide a manufacturing method and a solar cell using the same of the transparent electrode film which can improve the power generation efficiency.

【0014】 [0014]

【課題を解決するための手段】本発明に係る透明電極膜の製造方法は、基板または下層薄膜が被着された基板を420〜500℃の温度域に加熱保持した状態で、四塩化錫(SnCl 4 )の蒸気および水蒸気(H 2 O)を主原料とし、さらに弗化水素(HF)ガスを四塩化錫蒸気に対してモル比で0.5以上の割合となるように添加したプロセス流体を作用させることにより、前記基板または薄膜下層が被着された基板の上に酸化錫を主成分とする透明電極膜を形成することを特徴とする。 The method for producing a transparent electrode film according to the present invention In order to achieve the above object, according to a state where the substrate or the lower layer thin film is held heated to a temperature range of 420 to 500 ° C. The substrate coated with tin tetrachloride ( SnCl 4) of vapor and water vapor (and H 2 O) the main raw material, further hydrogen fluoride (HF) process fluid was added to a 0.5 or higher ratio of a molar ratio with respect to a four tin chloride vapor gas by the action of the substrate or the thin film underlayer and forming a transparent electrode film composed mainly of tin oxide on a substrate coated.

【0015】さらに、ジエチル亜鉛(Zn(C Furthermore, diethylzinc (Zn (C
252 )の蒸気および水蒸気(H 2 O)を主原料とする第2のプロセス流体を作用させることにより、前記透明電極膜の上に酸化亜鉛を主成分とする第2の透明電極膜を積層することが好ましい。 The 2 H 5) 2) of the vapor and water vapor (H 2 O) exerting a second process fluid to a main material, a second transparent electrode consisting mainly of zinc oxide on the transparent electrode film it is preferable to laminate the film. この場合に、第2の透明電極膜は、化学蒸着法または物理蒸着法により形成されることが望ましい。 In this case, the second transparent electrode film is preferably formed by a chemical or physical vapor deposition process.

【0016】なお、基板は、ガラス等の透光性基板、または金属などの不透光性基板、または、金属などの不透光性基板、透明な絶縁性薄膜を被着させた基板、または、ガラス等の透光性基板に金属薄膜、透明な絶縁性薄膜を順次被着させた基板、を含むものである。 [0016] The substrate is light-transmissive substrate such as glass or non-translucent substrate such as a metal, or a non-light-transmissive substrate, the substrate was deposited a transparent insulating thin film such as a metal or, it is intended to include the light-transmitting substrate such as glass metal thin film, a substrate obtained by sequentially depositing a transparent insulating thin film, a.

【0017】また、下層薄膜は、透明な絶縁性薄膜、または、金属薄膜と透明な絶縁性薄膜とを順次被着させた多層膜からなるものである。 Further, the lower layer thin film is a transparent insulating thin film, or is made of a multilayer film obtained by sequentially depositing a metal thin film and a transparent insulating film.

【0018】本発明に係る透明電極膜の製造方法は、基板または下層薄膜が被着された基板を100〜500℃ The method for producing a transparent electrode film according to the present invention, 100 to 500 ° C. The substrate board or the lower thin film is deposited
の温度域に加熱保持した状態で、ジエチル亜鉛(Zn Under heating to a temperature range of, diethylzinc (Zn
(C 252 )の蒸気および水蒸気(H 2 O)を主原料とするプロセス流体を作用させることにより、前記基板または薄膜下層が被着された基板の上に酸化亜鉛を主成分とする透明電極膜を形成することを特徴とする。 The (C 2 H 5) 2) of the vapor and water vapor (H 2 O) to the action of the process fluid as a main raw material, a main component of zinc oxide on a substrate the substrate or the thin film underlayer is deposited and forming a transparent electrode film.

【0019】なお、成膜中の基板を250〜350℃の温度域に加熱保持して、膜の表面を急峻な凹凸の無い実質的に平滑な形態とすることが好ましい。 [0019] Incidentally, by heating and holding the substrate during film formation in a temperature range of 250 to 350 ° C., it is preferable that the substantially smooth form without sharp irregularities to the surface of the membrane.

【0020】プロセス流体は、トリエチルアルミニウム(Al(C 253 )及びトリメチルアルミニウム(A The process fluid, triethylaluminum (Al (C 2 H 5) 3) and trimethylaluminum (A
l(CH 33 )のうち少なくとも一方の蒸気を、ジエチル亜鉛(Zn(C 252 )の蒸気の量に対して1/1 at least one of the vapor of the l (CH 3) 3), relative to the amount of steam diethylzinc (Zn (C 2 H 5) 2) 1/1
0〜1/100の量だけ更に添加したものであることが好ましい。 It is preferable amount of 0-1 / 100 in which further added.

【0021】本発明に係る太陽電池は、上記の方法により製造した透明電極膜上に、光電変換発電層、透明または不透明の背面電極を順次積層させて形成したことを特徴とする。 The solar cell according to the present invention, on the transparent electrode film prepared by the above method, the photoelectric conversion power generation layer, characterized by being formed by a transparent or sequentially laminating an opaque back electrode.

【0022】この場合に、透明電極膜と光電変換発電層との境界面は、急峻な凹凸の無い実質的に平滑な形態とすることが望ましい。 [0022] In this case, the boundary between the transparent electrode film and the photoelectric conversion power generation layer is desirably a substantially smooth form without sharp irregularities. このような平滑な境界面は、透明電極膜の成膜中における基板を250〜350℃の温度域に保持することにより得られ、更にこの上に積層される発電層の欠陥率を大幅に低減させる。 Such smooth boundary surface is obtained by holding the substrate during the deposition of the transparent electrode film to a temperature range of 250 to 350 ° C., further significantly reducing the failure rate of the power generation layer is laminated on the make.

【0023】なお、透明電極膜(第1の透明電極膜)の膜厚は600〜1000nm(0.6〜1μm)の範囲とすることが望ましく、また、第2の透明電極膜の膜厚は10〜100nm(0.01〜0.1μm)の範囲とすることが望ましい。 [0023] The thickness of the transparent electrode film (first transparent electrode film) is desirably in the range of 600 to 1000 nm (0.6~1Myuemu), The thickness of the second transparent electrode film it is preferably in the range of 10 to 100 nm (0.01 to 0.1 m).

【0024】 [0024]

【発明の実施の形態】以下、添付の図面を参照して本発明の種々の好ましい実施の形態について説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, with reference to the accompanying drawings will be described various preferred embodiments of the present invention.

【0025】(実施例1)図1及び図2を参照して本発明の第1の実施例に係る太陽電池及びその透明電極膜の製造方法、並びにその効果について説明する。 The process for producing a (Example 1) with reference to FIGS. 1 and 2 according to the first embodiment of the present invention the solar cell and the transparent electrode film, as well as for its effect will be described.

