JP7396416B2 - Glass substrate with transparent conductive film and method for manufacturing the same - Google Patents

Glass substrate with transparent conductive film and method for manufacturing the same Download PDF

Info

Publication number
JP7396416B2
JP7396416B2 JP2022143852A JP2022143852A JP7396416B2 JP 7396416 B2 JP7396416 B2 JP 7396416B2 JP 2022143852 A JP2022143852 A JP 2022143852A JP 2022143852 A JP2022143852 A JP 2022143852A JP 7396416 B2 JP7396416 B2 JP 7396416B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
glass substrate
glass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022143852A
Other languages
Japanese (ja)
Other versions
JP2022173167A (en
Inventor
雄志 松井
卓 立川
亮 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2022143852A priority Critical patent/JP7396416B2/en
Publication of JP2022173167A publication Critical patent/JP2022173167A/en
Application granted granted Critical
Publication of JP7396416B2 publication Critical patent/JP7396416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Description

本発明は透明導電膜付きガラス基板及びその製造方法に関する。本発明は特に、低放射率ガラスや太陽電池用の透明電極基板等に好適に用いられる透明導電膜付きガラス基板及びその製造方法に関する。 The present invention relates to a glass substrate with a transparent conductive film and a method for manufacturing the same. The present invention particularly relates to a glass substrate with a transparent conductive film that is suitably used for low emissivity glass, transparent electrode substrates for solar cells, etc., and a method for manufacturing the same.

ガラス基板上に金属酸化物等を含む透明導電膜が形成された透明導電膜付きガラス基板は、様々な特性を有することから、建築部材、光学部品、電気部品、電子部品等の幅広い分野で利用されている。 Glass substrates with transparent conductive films, in which transparent conductive films containing metal oxides, etc. are formed on glass substrates, have various properties and are used in a wide range of fields such as architectural components, optical parts, electrical parts, and electronic parts. has been done.

透明導電膜付きガラス基板は、例えば、遮熱性を有する低放射率ガラスとして建築物、車両等のガラス窓や、冷凍ショーケース、調理器具等に用いられる。低放射率ガラスにおいては一般に、透明導電膜の抵抗が比較的小さいと遮熱性に優れることが知られている。 Glass substrates with transparent conductive films are used, for example, as low emissivity glass having heat shielding properties, for glass windows of buildings, vehicles, etc., frozen showcases, cooking utensils, and the like. It is generally known that low emissivity glass has excellent heat shielding properties when the resistance of the transparent conductive film is relatively low.

また透明導電膜付きガラス基板は、太陽電池用の透明電極基板にも用いられる。太陽電池は、太陽からの光エネルギーを直接電気エネルギーに変換する素子であり、シリコン系、化合物系、III-V族系、有機系に大別される。太陽電池用の透明電極基板においても、電池効率を向上する観点から、透明導電膜の電気抵抗値は比較的小さいことが求められる。電気抵抗値には透明導電膜のキャリア濃度と移動度の2つの要素が関連する。この分野では、入射光透過率の損失を極力減らすために高移動度であることが求められる。 Furthermore, the glass substrate with a transparent conductive film is also used as a transparent electrode substrate for solar cells. Solar cells are elements that directly convert light energy from the sun into electrical energy, and are broadly classified into silicon-based, compound-based, III-V group-based, and organic-based. Also in transparent electrode substrates for solar cells, the electrical resistance value of the transparent conductive film is required to be relatively small from the viewpoint of improving cell efficiency. Two factors are related to the electrical resistance value: carrier concentration and mobility of the transparent conductive film. In this field, high mobility is required to reduce the loss of incident light transmittance as much as possible.

このように各種用途に用いられる透明導電膜付きガラス基板に対し、高温プロセスを含む処理がなされる場合がある。例えば低放射率ガラスに強度を付与するために、低放射率ガラスを600~700℃程度の高温で加熱する工程を含む風冷強化がなされることがある。 As described above, glass substrates with transparent conductive films used for various purposes are sometimes subjected to treatments including high-temperature processes. For example, in order to impart strength to low-emissivity glass, air-cooling strengthening, which includes a step of heating the low-emissivity glass at a high temperature of about 600 to 700° C., is sometimes performed.

また太陽電池用の透明電極基板においては、太陽電池の製造時に高温プロセスを含む処理がなされる場合がある。上述した太陽電池における化合物系太陽電池のひとつに、Cd・Teが原料として用いられるCdTe太陽電池が挙げられる。一般的にCdTe太陽電池は、透明電極基板を陰極として、透明電極基板上にn型層、p型層及び陽極が順に積層された構成を有する。ここで、p型層はCdTeからなるものが一般的であるが、CdTeからなる膜は一般に高温環境下で形成されるため、CdTe太陽電池の製造においては透明電極基板も高温環境下に置かれることとなる。 Furthermore, transparent electrode substrates for solar cells are sometimes subjected to treatments including high-temperature processes during the manufacture of solar cells. One of the compound-based solar cells in the solar cell described above is a CdTe solar cell in which Cd.Te is used as a raw material. Generally, a CdTe solar cell has a structure in which a transparent electrode substrate is used as a cathode, and an n-type layer, a p-type layer, and an anode are laminated in this order on the transparent electrode substrate. Here, the p-type layer is generally made of CdTe, but since films made of CdTe are generally formed in a high-temperature environment, the transparent electrode substrate is also placed in a high-temperature environment in the production of CdTe solar cells. That will happen.

例えば、特許文献1には、耐熱性基板面とCdTeおよび/あるいはCdとTeを主成分とする材料面を近接させて設置し、材料面を加熱して気体を発生させ、材料面より低温である前記耐熱性基板面にCdTeを析出させるCdTe膜の形成方法において、材料面の温度を630℃以上に加熱することが開示されている。
また、製膜速度、膜質、電池効率等の観点からはCdTe成膜時の加熱温度は高いことが好ましく、700℃程度の環境下でCdTeを製膜することも検討されている。
For example, in Patent Document 1, a heat-resistant substrate surface and a material surface mainly composed of CdTe and/or Cd and Te are installed in close proximity, the material surface is heated to generate gas, and the material surface is heated at a lower temperature than the material surface. In a method for forming a CdTe film in which CdTe is deposited on the surface of a certain heat-resistant substrate, heating the material surface to a temperature of 630° C. or higher is disclosed.
Further, from the viewpoint of film forming speed, film quality, battery efficiency, etc., it is preferable that the heating temperature during CdTe film formation is high, and forming CdTe into a film in an environment of about 700° C. is also being considered.

特開平10-247625号公報Japanese Patent Application Publication No. 10-247625

しかしながら、かかる透明導電膜付きガラス基板に対し、特に650℃~700℃の高温条件で処理を行うと、透明導電膜の抵抗が増大し、各用途における特性が低下してしまう場合があった。したがって、透明導電膜付きガラス基板においては高温における耐熱性が求められていた。 However, when such a glass substrate with a transparent conductive film is processed under high-temperature conditions of 650° C. to 700° C., the resistance of the transparent conductive film increases and the characteristics in various applications may deteriorate. Therefore, heat resistance at high temperatures has been required for glass substrates with transparent conductive films.

かかる事情に鑑み、本発明は、高温における耐熱性に優れる透明電極基板の提供を目的とする。 In view of such circumstances, the present invention aims to provide a transparent electrode substrate that has excellent heat resistance at high temperatures.

本発明は、以下の1~7に関する。
1.ガラス基板、アンダーコート層及び透明導電膜をこの順に含む透明導電膜付きガラス基板であって、
前記アンダーコート層は酸化ケイ素を主成分とする層を含み、
前記透明導電膜の主成分がSnOであり、
前記透明導電膜はドーパントとしてフッ素原子を含有し、
窒素雰囲気中で最高温度700℃で116分間保持する耐熱試験により下記式1で求められる抵抗変化比が2以下である、透明導電膜付きガラス基板。
(式1) 抵抗変化比=(耐熱試験後の透明導電膜のシート抵抗値)/(耐熱試験前の透明導電膜のシート抵抗値)
2.前記透明導電膜のキャリア濃度と、透明導電膜1cmあたりのフッ素イオン量との関係が下記式2を満たす、前記1に記載の透明導電膜付きガラス基板。
(式2) キャリア濃度(cm-3)>0.45×フッ素イオン量(cm-3)+1.5×1020
3.前記キャリア濃度が2.0×1020cm-3以上である前記2に記載の透明導電膜付きガラス基板。
4.前記透明導電膜における自由電子の移動度が32cm/Vs以上である、前記1~3のいずれか1に記載の透明導電膜付きガラス基板。
5.前記透明導電膜における自由電子の移動度が38cm/Vs以上である、前記1~4のいずれか1に記載の透明導電膜付きガラス基板。
6.前記アンダーコート層が以下の(a)又は(b)の構成を有する、前記1~5のいずれか1に記載の透明導電膜付きガラス基板。
(a)SiOを主成分とする層と、TiO又はSnOを主成分とする層とを積層した構成。
(b)SiOC又はSiONを主成分とする層からなる構成。
7.前記ガラス基板上にCVD(Chemical Vapor Deposition:化学気相蒸着)法により前記アンダーコート層及び前記透明導電膜を順に形成することを含む、前記1~6のいずれか1に記載の透明導電膜付きガラス基板の製造方法。
The present invention relates to the following 1 to 7.
1. A glass substrate with a transparent conductive film comprising a glass substrate, an undercoat layer and a transparent conductive film in this order,
The undercoat layer includes a layer containing silicon oxide as a main component,
The main component of the transparent conductive film is SnO2 ,
The transparent conductive film contains fluorine atoms as a dopant,
A glass substrate with a transparent conductive film, which has a resistance change ratio of 2 or less as determined by the following formula 1 in a heat resistance test held at a maximum temperature of 700° C. for 116 minutes in a nitrogen atmosphere.
(Formula 1) Resistance change ratio = (sheet resistance value of transparent conductive film after heat resistance test) / (sheet resistance value of transparent conductive film before heat resistance test)
2. 2. The glass substrate with a transparent conductive film according to 1 above, wherein the relationship between the carrier concentration of the transparent conductive film and the amount of fluorine ions per 1 cm 3 of the transparent conductive film satisfies the following formula 2.
(Formula 2) Carrier concentration (cm -3 ) > 0.45 x amount of fluorine ions (cm -3 ) + 1.5 x 10 20
3. 2. The glass substrate with a transparent conductive film as described in 2 above, wherein the carrier concentration is 2.0×10 20 cm −3 or more.
4. 4. The glass substrate with a transparent conductive film according to any one of 1 to 3 above, wherein the free electron mobility in the transparent conductive film is 32 cm 2 /Vs or more.
5. 5. The glass substrate with a transparent conductive film according to any one of 1 to 4 above, wherein the free electron mobility in the transparent conductive film is 38 cm 2 /Vs or more.
6. 6. The glass substrate with a transparent conductive film according to any one of 1 to 5 above, wherein the undercoat layer has the following configuration (a) or (b).
(a) A structure in which a layer containing SiO 2 as a main component and a layer containing TiO 2 or SnO 2 as a main component are laminated.
(b) A structure consisting of a layer mainly composed of SiOC or SiON.
7. 7. With a transparent conductive film according to any one of 1 to 6 above, comprising sequentially forming the undercoat layer and the transparent conductive film on the glass substrate by a CVD (Chemical Vapor Deposition) method. A method for manufacturing a glass substrate.

本発明の透明導電膜付きガラス基板によれば、耐熱試験における抵抗変化比が小さいことで、例えば650℃~700℃の高温における耐熱性に優れる。したがって、本発明の透明導電膜付きガラス基板は、高温プロセスを含む処理がなされ得る用途、例えば低放射率ガラス、太陽電池用の透明電極基板等に好適に用いられる。 According to the glass substrate with a transparent conductive film of the present invention, the resistance change ratio in the heat resistance test is small, so that the glass substrate has excellent heat resistance at high temperatures of, for example, 650° C. to 700° C. Therefore, the glass substrate with a transparent conductive film of the present invention is suitably used for applications that can be subjected to treatments including high-temperature processes, such as low emissivity glass, transparent electrode substrates for solar cells, and the like.

図1は、透明導電膜付きガラス基板の構成例を表す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example of a glass substrate with a transparent conductive film. 図2は、横軸をキャリア濃度、縦軸を移動度とした抵抗変化比の分布を示す図である。FIG. 2 is a diagram showing the distribution of the resistance change ratio, with the horizontal axis representing the carrier concentration and the vertical axis representing the mobility. 図3は、横軸をフッ素イオン量、縦軸をキャリア濃度とした抵抗変化比の分布を示す図である。FIG. 3 is a diagram showing the distribution of the resistance change ratio, with the horizontal axis representing the amount of fluorine ions and the vertical axis representing the carrier concentration. 図4は、横軸を透明導電膜の膜厚、縦軸をフッ素取り込み割合とした抵抗変化比の分布を示す図である。FIG. 4 is a diagram showing the distribution of the resistance change ratio, with the horizontal axis representing the thickness of the transparent conductive film and the vertical axis representing the fluorine uptake rate. 図5は、CdTe太陽電池の構成例を表す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a configuration example of a CdTe solar cell.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be implemented with arbitrary modifications within the scope of the gist of the present invention. In addition, "~" indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value.

