WO2013118897A1 - Glass substrate for transparent conductive film formation, and substrate with transparent conductive film - Google Patents

Glass substrate for transparent conductive film formation, and substrate with transparent conductive film Download PDF

Info

Publication number
WO2013118897A1
WO2013118897A1 PCT/JP2013/053149 JP2013053149W WO2013118897A1 WO 2013118897 A1 WO2013118897 A1 WO 2013118897A1 JP 2013053149 W JP2013053149 W JP 2013053149W WO 2013118897 A1 WO2013118897 A1 WO 2013118897A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
transparent conductive
conductive film
glass
substrate
Prior art date
Application number
PCT/JP2013/053149
Other languages
French (fr)
Japanese (ja)
Inventor
林 英明
航 西田
高橋 亮
邦明 廣松
近藤 裕己
淳 笹井
朋美 安部
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013118897A1 publication Critical patent/WO2013118897A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • C03C2217/241Doped oxides with halides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD

Definitions

  • the present invention relates to a glass substrate for forming a transparent conductive film used for solar cells and the like, and a substrate with a transparent conductive film, and more specifically, a glass substrate for forming a transparent conductive film from which excellent electrical characteristics such as high mobility can be obtained, And a substrate with a transparent conductive film.
  • a substrate with a transparent conductive film formed by forming a transparent conductive film such as a tin oxide film that is transparent and conductive on the surface of a glass substrate is used for solar cells and the like.
  • a method of manufacturing a substrate formed by forming such a tin oxide film As a method of manufacturing a substrate formed by forming such a tin oxide film, a method of forming a tin oxide film on the surface of a glass substrate by an atmospheric pressure CVD method using a hydrolysis reaction of tin tetrachloride is known. It has been.
  • tin oxide When tin oxide is formed by atmospheric pressure CVD, tin oxide having higher mobility can be formed as the film formation temperature (that is, the temperature of the glass substrate during film formation) is higher. Therefore, in a plate glass manufacturing process by float method (so-called on-line), a tin oxide film is formed on a glass substrate by atmospheric pressure CVD method to manufacture a substrate with a transparent conductive film. It is done. According to this film forming method, a tin oxide film can be formed in a float bath or a slow cooling furnace.
  • Patent Document 1 describes that in a plate glass manufacturing process, tin oxide is formed on the surface of a plate glass using tin tetrachloride and water (water vapor) as raw materials in a slow cooling furnace.
  • the concentration of tin tetrachloride is equivalent to a partial pressure of 2.5 ⁇ 10 ⁇ 3 to 10 ⁇ 2 atm, and the concentration of water vapor is 10 ⁇ 10 ⁇ 3 to In the slow cooling furnace, the partial pressure is 200 ⁇ 10 ⁇ 3 atm
  • the temperature of the raw material gas that is, the temperature of the injector portion from which the raw material gas is ejected
  • the glass temperature is 550 to 650 ° C.
  • tin oxide is formed on the surface of a plate glass by atmospheric pressure CVD.
  • a substrate with a transparent conductive film formed by forming a tin oxide film on the surface of a glass substrate improvement in the mobility of the tin oxide film is required.
  • the tin oxide film is formed by atmospheric pressure CVD, the higher the film formation temperature, the higher the mobility of the tin oxide film can be formed. There is a limit to improving the degree.
  • An object of the present invention is to solve the problems of the prior art, and in a substrate with a transparent conductive film formed by forming a transparent conductive film such as a tin oxide film on a glass substrate, a low resistance having high mobility.
  • a substrate with a transparent conductive film having a transparent conductive film such as a tin oxide film and to provide a glass substrate for forming a transparent conductive film from which a substrate with a transparent conductive film having high mobility can be obtained.
  • the present inventors have formed a transparent conductive film such as a tin oxide film on a glass substrate having a specific glass composition, and thus have a low mobility with high mobility. It has been found that a transparent conductive film such as a tin oxide film can be obtained.
  • This invention is made
  • a transparent conductive film-forming glass substrate having the following glass composition and substantially not containing B 2 O 3 in terms of mass% based on the following oxides.