【0026】ガラス基板1の上に透明電極膜21が形成されている。 The transparent electrode film 21 on the glass substrate 1 is formed. この透明電極膜21は本発明方法によって成膜された酸化錫を主成分とする酸化物薄膜からなる。 The transparent electrode film 21 is made of an oxide film on the basis of tin oxide is deposited by the method of the present invention.
透明電極膜21の上には非晶質シリコン発電膜3が積層されている。 Amorphous silicon generation layer 3 on the transparent electrode film 21 is laminated. 透明電極膜21と発電膜3との界面は緩やかな凹凸形状をなしている。 The interface between the transparent electrode film 21 and the power generation film 3 is formed into a gentle irregular shape. さらに発電膜3の上には金属電極膜4が積層されている。 Metal electrode film 4 is formed on the power generation film 3 is laminated.

【0027】以下に本実施例による透明電極膜の製造方法について述べる。 [0027] the process for producing a transparent electrode film according to this example are shown below.

【0028】ガラス基板上または0.05〜0.1μm [0028] on a glass substrate or 0.05~0.1μm
の膜厚のSiO 2膜を被着させたガラス基板上に、大気圧下での熱CVD法により、四塩化錫(SnCl 4 )蒸気および水蒸気(H 2 O)を主原料とする原料ガスに弗化水素(HF)ガスを添加したプロセス流体を用いて、 The film thickness of the SiO 2 film on a glass substrate obtained by depositing, by thermal CVD under the atmospheric pressure, the raw material gas to tin tetrachloride (SnCl 4) vapor and water vapor (H 2 O) as a main raw material using the process fluid with the addition of hydrogen fluoride (HF) gas,
酸化錫を主成分とする透明電極膜21を形成した。 To form a transparent electrode film 21 composed mainly of tin oxide.

【0029】この時の主なCVD成膜条件を以下に示す。 [0029] shows the main CVD film-forming conditions at this time below.

【0030】主な原料ガスである四塩化錫蒸気と水蒸気はそれぞれ窒素ガスで希釈して、スリット状ノズルからガラス基板に向けて吹き付ける。 [0030] diluted with the main raw material gases in a four tin vapor and water vapor, respectively nitrogen chloride gas is blown toward the glass substrate from the slit-shaped nozzle. なお、四塩化錫蒸気(SnCl 4 )と水蒸気(H 2 O)との供給比率(モル比)は1:50とし、成膜時の基板温度は450℃とした。 The supply ratio (molar ratio) of tin tetrachloride vapor (SnCl 4) and water vapor (H 2 O), is 1:50, the substrate temperature during film formation was 450 ° C.. この時、四塩化錫蒸気を含むガスに弗化水素ガス(HF)を混合してスリット状ノズルから基板に供給して成膜を行なうが、弗化水素ガスの混合量を調整することにより、酸化錫を主成分とする透明電極膜21のヘイズ率を所望の値に制御することができる。 At this time, four by mixing hydrogen fluoride gas (HF) in the gas containing tin chloride vapor forming a film by supplying a slit-shaped nozzle to the substrate, but by adjusting the mixing amount of hydrogen fluoride gas, the haze of the transparent electrode film 21 mainly composed of tin oxide can be controlled to a desired value.

【0031】図2(a),(b),(c)は、横軸に弗化水素と四塩化錫との供給比をとり、縦軸に透明電極膜の抵抗率(Ω・cm)、透過率(%)、ヘイズ率(%) FIG. 2 (a), (b), (c) takes a feed ratio of hydrogen fluoride and tin tetrachloride in the horizontal axis, the resistivity of the transparent electrode film on the vertical axis (Ω · cm), transmittance (%), haze (%)
をそれぞれとって、膜厚0.6μmの透明電極膜の製造条件と膜性能との相関について調べた結果を示す特性線図である。 Taking respectively, it is a characteristic diagram showing the results of examining the correlation between the production conditions of the transparent electrode film having a film thickness of 0.6μm and membrane performance.

【0032】図2(a)は弗化水素ガスの添加量を増加させたときの抵抗率の変化を示す。 [0032] FIG. 2 (a) shows a change in resistivity when increasing the amount of hydrogen fluoride gas. HF/SnCl 4供給比が0.5未満の領域では、弗化水素ガス添加量の増加とともに透明電極膜の抵抗率が減少し、1×10 -3 Ω HF / SnCl 4 in the region of the feed ratio is less than 0.5, the resistivity of the transparent electrode film with increasing hydrogen fluoride gas amount is decreased, 1 × 10 -3 Ω
・cm程度の抵抗率が得られる。 · Cm about resistivity is obtained. この抵抗率の値は、H The value of this resistivity, H
F添加無しのときの約1/4に相当する。 Corresponding to about 1/4 of the time of F without addition. しかし、HF However, HF
/SnCl 4供給比が0.5以上の領域では、弗化水素ガスの供給量をそれ以上増加させたとしても抵抗率はほとんど変化せず、抵抗率低減効果は飽和してしまう。 / SnCl 4 in feed ratio is 0.5 or more areas can be resistivity supply amount of the hydrogen fluoride gas as increased more hardly changes, the resistivity reduction effect is saturated.

【0033】図2(b)は弗化水素ガスの添加量を増加させたときの透過率の変化を示す。 [0033] FIG. 2 (b) shows the transmittance changes with an increased amount of hydrogen fluoride gas. 透過率は、弗化水素ガスの添加量に拘わらずほぼ一定の値となる。 Permeability is substantially a constant value regardless of the amount of hydrogen fluoride gas.

【0034】図2(c)は弗化水素ガスの添加量を増加させたときのヘイズ率の変化を示す。 [0034] FIG. 2 (c) shows the change in haze ratio when increasing the amount of hydrogen fluoride gas. 図から明らかなように、弗化水素ガスの添加量を増加していくに従って単調にヘイズ率が減少していくことが判明した。 As apparent from FIG monotonically haze ratio was found that decreases in accordance with increases the amount of hydrogen fluoride gas.

【0035】このような知見に基づきHF/SnCl 4 [0035] HF / SnCl 4 on the basis of such findings
供給比が0.5以上の領域において、弗化水素ガスの添加量を調整することにより所望のヘイズ率の透明電極膜を形成することができるようになった。 In feed ratio is 0.5 or more areas, it has become possible to form a transparent electrode film having a desired haze ratio by adjusting the amount of hydrogen fluoride gas.

【0036】本実施例の太陽電池では、酸化錫を主成分とする透明電極膜の導電性能および透明性に悪影響を及ぼすことなく、ヘイズ率を所望の値に小さくすることができ、凹凸表面形状を緩やかとすることが可能であるため、太陽電池の発電膜の欠陥密度を低く抑えることが可能であり、かつ、電極部分の抵抗増大を抑えることができるので、太陽電池の発電性能を向上させることができる。 [0036] In the solar cell of the present example, without adversely affecting the conducting performance and transparency of the transparent electrode film composed mainly of tin oxide, it is possible to reduce the haze ratio to a desired value, the irregular surface shape since it is possible to make a gradual, it is possible to suppress the defect density of the power generation film of the solar cell, and it is possible to suppress the increase in resistance of the electrode portion, to improve the power generation performance of the solar cell be able to.