<透明導電膜付きガラス基板>
図1に示すように、本実施形態に係る透明導電膜付きガラス基板1は、ガラス基板10、アンダーコート層30及び透明導電膜20をこの順に含む。
本実施形態に係る透明導電膜付きガラス基板1において、アンダーコート層30は酸化ケイ素を主成分とする層を含み、透明導電膜20の主成分がSnOであり、透明導電膜20はドーパントとしてフッ素原子を含有する。
<Glass substrate with transparent conductive film>
As shown in FIG. 1, the glass substrate 1 with a transparent conductive film according to this embodiment includes a glass substrate 10, an undercoat layer 30, and a transparent conductive film 20 in this order.
In the glass substrate 1 with a transparent conductive film according to the present embodiment, the undercoat layer 30 includes a layer containing silicon oxide as a main component, the main component of the transparent conductive film 20 is SnO 2 , and the transparent conductive film 20 is used as a dopant. Contains fluorine atoms.

本実施形態に係る透明導電膜付きガラス基板は、窒素雰囲気中で最高温度700℃で116分間保持する耐熱試験により下記式1で求められる抵抗変化比が2以下である。
(式1) 抵抗変化比=(耐熱試験後の透明導電膜のシート抵抗値)/(耐熱試験前の透明導電膜のシート抵抗値)
本実施形態に係る透明導電膜付きガラス基板は、かかる抵抗変化比が2以下であることで、例えば650℃~700℃の高温プロセスを含む処理がなされた場合にもシート抵抗値の上昇を抑制でき、耐熱性に優れる。抵抗変化比は1.5以下が好ましく、1.25以下がより好ましい。また、抵抗変化比は小さいほど好ましいが、典型的には1以上である。
以下、本実施形態に係る透明導電膜付きガラス基板についてさらに具体的に説明する。
The glass substrate with a transparent conductive film according to the present embodiment has a resistance change ratio of 2 or less as determined by the following formula 1 in a heat resistance test held at a maximum temperature of 700° C. for 116 minutes in a nitrogen atmosphere.
(Formula 1) Resistance change ratio = (sheet resistance value of transparent conductive film after heat resistance test) / (sheet resistance value of transparent conductive film before heat resistance test)
Since the glass substrate with a transparent conductive film according to the present embodiment has such a resistance change ratio of 2 or less, an increase in sheet resistance value is suppressed even when a process including a high temperature process of 650° C. to 700° C. is performed, for example. and has excellent heat resistance. The resistance change ratio is preferably 1.5 or less, more preferably 1.25 or less. Further, the resistance change ratio is preferably as small as possible, but is typically 1 or more.
Hereinafter, the glass substrate with a transparent conductive film according to this embodiment will be described in more detail.

(透明導電膜)
本実施形態に係る透明導電膜付きガラス基板において、透明導電膜の主成分はSnOであり、透明導電膜はドーパントとしてフッ素原子を含有する。透明導電膜を構成する成分について、より詳しくは後述する。
(Transparent conductive film)
In the glass substrate with a transparent conductive film according to this embodiment, the main component of the transparent conductive film is SnO 2 and the transparent conductive film contains fluorine atoms as a dopant. The components constituting the transparent conductive film will be described in more detail later.

透明導電膜において、キャリア濃度と、透明導電膜1cmあたりのフッ素イオン量との関係は下記式2を満たすことが好ましい。
(式2) キャリア濃度(cm-3)>0.45×フッ素イオン量(cm-3)+1.5×1020
本発明者らは、以下のように検討した結果、透明導電膜におけるキャリア濃度と、透明導電膜1cmあたりのフッ素イオン量(以下、単に「フッ素イオン量」ともいう。)が上記式2の関係を満たすことで、透明導電膜付きガラス基板の耐熱性が向上しやすいことを見出した。ここで、透明導電膜1cmあたりのフッ素イオン量とは、透明導電膜1cmあたりのフッ素イオンの個数のことをいい、例えば透明導電膜におけるフッ素濃度(重量%)を測定して以下の式で算出できる。
フッ素イオン量=(フッ素濃度(重量%)/100)×(透明導電膜の密度(g/cm))÷18.988×6.022×1023
ここで、透明導電膜の密度は、透明導電膜がフッ素ドープされたSnO膜である場合は6.95g/cmとする。また、Fの原子量:18.998、アボガドロ数:6.022×1023とする。
In the transparent conductive film, it is preferable that the relationship between the carrier concentration and the amount of fluorine ions per 1 cm 3 of the transparent conductive film satisfies the following formula 2.
(Formula 2) Carrier concentration (cm -3 ) > 0.45 x amount of fluorine ions (cm -3 ) + 1.5 x 10 20
As a result of the following study, the present inventors found that the carrier concentration in the transparent conductive film and the amount of fluorine ions per 1 cm3 of the transparent conductive film (hereinafter also simply referred to as "the amount of fluorine ions") are expressed by the above formula 2. It has been found that by satisfying the relationship, the heat resistance of the glass substrate with a transparent conductive film can be easily improved. Here, the amount of fluorine ions per 1 cm 3 of the transparent conductive film refers to the number of fluorine ions per 1 cm 3 of the transparent conductive film. For example, the fluorine concentration (weight %) in the transparent conductive film is measured and the following formula It can be calculated by
Amount of fluorine ions = (fluorine concentration (weight%)/100) x (density of transparent conductive film (g/cm 3 )) ÷ 18.988 x 6.022 x 10 23
Here, the density of the transparent conductive film is 6.95 g/cm 3 when the transparent conductive film is a fluorine-doped SnO 2 film. Further, the atomic weight of F is 18.998, and Avogadro's number is 6.022×10 23 .

まず、本発明者らは、透明導電膜の抵抗値を決定する要素であるキャリア濃度と自由電子の移動度(以下、単に「移動度」ともいう。)とがそれぞれ様々な値となるように条件を調整して、CVD法で透明導電膜を成膜して透明導電膜付きガラス基板を作製し、各透明導電膜付きガラス基板について抵抗変化比を調べた。横軸をキャリア濃度、縦軸を移動度とした抵抗変化比の分布を図2に示す。図2では、抵抗変化比の値によって色分けされた4種のマーカーが示されており、抵抗変化比(Rs ratio)の小さい方から順にマーカーA(1.03≦Rs ratio≦1.50)、マーカーB(1.50<Rs ratio≦2)、マーカーC(2<Rs ratio≦3)、マーカーD(3<Rs ratio≦6.11)と称する。ここで、マーカーA及びBでは抵抗変化比が2以下であり、マーカーC及びDでは抵抗変化比が2より大きい。なお、後述する図3及び図4においても同様のマーカーが用いられる。 First, the present inventors have developed a method in which carrier concentration and free electron mobility (hereinafter also simply referred to as "mobility"), which are elements that determine the resistance value of a transparent conductive film, have various values. After adjusting the conditions, a transparent conductive film was formed by a CVD method to produce a glass substrate with a transparent conductive film, and the resistance change ratio was examined for each glass substrate with a transparent conductive film. FIG. 2 shows the distribution of the resistance change ratio, with the horizontal axis representing the carrier concentration and the vertical axis representing the mobility. In FIG. 2, four types of markers are shown, which are color-coded according to the value of the resistance change ratio, and in descending order of resistance change ratio (Rs ratio), marker A (1.03≦Rs ratio≦1.50), marker A (1.03≦Rs ratio≦1.50), They are referred to as marker B (1.50<Rs ratio≦2), marker C (2<Rs ratio≦3), and marker D (3<Rs ratio≦6.11). Here, the resistance change ratio of markers A and B is 2 or less, and the resistance change ratio of markers C and D is greater than 2. Note that similar markers are used in FIGS. 3 and 4, which will be described later.

図2によれば、移動度が38cm/Vsよりも低い領域では抵抗変化比が概ね2以下であるが、移動度が38cm/Vs以上の領域においては、抵抗変化比の大きさはキャリア濃度や移動度の値で分類できないことがわかった。
そこで本発明者らは、移動度が38cm/Vs以上の透明導電膜付きガラス基板について、図3に示すように、横軸をフッ素イオン量、縦軸をキャリア濃度として抵抗変化比の分布を検討した。すると、上記式2を満たす領域(図3において、点線よりもキャリア濃度の大きい領域)にはマーカーA及びBのみが分布し、上記式2を満たさない領域にはほとんどマーカーC及びDのみが分布する結果となった。
According to FIG. 2, in the region where the mobility is lower than 38 cm 2 /Vs, the resistance change ratio is approximately 2 or less, but in the region where the mobility is 38 cm 2 /Vs or more, the magnitude of the resistance change ratio is It was found that classification based on concentration or mobility values was not possible.
Therefore, the present inventors calculated the distribution of resistance change ratio for a glass substrate with a transparent conductive film having a mobility of 38 cm 2 /Vs or higher, with the horizontal axis representing the amount of fluorine ions and the vertical axis representing the carrier concentration, as shown in Figure 3. investigated. Then, only markers A and B are distributed in the region that satisfies the above formula 2 (in FIG. 3, the region where the carrier concentration is higher than the dotted line), and almost only markers C and D are distributed in the region that does not satisfy the above formula 2. The result was that.

したがって、(式2) キャリア濃度(cm-3)>0.45×フッ素イオン量(cm-3)+1.5×1020を満たす場合、透明導電膜付きガラス基板において抵抗変化比が小さくなりやすく、耐熱性が向上しやすいことがわかった。なおこの結果は、透明導電膜が含有するフッ素原子のうち、キャリア発生に寄与するフッ素原子の割合が比較的多いほど耐熱性に優れることを意味すると考えられる。 Therefore, if (Formula 2) carrier concentration (cm -3 ) > 0.45 x amount of fluorine ions (cm -3 ) + 1.5 x 10 20 is satisfied, the resistance change ratio tends to become small in the glass substrate with a transparent conductive film. It was found that heat resistance was easily improved. This result is considered to mean that the higher the proportion of fluorine atoms that contribute to carrier generation among the fluorine atoms contained in the transparent conductive film, the better the heat resistance is.

図4は、図3と同様の各透明導電膜付きガラス基板について、横軸を透明導電膜の膜厚、縦軸を以下に説明するフッ素取り込み割合とした場合の抵抗変化比の分布を示す図である。
ここでフッ素取り込み割合とは、以下の式3で表される値をいう。
(式3) フッ素取り込み割合=(XRF F/Sn)/(HF/MBTC)
(XRF F/Sn):蛍光X線分析(XRF)による透明導電膜のSnの信号強度に対するFの信号強度の比
(HF/MBTC):CVD装置に供給された、モノブチル錫トリクロライド(MBTC)に対するフッ化水素(HF)のモル比
すなわちフッ素取り込み割合とは、Snの供給量又は含有量を基準としたときの、透明導電膜成膜時のフッ素の供給量に対する、成膜後の透明導電膜に取り込まれたフッ素量の割合を相対的に表す値である。
FIG. 4 is a diagram showing the distribution of the resistance change ratio for each glass substrate with a transparent conductive film similar to that shown in FIG. It is.
Here, the fluorine uptake rate refers to a value expressed by the following equation 3.
(Formula 3) Fluorine uptake rate = (XRF F/Sn)/(HF/MBTC)
(XRF F/Sn): Ratio of F signal intensity to Sn signal intensity of a transparent conductive film determined by X-ray fluorescence analysis (XRF) (HF/MBTC): Monobutyltin trichloride (MBTC) supplied to the CVD device The molar ratio of hydrogen fluoride (HF) to the transparent conductive film after film formation, that is, the fluorine uptake ratio, is the molar ratio of hydrogen fluoride (HF) to This is a value that relatively represents the proportion of the amount of fluorine incorporated into the membrane.

図4によれば、マーカーA及びBはフッ素取り込み割合が比較的小さい領域にまとまって分布することがわかる。この結果は、フッ素取り込み割合が比較的大きい場合等、透明導電膜に過剰なフッ素原子が取り込まれた時には耐熱性が低下しやすいことを意味する。
なお、図4において抵抗変化比と膜厚の関係を検討すると、マーカーA及びBは膜厚420nm余りから550nm付近まで幅広く分布しているので、膜厚は耐熱性を制限する要因ではないと考えられる。
According to FIG. 4, it can be seen that markers A and B are clustered and distributed in a region where the fluorine uptake rate is relatively low. This result means that when excessive fluorine atoms are incorporated into the transparent conductive film, such as when the fluorine incorporation ratio is relatively high, the heat resistance tends to decrease.
In addition, when examining the relationship between resistance change ratio and film thickness in Figure 4, markers A and B are widely distributed from a film thickness of about 420 nm to around 550 nm, so film thickness is considered not to be a factor that limits heat resistance. It will be done.