  • SiO 2 45-80%, Al 2 O 3 : 5 to 18%, MgO: 2-8%, CaO: 0-9%, SrO: 0-8%, BaO: 0 to 10%, MgO + CaO + SrO + BaO: 3.5-27% Na 2 O: 0 to 15%, K 2 O: 0-12%, ZrO 2 : 0 to 5%, TiO 2 : 0 to 5%.
  • MgO + CaO + SrO + BaO contains at least one selected from the group consisting of MgO, CaO, SrO and BaO, and indicates the total amount of these components contained.
  • the glass substrate for forming a transparent conductive film according to the above (1) which has the following glass composition and does not substantially contain B 2 O 3 in terms of mass% based on the following oxide.
  • SiO 2 55 to 72%
  • Al 2 O 3 5 to 18%
  • TiO 2 : 0 to 5%.
  • the glass substrate for forming a transparent conductive film according to (2) above which is a glass substrate on which a transparent conductive film containing tin oxide as a main component is formed.
  • the glass composition of the glass substrate is expressed in mass% on the basis of the following oxide, When SiO 2 is 55% or more, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, When SiO 2 is less than 55%, the transparent conductive film-forming glass substrate according to (1) above, wherein the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less.
  • the glass composition of the glass substrate has a mass ratio of Al 2 O 3 / Na 2 O of 0.5 or more when SiO 2 is less than 55% in the mass% display based on the following oxides. and the mass ratio of Al 2 O 3 / SiO 2 is 0.25 or more, a transparent conductive film for forming a glass substrate according to (1).
  • Glass the glass substrate, by mass% based on the following oxides, at least one of Na 2 O and K 2 O, in a total amount of Na 2 O and K 2 O, containing from 1 to 19% The glass substrate for forming a transparent conductive film according to any one of the above (1) to (6), which has a composition.
  • the glass substrate described above (1) wherein the glass substrate contains 2 to 16% of the total amount of MgO and CaO in terms of mass% based on the following oxides based on the total amount of MgO and CaO.
  • the glass substrate for forming a transparent conductive film according to any one of (7) to (7). (9) The glass substrate, by mass% based on the following oxides, at least one of SiO 2 and Al 2 O 3, in a total amount of SiO 2 and Al 2 O 3, glass containing 64 to 82%
  • the glass substrate for forming a transparent conductive film according to any one of the above (1) to (8) which has a composition.
  • a substrate with a transparent conductive film comprising a transparent conductive film having a mobility at a film thickness of 250 nm of 36 cm 2 / V ⁇ s or more on the glass substrate surface according to any one of (1) to (14).
  • a substrate with a transparent conductive film wherein a transparent conductive film having a tin oxide film is formed on the glass substrate surface according to any one of (1) to (14).
  • the tin oxide film is a tin oxide film containing fluorine as a dopant.
  • the glass substrate which can form the transparent conductive film which has high mobility can be obtained, and transparent conductive films, such as a tin oxide film, are formed into a film on the glass substrate of this specific glass composition.
  • transparent conductive films such as a tin oxide film
  • FIG. 1 shows a substrate with a transparent conductive film (hereinafter referred to as this transparent conductive film) in which a transparent conductive film (hereinafter referred to as a “TCO film”) according to an embodiment of the present invention is formed on a glass substrate.
  • the substrate is also referred to as a “TCO substrate”).
  • a substrate 10 with a transparent conductive film (hereinafter also referred to as a TCO substrate 10) shown in FIG. 1 is a transparent conductive film formed on a glass substrate 12 and the surface of the glass substrate 12 (that is, formed).
  • a tin oxide film 14 (SnO 2 film).
  • the glass substrate 12 is made of glass having the glass composition of Embodiments (1) to (4) having the following composition.
  • SiO 2 silicon oxide
  • the content of SiO 2 is preferably 57 to 72% by mass.
  • Al 2 O 3 (aluminum oxide) is a component that improves the durability of the glass, so it is contained in an amount of 5% by mass or more. However, if it exceeds 18% by mass, melting of the glass becomes extremely difficult.
  • the content of Al 2 O 3 is preferably 6 to 15% by mass, and more preferably 7.5 to 14% by mass.
  • the total amount of SiO 2 and Al 2 O 3 is preferably 64% by mass or more in order to increase the chemical durability of the glass, and the glass melt can be stabilized. In order to ensure that the high-temperature viscosity does not become too high, it is preferably 82% by mass or less.