【0037】以上のように、本発明によれば、従来は困難であった、抵抗率、透過率を変えずにヘイズ率だけを所望の値に容易に制御することが可能である。 [0037] As described above, according to the present invention, which has been conventionally difficult, resistivity, is only haze ratio without changing the transmittance can be easily controlled to a desired value. 従って、 Therefore,
透明電極膜のサブミクロンレベルの微細な構造を精密に調整できるようになるので、透明電極膜の結晶粒の構造を起源とする発電膜中の欠陥の発生を抑止することが可能となり、太陽電池の発電効率を向上させることができる。 Since submicron level of the fine structure of the transparent electrode film to be precisely adjusted, it is possible to suppress the occurrence of defects in the power generation film to the grain structure of the transparent electrode film originate, solar cells thereby improving the power generating efficiency of the.

【0038】(実施例2)図3を参照して本発明の第2 [0038] (Example 2) The second of the present invention with reference to FIG. 3
の実施例に係る太陽電池及びその透明電極膜の製造方法について説明する。 Solar cell and method for manufacturing the transparent electrode film will be described according to the embodiment. なお、本実施例2が上記実施例と重複する部分の説明は省略する。 Incidentally, description of the parts the second embodiment overlaps the above-described embodiment will be omitted.

【0039】本実施例2の太陽電池は、ガラスなどの透光性基板の上に、第1の透明電極膜21を、上記第1の実施例と同じ製造方法で被着させ、その上に酸化亜鉛を主成分とする第2の透明電極膜22を高い被覆率で全面に積層させたものである。 The solar cell of the second embodiment, on the transparent substrate such as glass, a first transparent electrode film 21, is deposited in the same manufacturing method as the first embodiment, on the a second transparent electrode film 22 composed mainly of zinc oxide with high coverage is obtained by laminating the entire surface.

【0040】第2の透明電極膜22は、ジエチル亜鉛(Zn(C 252 )蒸気および水蒸気(H 2 O)を主原料としたCVD法(化学蒸着法)によるか、またはPV The second transparent electrode film 22, either by diethylzinc (Zn (C 2 H 5) 2) vapor and water vapor (H 2 O), the main raw material and the CVD method (chemical vapor deposition), or PV
D法(物理蒸着法)により成膜する。 Formed by D method (physical vapor deposition). このときの酸化亜鉛を主成分とする第2の透明電極膜22の膜厚は10〜 Thickness of the second transparent electrode film 22 composed mainly of zinc oxide in this case is 10
100nm(100〜1000Å)である。 It is a 100nm (100~1000Å).

【0041】本実施例によれば、酸化亜鉛は酸化錫よりも還元耐性に優れるため、表面がすべて酸化亜鉛で覆い尽くされており、水素プラズマ曝露に対する耐久性が向上し、水素ガスを添加したプラズマCVD法で発電膜3 According to the present embodiment, the zinc oxide is excellent in reduction resistance than tin oxide, surface have been exhausted covered with all the zinc oxide, the durability is improved with respect to hydrogen plasma exposure was added hydrogen gas power generation film 3 by plasma CVD
を成膜しても還元劣化による透明性の消失が起きることが無い。 It is not the loss of transparency by reducing the deterioration be formed occurs a. 従って、発電膜3には非晶質(アモルファス) Therefore, the power generation film 3 amorphous
Si以外に、微結晶Si、多結晶Siを用いることができるため、発電効率が高い太陽電池を製造することができる。 Besides Si, it is possible to use a microcrystalline Si, polycrystalline Si, it is possible to power generation efficiency to produce a high solar cell.

【0042】(実施例3)図4を参照して本発明の第3 [0042] (Example 3) The third of the present invention with reference to FIG. 4
の実施例に係る太陽電池及びその透明電極膜の製造方法について説明する。 Solar cell and method for manufacturing the transparent electrode film will be described according to the embodiment. なお、本実施例3が上記実施例と重複する部分の説明は省略する。 Note that description of portions which the third embodiment overlaps the above-described embodiment will be omitted.

【0043】図4中の符号13はAl,Ag,Cr,N The reference numeral 13 in FIG. 4 Al, Ag, Cr, N
i等の金属薄膜を、符号12は酸化珪素薄膜等の透明な絶縁性薄膜を、符号41は錫添加酸化インジウムなどの透明電極膜を示す。 A metal thin film of i such, reference numeral 12 denotes a transparent insulating film such as silicon oxide film, reference numeral 41 denotes a transparent electrode film such as indium tin oxide.

【0044】本実施例3の太陽電池では、ガラス基板1 [0044] In the solar cell of the present embodiment 3, the glass substrate 1
に金属薄膜13を被着、あるいは、ガラス基板1に金属薄膜13、酸化珪素などの透明な絶縁性薄膜12を順次被着させた基板を用い、その上に本発明の製造方法による透明電極膜21を形成している。 A metal thin film 13 deposited under the, or the metal thin film 13 on the glass substrate 1, a transparent substrate with an insulating film 12 are sequentially deposited such as silicon oxide, a transparent electrode film by the manufacturing method of the present invention thereon to form a 21. なお、金属薄膜13 It should be noted that the metal thin film 13
の膜厚は0.3〜0.6μm、透明な絶縁性薄膜12の膜厚は0.1〜0.3μmである。 The film thickness 0.3 to 0.6 .mu.m, the film thickness of the transparent insulating film 12 is 0.1 to 0.3 [mu] m.

【0045】このような基板を用いることにより、基板とは反対の、膜面側からの太陽光入射型太陽電池を形成できる。 [0045] By using such a substrate, opposite to the substrate to form a solar incident solar cells from the membrane surface.

【0046】(実施例4)図5を参照して本発明の第4 [0046] (Example 4) The fourth of the present invention with reference to FIG. 5
の実施例に係る太陽電池及びその透明電極膜の製造方法について説明する。 Solar cell and method for manufacturing the transparent electrode film will be described according to the embodiment. なお、本実施例4が上記実施例と重複する部分の説明は省略する。 Note that description of portions which the fourth embodiment overlaps the above-described embodiment will be omitted.

【0047】図5中の符号11はステンレス鋼などの金属板を、符号12は酸化珪素薄膜などの透明な絶縁性薄膜を、符号41は錫添加酸化インジウムなどの透明電極膜を示す。 The reference numeral 11 in FIG. 5 a metal plate such as stainless steel, reference numeral 12 denotes a transparent insulating film such as silicon oxide film, reference numeral 41 denotes a transparent electrode film such as indium tin oxide.

【0048】本実施例4の太陽電池では、金属板11、 [0048] In the solar cell of the present embodiment 4, the metal plate 11,
あるいは、金属板11に酸化珪素などの0.1〜0.3 Alternatively, 0.1 to 0.3 such as silicon oxide to the metal plate 11
μmの透明な絶縁性薄膜12を被着させた基板を用い、 Using a substrate obtained by depositing a transparent insulating film 12 [mu] m,
その上に本発明の製造方法により透明電極膜21を積層している。 And stacking a transparent electrode film 21 by the manufacturing method of the present invention thereon.