過剰なフッ素原子と耐熱性との関連については、次のように考えられる。すなわち、SnOを主成分とする透明導電膜にドープされたフッ素原子は、SnOの酸素サイトを置換して透明導電膜中に組み込まれると、自由電子を放出してキャリア発生に寄与する。しかしながら、透明導電膜にフッ素原子が過剰に取り込まれると、過剰なフッ素原子は、酸素サイトを置換せず、格子間やSnOの結晶粒界に存在しやすくなる。このようなフッ素原子はキャリア発生には寄与しないと考えられ、比較的化学結合が不安定な状態にある。高温環境下ではこのようなフッ素原子が活性化し、SnO格子に欠陥や歪みを生じさせてしまう。これにより高温加熱によりキャリア濃度や移動度が低下しやすく、結果として抵抗値が増大する、すなわち抵抗変化比が大きくなると考えられる。 The relationship between excess fluorine atoms and heat resistance is considered as follows. That is, when fluorine atoms doped into a transparent conductive film containing SnO 2 as a main component replace the oxygen sites of SnO 2 and are incorporated into the transparent conductive film, they emit free electrons and contribute to carrier generation. However, when excessive fluorine atoms are incorporated into the transparent conductive film, the excess fluorine atoms do not replace oxygen sites and tend to exist in interstitial spaces or at grain boundaries of SnO 2 . It is thought that such fluorine atoms do not contribute to carrier generation, and their chemical bonds are in a relatively unstable state. In a high-temperature environment, such fluorine atoms become activated, causing defects and distortions in the SnO 2 lattice. As a result, carrier concentration and mobility tend to decrease due to high-temperature heating, and as a result, it is thought that the resistance value increases, that is, the resistance change ratio increases.

以上のような理由から、上記式2を満たし、透明導電膜が含有するフッ素原子のうち、キャリア発生に寄与するフッ素原子の割合が比較的多い場合は、寄与しないフッ素原子が少ないために抵抗変化比を小さくでき、耐熱性を向上できると考えられる。なお、図3及び図4は移動度が38cm/Vs以上の透明導電膜付きガラス基板について検討されたものであるが、上述の通り耐熱性に関係するのはフッ素取り込み割合であると考えられることから、透明導電膜付きガラス基板は移動度にかかわらず式2を満たすことで耐熱性に優れやすいと考えられる。 For the above reasons, if the above formula 2 is satisfied and the proportion of fluorine atoms that contribute to carrier generation among the fluorine atoms contained in the transparent conductive film is relatively large, the resistance will change because there are few fluorine atoms that do not contribute. It is thought that the ratio can be reduced and heat resistance can be improved. Note that FIGS. 3 and 4 were studied for glass substrates with transparent conductive films having a mobility of 38 cm 2 /Vs or more, but as mentioned above, it is thought that the rate of fluorine uptake is related to heat resistance. Therefore, it is considered that the glass substrate with a transparent conductive film tends to have excellent heat resistance by satisfying Formula 2 regardless of the mobility.

透明導電膜において、キャリア濃度及びフッ素イオン量の関係が式2を満たすように調整する方法としては、特に限定されないが、例えば透明導電膜の原料の供給比率等を調整する方法が挙げられる。具体的な好ましい条件は後述する。 In the transparent conductive film, a method for adjusting the relationship between the carrier concentration and the amount of fluorine ions to satisfy Equation 2 is not particularly limited, but includes, for example, a method of adjusting the supply ratio of raw materials for the transparent conductive film. Specific preferable conditions will be described later.

透明導電膜の電気特性としてはシート抵抗が重要となる。シート抵抗は、比抵抗/膜厚で定義される実質的な透明導電膜としての電気抵抗である。比抵抗と膜厚を調整することにより、シート抵抗を好ましい値にできる。シート抵抗は、透明電極基板として、配線での電圧ロスを下げる観点や、低放射率ガラスとしての遮熱性を向上する観点から20Ω/□以下が好ましく、12Ω/□以下が更に好ましい。シート抵抗は低い程好ましいが、5Ω/□以上が実際的である。シート抵抗は、例えば4端針測定装置により測定でき、ホール効果測定装置でも測定できる。 Sheet resistance is important as an electrical property of a transparent conductive film. Sheet resistance is the electric resistance as a substantial transparent conductive film defined by specific resistance/film thickness. By adjusting the specific resistance and film thickness, the sheet resistance can be set to a preferable value. The sheet resistance is preferably 20 Ω/□ or less, more preferably 12 Ω/□ or less from the viewpoint of reducing voltage loss in wiring as a transparent electrode substrate and improving heat shielding properties as a low emissivity glass. The lower the sheet resistance, the better, but 5Ω/□ or more is practical. The sheet resistance can be measured, for example, by a four-point needle measuring device or by a Hall effect measuring device.

透明導電膜の比抵抗は、透明導電膜付きガラス基板としての導電性を大きくする観点から、0.001Ωcm以下が好ましく、0.0008Ωcm以下がより好ましく、0.0006Ωcm以下がさらに好ましい。また、透明導電膜の比抵抗は低いほど好ましいが、0.0001Ωcm以上が実際的である。なお、透明導電膜の比抵抗は、透明導電膜付きガラス基板に対して4端針測定装置を用いたシート抵抗値と膜厚から決定できる。 The specific resistance of the transparent conductive film is preferably 0.001 Ωcm or less, more preferably 0.0008 Ωcm or less, and even more preferably 0.0006 Ωcm or less, from the viewpoint of increasing the conductivity as a glass substrate with a transparent conductive film. Further, the lower the specific resistance of the transparent conductive film, the more preferable it is, but 0.0001 Ωcm or more is practical. Note that the specific resistance of the transparent conductive film can be determined from the sheet resistance value and film thickness using a four-point needle measuring device for a glass substrate with a transparent conductive film.

なお透明導電膜の膜厚は、例えば透明導電膜付きガラス基板が低放射率ガラスに用いられる場合、ヘーズの増大を抑制する観点から450nm以下が好ましく、400nm以下がより好ましい。また、膜厚は抵抗を高くしすぎない観点から200nm以上が好ましく、300nm以上がより好ましい。 Note that the thickness of the transparent conductive film is preferably 450 nm or less, more preferably 400 nm or less, from the viewpoint of suppressing an increase in haze, for example, when a glass substrate with a transparent conductive film is used for low emissivity glass. Further, from the viewpoint of not increasing the resistance too much, the film thickness is preferably 200 nm or more, and more preferably 300 nm or more.

また例えば透明導電膜付きガラス基板が太陽電池用の透明電極基板に用いられる場合、高い光透過率を確保する観点から800nm以下が好ましく、600nm以下がより好ましい。また、膜厚は抵抗を高くしすぎない観点から300nm以上が好ましく、400nm以上がより好ましい。透明導電膜の膜厚は、触針式段差計や蛍光X線分析装置を用いて測定できる。 For example, when a glass substrate with a transparent conductive film is used as a transparent electrode substrate for a solar cell, the thickness is preferably 800 nm or less, more preferably 600 nm or less, from the viewpoint of ensuring high light transmittance. Further, the film thickness is preferably 300 nm or more, more preferably 400 nm or more, from the viewpoint of not increasing the resistance too much. The thickness of the transparent conductive film can be measured using a stylus type step meter or a fluorescent X-ray analyzer.

透明導電膜における自由電子の移動度は、透明導電膜のシート抵抗を小さくする観点から32cm/Vs以上が好ましく、38cm/Vs以上がより好ましく、45cm/Vs以上がさらに好ましい。移動度は、透明導電膜付きガラス基板を低放射率ガラスに用いる場合及び太陽電池用透明電極基板に用いる場合のいずれにおいても重要であり、比較的値が大きいことが求められる。 From the viewpoint of reducing the sheet resistance of the transparent conductive film, the free electron mobility in the transparent conductive film is preferably 32 cm 2 /Vs or more, more preferably 38 cm 2 /Vs or more, and even more preferably 45 cm 2 /Vs or more. Mobility is important both when using a glass substrate with a transparent conductive film as a low emissivity glass and when using it as a transparent electrode substrate for solar cells, and a relatively large value is required.

低放射率ガラスにおいては、そのヘーズが小さいことが求められるため、透明導電膜の膜厚は限定される傾向にある。一方で上述のとおり、遮熱性を向上するためには透明導電膜のシート抵抗が小さいことが求められる。したがって、膜厚を大きくせずにシート抵抗を小さくする観点から、比抵抗は比較的小さいことが好ましい。 Since low emissivity glass is required to have a small haze, the thickness of the transparent conductive film tends to be limited. On the other hand, as described above, in order to improve heat shielding properties, the sheet resistance of the transparent conductive film is required to be low. Therefore, from the viewpoint of reducing the sheet resistance without increasing the film thickness, it is preferable that the specific resistance is relatively small.

また、太陽電池用透明電極基板においては、比較的キャリア濃度が小さく、かつ移動度が大きい構成とすることで、近赤外域の透過率に優れた透明電極基板が得られる。近赤外域の透過率に優れた透明電極基板は太陽電池の電流を大きくしやすいため好ましい。したがって、移動度は比較的大きいことが好ましい。
移動度は大きいほど好ましいが、上限は52cm/Vs程度が実際的である。
Moreover, in a transparent electrode substrate for a solar cell, by having a structure in which the carrier concentration is relatively low and the mobility is high, a transparent electrode substrate with excellent transmittance in the near-infrared region can be obtained. A transparent electrode substrate with excellent transmittance in the near-infrared region is preferable because it facilitates increasing the current of the solar cell. Therefore, it is preferable that the mobility is relatively high.
The higher the mobility, the better, but the practical upper limit is about 52 cm 2 /Vs.

透明導電膜のキャリア濃度は、透明導電膜付きガラス基板としての導電性を確保する観点から2.0×1020cm-3以上が好ましく、2.5×1020cm-3以上がより好ましく、3.0×1020cm-3以上がさらに好ましい。導電性を上昇させる観点から、キャリア濃度は大きい程好ましいが、上限は4.0×1020cm-3程度が実際的である。キャリア濃度を上記上限値以下とすることで、長波長領域での吸収率の増加を抑制でき、透明導電膜付きガラス基板の透過率の低下を抑制できる。透明導電膜のキャリア濃度及び移動度は、ホール効果測定装置により測定できる。 The carrier concentration of the transparent conductive film is preferably 2.0 × 10 20 cm -3 or more, more preferably 2.5 × 10 20 cm -3 or more, from the viewpoint of ensuring conductivity as a glass substrate with a transparent conductive film. More preferably, it is 3.0×10 20 cm −3 or more. From the viewpoint of increasing conductivity, the higher the carrier concentration is, the more preferable it is, but the practical upper limit is about 4.0×10 20 cm −3 . By setting the carrier concentration to the above upper limit value or less, an increase in absorption rate in a long wavelength region can be suppressed, and a decrease in transmittance of a glass substrate with a transparent conductive film can be suppressed. The carrier concentration and mobility of the transparent conductive film can be measured using a Hall effect measuring device.

透明導電膜の主成分はSnOである。透明導電膜の主成分とは、透明導電膜を構成する成分のうち、50重量%以上であることを意味し、透明導電膜全体に対して70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、透明導電膜における主成分の割合の上限は特に限定されないが、99.9重量%以下が実際的である。 The main component of the transparent conductive film is SnO2 . The main component of the transparent conductive film means 50% by weight or more of the components constituting the transparent conductive film, preferably 70% by weight or more, and 85% by weight based on the entire transparent conductive film. It is more preferable that it is above. Further, the upper limit of the proportion of the main component in the transparent conductive film is not particularly limited, but 99.9% by weight or less is practical.

透明導電膜は、透明導電膜付きガラス基板としての透光性と導電性を有し、本発明の効果を奏する範囲であれば、主成分であるSnO以外に他の成分を含んでもよい。他の成分としては、例えばZnO、In、TiO、Ga等が挙げられる。 The transparent conductive film has light transmittance and conductivity as a glass substrate with a transparent conductive film, and may contain other components in addition to the main component SnO 2 as long as the effects of the present invention are achieved. Examples of other components include ZnO, In 2 O 3 , TiO 2 , Ga 2 O 3 and the like.

透明導電膜はドーパントとしてフッ素原子を含有する。
透明導電膜におけるフッ素濃度は、透明導電膜付きガラス基板としての導電性を確保する観点から、0.01重量%以上が好ましく、0.015重量%以上がより好ましく、0.02重量%以上がさらに好ましい。一方で、透明導電膜への過剰なフッ素取り込みを抑制する観点から、フッ素濃度は0.2重量%以下が好ましく、0.15重量%以下がより好ましく、0.1重量%以下がさらに好ましい。
The transparent conductive film contains fluorine atoms as a dopant.
The fluorine concentration in the transparent conductive film is preferably 0.01% by weight or more, more preferably 0.015% by weight or more, and 0.02% by weight or more from the viewpoint of ensuring conductivity as a glass substrate with a transparent conductive film. More preferred. On the other hand, from the viewpoint of suppressing excessive fluorine uptake into the transparent conductive film, the fluorine concentration is preferably 0.2% by weight or less, more preferably 0.15% by weight or less, and even more preferably 0.1% by weight or less.