  • Alkaline earth metal oxides that is, MgO (magnesium oxide), CaO (calcium oxide), SrO (strontium oxide) and BaO (barium oxide) improve the durability of the glass and the devitrification temperature during molding. Used to adjust viscosity. When MgO exceeds 8 mass%, devitrification temperature will rise. When CaO exceeds 9 mass%, devitrification temperature will rise. When SrO exceeds 8% by mass, the devitrification temperature rises. When BaO exceeds 10 mass%, devitrification temperature will rise. The content of CaO is preferably 8% by mass or less. Further, when the total amount of the alkaline earth metal oxide (that is, “MgO + CaO + SrO + BaO”. The total amount of these alkaline earth metal oxides also referred to as “RO”) is less than 3.5% by mass. The durability of the glass decreases, and when it exceeds 27% by mass, the devitrification temperature increases.
  • MgO magnesium oxide
  • CaO calcium
  • the generation source of Cl in the tin oxide film is a tin chloride compound (for example, SnCl 4 , SnHCl 3 , SnH 2 Cl 2) used as the Sn raw material when forming the tin oxide film by the atmospheric pressure CVD method.
  • Inorganic tin chloride compounds such as SnH 3 Cl and organic tin chloride compounds such as monobutyltin trichloride and dibutyltin dichloride).
  • the reason why the amount of Na diffused into the TCO film decreases when the RO is in the above range and the reason why the Cl concentration in the tin oxide film formed on the glass substrate decreases is as follows.
  • Heating is performed near the glass Tg temperature.
  • the RO of the glass constituting the glass substrate has a composition in the above range, the divalent R cation in the glass substrate inhibits Na diffusion.
  • the nucleation sites on the glass substrate increase and the diffusion of Na ions, which are impurities, into the film is suppressed, so that the crystallinity of the formed tin oxide film is considered to be improved.
  • the mobility of the tin oxide film increases, impurity sites such as grain boundaries in the tin oxide film decrease, and the Cl concentration decreases.
  • the RO of the glass constituting the glass substrate is outside the above range, the nucleation site on the glass substrate is reduced, and the tin oxide film is formed by increasing the amount of Na ions diffused into the film. It is thought that the degree of crystallinity of the decreases.
  • the RO of the glass constituting the glass substrate is preferably 5 to 27% by mass.
  • the alkaline earth metal oxide is reduced when the amount of Na diffusion into the tin oxide film formed on the glass substrate is reduced and the Cl concentration is reduced.
  • the influence by MgO and CaO is large. Therefore, the total amount of MgO and CaO that contains at least one of MgO and CaO (hereinafter, this total amount is also referred to as “MgO + CaO”) is preferably 2 to 16% by mass. More preferably, it is ⁇ 15% by mass.
  • Na 2 O (sodium oxide) and K 2 O (potassium oxide) are used as glass melting accelerators.
  • Na 2 O exceeds 15% by mass, the durability of the glass is lowered.
  • K 2 O is more expensive than Na 2 O, it is not preferable to exceed 12% by mass.
  • the total amount of Na 2 O and K 2 O is 19
  • the content is preferably not more than mass%, and in order to act as a glass melting accelerator, Na 2 O + K 2 O is preferably at least 1 mass%.
  • ZrO 2 zirconium oxide
  • the content of ZrO 2 is more preferably 0.5 to 5% by mass.
  • TiO 2 titanium oxide
  • TiO 2 titanium oxide
  • B 2 O 3 causes inconvenience during molding due to volatilization or the like
  • the glass constituting the glass substrate has a composition that does not substantially contain B 2 O 3 .
  • substantially free means that it is inevitably included as an impurity. For example, it means that it may be contained if it is less than 0.1%.
  • the glass constituting the glass substrate can contain 0.005 to 0.1% by mass of Fe 2 O 3 (iron oxide).
  • the content of Fe 2 O 3 is less than 0.005% by mass, the heat ray transmittance of the molten glass is increased. Therefore, during glass production, the temperature distribution in the melting tank is difficult to be attached, and the convection of the molten glass is prevented. Because it is difficult to wake up, it is difficult to obtain homogeneous glass.
  • the content of Fe 2 O 3 is more than 0.1% by mass, the heat ray transmittance of the glass is lowered, so that the battery efficiency of the solar cell produced using the substrate with a transparent conductive film is lowered, which is not preferable.