【0049】このような基板を用いることにより、ガラスを基板とした場合に比べて、基板の耐熱温度が上がり、また、金属板11の厚みを薄くすれば、太陽電池に曲げの力が加わった場合でも、ガラス板のように基板が割れることがない。 [0049] By using such a substrate, the glass in comparison with the case of the substrate, the heat resistance temperature of the substrate rises, also if the thickness of the metal plate 11, force is applied bending the solar cell even if it does not crack the substrate such as a glass plate. なお、本実施例では太陽光が入射する方向は、基板とは反対の、膜面側からとなる。 The direction in which sunlight enters in this embodiment, opposite to the substrate, the the film surface.

【0050】(実施例5)図6〜図8を参照しながら本発明の第5の実施例について説明する。 [0050] (Example 5) with reference to FIGS. 6 to 8 for the fifth embodiment of the present invention will be described. なお、本実施例5が上記実施例と重複する部分の説明は省略する。 Incidentally, description of the parts present embodiment 5 overlaps the above-described embodiment will be omitted.

【0051】図6において符合21は酸化亜鉛を主成分とする透明電極膜である。 The reference numeral 21 in FIG. 6 is a transparent electrode film composed mainly of zinc oxide. この透明電極膜21は本発明の製造方法により基板1の上に積層形成されている。 Are stacked on the substrate 1 by the manufacturing method of the transparent electrode film 21 is the present invention. さらに、微結晶または多結晶シリコンからなる発電層31 Further, the power generation layer 31 made of microcrystalline or polycrystalline silicon
が透明電極膜21の上に積層形成されている。 It is laminated on the transparent electrode film 21.

【0052】透明電極膜21を、還元性および耐熱性に優れる酸化亜鉛を主成分とする材料で形成するので、4 [0052] The transparent electrode film 21, because it forms a zinc oxide which is excellent in reducing resistance and heat resistance of a material as a main component, 4
50℃程度の高い温度で水素ガスを含むプラズマに曝されても、還元により透明性が失われることがない。 Be exposed to a plasma containing hydrogen gas at a high as 50 ° C. temperature, it is not lost transparency by reduction.

【0053】さらに、結晶系Si薄膜の膜質は透明電極膜21の表面形態から著しい影響を受ける。 [0053] Furthermore, the film quality of the crystalline Si thin film significantly affected by the surface morphology of the transparent electrode film 21. 急峻な凹凸構造を持つ透明電極膜上に結晶系Si膜を積層させると、欠陥を多く含んだSi膜が形成されやすいため、急峻な凹凸構造とならない実質的に平滑な表面形態をもつ透明電極膜とすることが望ましい。 When to stack crystalline Si film on the transparent electrode film having a sharp concave-convex structure, the Si film containing many defects is easily formed, the transparent electrode having a substantially smooth surface morphology that do not steep irregular structure it is desirable that the membrane. 本実施例の製造方法を用いることにより急峻な凹凸構造とならない透明電極膜を容易に得ることができる。 The transparent electrode film that do not steep irregular structure by using the manufacturing method of this embodiment can be easily obtained.

【0054】以下に本実施例5の製造方法を用いて透明電極膜を形成する場合について説明する。 [0054] will be described the case of forming the transparent electrode film by using the manufacturing method of the fifth embodiment below.

【0055】酸化亜鉛を主成分とする透明電極膜21は大気圧での熱CVD法によりガラス基板上に、または、 [0055] over a glass substrate by a thermal CVD method in the transparent electrode film 21 composed mainly of zinc oxide atmospheric pressure or,
0.05〜0.1μmの膜厚のSiO 2膜を被着させたガラス基板上において成長させ、ジエチル亜鉛(Zn The SiO 2 film having a thickness of 0.05~0.1μm grown in a glass substrate obtained by depositing, diethylzinc (Zn
(C 252 )の蒸気および水蒸気(H 2 O)を主原料として用い、この原料ガスにトリエチルアルミニウム(A (C 2 H 5) 2) of the vapor and water vapor (H using 2 O) as main components, triethylaluminum this raw material gas (A
l(C 253 )蒸気、または、トリメチルアルミニウム(Al(CH 33 )蒸気を、ジエチル亜鉛(Zn(C l (C 2 H 5) 3 ) vapor, or, trimethyl aluminum (Al (CH 3) 3) vapor, diethylzinc (Zn (C
252 )の蒸気の量に対して1/10〜1/100の量だけ微量添加して、膜厚0.6〜1.0μmの透明電極膜21を形成した。 2 H 5) 2) and only trace amounts added amount of 1 / 10-1 / 100 relative to the amount of steam, to form a transparent electrode film 21 with a thickness of 0.6~1.0Myuemu.

【0056】このときのCVD成膜条件を以下に示す。 [0056] shows the CVD film-forming conditions are shown in the following.

【0057】主な原料ガスであるジエチル亜鉛蒸気と水蒸気はそれぞれ窒素ガスで希釈して、スリット状ノズルからガラス基板に吹き付ける。 [0057] Diethyl zinc vapor and water vapor is the main raw material gas is diluted with respectively nitrogen gas is blown to the glass substrate from the slit-shaped nozzle. ジエチル亜鉛蒸気と水蒸気との供給比率(モル比)は1:50〜1:100の範囲内とし、成膜時の基板温度は所望の表面形態を得るために100〜500℃の範囲で適宜選択する。 Supply ratio of diethyl zinc vapor and water vapor (molar ratio) is 1: 50 to 1: the 100 range, and the substrate temperature during film formation suitably selected in the range of 100 to 500 ° C. in order to obtain the desired surface form to. また、この時、微量のトリエチルアルミニウム蒸気、または、トリメチルアルミニウム蒸気を、ジエチル亜鉛蒸気の供給量に対して1/10〜1/100の割合で添加して成膜すると、酸化亜鉛薄膜の抵抗率を低下させる効果がある。 At this time, triethyl aluminum vapor traces, or the trimethyl aluminum vapor, the deposition was added at a rate of 1 / 10-1 / 100 with respect to the supply amount of diethyl zinc vapor, the resistivity of the zinc oxide thin film there is an effect of lowering the.

【0058】酸化亜鉛を主成分とする透明電極膜21の表面形態はCVD成膜温度に強く依存する。 [0058] The surface morphology of the transparent electrode film 21 composed mainly of zinc oxide is strongly dependent on the CVD film formation temperature. 結晶構造が六方晶系である酸化亜鉛膜は、結晶軸の1つであるc軸が、ガラス等の基板の表面に対してどの向きに揃って膜が成長していくかにより、表面形態がほぼ決まる。 Zinc oxide film crystal structure is a hexagonal, c-axis which is one of the crystal axes, depending on whether the film aligned in any orientation with respect to the surface of the substrate such as glass grows, the surface morphology substantially determined.