透明導電膜の組成やフッ素濃度は、蛍光X線分析(XRF)、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定及び測定できる。本明細書において、フッ素濃度としては、蛍光X線分析(XRF)により実施例に記載の方法で測定される値を用いる。 The composition and fluorine concentration of the transparent conductive film can be identified and measured by X-ray fluorescence analysis (XRF), X-ray photoelectron spectroscopy (XPS), or secondary ion mass spectrometry (SIMS). In this specification, as the fluorine concentration, a value measured by X-ray fluorescence analysis (XRF) according to the method described in Examples is used.

(アンダーコート層)
本実施形態に係る透明導電膜付きガラス基板1は、ガラス基板10と透明導電膜20との間にアンダーコート層30を含む。アンダーコート層30を備えることで、ガラス基板10から透明導電膜20へのアルカリ金属成分等の拡散を防止し、透明導電膜20の変質を抑制できる。また、アンダーコート層30の屈折率を調整することで、ガラス基板10と透明導電膜20との屈折率差による透明導電膜とガラス基板との界面での光の反射を抑制できる。
(undercoat layer)
The glass substrate 1 with a transparent conductive film according to this embodiment includes an undercoat layer 30 between the glass substrate 10 and the transparent conductive film 20. By providing the undercoat layer 30, diffusion of alkali metal components and the like from the glass substrate 10 to the transparent conductive film 20 can be prevented, and deterioration of the transparent conductive film 20 can be suppressed. Furthermore, by adjusting the refractive index of the undercoat layer 30, it is possible to suppress reflection of light at the interface between the transparent conductive film and the glass substrate due to the difference in refractive index between the glass substrate 10 and the transparent conductive film 20.

アンダーコート層は酸化ケイ素を主成分とする層を含む。酸化ケイ素を主成分とする層としては例えばSiO、SiOC又はSiONを主成分とする層等が挙げられる。アンダーコート層はこれらの混合膜及び積層膜等であってもよく、酸化ケイ素層を主成分とする層以外の層との積層膜であってもよい。酸化ケイ素層を主成分とする層以外の層としてはTiO、SnO等を主成分とする層が挙げられる。アンダーコート層の具体的な好ましい構成例としては、(a)SiOを主成分とする層と、TiO又はSnOを主成分とする層とを積層した構成や、(b)SiOC又はSiONを主成分とする層を単独で有する構成等が挙げられる。
ここで、ある成分を主成分とする層とは、かかる層を構成する成分のうち、ある成分が50重量%以上であることを意味し、70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、ある成分の主成分としての含有量の上限は特に限定されず、100重量%であってもよい。
The undercoat layer includes a layer containing silicon oxide as a main component. Examples of the layer containing silicon oxide as a main component include a layer containing SiO 2 , SiOC, or SiON as a main component. The undercoat layer may be a mixed film or a laminated film of these, or may be a laminated film with a layer other than a layer whose main component is a silicon oxide layer. Examples of layers other than the layer containing the silicon oxide layer as the main component include layers containing TiO 2 , SnO 2 , etc. as the main component. Specific preferable examples of the undercoat layer include (a) a laminated structure of a layer containing SiO 2 as the main component and a layer containing TiO 2 or SnO 2 as the main component, and (b) SiOC or SiON. Examples include a structure having only a layer containing as a main component.
Here, a layer containing a certain component as a main component means that the certain component accounts for 50% by weight or more, preferably 70% by weight or more, and 85% by weight of the components constituting the layer. It is more preferable that it is above. Moreover, the upper limit of the content of a certain component as a main component is not particularly limited, and may be 100% by weight.

アンダーコート層の厚さは、上述の効果が好適に得られる点から10nm以上が好ましく、20nm以上がより好ましい。また、アンダーコート層自体による光の吸収を抑制する観点から、厚さは100nm以下が好ましく、80nm以下がより好ましい。 The thickness of the undercoat layer is preferably 10 nm or more, more preferably 20 nm or more, in order to suitably obtain the above-mentioned effects. Further, from the viewpoint of suppressing light absorption by the undercoat layer itself, the thickness is preferably 100 nm or less, more preferably 80 nm or less.

(ガラス基板)
ガラス基板は、従来から太陽電池用透明電極基板のガラス基板や低放射率ガラスに用いられるものと同様のものを使用できる。例えば、SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOを母組成として含むガラス基板が挙げられる。より具体的には、酸化物基準のモル百分率表示で、SiOを60~75%、Alを1~7.5%、Bを0~1%、MgOを8.5~12.5%、CaOを1~6.5%、SrOを0~3%、BaOを0~3%、ZrOを0~3%、NaOを1~8%、KOを2~12%含有するガラス基板が挙げられる。ただし、これらの組成に限定されるものではない。
(Glass substrate)
The glass substrate can be the same as that conventionally used for transparent electrode substrates for solar cells or low emissivity glasses. Examples include glass substrates containing SiO 2 , Al 2 O 3 , B 2 O 3 , MgO, CaO, SrO, BaO, ZrO 2 , Na 2 O and K 2 O as a base composition. More specifically, in terms of mole percentage based on oxides, SiO 2 is 60 to 75%, Al 2 O 3 is 1 to 7.5%, B 2 O 3 is 0 to 1%, and MgO is 8.5%. ~12.5%, CaO 1-6.5%, SrO 0-3%, BaO 0-3%, ZrO 2 0-3%, Na 2 O 1-8%, K 2 O Examples include glass substrates containing 2 to 12%. However, the composition is not limited to these.

ガラス基板は、太陽電池の発電効率や低放射率ガラスの透光性を考慮すると、波長500~800nmの光に対する平均透過率が、2mm厚み換算で90.3%以上が好ましく、90.4%以上がより好ましく、90.5%以上がさらに好ましい。 Considering the power generation efficiency of solar cells and the light transmittance of low emissivity glass, the glass substrate preferably has an average transmittance of 90.3% or more for light with a wavelength of 500 to 800 nm, and 90.4% when converted to a thickness of 2 mm. The ratio is more preferably 90.5% or more, and even more preferably 90.5% or more.

また、ガラス基板は良好な耐熱性を有することが好ましい。
具体的には、ガラス軟化温度は680℃以上が好ましく、700℃以上がより好ましく、710℃以上がさらに好ましい。一方、溶解時の粘性を上げすぎないようにするため、ガラス軟化温度は850℃以下が好ましく、800℃以下がより好ましく、780℃以下がさらに好ましい。
Moreover, it is preferable that the glass substrate has good heat resistance.
Specifically, the glass softening temperature is preferably 680°C or higher, more preferably 700°C or higher, and even more preferably 710°C or higher. On the other hand, in order to avoid excessively increasing the viscosity during melting, the glass softening temperature is preferably 850°C or lower, more preferably 800°C or lower, and even more preferably 780°C or lower.

また、ガラス基板の50~350℃における平均熱膨張係数は、モジュール化する際にモジュールが反るのを抑制する点から70×10-7/℃以上が好ましく、80×10-7/℃以上がより好ましい。一方、剥がれ等を抑制する点から、95×10-7/℃以下が好ましく、90×10-7/℃以下がより好ましい。 Furthermore, the average coefficient of thermal expansion of the glass substrate at 50 to 350°C is preferably 70×10 -7 /°C or higher, and 80×10 -7 /°C or higher in order to prevent the module from warping when modularized. is more preferable. On the other hand, from the viewpoint of suppressing peeling and the like, the temperature is preferably 95×10 −7 /°C or less, more preferably 90×10 −7 /°C or less.

ガラス基板の厚さは、特に限定されないが、強度と透過率の観点から、0.7mm以上が好ましく、1.1mm以上がより好ましく、また、6.0mm以下が好ましく、4.0mm以下がより好ましい。 The thickness of the glass substrate is not particularly limited, but from the viewpoint of strength and transmittance, it is preferably 0.7 mm or more, more preferably 1.1 mm or more, and preferably 6.0 mm or less, and more preferably 4.0 mm or less. preferable.

<透明導電膜付きガラス基板の製造方法>
透明導電膜付きガラス基板1は、ガラス基板10上に、アンダーコート層30及び透明導電膜20を順に形成して得られる。
具体的には、ガラス基板は、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程により得られる。また、溶融ガラスをブロック状に成形し、徐冷した後に、切断、研磨を経てガラス基板を製造してもよい。
<Method for manufacturing glass substrate with transparent conductive film>
The glass substrate 1 with a transparent conductive film is obtained by sequentially forming an undercoat layer 30 and a transparent conductive film 20 on a glass substrate 10.
Specifically, glass substrates are produced through a melting process in which glass raw materials are heated to obtain molten glass, a fining process in which bubbles are removed from the molten glass, a forming process in which the molten glass is shaped into a plate to obtain a glass ribbon, and a glass ribbon is heated at room temperature. It is obtained through a slow cooling step of slow cooling to a state of Alternatively, a glass substrate may be manufactured by forming molten glass into a block shape, slowly cooling it, and then cutting and polishing it.

上記各工程は、従来公知の各方法を使用できる。製造方法は、実施形態に限定されず、本発明の目的を達成できる範囲で適宜変形や改良等が可能である。 For each of the above steps, conventionally known methods can be used. The manufacturing method is not limited to the embodiments, and can be modified and improved as appropriate within the scope of achieving the purpose of the present invention.

ガラス基板上にアンダーコート層を形成し、次いで透明導電膜を形成する。
アンダーコート層及び透明導電膜はいずれも、CVD(Chemical Vapor
Deposition:化学気相蒸着)法やスパッタリング法、化学メッキ法、湿式塗布法等により形成できる。スパッタリング法は製板されたガラス基板上に製膜する方法であり、化学メッキ法は鏡を作る際等にも用いられる方法である。アンダーコート層及び透明導電膜の成膜方法として、中でもCVD法が好ましく、後述する大気圧CVD法がより好ましい。
An undercoat layer is formed on a glass substrate, and then a transparent conductive film is formed.
Both the undercoat layer and the transparent conductive film are formed using CVD (Chemical Vapor
It can be formed by a chemical vapor deposition method, a sputtering method, a chemical plating method, a wet coating method, or the like. The sputtering method is a method of forming a film on a manufactured glass substrate, and the chemical plating method is a method that is also used when making mirrors. Among the methods for forming the undercoat layer and the transparent conductive film, the CVD method is preferred, and the atmospheric pressure CVD method described below is more preferred.

大気圧CVD法には、オンラインCVD法とオフラインCVD法がある。
オンラインCVD法とはフロートライン上でガラス基板の製造過程中に、ガラスの表面に直接、膜を製膜する方法である。すなわち、ガラス基板を得た後に透明導電膜等を製膜するのではなく、ガラス基板を得る工程の途中で透明導電膜等を製膜する。
具体的には、ガラス基板の製造の際、ガラスリボンが溶融錫浴の上を移動した後、徐冷されることで、連続的にガラス基板が製造されるが、このガラスリボンの移動中に、ガラスリボンの上面に、所望する層の製膜工程を連続的に実施するものである。
Atmospheric pressure CVD methods include online CVD methods and offline CVD methods.
The online CVD method is a method of forming a film directly on the surface of glass during the manufacturing process of glass substrates on a float line. That is, instead of forming a transparent conductive film or the like after obtaining a glass substrate, a transparent conductive film or the like is formed during the process of obtaining a glass substrate.
Specifically, during the production of glass substrates, glass ribbons are moved over a molten tin bath and then slowly cooled to produce glass substrates continuously. , a process of forming a desired layer on the top surface of the glass ribbon is continuously carried out.

より具体的には、上記ガラス基板の製造方法における徐冷工程の前、すなわち、成形工程でフロートライン上にあるガラスがまだ熱い状態のうちに、気体原料をガラス表面に吹き付けて、反応させながら、所望の層を製膜することで透明導電膜付きガラス基板が得られる。
オンラインCVD法はガラス基板を製造する一連の工程の中で、アンダーコート層及び透明導電膜を連続的に形成できることから、製造コストを低く抑えられるため好ましい。
More specifically, before the slow cooling process in the above glass substrate manufacturing method, that is, while the glass on the float line is still hot during the molding process, a gaseous raw material is blown onto the glass surface and reacted. A glass substrate with a transparent conductive film can be obtained by forming a desired layer.
The online CVD method is preferable because it allows the undercoat layer and the transparent conductive film to be formed continuously in a series of steps for manufacturing the glass substrate, thereby keeping manufacturing costs low.

一方で、オフラインCVD法とは、一旦、ガラス製造工程により製造され、適当なサイズに切断されたガラスを、改めて電気炉に投入して搬送しながら、前記オンラインCVD法と同様に気体原料の反応を利用して、所望の層を製膜する方法である。搬送速度や基板温度を製膜に合わせて設定できる利点がある反面、製造コストは、オンラインCVD法に比べて高くなる。 On the other hand, in the offline CVD method, the glass that has been manufactured through the glass manufacturing process and cut to an appropriate size is fed into an electric furnace and transported while reacting the gaseous raw materials in the same way as in the online CVD method. This is a method of forming a desired layer using the following method. Although this method has the advantage of being able to set the transport speed and substrate temperature in accordance with film formation, the manufacturing cost is higher than that of the online CVD method.