  • the content of Fe 2 O 3 is more preferably 0.007 to 0.08 mass%.
  • the mass ratio of Al 2 O 3 / Na 2 O is preferably 0.5 or more.
  • the mass ratio of Al 2 O 3 / Na 2 O is less than 0.5, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable.
  • the mass ratio of Al 2 O 3 / Na 2 O is more preferably 0.7 or more, and further preferably 0.8 or more.
  • the mass ratio of (SrO + BaO) / Al 2 O 3 is preferably 1.0 or less.
  • (SrO + BaO) includes at least one of SrO and BaO, and indicates the total amount of SrO and BaO contained.
  • the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, and Al 2 O 3 / SiO 2 mass The ratio is preferably 0.25 or more.
  • the mass ratio of Al 2 O 3 / Na 2 O is less than 0.5, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable.
  • the mass ratio of Al 2 O 3 / Na 2 O is more preferably 0.7 or more, and further preferably 0.8 or more. Further, if the Al 2 O 3 / SiO 2 mass ratio is less than 0.25, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable.
  • the glass substrate composed of glass having the above composition preferably has a strain point of 550 ° C. or higher.
  • a transparent conductive film is formed on the glass substrate by atmospheric pressure CVD in the manufacturing process of the plate glass by the float method (on-line).
  • the film forming temperature can be increased, and the film can be formed at a high temperature and at a high speed.
  • the strain point of the glass substrate is more preferably 565 ° C. or higher.
  • the strain point is a strain point measured according to “JIS R3103-2”.
  • the glass substrate composed of the glass having the above composition preferably has an average coefficient of thermal expansion at 50 to 300 ° C. of 50 ⁇ 10 ⁇ 7 to 105 ⁇ 10 ⁇ 7 / ° C.
  • the average thermal expansion coefficient of the glass substrate at 50 to 300 ° C. is more preferably 54 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C.
  • the thickness of the glass substrate 12 is not particularly limited and may be appropriately determined according to the use of the TCO substrate 10 or the like, but is usually about 1.5 to 6 mm. .
  • the means for forming (that is, forming) the tin oxide film 14 as the transparent conductive film on the glass substrate 12 is not particularly limited, but preferably, as described later, This is a tin oxide film 14 formed by an atmospheric pressure CVD (Chemical Vapor Deposition) method using tin tetrachloride, water, and HF as raw materials in the manufacturing process.
  • CVD Chemical Vapor Deposition
  • a zinc oxide film formed by a CVD method using an inorganic compound may be used. In these cases, the raw material does not contain Cl, but the effect of increasing the mobility is manifested by the effect that the Na impurity in the film is reduced.
  • the film thickness of the tin oxide film 14 is not particularly limited, and may be appropriately determined according to the use of the TCO substrate 10 or the like, but is usually about 300 to 1500 nm.
  • the tin oxide film 14 is preferably a film containing fluorine as a dopant (fluorine-doped tin oxide film) in order to obtain high conductivity.
  • fluorine concentration is preferably 0.01 to 4 mol%, more preferably 0.02 to 2 mol% with respect to SnO 2 . Within the above range, the conductivity is excellent.
  • the SnO 2 ratio is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the carrier concentration is high because fluorine is doped.
  • the carrier concentration is preferably 5 ⁇ 10 19 to 4 ⁇ 10 20 cm ⁇ 3 , and more preferably 1 ⁇ 10 20 to 2.5 ⁇ 10 20 cm ⁇ 3 . It is excellent in balance with electroconductivity and absorption of near-infrared light in it being the said range.
  • the tin oxide film 14 may have a structure in which a tin oxide film not containing a dopant and a fluorine-doped tin oxide film are laminated.
  • the TCO substrate 10 of the present invention preferably has a film 14 mainly composed of a tin oxide film on a glass substrate 12, and there is no particular limitation other than that, and various configurations can be used.
  • the TCO film may be a film mainly composed of ZnO (zinc oxide).
  • the main component here means that it accounts for 80% or more of the film composition.
  • the configuration in which the tin oxide film 14 is formed on the surface of the glass substrate 12 is not limited, and between the glass substrate 12 and the tin oxide film 14 as necessary.
  • a single layer or a plurality of layers may be provided.