【0059】図7の(a)〜(d)は、横軸に回折角度2θ(deg)をとり、縦軸に回折強度をとって、成膜温度を200℃,280℃,320℃,400℃に種々変えて成膜された酸化亜鉛膜をX線回折法により測定したときのX線回折パターンをそれぞれ示す特性線図である。 [0059] Figure 7 of (a) ~ (d), the horizontal axis represents the diffraction angle 2 [Theta] (deg), taking the diffraction intensity on the vertical axis, 200 ° C. The deposition temperature, 280 ° C., 320 ° C., 400 ℃ various varied X-ray diffraction pattern when measured deposited zinc oxide film by X-ray diffraction method which is a characteristic diagram showing, respectively. 200℃以下の成膜温度では基板面と平行な向きにc軸が揃うように膜が成長しており、走査型電子顕微鏡(SEM)観察によって針状の形態となっていることが確認された。 The 200 ° C. the following deposition temperature has film grown to c-axis is aligned in a direction parallel to the substrate surface, it was confirmed that a needle-like form by scanning electron microscope (SEM) . また、320℃以上の成膜温度では、基板面と垂直な向きにc軸が揃うように膜が成長しており、 Further, in the film-forming temperature of more than 320 ° C., and then the film is grown to the c-axis is aligned to the substrate surface and perpendicular orientation,
SEM観察によって柱状の形態を有する薄膜であることが確認された。 It is a thin film having a columnar form was confirmed by SEM observation.

【0060】図8は、横軸に成膜温度(℃)をとり、縦軸にヘイズ率(%)をとって、酸化亜鉛膜における両者の相関を調べた結果を示す特性線図である。 [0060] Figure 8 takes a film formation temperature (℃) on the horizontal axis, the haze ratio and the vertical axis represents the (%) is a characteristic diagram showing the results of examining the correlation of both the zinc oxide film. ここで、ヘイズ率とは光の拡散透過率が全光線透過率に占める割合をいう。 Here, it means the ratio of diffuse transmittance of light to the total light transmittance and haze. 図から明らかなように、ヘイズ率は透明電極膜の表面の凹凸状態を反映しており、ヘイズ率の値が大きくなるに従って膜の表面が急峻な凹凸状の形態をとるようになる。 As apparent from the figure, the haze ratio reflects the uneven state of the surface of the transparent electrode film, the surface of the film is to take a sharp uneven form according to the value of the haze ratio increases.

【0061】本発明によれば、酸化亜鉛膜の成膜温度により、ヘイズ率を所望の値に制御することができる。 In accordance with the present invention, the deposition temperature of the zinc oxide film, it is possible to control the haze ratio to a desired value. 特に、成膜温度が300℃の近傍においては、ヘイズ率が極小となり、膜の表面形態を平滑にすることができるため、この上に3〜10μmの厚みの結晶系Siからなる発電層31を積層した場合に、発生する欠陥の数を大幅に低減することができる。 In particular, in the vicinity of the deposition temperature 300 ° C., the haze rate becomes a minimum, since the surface morphology of the film can be made smooth, the power generation layer 31 made of crystalline system Si the thickness of 3~10μm on this when laminated, the number of defects generated can be significantly reduced. さらに、発電層31の上に膜厚0.3〜0.6μmの金属電極膜4を積層することにより、高効率の太陽電池が得られる。 Further, by laminating a metal electrode film 4 having a film thickness of 0.3~0.6μm on the power generation layer 31, a solar cell of high efficiency can be obtained.

【0062】本実施例によれば、還元性および耐熱性の両特性を有する透明電極膜を、表面の形態を制御して形成することができるため、透明電極膜上に優れた膜質の結晶系Si膜からなる発電層を形成することができ、高効率の結晶系Si太陽電池を製造することができる。 According to [0062] this embodiment, the reducing and heat resistance of the transparent electrode film having both properties, it is possible to form by controlling the morphology of the surface, the crystal system of excellent quality on the transparent electrode film it is possible to form a power generation layer composed of Si film, it is possible to produce a crystalline Si solar cell with high efficiency.

【0063】(実施例6)図9を参照しながら本発明の第6の実施例について説明する。 [0063] The sixth embodiment (Example 6) while referring to the present invention Figure 9 will be described. なお、本実施例6が上記実施例と重複する部分の説明は省略する。 Note that description of portions sixth embodiment overlaps the above-described embodiment will be omitted.

【0064】図9中にて符合11はステンレス鋼のような金属板である。 [0064] numeral 11 in in FIG. 9 is a metal plate such as stainless steel. この金属板11の上には酸化珪素薄膜などからなる透明な絶縁性薄膜12が積層され、この上に本発明の製造方法を用いて成膜された透明電極膜21 The transparent insulating film 12 made of silicon oxide thin film on the metal plate 11 is stacked, a transparent electrode film was formed using the manufacturing method of the present invention on the 21
が積層され、さらに発電層31が積層され、さらに錫添加酸化インジウム膜41が積層されている。 There are laminated, further power generation layer 31 is laminated, and further laminated tin-doped indium oxide film 41.

【0065】本実施例の太陽電池では、金属板11に透明な絶縁性薄膜12を被着させた基板を用い、その上に本発明の透明電極膜21を形成している。 [0065] In the solar cell of this embodiment, a substrate obtained by depositing a transparent insulating thin film 12 to the metal plate 11 to form a transparent electrode film 21 of the present invention thereon. このような基板を用いることにより、ガラス板を基板とした場合に比べて、さらに基板の耐熱温度が向上する。 By using such a substrate, a glass plate in comparison with the case of the substrate, further improves heat resistance temperature of the substrate.

【0066】また、金属板11はガラス板よりも比強度が大きいので、その厚みを薄くすることができ、さらに太陽電池に曲げの力が加えられた場合であっても容易には割れないという利点がある。 [0066] Further, since the metal plate 11 also has specific strength greater than the glass plate, that its thickness can be made thinner, is not easily cracked even further if the bending force is applied to the solar cell there is an advantage. なお、本実施例の太陽電池において、太陽光は、基板11とは反対側の錫添加酸化インジウム膜41のほうから入射するようになっている。 Incidentally, in the solar cell of the present example, sunlight, is incident from towards the opposite side of the indium tin oxide film 41 and the substrate 11.

【0067】以上のように、本発明によれば、従来は困難であった耐還元性および耐熱性を兼ね備えた透明電極膜を、ヘイズ率を所望の値に制御することにより、容易に製造することができるようになった。 [0067] As described above, according to the present invention, the reduction resistance and a transparent electrode film having both heat resistance was conventionally difficult, by controlling the haze ratio to a desired value, easily manufactured it has become possible. 従って、透明電極膜のサブミクロンレベルの微細な構造を精密に調整できるようになるので、透明電極膜の表面の急峻な凹凸構造に起因する結晶系Siからなる発電膜中での欠陥発生を抑止することが可能となり、結晶系シリコン太陽電池の発電効率を向上させることができる。 Accordingly, since it becomes possible to precisely adjust the submicron level of the fine structure of the transparent electrode film, suppress the occurrence of defects in the power generation film consisting of crystalline Si caused by sharp concave-convex structure on the surface of the transparent electrode film can be made, it is possible to improve the power generation efficiency of the crystalline silicon solar cell.