アンダーコート層や透明導電膜の厚さは、CVD法の場合、原料の種類、原料ガス濃度、原料ガスのガラスリボンへの吹き付け流速、基板温度、コーティングビーム構造由来の反応ガス滞留時間等により制御できる。 In the case of the CVD method, the thickness of the undercoat layer and transparent conductive film is controlled by the type of raw material, the concentration of the raw material gas, the flow rate of the raw material gas sprayed onto the glass ribbon, the substrate temperature, the residence time of the reactive gas derived from the coating beam structure, etc. can.

アンダーコート層をCVD法で成膜する方法として、例えば温度500~800℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上に酸化ケイ素を主成分とする層を形成することを含む方法が好ましい。
アンダーコート層成膜時のガラス基板の温度は、CVD法の反応速度を向上させる観点から500℃以上が好ましく、600℃以上がより好ましく、700℃以上がさらに好ましい。また、ガラス基板の温度は、ガラス軟化の観点から800℃以下がより好ましく、760℃以下がさらに好ましい。
As a method for forming an undercoat layer by CVD, for example, a glass substrate heated to a temperature of 500 to 800° C. is reacted with a gaseous raw material to form a layer containing silicon oxide as a main component on the glass substrate. A method including:
The temperature of the glass substrate during undercoat layer formation is preferably 500°C or higher, more preferably 600°C or higher, and even more preferably 700°C or higher, from the viewpoint of improving the reaction rate of the CVD method. Moreover, the temperature of the glass substrate is more preferably 800° C. or lower, and even more preferably 760° C. or lower, from the viewpoint of softening the glass.

気体原料としてはアンダーコート層の組成に応じて公知の原料を使用できる。SiOを主成分とする層においては例えば、シラン類等のケイ素含有物質及び酸素等の酸化剤を含む混合ガスを気体原料とできる。また、SiOCを主成分とする層においては例えば、シラン類等のケイ素含有物質、二酸化炭素等の酸化剤及びエチレン等の不飽和炭化水素を含む混合ガスを気体原料とできる。SnOを主成分とする層やTiOを主成分とする層についても、例えばモノブチル錫トリクロライド等のSn含有物質やテトライソプロポキシチタン等のTi含有物質を含有し、さらに酸化剤等を適宜含有する混合ガスを気体原料とできる。 As the gaseous raw material, known raw materials can be used depending on the composition of the undercoat layer. For a layer containing SiO 2 as a main component, the gaseous raw material may be, for example, a mixed gas containing a silicon-containing substance such as silanes and an oxidizing agent such as oxygen. Further, in a layer containing SiOC as a main component, the gaseous raw material can be, for example, a mixed gas containing a silicon-containing substance such as silanes, an oxidizing agent such as carbon dioxide, and an unsaturated hydrocarbon such as ethylene. The layer mainly composed of SnO 2 or the layer mainly composed of TiO 2 also contains a Sn-containing substance such as monobutyltin trichloride or a Ti-containing substance such as tetraisopropoxytitanium, and further contains an oxidizing agent etc. as appropriate. The mixed gas contained can be used as a gaseous raw material.

また、透明導電膜をCVD法で成膜する方法として、例えば温度500~700℃に加熱されたガラス基板と気体原料とを反応させ、前記ガラス基板上に上述の透明導電膜を形成することを含む方法が好ましい。
透明導電膜成膜時のガラス基板の温度は、CVD法の反応速度を向上させる観点から500℃以上が好ましく、550℃以上がより好ましい。また、ガラス基板の温度は、ガラス軟化の観点から760℃以下がより好ましく、730℃以下がさらに好ましい。
Further, as a method for forming a transparent conductive film by CVD method, for example, a glass substrate heated to a temperature of 500 to 700° C. is reacted with a gaseous raw material to form the above-mentioned transparent conductive film on the glass substrate. Preferred is a method that includes.
The temperature of the glass substrate during the formation of the transparent conductive film is preferably 500°C or higher, more preferably 550°C or higher, from the viewpoint of improving the reaction rate of the CVD method. Moreover, the temperature of the glass substrate is more preferably 760° C. or lower, and even more preferably 730° C. or lower, from the viewpoint of glass softening.

ここで、透明導電膜において、キャリア濃度及びフッ素イオン量が式2を満たすように調整する方法としては、透明導電膜を形成する際の原材料の種類や混合比を調整することが挙げられる。CVD法で透明導電膜を製膜する場合、気体原料は、例えばSn含有物質、F含有物質、水(水蒸気)及び酸素を含む混合ガスが好ましい。混合ガスは、さらに窒素ガス等の不活性ガスを含むことも好ましい。
混合ガスを得る方法としては、例えば、各物質を液相又は気相状態でミキサーに供給し、そこで加熱気化しながら混合する方法が挙げられる。
Here, in the transparent conductive film, a method for adjusting the carrier concentration and the amount of fluorine ions to satisfy the formula 2 includes adjusting the types and mixing ratio of raw materials when forming the transparent conductive film. When forming a transparent conductive film by the CVD method, the gaseous raw material is preferably a mixed gas containing, for example, a Sn-containing substance, an F-containing substance, water (steam), and oxygen. It is also preferable that the mixed gas further contains an inert gas such as nitrogen gas.
Examples of the method for obtaining the mixed gas include a method in which each substance is supplied in a liquid or gas phase to a mixer, and mixed therein while being heated and vaporized.

Sn含有物質としては、モノブチル錫トリクロライド、錫テトラクロライド、トリメチル錫クロライド、ジメチル錫クロライド、モノメチル錫クロライド、モノブチル錫クロライド、テトラブチル錫等が挙げられ、安定性・安全性・気化装置の容易性の観点から、モノブチル錫トリクロライド、テトラブチル錫が好ましい。
F含有物質としては、フッ化水素、トリフロロ酢酸等が挙げられ、気化装置の容易性の観点からフッ化水素が好ましい。
Sn-containing substances include monobutyltin trichloride, tin tetrachloride, trimethyltin chloride, dimethyltin chloride, monomethyltin chloride, monobutyltin chloride, tetrabutyltin, etc. From this point of view, monobutyltin trichloride and tetrabutyltin are preferred.
Examples of the F-containing substance include hydrogen fluoride and trifluoroacetic acid, and hydrogen fluoride is preferable from the viewpoint of ease of use in a vaporizer.

このとき、混合ガスにおけるSnに対するFのモル比は、フッ素取り込み量を抑制し、透明導電膜中の過剰なフッ素原子量を抑制する観点から0.5以下が好ましく、0.45以下がより好ましく、0.4以下がさらに好ましい。また、Fのモル比は導電性を確保する観点から0.2以上が好ましく、0.25以上がより好ましく、0.3以上がさらに好ましい。 At this time, the molar ratio of F to Sn in the mixed gas is preferably 0.5 or less, more preferably 0.45 or less, from the viewpoint of suppressing the amount of fluorine taken in and suppressing the excessive amount of fluorine atoms in the transparent conductive film. More preferably, it is 0.4 or less. Moreover, from the viewpoint of ensuring conductivity, the molar ratio of F is preferably 0.2 or more, more preferably 0.25 or more, and even more preferably 0.3 or more.

また、混合ガスにおけるSnに対するOのモル比は、原料の酸化反応を十分に進行させる観点から4以上が好ましく、6以上がより好ましく、10以上がさらに好ましい。Oのモル比は原料濃度の希釈による製膜速度の低下を防ぐ観点から30以下が好ましく、20以下がより好ましく、15以下がさらに好ましい。 Moreover, the molar ratio of O 2 to Sn in the mixed gas is preferably 4 or more, more preferably 6 or more, and even more preferably 10 or more from the viewpoint of sufficiently advancing the oxidation reaction of the raw material. The molar ratio of O 2 is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less from the viewpoint of preventing a decrease in film forming rate due to dilution of the raw material concentration.

混合ガスにおけるSnに対するHOのモル比は、原料の加水分解反応を十分に進行させる観点から10以上が好ましく、20以上がより好ましく、30以上がさらに好ましい。HOのモル比は原料濃度の希釈による製膜速度の低下を防ぐ観点から100以下が好ましく、50以下がより好ましく、40以下がさらに好ましい。 The molar ratio of H 2 O to Sn in the mixed gas is preferably 10 or more, more preferably 20 or more, and even more preferably 30 or more, from the viewpoint of sufficiently advancing the hydrolysis reaction of the raw material. The molar ratio of H 2 O is preferably 100 or less, more preferably 50 or less, and even more preferably 40 or less, from the viewpoint of preventing a decrease in the film forming rate due to dilution of the raw material concentration.

さらに、透明導電膜の膜厚が同等である場合、混合ガスにおけるSnに対するHOのモル比を比較的小さくすることで、透明導電膜が式2を満たしやすい傾向がある。このような傾向がある理由について、定かではないが、混合ガス中のHO量は成膜速度や粒構造の形成にかかわるため、混合ガス中のHOの量に対して成膜条件を変化させると、その条件によりフッ素取り込み量が大きく変化しやすいものと考えられる。 Furthermore, when the thickness of the transparent conductive film is the same, the transparent conductive film tends to easily satisfy Expression 2 by making the molar ratio of H 2 O to Sn in the mixed gas relatively small. The reason for this tendency is not clear, but since the amount of H 2 O in the mixed gas affects the film formation rate and the formation of grain structure, the amount of H 2 O in the mixed gas depends on the film formation conditions. It is thought that if the fluorine content is changed, the amount of fluorine uptake tends to change greatly depending on the conditions.

また、混合ガスの組成が同等である場合、透明導電膜の膜厚を比較的大きくすることで、透明導電膜が式2を満たしやすい傾向がある。
そして、Snに対するHOのモル比が同等である場合、Snに対するFのモル比を比較的小さくし、透明導電膜の膜厚を大きくすることで、透明導電膜が式2を満たしやすい傾向がある。
Further, when the composition of the mixed gas is the same, the transparent conductive film tends to easily satisfy Expression 2 by making the thickness of the transparent conductive film relatively large.
When the molar ratio of H 2 O to Sn is the same, by making the molar ratio of F to Sn relatively small and increasing the thickness of the transparent conductive film, the transparent conductive film tends to satisfy formula 2. There is.

したがって、混合ガスの組成を上記の好ましい範囲に調整しつつ、さらに上記の傾向に応じて混合ガスの組成や透明導電膜の膜厚を調整することで、キャリア濃度とフッ素イオン量との関係が式2を満たす透明導電膜が得られる。また、かかる条件で透明導電膜を製造することで、抵抗変化比が2以下の透明導電膜が得られる。 Therefore, by adjusting the composition of the mixed gas to the above-mentioned preferred range and further adjusting the composition of the mixed gas and the thickness of the transparent conductive film according to the above-mentioned tendency, the relationship between the carrier concentration and the amount of fluorine ions can be improved. A transparent conductive film satisfying Formula 2 is obtained. Moreover, by manufacturing a transparent conductive film under such conditions, a transparent conductive film having a resistance change ratio of 2 or less can be obtained.

<太陽電池用透明電極基板>
本実施形態に係る透明導電膜付きガラス基板は太陽電池用透明電極基板に好適に用いられる。透明電極基板に含まれる透明導電膜付きガラス基板の好ましい態様は上述したものと同様であるが、透明電極基板は透明導電膜上にさらに表面層を有する構成となることもある。なお、透明導電膜上にさらに表面層を有する場合であっても、透明電極基板の耐熱性における支配的な要因は透明導電膜の耐熱性であると考えられるので、このような本実施形態に係る透明導電膜付きガラス基板を含む透明電極基板は、本実施形態に係る透明導電膜付きガラス基板と同様の効果によって耐熱性に優れると考えられる。
<Transparent electrode substrate for solar cells>
The glass substrate with a transparent conductive film according to this embodiment is suitably used as a transparent electrode substrate for solar cells. Preferred embodiments of the glass substrate with a transparent conductive film included in the transparent electrode substrate are the same as those described above, but the transparent electrode substrate may further have a surface layer on the transparent conductive film. Note that even in the case where a surface layer is further provided on the transparent conductive film, it is considered that the dominant factor in the heat resistance of the transparent electrode substrate is the heat resistance of the transparent conductive film. A transparent electrode substrate including such a glass substrate with a transparent conductive film is considered to have excellent heat resistance due to the same effect as the glass substrate with a transparent conductive film according to this embodiment.

(表面層)
表面層は、透明電極基板を太陽電池とした際に、電気的な短絡点を周囲から隔離する働きがある。この効果を得る観点から、表面層は高抵抗であることが好ましい。そのため表面層は、ドーパントを含有しない層であることが好ましい。また、表面層は透明導電膜を十分に被覆することが好ましい。
(Surface layer)
The surface layer has the function of isolating electrical short-circuit points from the surroundings when the transparent electrode substrate is used as a solar cell. From the viewpoint of obtaining this effect, it is preferable that the surface layer has high resistance. Therefore, the surface layer is preferably a layer that does not contain a dopant. Further, it is preferable that the surface layer sufficiently covers the transparent conductive film.