【0068】 [0068]

【発明の効果】本発明によれば、従来は困難であった、 According to the present invention, which has been conventionally difficult,
抵抗率、透過率を変えずにヘイズ率だけを所望の値に容易に制御することが可能である。 Resistivity, only haze ratio without changing the transmittance can be easily controlled to a desired value. 従って、透明電極膜のサブミクロンレベルの微細な構造を精密に調整できるようになるので、透明電極膜の結晶粒の構造を起源とする発電膜中の欠陥の発生を抑止することが可能となり、太陽電池の発電効率を向上させることができる。 Accordingly, since it becomes possible to precisely adjust the submicron level of the fine structure of the transparent electrode film, it is possible to suppress the occurrence of defects in the power generation film to the grain structure of the transparent electrode film and the origin, thereby improving the power generation efficiency of the solar cell.

【0069】また、本発明によれば、酸化亜鉛は酸化錫よりも還元耐性に優れるため、表面がすべて酸化亜鉛で覆い尽くされており、水素プラズマ曝露に対する耐久性が向上し、水素ガスを添加したプラズマCVD法で発電膜を成膜しても還元劣化による透明性の消失が起きることが無い。 Further, according to the present invention, since zinc oxide is excellent in reduction resistance than tin oxide, surface has all been exhausted covered with zinc oxide, the durability is improved with respect to hydrogen plasma exposure, adding hydrogen gas power generation film that is not to be deposited loss of transparency occurs due to the reduction deterioration with the plasma CVD method. 従って、発電膜には非晶質(アモルファス) Therefore, the power generation film amorphous
Si以外に、微結晶Si、多結晶Siを用いることができるため、発電効率が高い太陽電池を製造することができる。 Besides Si, it is possible to use a microcrystalline Si, polycrystalline Si, it is possible to power generation efficiency to produce a high solar cell.

【0070】また、本発明によれば、還元性および耐熱性の両特性を有する透明電極膜を、表面の形態を制御して形成することができるため、透明電極膜上に優れた膜質の結晶系Si膜からなる発電層を形成することができ、高効率の結晶系Si太陽電池を製造することができる。 Further, according to the present invention, a transparent electrode film having both properties of reducing resistance and heat resistance, it is possible to form by controlling the morphology of the surface, the crystal of excellent quality on the transparent electrode film it is possible to form a power generation layer consisting of the system Si film, it is possible to produce a crystalline Si solar cell with high efficiency.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の実施形態に係る太陽電池を示す部分断面図。 Partial cross-sectional view showing a solar cell according to a first embodiment of the present invention; FIG.

【図2】(a)は第1実施形態の太陽電池におけるHF 2 (a) is HF in the solar cell of the first embodiment
/SnCl 4供給比と抵抗率との関係を示す特性線図、 / SnCl 4 characteristic diagram showing the relationship between the feed ratio and resistivity,
(b)は第1実施形態の太陽電池におけるHF/SnC (B) the HF / SnC in the solar cell of the first embodiment
l4供給比と透過率との関係を示す特性線図、(c)は第1実施形態の太陽電池におけるHF/SnCl 4供給比とヘイズ率との関係を示す特性線図。 l4 supply ratio characteristic diagram illustrating the relationship between the transmittance, (c) is a characteristic line view showing the relationship between the HF / SnCl 4 feed ratio and haze in the solar cell of the first embodiment.

【図3】本発明の第2の実施形態に係る太陽電池を示す部分断面図。 Partial cross-sectional view showing a solar cell according to a second embodiment of the present invention; FIG.

【図4】本発明の第3の実施形態に係る太陽電池を示す部分断面図。 Partial cross-sectional view showing a solar cell according to a third embodiment of the present invention; FIG.

【図5】本発明の第4の実施形態に係る太陽電池を示す部分断面図。 Partial cross-sectional view showing a solar cell according to a fourth embodiment of the present invention; FIG.

【図6】本発明の第5の実施形態に係る太陽電池を示す部分断面図。 Partial cross-sectional view showing a solar cell according to a fifth embodiment of the present invention; FIG.

【図7】(a)〜(d)は各成膜温度で成膜した酸化亜鉛膜のX線回析パターンをそれぞれ示す特性線図。 7 (a) ~ (d) are characteristic diagrams showing the X-ray diffraction pattern of zinc oxide film formed in the film formation temperature, respectively.

【図8】成膜温度とヘイズ率との相関を示す特性線図。 [8] characteristic diagram showing a correlation between the deposition temperature and the haze ratio.

【図9】本発明の第6の実施形態に係る太陽電池を示す部分断面図。 [9] 6 partial sectional view showing a solar cell according to an embodiment of the present invention.

【図10】従来の太陽電池の構造を示す部分断面図。 Figure 10 is a partial cross-sectional view showing the structure of a conventional solar cell.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…ガラス基板、11…金属板、12…透明な絶縁性薄膜、13…金属薄膜、21…透明電極膜(第1の透明電極膜)、22…第2の透明電極膜、3…非晶質シリコン発電膜、31…結晶系シリコン発電膜、39…欠陥、4 1 ... glass substrate, 11 ... metal plate, 12 ... transparent insulating film, 13 ... metal thin film, 21 ... transparent electrode film (first transparent electrode film), 22 ... second transparent electrode film, 3 ... amorphous quality silicon generation film, 31 ... crystalline silicon generation film, 39 ... defects, 4
…金属電極膜、41…透明電極膜(錫添加酸化インジウム)。 ... metal electrode film, 41 ... transparent electrode film (indium tin oxide).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M104 AA10 BB36 CC01 DD45 GG19 HH20 5F051 AA03 AA04 AA05 CB12 CB24 CB27 FA03 FA17 FA19 FA24 GA02 GA03 5H032 AA06 AS16 BB02 BB05 CC14 HH01 HH04 HH06 ────────────────────────────────────────────────── ─── front page of continued F-term (reference) 4M104 AA10 BB36 CC01 DD45 GG19 HH20 5F051 AA03 AA04 AA05 CB12 CB24 CB27 FA03 FA17 FA19 FA24 GA02 GA03 5H032 AA06 AS16 BB02 BB05 CC14 HH01 HH04 HH06

Claims (16)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基板または下層薄膜が被着された基板を420〜500℃の温度域に加熱保持した状態で、四塩化錫(SnCl 4 )の蒸気および水蒸気(H 2 O)を主原料とし、さらに弗化水素(HF)ガスを四塩化錫蒸気に対してモル比で0.5以上の割合となるように添加したプロセス流体を作用させることにより、前記基板または薄膜下層が被着された基板の上に酸化錫を主成分とする透明電極膜を形成することを特徴とする透明電極膜の製造方法。 1. A state in which the substrate or the lower layer thin film is held heated to a temperature range of 420 to 500 ° C. The substrate coated, steam and water vapor tin tetrachloride (SnCl 4) and (H 2 O) as a main raw material further by the action of the added process fluid to 0.5 or the ratio of the molar ratio of hydrogen fluoride (HF) gas to the tin tetrachloride vapor, the substrate or the thin film underlayer is deposited the method for producing a transparent electrode film, and forming a transparent electrode film composed mainly of tin oxide on a substrate.
  2. 【請求項2】 さらに、ジエチル亜鉛(Zn(C 25 2. A further diethylzinc (Zn (C 2 H 5)
    2 )の蒸気および水蒸気(H 2 O)を主原料とする第2のプロセス流体を作用させることにより、前記透明電極膜の上に酸化亜鉛を主成分とする第2の透明電極膜を積層することを特徴とする請求項1記載の透明電極膜の製造方法。 By 2) of steam and water vapor (H 2 O) exerting a second process fluid to a main material, laminating a second transparent electrode film composed mainly of zinc oxide on the transparent electrode film the method for producing a transparent electrode film according to claim 1, wherein a.
  3. 【請求項3】 前記第2の透明電極膜は、化学蒸着法または物理蒸着法により形成されることを特徴とする請求項2記載の透明電極膜の製造方法。 Wherein the second transparent electrode film, a manufacturing method of the transparent electrode film according to claim 2, characterized in that it is formed by chemical vapor deposition or physical vapor deposition.
  4. 【請求項4】 前記基板は、ガラス基板、ガラス以外の透光性基板、金属基板、金属基板以外の不透光性基板のいずれかからなることを特徴とする請求項1記載の透明電極膜の製造方法。 Wherein said substrate is a glass substrate, the translucent substrate other than glass, a metal substrate, a transparent electrode film according to claim 1, characterized in that it consists of either non-light-transmitting substrate other than a metal substrate the method of production.
  5. 【請求項5】 前記下層薄膜は、透明な絶縁性薄膜、または、金属薄膜と透明な絶縁性薄膜とを順次被着させた多層膜からなることを特徴とする請求項1記載の透明電極膜の製造方法。 Wherein said lower layer thin film is a transparent insulating thin film or a transparent electrode film according to claim 1, characterized in that a multilayer film obtained by sequentially depositing a metal thin film and a transparent insulating film the method of production.
  6. 【請求項6】 基板または下層薄膜が被着された基板を100〜500℃の温度域に加熱保持した状態で、ジエチル亜鉛(Zn(C 252 )の蒸気および水蒸気(H 2 In a state in which wherein the substrate or the lower layer thin film is held heated to a temperature range of 100 to 500 ° C. The substrate coated, vapor and water vapor diethylzinc (Zn (C 2 H 5) 2) (H 2
    O)を主原料とするプロセス流体を作用させることにより、前記基板または薄膜下層が被着された基板の上に酸化亜鉛を主成分とする透明電極膜を形成することを特徴とする透明電極膜の製造方法。 The O) by the action of the process fluid as a main raw material, a transparent electrode film in which the substrate or the thin film underlayer and forming a transparent electrode film composed mainly of zinc oxide on a substrate coated with the method of production.
  7. 【請求項7】 成膜中の基板を250〜350℃の温度域に加熱保持して、膜の表面を急峻な凹凸の無い実質的に平滑な形態とすることを特徴とする請求項6記載の透明電極膜の製造方法。 7. heated holding a substrate during film formation in a temperature range of 250 to 350 ° C., according to claim 6, characterized in that the surface a steep substantially smooth form without unevenness of film the method of manufacturing the transparent electrode film.
  8. 【請求項8】 前記プロセス流体は、トリエチルアルミニウム(Al(C 253 )及びトリメチルアルミニウム(Al(CH 33 )のうち少なくとも一方の蒸気を、 Wherein said process fluid, at least one of the vapor of triethyl aluminum (Al (C 2 H 5) 3) and trimethylaluminum (Al (CH 3) 3) ,
    ジエチル亜鉛(Zn(C 252 )の蒸気の量に対して1/10〜1/100の量だけ更に添加したものであることを特徴とする請求項6記載の透明電極膜の製造方法。 Preparation of the transparent electrode film according to claim 6, wherein the amount of 1 / 10-1 / 100 relative to the amount of steam diethylzinc (Zn (C 2 H 5) 2) in which was further added Method.
  9. 【請求項9】 前記基板は、ガラス基板、ガラス以外の透光性基板、金属基板、金属基板以外の不透光性基板のいずれかからなることを特徴とする請求項6記載の透明電極膜の製造方法。 Wherein said substrate is a glass substrate, the translucent substrate other than glass, a metal substrate, a transparent electrode film according to claim 6, characterized in that it consists of either non-light-transmitting substrate other than a metal substrate the method of production.
  10. 【請求項10】 前記下層薄膜は、透明な絶縁性薄膜、 Wherein said lower layer thin film, a transparent insulating film,
    または、金属薄膜と透明な絶縁性薄膜とを順次被着させた多層膜からなることを特徴とする請求項6記載の透明電極膜の製造方法。 Or method for producing a transparent electrode film according to claim 6, characterized in that a multilayer film obtained by sequentially depositing a metal thin film and a transparent insulating film.
  11. 【請求項11】 請求項1記載の方法により製造した透明電極膜上に、光電変換発電層、透明または不透明の背面電極を順次積層させて形成したことを特徴とする太陽電池。 11. in claim 1 on a transparent electrode film was made by the method described, the photoelectric conversion power generation layer, a solar cell characterized by being formed by a transparent or sequentially laminating an opaque back electrode.
  12. 【請求項12】 請求項2記載の方法により製造した第2の透明電極膜上に、光電変換発電層、透明または不透明の背面電極を順次積層させて形成したことを特徴とする太陽電池。 12. on the second transparent electrode film prepared by the method of claim 2, wherein, the photoelectric conversion power generation layer, a solar cell characterized by being formed by a transparent or sequentially laminating an opaque back electrode.
  13. 【請求項13】 請求項6記載の方法により製造した透明電極膜上に、光電変換発電層、透明または不透明の背面電極を順次積層させて形成したことを特徴とする太陽電池。 13. on the transparent electrode film prepared by the method of claim 6, wherein, the photoelectric conversion power generation layer, a solar cell characterized by being formed by a transparent or sequentially laminating an opaque back electrode.
  14. 【請求項14】 前記透明電極膜と光電変換発電層との境界面は、急峻な凹凸の無い実質的に平滑な形態であることを特徴とする請求項11又は13のいずれか一方に記載の太陽電池。 14. boundary surface between the transparent electrode layer and the photoelectric conversion power generation layer, according to one of claims 11 or 13, characterized in that a substantially smooth form without sharp irregularities solar cells.
  15. 【請求項15】 前記透明電極膜の膜厚は600〜10 15. The thickness of the transparent electrode film 600 to 10
    00nmの範囲であることを特徴とする請求項11又は13のいずれか一方に記載の太陽電池。 Solar cell according to one of claims 11 or 13, characterized in that in the range of nm.
  16. 【請求項16】 前記第2の透明電極膜の膜厚は10〜 16. The thickness of the second transparent electrode film 10
    100nmの範囲であることを特徴とする請求項12記載の太陽電池。 The solar cell of claim 12, wherein in the range of 100 nm.
JP26372599A 1999-09-17 1999-09-17 Method for manufacturing transparent electrode film and solar battery Pending JP2001085722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26372599A JP2001085722A (en) 1999-09-17 1999-09-17 Method for manufacturing transparent electrode film and solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26372599A JP2001085722A (en) 1999-09-17 1999-09-17 Method for manufacturing transparent electrode film and solar battery