表面層は、透明電極基板としての透光性を有し、ある程度以上の導電性を有すれば特に限定されないが、例えばSn、Zn、Ti、Cd、Mg及びInからなる群から選ばれる1以上の元素の酸化物を主成分とすることが好ましい。ここで表面層の主成分とは、表面層を構成する成分のうち、50重量%以上であることを意味し、表面層全体に対して70重量%以上であることが好ましく、85重量%以上であることがより好ましい。また、主成分としての含有量の上限は特に限定されず、100重量%であってもよい。表面層の主成分は、SnO又はZnOがより好ましく、SnOがさらに好ましい。表面層の組成はX線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。 The surface layer is not particularly limited as long as it has translucency as a transparent electrode substrate and has a certain level of conductivity, but for example, one or more layers selected from the group consisting of Sn, Zn, Ti, Cd, Mg, and In. It is preferable that the main component is an oxide of an element. Here, the main component of the surface layer means 50% by weight or more of the components constituting the surface layer, preferably 70% by weight or more, and 85% by weight or more based on the entire surface layer. It is more preferable that Moreover, the upper limit of the content as a main component is not particularly limited, and may be 100% by weight. The main component of the surface layer is more preferably SnO 2 or ZnO, and even more preferably SnO 2 . The composition of the surface layer can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectrometry (SIMS).

表面層の厚さは、厚過ぎると抵抗が大きくなり電極の機能である電子移動を妨げるおそれがあることから、80nm以下が好ましく、60nm以下がより好ましい。一方、透明導電膜の表面を十分に被覆する観点から、表面層の厚さは10nm以上が好ましく、20nm以上がより好ましい。なお表面層の厚さは、触針式段差計や蛍光X線分析装置、X線光電子分光法(XPS)もしくは、二次イオン質量分析法(SIMS)により測定できる。
また表面層は、例えば上述したアンダーコート層や透明導電膜と同様の方法で形成できる。
The thickness of the surface layer is preferably 80 nm or less, more preferably 60 nm or less, because if it is too thick, the resistance increases and there is a risk of interfering with electron transfer, which is a function of the electrode. On the other hand, from the viewpoint of sufficiently covering the surface of the transparent conductive film, the thickness of the surface layer is preferably 10 nm or more, more preferably 20 nm or more. The thickness of the surface layer can be measured using a stylus step meter, a fluorescent X-ray spectrometer, X-ray photoelectron spectroscopy (XPS), or secondary ion mass spectrometry (SIMS).
Further, the surface layer can be formed, for example, by the same method as the undercoat layer and transparent conductive film described above.

<太陽電池>
上述の太陽電池用透明電極基板を有する太陽電池の好ましい態様の一例を説明する。太陽電池用透明電極基板の構成や好ましい態様は、上記<太陽電池用透明電極基板>で記載したものと同様である。
太陽電池としては、透明基板上に透明導電膜、発電層(電池層)、裏面電極が順に形成され、太陽光が透明基板側から入射するタイプの太陽電池(スーパーストレート型太陽電池)が好ましい。また、その製造工程において透明導電膜付きガラス基板が高温で加熱されうる太陽電池、例えばCdTe太陽電池に本実施形態に係る透明導電膜付きガラス基板を含む透明電極基板を適用することが好ましい。ただし、他の太陽電池に適用することを何ら排除するものではない。
CdTe太陽電池は、例えば図5に示すように、透明導電膜付きガラス基板上に表面層21を積層した透明電極基板を有し、その表面上に、n型層40、p型層50、及び裏面電極(陽極)60が順に積層された構成を有する。
<Solar cells>
An example of a preferred embodiment of a solar cell having the above-described transparent electrode substrate for a solar cell will be described. The configuration and preferred embodiments of the transparent electrode substrate for solar cells are the same as those described in <Transparent electrode substrate for solar cells> above.
As the solar cell, a type of solar cell (superstrate solar cell) in which a transparent conductive film, a power generation layer (battery layer), and a back electrode are sequentially formed on a transparent substrate and sunlight enters from the transparent substrate side is preferable. Further, it is preferable to apply the transparent electrode substrate including the glass substrate with a transparent conductive film according to the present embodiment to a solar cell, such as a CdTe solar cell, in which the glass substrate with a transparent conductive film can be heated at a high temperature in the manufacturing process. However, this does not preclude application to other solar cells.
For example, as shown in FIG. 5, a CdTe solar cell has a transparent electrode substrate in which a surface layer 21 is laminated on a glass substrate with a transparent conductive film, and on the surface thereof, an n-type layer 40, a p-type layer 50, and It has a structure in which back electrodes (anodes) 60 are laminated in order.

CdTe太陽電池の場合、n型層としては、従来公知のものを使用でき、例えばCdS、CdSe等が挙げらる。
n型層の厚みは30nm以上が好ましく、また、100nm以下が好ましい。
n型層は例えば近接昇華法により形成でき、昇華速度を変更したり、基板温度を変更することにより、その厚みや膜質を調整できる。
In the case of a CdTe solar cell, a conventionally known n-type layer can be used, such as CdS, CdSe, etc.
The thickness of the n-type layer is preferably 30 nm or more, and preferably 100 nm or less.
The n-type layer can be formed by, for example, a proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or changing the substrate temperature.

p型層としてはCdTeが一般的である。p型層の厚みは3μm以上が好ましく、また、15μm以下が好ましい。
p型層は例えば近接昇華法により形成でき、昇華速度を変更したり、基板温度を変更することにより、その厚みや膜質を調整できる。
CdTe is generally used as the p-type layer. The thickness of the p-type layer is preferably 3 μm or more, and preferably 15 μm or less.
The p-type layer can be formed by, for example, a proximity sublimation method, and its thickness and film quality can be adjusted by changing the sublimation rate or changing the substrate temperature.

裏面電極は陽極として作用する。裏面電極としては従来公知のものを使用でき、例えば、銀(Ag)やモリブデン(Mo)等の金属材料膜が積層された構造の電極や、Cuをドープしたカーボン電極、等が挙げられる。また、裏面電極上にさらに裏板ガラスを有していてもよい。裏板ガラスは耐水性や耐酸素透過性を有していればよく、裏板ガラスに代えて樹脂からなるバックフィルムを用いてもよい。
裏面電極と裏板ガラス又はバックフィルムとの間は、樹脂封入や接着用の樹脂により接着される。
裏面電極の厚みは100nm以上が好ましく、また、1000nm以下が好ましい。裏板ガラス又はバックフィルムの厚みは1mm以上が好ましく、また、3mm以下が好ましい。
The back electrode acts as an anode. As the back electrode, conventionally known ones can be used, such as an electrode having a structure in which films of metal materials such as silver (Ag) and molybdenum (Mo) are laminated, a carbon electrode doped with Cu, and the like. Further, a back plate glass may be further provided on the back electrode. The back plate glass only needs to have water resistance and oxygen permeability, and a back film made of resin may be used instead of the back plate glass.
The back electrode and the back glass or back film are bonded by resin encapsulation or adhesive resin.
The thickness of the back electrode is preferably 100 nm or more, and preferably 1000 nm or less. The thickness of the back plate glass or back film is preferably 1 mm or more, and preferably 3 mm or less.

CdTeからなるp型層の端部又はCdTe太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば、前記透明導電膜付きガラス基板におけるガラス基板と同じ組成を有するガラスや、その他の組成のガラス、樹脂等が挙げられる。 The ends of the p-type layer made of CdTe or the ends of the CdTe solar cell may be sealed. Examples of the sealing material include glass having the same composition as the glass substrate in the glass substrate with a transparent conductive film, glass having other compositions, resin, and the like.

<低放射率ガラス>
本実施形態の透明導電膜付きガラス基板は低放射率ガラスに好適に用いられる。透明導電膜付きガラス基板の構成や好ましい態様は、上記<透明導電膜付きガラス基板>で記載したものと同様である。
<Low emissivity glass>
The glass substrate with a transparent conductive film of this embodiment is suitably used for low emissivity glass. The configuration and preferred embodiments of the glass substrate with a transparent conductive film are the same as those described in <Glass substrate with a transparent conductive film> above.

低放射率ガラスにおいて、透明導電膜の放射率の値は、0.25以下が好ましく、0.20以下がより好ましい。また、透明導電膜の放射率は低いほど好ましいが、0.05以上が実際的である。 In low emissivity glass, the emissivity value of the transparent conductive film is preferably 0.25 or less, more preferably 0.20 or less. Furthermore, the lower the emissivity of the transparent conductive film is, the more preferable it is, but it is practical to have an emissivity of 0.05 or more.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1~4は実施例であり、例5~8は比較例である。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. Examples 1 to 4 are examples, and Examples 5 to 8 are comparative examples.

[実施例、比較例]
以下に示すように、板ガラスに整形されたガラス基板に製膜するオフライン大気圧CVD(化学気相蒸着)法によりアンダーコート層及び透明導電膜を順に形成することで、透明導電膜付きガラス基板を得た。本発明の透明導電膜付きガラス基板はオフライン大気圧CVD法により製膜されるものに限定されず、フロート法によりガラス基板を製造すると同時に製膜するオンライン大気圧CVD法により製膜されるものについても同様の効果が得られる。
[Examples, comparative examples]
As shown below, a glass substrate with a transparent conductive film is formed by sequentially forming an undercoat layer and a transparent conductive film using an off-line atmospheric pressure CVD (chemical vapor deposition) method that forms a film on a glass substrate shaped into a plate glass. Obtained. The glass substrate with a transparent conductive film of the present invention is not limited to one that is formed by an offline atmospheric pressure CVD method, but also one that is formed by an online atmospheric pressure CVD method in which a film is formed at the same time as the glass substrate is manufactured by a float method. A similar effect can be obtained.

メッシュベルトによって基体(ガラス基板)を搬送するトンネル式加熱炉に複数のガス供給装置を取り付けたタイプのオフライン式CVD装置を用いて透明導電膜付きガラス基板を製造した。具体的には、以下に示すように、ガラス基板上に、アンダーコート層として酸化チタン(TiO)層及び酸化ケイ素(SiO)層、並びに透明導電膜としてフッ素がドープされている酸化スズ層(SnO:F)を順に形成して透明導電膜付きガラス基板を得た。 A glass substrate with a transparent conductive film was manufactured using an off-line CVD apparatus of a type in which a plurality of gas supply devices were attached to a tunnel-type heating furnace in which a substrate (glass substrate) was transported by a mesh belt. Specifically, as shown below, on a glass substrate, a titanium oxide (TiO 2 ) layer and a silicon oxide (SiO 2 ) layer are formed as an undercoat layer, and a tin oxide layer doped with fluorine is formed as a transparent conductive film. (SnO 2 :F) was sequentially formed to obtain a glass substrate with a transparent conductive film.

まず、ガラス基板を搬送しながら、加熱ゾーンにおいて、550℃以上に加熱した。なお、ガラス基板は、厚さ3.2mm、サイズ1400mm×1100mmのソーダライムシリケートガラス基板を使用した。
ついで、加熱されたガラス基板に、ガス供給装置により、酸化チタン層の原料となる気化したテトライソプロポキシチタンとキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の表面に酸化チタン層を形成させた。なお、テトラチタンイソプロポキシドは、100℃程度に保温したバブラータンクに入れ、窒素ガスによりバブリングして気化させ、ステンレス配管によりガス供給装置に輸送した。
First, the glass substrate was heated to 550° C. or higher in a heating zone while being transported. Note that a soda lime silicate glass substrate with a thickness of 3.2 mm and a size of 1400 mm x 1100 mm was used as the glass substrate.
Next, vaporized titanium tetraisopropoxy, which is the raw material for the titanium oxide layer, and nitrogen gas, which is a carrier gas, are sprayed onto the heated glass substrate by a gas supply device to oxidize the surface of the glass substrate being transported. A titanium layer was formed. Note that tetratitanium isopropoxide was placed in a bubbler tank kept at a temperature of about 100° C., bubbled with nitrogen gas to vaporize it, and transported to a gas supply device through stainless steel piping.

次に、表面に酸化チタン層が形成されたガラス基板を再度550℃以上に加熱した後、ガス供給装置により、酸化ケイ素層の原料となるシランガスと酸素ガスとキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の酸化チタン層の表面に酸化ケイ素層を形成させた。 Next, the glass substrate with the titanium oxide layer formed on its surface is heated again to 550°C or higher, and then silane gas, which is the raw material for the silicon oxide layer, oxygen gas, and nitrogen gas as a carrier gas are sprayed with a gas supply device. A silicon oxide layer was formed on the surface of the titanium oxide layer of the glass substrate being transported.

次に、表面に酸化ケイ素層が形成されたガラス基板を再度550℃以上に加熱した後、ガス供給装置により、混合ガスを供給し、SiO膜上にSnO:Fからなる透明導電膜を製膜した。 Next, after heating the glass substrate with the silicon oxide layer formed on the surface again to 550° C. or higher, a mixed gas is supplied by the gas supply device to form a transparent conductive film made of SnO 2 :F on the SiO 2 film. A film was formed.