Publications (1)

Publication Number Publication Date
JP2001085722A true true JP2001085722A (en) 2001-03-30

Family

ID=17393448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26372599A Pending JP2001085722A (en) 1999-09-17 1999-09-17 Method for manufacturing transparent electrode film and solar battery

Country Status (1)

Country Link
JP (1) JP2001085722A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237610A (en) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd Photoelectric converter and its manufacturing method
WO2003017377A1 (en) * 2001-08-10 2003-02-27 Nippon Sheet Glass Company, Limited Glass plate having electroconductive film formed thereon
EP1443527A1 (en) * 2001-10-19 2004-08-04 Asahi Glass Company Ltd. SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR, AND PHOTOELECTRIC CONVERSION ELEMENT
JP2005244073A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Solar cell and method for manufacturing the same
WO2006038495A1 (en) * 2004-10-01 2006-04-13 Nippon Steel Chemical Co., Ltd. Dye-sensitized solar cell and method for manufacturing the same
WO2006070799A1 (en) * 2004-12-28 2006-07-06 Showa Shell Sekiyu K.K. METHOD FOR PRODUCING ZnO-BASED TRANSPARENT ELECTROCONDUCTIVE FILM BY MOCVD (METAL ORGANIC CHEMICAL VAPOR DEPOSITION) METHOD
WO2007058118A1 (en) * 2005-11-17 2007-05-24 Asahi Glass Company, Limited Transparent conductive substrate for solar cell and process for producing the same
JP2008244467A (en) * 2007-02-28 2008-10-09 Sharp Corp Metal compound film, method of forming same, and base for forming metal compound film
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
JP2009508000A (en) * 2005-09-09 2009-02-26 ピルキントン グループ リミテッド Deposition method
WO2009119129A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric conversion device and method for manufacturing the same
WO2011002086A1 (en) * 2009-07-03 2011-01-06 株式会社カネカ Crystalline silicon type solar cell and process for manufacture thereof
US7995253B2 (en) 2007-03-13 2011-08-09 Ricoh Company Limited Image reading device and control method thereof
JP2011222687A (en) * 2010-04-08 2011-11-04 Tosoh Corp Solar cell
JP2012018806A (en) * 2010-07-07 2012-01-26 Kaneka Corp Substrate with transparent conductive film
JP2013100577A (en) * 2011-11-08 2013-05-23 Asahi Glass Co Ltd Method for forming fluorine-doped tin oxide film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237610A (en) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd Photoelectric converter and its manufacturing method
WO2003017377A1 (en) * 2001-08-10 2003-02-27 Nippon Sheet Glass Company, Limited Glass plate having electroconductive film formed thereon
EP1443527A4 (en) * 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
EP1443527A1 (en) * 2001-10-19 2004-08-04 Asahi Glass Company Ltd. SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR, AND PHOTOELECTRIC CONVERSION ELEMENT
US7364808B2 (en) 2001-10-19 2008-04-29 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7883789B2 (en) 2001-10-19 2011-02-08 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
JP2005244073A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Solar cell and method for manufacturing the same
JP4864716B2 (en) * 2004-10-01 2012-02-01 国立大学法人九州工業大学 Dye-sensitized solar cell and a method of manufacturing the same
WO2006038495A1 (en) * 2004-10-01 2006-04-13 Nippon Steel Chemical Co., Ltd. Dye-sensitized solar cell and method for manufacturing the same
JPWO2006038495A1 (en) * 2004-10-01 2008-07-31 新日鐵化学株式会社 Dye-sensitized solar cell and a method of manufacturing the same
JP2006183117A (en) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk METHOD FOR PRODUCING ZnO-BASED TRANSPARENT ELECTROCONDUCTIVE FILM BY USING MOCVD (ORGANO-METAL CHEMICAL VAPOR DEPOSITION) PROCESS
WO2006070799A1 (en) * 2004-12-28 2006-07-06 Showa Shell Sekiyu K.K. METHOD FOR PRODUCING ZnO-BASED TRANSPARENT ELECTROCONDUCTIVE FILM BY MOCVD (METAL ORGANIC CHEMICAL VAPOR DEPOSITION) METHOD
JP2009508000A (en) * 2005-09-09 2009-02-26 ピルキントン グループ リミテッド Deposition method
WO2007058118A1 (en) * 2005-11-17 2007-05-24 Asahi Glass Company, Limited Transparent conductive substrate for solar cell and process for producing the same
JP2008244467A (en) * 2007-02-28 2008-10-09 Sharp Corp Metal compound film, method of forming same, and base for forming metal compound film
US7995253B2 (en) 2007-03-13 2011-08-09 Ricoh Company Limited Image reading device and control method thereof
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
WO2009119129A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric conversion device and method for manufacturing the same
WO2011002086A1 (en) * 2009-07-03 2011-01-06 株式会社カネカ Crystalline silicon type solar cell and process for manufacture thereof
US8546685B2 (en) 2009-07-03 2013-10-01 Kaneka Corporation Crystalline silicon based solar cell and method for manufacturing thereof
JP5514207B2 (en) * 2009-07-03 2014-06-04 株式会社カネカ Crystalline silicon solar cell and a method for manufacturing the same
JP2011222687A (en) * 2010-04-08 2011-11-04 Tosoh Corp Solar cell
JP2012018806A (en) * 2010-07-07 2012-01-26 Kaneka Corp Substrate with transparent conductive film
JP2013100577A (en) * 2011-11-08 2013-05-23 Asahi Glass Co Ltd Method for forming fluorine-doped tin oxide film

Similar Documents

Publication Publication Date Title
US4694116A (en) Thin-film solar cell
US6750394B2 (en) Thin-film solar cell and its manufacturing method
US6602606B1 (en) Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same
US20030121544A1 (en) Photoelectric conversion device
US20070169805A1 (en) Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
US20090194155A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
US4808462A (en) Solar cell substrate
US20040038051A1 (en) Conductive film, production method therefor, substrate provided with it and photo-electric conversion device
US6444898B1 (en) Transparent layered product and glass article using the same
US20060065299A1 (en) Transparent conductive substrate for solar cells and method for producing the substrate
US6362414B1 (en) Transparent layered product and glass article using the same
US20090194157A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
US20090025791A1 (en) Transparent conductive substrate for solar cells and method for producing the substrate
US7179527B2 (en) Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US6355353B1 (en) Glass substrate having transparent conductive film
US6380480B1 (en) Photoelectric conversion device and substrate for photoelectric conversion device
US6498380B1 (en) Substrate for photoelectric conversion device, and photoelectric conversion device using the same
US6395973B2 (en) Photovoltaic device
US20110290322A1 (en) Substrate with transparent conductive film and thin film photoelectric conversion device
JP2000294812A (en) Photoelectric converter element and its manufacture
JP2005311292A (en) Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP2005011737A (en) Transparent conductive substrate, its manufacturing method and photoelectric conversion element
WO2011002086A1 (en) Crystalline silicon type solar cell and process for manufacture thereof
JP2004311704A (en) Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
US20030005956A1 (en) Photoelectric device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205