[例1]
ここで、混合ガスにおける各原料の供給量を以下に示す。なお、透明導電膜を製膜する際の混合ガスはいずれも、液体原料は気化した状態で気体原料とミキサーに供給し、そこで保温しながら混合して混合ガスとし、ガラス基板表面に整流した状態でガスを給気するコーティングビームに輸送される。混合ガスはガラス基板表面で反応しSnO:F膜を形成し、残余ガスと副生成物が排気される。以下の例1、2、3、4は図3における式2を満たす領域から選んだ実験点に相当する製膜条件である。
混合ガス:モノブチル錫トリクロライド90g/分(液相)、酸素93L/分(気相)、水86g/分(液相)、フッ化水素1.4L/分(気相)、希釈窒素246L/分
[Example 1]
Here, the supply amount of each raw material in the mixed gas is shown below. In addition, for all mixed gases when forming transparent conductive films, liquid raw materials are supplied in a vaporized state to a mixer with gaseous raw materials, where they are mixed while being kept warm to form a mixed gas, which is then rectified on the surface of the glass substrate. The coating beam is then transported to the coating beam, which is supplied with gas. The mixed gas reacts on the surface of the glass substrate to form a SnO 2 :F film, and residual gas and byproducts are exhausted. Examples 1, 2, 3, and 4 below are film forming conditions corresponding to experimental points selected from the region satisfying Equation 2 in FIG.
Mixed gas: Monobutyltin trichloride 90 g/min (liquid phase), oxygen 93 L/min (gas phase), water 86 g/min (liquid phase), hydrogen fluoride 1.4 L/min (gas phase), diluted nitrogen 246 L/min minutes

[例2]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。
混合ガス:モノブチル錫トリクロライド90g/分(液相)、酸素86L/分(気相)、水113g/分(液相)、フッ化水素3.6L/分(気相)、希釈窒素266L/分
[Example 2]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows.
Mixed gas: Monobutyltin trichloride 90 g/min (liquid phase), oxygen 86 L/min (gas phase), water 113 g/min (liquid phase), hydrogen fluoride 3.6 L/min (gas phase), diluted nitrogen 266 L/min minutes

[例3]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。
混合ガス:モノブチル錫トリクロライド70g/分(液相)、酸素67L/分(気相)、水134g/分(液相)、フッ化水素2.2L/分(気相)、希釈窒素297L/分
[Example 3]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows.
Mixed gas: Monobutyltin trichloride 70 g/min (liquid phase), oxygen 67 L/min (gas phase), water 134 g/min (liquid phase), hydrogen fluoride 2.2 L/min (gas phase), diluted nitrogen 297 L/min minutes

[例4]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。例4における透明導電膜付きガラス基板の製造条件は例3と実質同じである。
混合ガス:モノブチル錫トリクロライド70g/分(液相)、酸素67L/分(気相)、水134g/分(液相)、フッ化水素2.2L/分(気相)、希釈窒素297L/分
[Example 4]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows. The manufacturing conditions for the glass substrate with a transparent conductive film in Example 4 are substantially the same as in Example 3.
Mixed gas: Monobutyltin trichloride 70 g/min (liquid phase), oxygen 67 L/min (gas phase), water 134 g/min (liquid phase), hydrogen fluoride 2.2 L/min (gas phase), diluted nitrogen 297 L/min minutes

[例5]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。以下の例5、6、7、8は図3における式2を満たさない領域から選んだ実験点に相当する製膜条件である。
混合ガス:モノブチル錫トリクロライド70g/分(液相)、酸素67L/分(気相)、水89g/分(液相)、フッ化水素2.8L/分(気相)、希釈窒素266L/分
[Example 5]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows. Examples 5, 6, 7, and 8 below are film forming conditions corresponding to experimental points selected from the region in which Equation 2 in FIG. 3 is not satisfied.
Mixed gas: Monobutyltin trichloride 70 g/min (liquid phase), oxygen 67 L/min (gas phase), water 89 g/min (liquid phase), hydrogen fluoride 2.8 L/min (gas phase), diluted nitrogen 266 L/min minutes

[例6]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。
混合ガス:モノブチル錫トリクロライド90g/分(液相)、酸素86L/分(気相)、水115g/分(液相)、フッ化水素3.6L/分(気相)、希釈窒素266L/分
[Example 6]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows.
Mixed gas: Monobutyltin trichloride 90 g/min (liquid phase), oxygen 86 L/min (gas phase), water 115 g/min (liquid phase), hydrogen fluoride 3.6 L/min (gas phase), diluted nitrogen 266 L/min minutes

[例7]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。
混合ガス:モノブチル錫トリクロライド55g/分(液相)、酸素53L/分(気相)、水105g/分(液相)、フッ化水素2.6L/分(気相)、希釈窒素324L/分
[Example 7]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows.
Mixed gas: Monobutyltin trichloride 55 g/min (liquid phase), oxygen 53 L/min (gas phase), water 105 g/min (liquid phase), hydrogen fluoride 2.6 L/min (gas phase), diluted nitrogen 324 L/min minutes

[例8]
混合ガスにおける原料の供給量を以下のように変更した以外は例1と同様にして透明導電膜付きガラス基板を得た。
混合ガス:モノブチル錫トリクロライド60g/分(液相)、酸素57L/分(気相)、水115g/分(液相)、フッ化水素2.9L/分(気相)、希釈窒素292L/分
[Example 8]
A glass substrate with a transparent conductive film was obtained in the same manner as in Example 1 except that the amount of raw material supplied in the mixed gas was changed as follows.
Mixed gas: Monobutyltin trichloride 60 g/min (liquid phase), oxygen 57 L/min (gas phase), water 115 g/min (liquid phase), hydrogen fluoride 2.9 L/min (gas phase), diluted nitrogen 292 L/min minutes

各例で用いた混合ガスにおける、モノブチル錫トリクロライドに対するHOのモル比(HO/MBTC)、モノブチル錫トリクロライドに対するフッ化水素のモル比(HF/MBTC)及びモノブチル錫トリクロライドに対するOのモル比(O/MBTC)をそれぞれ表1に示す。また、得られた各透明導電膜付きガラス基板について、以下の測定および評価を行った。結果を表1に示す。 The molar ratio of H 2 O to monobutyltin trichloride (H 2 O/MBTC), the molar ratio of hydrogen fluoride to monobutyltin trichloride (HF/MBTC), and the molar ratio of hydrogen fluoride to monobutyltin trichloride in the mixed gas used in each example. The molar ratio of O 2 (O 2 /MBTC) is shown in Table 1. In addition, the following measurements and evaluations were performed on each of the obtained glass substrates with transparent conductive films. The results are shown in Table 1.

(膜厚)
触針式膜厚計(Sloan technology社製、型番Dektak3030)を用いて透明導電膜の膜厚を測定した。なお、例3及び4は透明導電膜の製膜条件が実質的に同等であるが、透明導電膜の膜厚が異なる。この違いは同じ製膜装置及び成膜条件であっても膜厚が同じにならない場合があることを反映したものである。
(film thickness)
The thickness of the transparent conductive film was measured using a stylus-type film thickness meter (manufactured by Sloan Technology, model number Dektak3030). Note that in Examples 3 and 4, the film forming conditions of the transparent conductive film are substantially the same, but the film thicknesses of the transparent conductive film are different. This difference reflects the fact that even with the same film forming apparatus and film forming conditions, the film thicknesses may not be the same.

(抵抗変化比)
透明導電膜付きガラス基板を1cm角の大きさに切断して、ホール効果測定装置(アクセントオプティカルテクノロジーズ社製、HL5500PC)を用い、まず、耐熱試験前の透明導電膜のシート抵抗値(Rs初期)、比抵抗、キャリア濃度、移動度を測定した。次に、搬送式ベルトコンベア炉(DENKO社製)を700℃に設定し、11.2mm/分の速度で搬送しながら116分間加熱した。なお、炉内は、窒素を連続的に供給し、酸素濃度10ppm以下の雰囲気に保った。加熱後に、再び、前記と同様の方法で耐熱試験後の透明導電膜のシート抵抗値(Rsテスト後)を測定し、それらの結果から、下記式1により抵抗変化比を求めた。
(式1) 抵抗変化比=(耐熱試験後の透明導電膜のシート抵抗値)/(耐熱試験前の透明導電膜のシート抵抗値)
(resistance change ratio)
The glass substrate with the transparent conductive film was cut into 1 cm square pieces, and using a Hall effect measuring device (manufactured by Accent Optical Technologies, HL5500PC), the sheet resistance value (initial Rs) of the transparent conductive film before the heat resistance test was measured. , specific resistance, carrier concentration, and mobility were measured. Next, a conveyor belt conveyor furnace (manufactured by DENKO) was set at 700° C., and heated for 116 minutes while being conveyed at a speed of 11.2 mm/min. Note that nitrogen was continuously supplied into the furnace to maintain an atmosphere with an oxygen concentration of 10 ppm or less. After heating, the sheet resistance value (after the Rs test) of the transparent conductive film after the heat resistance test was measured again in the same manner as described above, and the resistance change ratio was determined from the results using the following formula 1.
(Formula 1) Resistance change ratio = (sheet resistance value of transparent conductive film after heat resistance test) / (sheet resistance value of transparent conductive film before heat resistance test)

(キャリア濃度、移動度)
透明導電膜付きガラス基板を1cm角に切断し、ホール効果測定装置(アクセントオプティカルテクノロジーズ社製、HL5500PC)により測定した透明導電膜のキャリア濃度、移動度は上述の通り、耐熱試験前、すなわち初期の状態の測定値である。
(carrier concentration, mobility)
A glass substrate with a transparent conductive film was cut into 1 cm square pieces, and the carrier concentration and mobility of the transparent conductive film were measured using a Hall effect measuring device (HL5500PC, manufactured by Accent Optical Technologies), as described above, before the heat resistance test, that is, at the initial stage. It is a measurement of the state.

(XRF F/Sn、フッ素濃度)
透明導電膜のフッ素濃度は、蛍光X線分析装置RIX3000(株式会社リガク製)を用いて測定した。条件としては、X線管球にRhターゲットを用い、出力を40kV-70mAとし、測定径は、30mmφとした。蛍光X線のエネルギー位置はSn-Lα線:3.444keV、F-Kα線:0.677keVであり、それぞれの信号強度は、膜厚深さ方向の信号強度を積分した値である。信号強度は表面が最も大きく、膜厚深さ方向にむけて減衰する。膜厚深さxから検出できる信号強度は次式のように指数関数に従って減衰する。
膜厚深さxからの元素aの信号強度=I×exp(-x/λa)×C
(I;入射X線強度、C;元素aの膜中濃度、λa;元素aの膜中の減衰係数)
(XRF F/Sn, fluorine concentration)
The fluorine concentration of the transparent conductive film was measured using a fluorescent X-ray analyzer RIX3000 (manufactured by Rigaku Co., Ltd.). The conditions were that an Rh target was used in the X-ray tube, the output was 40 kV-70 mA, and the measurement diameter was 30 mmφ. The energy positions of the fluorescent X-rays are Sn-Lα ray: 3.444 keV and F-Kα ray: 0.677 keV, and each signal intensity is a value obtained by integrating the signal intensity in the depth direction of the film thickness. The signal intensity is highest at the surface and attenuates in the depth direction of the film thickness. The signal intensity that can be detected from the film thickness depth x attenuates according to an exponential function as shown in the following equation.
Signal intensity of element a from film thickness depth x = I 0 × exp (-x/λa) × C 0
(I 0 : incident X-ray intensity, C 0 : concentration of element a in the film, λa : attenuation coefficient of element a in the film)

蛍光X線信号強度は、この式の値を膜厚深さxについて積分した値に相当する。測定値からF、Snそれぞれの膜中濃度Cを求めるにあたって、SIMS(2次イオン質量分析法)により定量分析した試料を標準サンプルとして用いた。また、F、Snそれぞれの減衰係数については別途検討から求めた値を用いた。
上記測定により得られた透明導電膜のSnの信号強度に対するFの信号強度の比(XRF F/Sn)及びフッ素濃度の値を表1に示す。
The fluorescent X-ray signal intensity corresponds to the value obtained by integrating the value of this equation with respect to the film thickness depth x. In determining the concentrations C 0 of each of F and Sn in the film from the measured values, a sample quantitatively analyzed by SIMS (secondary ion mass spectrometry) was used as a standard sample. Further, for the attenuation coefficients of F and Sn, values obtained from separate studies were used.
Table 1 shows the ratio of the F signal intensity to the Sn signal intensity (XRF F/Sn) and the fluorine concentration values of the transparent conductive film obtained by the above measurements.

(フッ素イオン量)
上記で得られたフッ素濃度を用いて下記式により透明導電膜1cm-3あたりのフッ素イオン量を算出した。
フッ素イオン量(cm-3)=(フッ素濃度(重量%)/100)×(透明導電膜の密度(g/cm))÷18.988×6.022×1023
ここで、各例における透明導電膜はいずれもフッ素ドープされたSnO膜であるので、透明導電膜の密度は6.95g/cmとした。また、Fの原子量:18.998、アボガドロ数:6.022×1023とした。
表1に、得られた各透明導電膜付きガラス基板におけるフッ素イオン量(表中の「(1)」)、及びフッ素イオン量を下記の式2の右辺に代入した値(表中の「(2)」)を示す。
(式2) キャリア濃度(cm-3)>0.45×フッ素イオン量(cm-3)+1.5×1020
(Fluorine ion amount)
Using the fluorine concentration obtained above, the amount of fluorine ions per 1 cm −3 of the transparent conductive film was calculated using the following formula.
Amount of fluorine ions (cm −3 ) = (fluorine concentration (weight%)/100) × (density of transparent conductive film (g/cm 3 )) ÷ 18.988 × 6.022 × 10 23
Here, since the transparent conductive films in each example were all fluorine-doped SnO 2 films, the density of the transparent conductive films was 6.95 g/cm 3 . Further, the atomic weight of F was 18.998, and Avogadro's number was 6.022×10 23 .
Table 1 shows the amount of fluorine ions ("(1)" in the table) in each glass substrate with a transparent conductive film obtained, and the value obtained by substituting the amount of fluorine ions into the right-hand side of Equation 2 below ("(1)" in the table). 2)").
(Formula 2) Carrier concentration (cm -3 ) > 0.45 x amount of fluorine ions (cm -3 ) + 1.5 x 10 20

Figure 0007396416000001
Figure 0007396416000001

表1中に示すように実施例である例1~4の透明導電膜付きガラス基板は、抵抗値変化が2よりも小さく耐熱性に優れる結果となった。また例1~4では(2)の値がキャリア濃度よりも小さく、キャリア濃度とフッ素イオン量の関係はいずれの例も式2を満たすものであった。これに対して比較例である例5~8は抵抗変化比が3を上回っていた。また、例5~8では(2)の値が初期キャリア濃度を上回っており、キャリア濃度とフッ素イオン量の関係はいずれの例も式2を満たさなかった。 As shown in Table 1, the glass substrates with transparent conductive films of Examples 1 to 4 had a resistance change of less than 2 and had excellent heat resistance. Further, in Examples 1 to 4, the value of (2) was smaller than the carrier concentration, and the relationship between the carrier concentration and the amount of fluorine ions satisfied Equation 2 in all examples. On the other hand, in Examples 5 to 8, which are comparative examples, the resistance change ratio was greater than 3. Further, in Examples 5 to 8, the value of (2) exceeded the initial carrier concentration, and the relationship between the carrier concentration and the amount of fluorine ions did not satisfy Equation 2 in any of the examples.

本発明に係る透明導電膜付きガラス基板は、例えば650℃~700℃の高温における耐熱性に優れるので、建築物、車両等のガラス窓や、冷凍ショーケース、調理器具等に用いられる低放射率ガラス、並びに太陽電池に用いられる透明電極基板に好適に用いられる。太陽電池としては、例えばスーパーストレート型太陽電池が好ましく、特にその製造工程において透明導電膜付きガラス基板が高温で加熱されうる太陽電池、例えばCdTe太陽電池が好ましい。 The glass substrate with a transparent conductive film according to the present invention has excellent heat resistance at high temperatures of, for example, 650°C to 700°C, so it has a low emissivity and is used for glass windows of buildings, vehicles, etc., frozen showcases, cooking utensils, etc. It is suitably used for glass and transparent electrode substrates used in solar cells. As the solar cell, for example, a superstrate type solar cell is preferable, and a solar cell in which a glass substrate with a transparent conductive film can be heated at a high temperature in the manufacturing process, such as a CdTe solar cell, is particularly preferable.

1 透明導電膜付きガラス基板
2 CdTe太陽電池
10 ガラス基板
20 透明導電膜
21 表面層
30 アンダーコート層
40 n型層
50 p型層
60 裏面電極
1 Glass substrate with transparent conductive film 2 CdTe solar cell 10 Glass substrate 20 Transparent conductive film 21 Surface layer 30 Undercoat layer 40 N-type layer 50 P-type layer 60 Back electrode

Claims (4)

ガラス基板、アンダーコート層及び透明導電膜をこの順に含む透明導電膜付きガラス基板であって、
前記アンダーコート層は酸化ケイ素を主成分とする層を含み、
前記透明導電膜の主成分がSnOであり、
前記透明導電膜はドーパントとしてフッ素原子を含有し、
前記透明導電膜における自由電子の移動度が32cm/Vs以上であり、
前記透明導電膜のキャリア濃度と、透明導電膜1cmあたりのフッ素イオン量との関係が下記式2を満たし、
前記キャリア濃度が2.0×1020cm-3以上である、透明導電膜付きガラス基板。
(式2) キャリア濃度(cm-3)>0.45×フッ素イオン量(cm-3)+1.5×1020
A glass substrate with a transparent conductive film comprising a glass substrate, an undercoat layer and a transparent conductive film in this order,
The undercoat layer includes a layer containing silicon oxide as a main component,
The main component of the transparent conductive film is SnO2 ,
The transparent conductive film contains fluorine atoms as a dopant,
The free electron mobility in the transparent conductive film is 32 cm 2 /Vs or more,
The relationship between the carrier concentration of the transparent conductive film and the amount of fluorine ions per 1 cm 3 of the transparent conductive film satisfies the following formula 2,
A glass substrate with a transparent conductive film, wherein the carrier concentration is 2.0×10 20 cm −3 or more.
(Formula 2) Carrier concentration (cm -3 ) > 0.45 x amount of fluorine ions (cm -3 ) + 1.5 x 10 20
前記透明導電膜における自由電子の移動度が38cm/Vs以上である、請求項1に記載の透明導電膜付きガラス基板。 The glass substrate with a transparent conductive film according to claim 1, wherein the free electron mobility in the transparent conductive film is 38 cm 2 /Vs or more. 前記アンダーコート層が以下の(a)又は(b)の構成を有する、請求項1又は2に記載の透明導電膜付きガラス基板。
(a)SiOを主成分とする層と、TiO又はSnOを主成分とする層とを積層した構成。
(b)SiOC又はSiONを主成分とする層からなる構成。
The glass substrate with a transparent conductive film according to claim 1 or 2, wherein the undercoat layer has the following configuration (a) or (b).
(a) A structure in which a layer containing SiO 2 as a main component and a layer containing TiO 2 or SnO 2 as a main component are laminated.
(b) A structure consisting of a layer mainly composed of SiOC or SiON.
前記ガラス基板上にCVD(Chemical Vapor Deposition:化学気相蒸着)法により前記アンダーコート層及び前記透明導電膜を順に形成することを含む、請求項1~3のいずれか1項に記載の透明導電膜付きガラス基板の製造方法。 The transparent conductive film according to any one of claims 1 to 3, comprising sequentially forming the undercoat layer and the transparent conductive film on the glass substrate by a CVD (Chemical Vapor Deposition) method. A method for manufacturing a glass substrate with a film.
JP2022143852A 2021-05-07 2022-09-09 Glass substrate with transparent conductive film and method for manufacturing the same Active JP7396416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022143852A JP7396416B2 (en) 2021-05-07 2022-09-09 Glass substrate with transparent conductive film and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079334A JP7143919B1 (en) 2021-05-07 2021-05-07 Glass substrate with transparent conductive film and method for manufacturing the same
JP2022143852A JP7396416B2 (en) 2021-05-07 2022-09-09 Glass substrate with transparent conductive film and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021079334A Division JP7143919B1 (en) 2021-05-07 2021-05-07 Glass substrate with transparent conductive film and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2022173167A JP2022173167A (en) 2022-11-17
JP7396416B2 true JP7396416B2 (en) 2023-12-12

Family

ID=83446922

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021079334A Active JP7143919B1 (en) 2021-05-07 2021-05-07 Glass substrate with transparent conductive film and method for manufacturing the same
JP2022143852A Active JP7396416B2 (en) 2021-05-07 2022-09-09 Glass substrate with transparent conductive film and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021079334A Active JP7143919B1 (en) 2021-05-07 2021-05-07 Glass substrate with transparent conductive film and method for manufacturing the same

Country Status (3)

Country Link
JP (2) JP7143919B1 (en)
CN (2) CN115605446A (en)
WO (1) WO2022234811A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065386A1 (en) 2002-01-28 2003-08-07 Nippon Sheet Glass Company, Limited Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
US20090053511A1 (en) 2007-08-22 2009-02-26 Hyundai Motor Company Fluorine-doped tin oxide transparent conductive film glass and method of fabricating the same
US20090120496A1 (en) 2007-11-02 2009-05-14 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
WO2013118897A1 (en) 2012-02-09 2013-08-15 旭硝子株式会社 Glass substrate for transparent conductive film formation, and substrate with transparent conductive film
JP2016146443A (en) 2015-02-09 2016-08-12 旭硝子株式会社 Transparent conductive substrate for solar cell

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105166B2 (en) * 1988-09-22 1995-11-13 旭硝子株式会社 Fluorine-doped tin oxide film and method for reducing resistance thereof
JP4485642B2 (en) * 1999-05-18 2010-06-23 日本板硝子株式会社 Method for producing transparent substrate with transparent conductive film, and photoelectric conversion device using the same
JP3227449B2 (en) * 1999-05-28 2001-11-12 日本板硝子株式会社 Substrate for photoelectric conversion device, method for manufacturing the same, and photoelectric conversion device using the same
JP2001114533A (en) * 1999-10-20 2001-04-24 Nippon Sheet Glass Co Ltd Glass pane with transparent conductive film and glass article using the same glass pane
JP2005190700A (en) * 2003-12-24 2005-07-14 Asahi Glass Co Ltd Substrate with transparent conductive film and its manufacturing method
JP2006140388A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Manufacturing method of low resistance fluorine doped tin oxide film and solar cell
CN100595933C (en) * 2005-11-17 2010-03-24 旭硝子株式会社 Process for producing transparent conductive substrate for solar cell
CN101527325A (en) * 2009-04-03 2009-09-09 中国南玻集团股份有限公司 Transparent conductive substrate for solar cell
JP2012162761A (en) * 2011-02-04 2012-08-30 Asahi Glass Co Ltd Method for forming fluorine-doped tin oxide film
JP2013049912A (en) * 2011-08-31 2013-03-14 Asahi Glass Co Ltd Method for forming tin oxide film
JP2013211255A (en) * 2012-02-27 2013-10-10 Asahi Glass Co Ltd Base with transparent conductive oxide films
JP2017122012A (en) * 2016-01-04 2017-07-13 旭硝子株式会社 Glass member
WO2017119729A1 (en) * 2016-01-05 2017-07-13 Lg Electronics Inc. Method for performing drx operation in wireless communication system and a device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065386A1 (en) 2002-01-28 2003-08-07 Nippon Sheet Glass Company, Limited Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
US20090053511A1 (en) 2007-08-22 2009-02-26 Hyundai Motor Company Fluorine-doped tin oxide transparent conductive film glass and method of fabricating the same
US20090120496A1 (en) 2007-11-02 2009-05-14 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
JP2011504293A (en) 2007-11-02 2011-02-03 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Transparent conductive oxide film for thin film photovoltaic application and method of manufacturing the same
WO2013118897A1 (en) 2012-02-09 2013-08-15 旭硝子株式会社 Glass substrate for transparent conductive film formation, and substrate with transparent conductive film
JP2016146443A (en) 2015-02-09 2016-08-12 旭硝子株式会社 Transparent conductive substrate for solar cell

Also Published As

Publication number Publication date
WO2022234811A1 (en) 2022-11-10
CN116395981B (en) 2024-03-22
JP2022173167A (en) 2022-11-17
JP2022172963A (en) 2022-11-17
JP7143919B1 (en) 2022-09-29
CN116395981A (en) 2023-07-07
CN115605446A (en) 2023-01-13

Similar Documents

Publication Publication Date Title
US7087307B2 (en) Glass sheet and glass sheet photoelectric converter device
US20090120496A1 (en) Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
EP1056136A1 (en) Conductive substrate for a photoelectric conversion device and its manufacturing method
JP2022123516A (en) Glass substrate for solar cells and solar cell
JP7020458B2 (en) Glass substrate with film and its manufacturing method
JP7396416B2 (en) Glass substrate with transparent conductive film and method for manufacturing the same
JP4467707B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP4430193B2 (en) Manufacturing method of glass plate with conductive film
JP7160232B1 (en) Transparent electrode substrate and solar cell
JP3984404B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
WO2022114027A1 (en) Film-attached glass substrate, and method for manufacturing same
JP2017001924A (en) Coating film-fitted glass plate
JP7306502B2 (en) Film-coated glass substrate and manufacturing method thereof
JP2016098133A (en) Glass substrate, cigs solar cell, method for manufacturing glass substrate
WO2017047366A1 (en) Glass substrate for solar cells, and solar cell
JP2020532486A (en) Coated glass articles, methods of making them, and photovoltaic cells made from them
JP2001036107A (en) Photoelectric transducer and substrate there for
WO2022114028A1 (en) Glass substrate with transparent conductive film and solar cell
JP2014160689A (en) Base material with transparent conductive oxide film
JP2014214355A (en) Substrate with laminate film, and manufacturing method for base with laminate film
JP2005190700A (en) Substrate with transparent conductive film and its manufacturing method
JP2007277081A (en) Glass plate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150