  • a silicon oxide film (SiO 2 film) and a titanium oxide film (TiO 2 film) are provided between the glass substrate 12 and the tin oxide film 14.
  • a configuration having at least one of the above as a base film is preferably exemplified.
  • a preferable result can be obtained in that it can be prevented from being lowered and light reflection at the interface between the glass substrate 12 and the tin oxide film 14 can be reduced (that is, the antireflection effect is improved).
  • Cl in the tin oxide film formed on the glass substrate described above is used. The effect of reducing the concentration is exhibited.
  • the thickness of the silicon oxide film is 10 to 50 nm, and the thickness of the titanium oxide film is 5 to 22 nm. It is preferable to do this.
  • FIG. 2 conceptually shows an example of a method for manufacturing the TCO substrate 10 of the present invention.
  • FIG. 2 The example shown in FIG. 2 is a so-called float glass plate production line (on-line), and is placed on a roller 20a in a slow cooling furnace (slow cooling line) 20 arranged downstream of a float bath.
  • the TCO substrate 10 is manufactured by forming a tin oxide film 14 on the surface of the glass substrate 12 that is gradually cooled while being conveyed in the y direction by an atmospheric pressure CVD method.
  • FIG. 2 shows only the atmospheric pressure CVD apparatus portion.
  • the TCO substrate 10 of the present invention (that is, the substrate with a transparent conductive film) is produced by forming a tin oxide film on the surface of the glass substrate 12 by an atmospheric pressure CVD method in such an online annealing furnace or the like.
  • the thing is not limited. That is, as a method of manufacturing the TCO substrate 10 of the present invention, a so-called off-line (off-off) method is used in which a tin oxide film is formed by an atmospheric pressure CVD method using a glass plate completed as a glass plate as a substrate instead of a plate glass manufacturing process. -Line) can also be used advantageously.
  • the glass substrate is heated with a heater to form a film, and then the glass substrate is gradually cooled in a cooling zone. This cooling zone is called a slow cooling furnace.
  • a tin oxide film is formed by atmospheric pressure CVD using tin tetrachloride (SnCl 4 ) as a main material and water (H 2 O) as an auxiliary material. Specifically, by spraying a gas and water vapor of tin tetrachloride from the injector 18 onto the glass substrate 12 conveyed in the slow cooling furnace 20, oxidation is performed on the surface of the glass substrate 12 by a hydrolysis reaction of tin tetrachloride. A tin film is formed.
  • tin tetrachloride SnCl 4
  • H 2 O water
  • tin tetrachloride (SnCl 4 ) is used as the main raw material, but other inorganic materials such as SnHCl 3 , SnH 2 Cl 2 , and SnH 3 Cl are used instead of tin tetrachloride.
  • An organic tin chloride compound such as monobutyltin trichloride or dibutyltin dichloride can also be used as the Sn raw material.
  • tin chloride compounds inorganic tin chloride compounds such as SnCl 4 , SnHCl 3 , SnH 2 Cl 2 , SnH 3 Cl and organic tin chloride compounds such as monobutyltin trichloride and dibutyltin dichloride
  • a tin chloride compound is used as the Sn raw material
  • a general stainless steel member can be used as the raw material pipe, and the vapor pressure is low enough to supply an industrially sufficient amount within the range of the heat resistant temperature of stainless steel. Because.
  • tin oxide film 14 When a fluorine-doped tin oxide film is formed as the tin oxide film 14, in addition to the above-described tin tetrachloride (SnCl 4 ) and water (H 2 O), hydrogen fluoride (HF) is used as the F raw material. It will be sprayed from the injector 18.
  • tin tetrachloride SnCl 4
  • water H 2 O
  • Such an injector 18 has a main raw material outlet 24, an auxiliary raw material outlet 26, and a suction port 28.
  • the main raw material outlet 24, the auxiliary raw material outlet 26, and the suction port 28 all extend in the width direction of the glass substrate 12 (direction perpendicular to the conveying direction of the glass substrate 12 (direction perpendicular to the paper surface of FIG. 2)). It is an existing long gas flow path.
  • the main raw material outlet 24 blows out a gas of tin tetrachloride (or a tin chloride compound other than the above-described tin tetrachloride), which is the main raw material, from the opening at the lower end of the injector 18.
  • the auxiliary raw material outlet 26 blows out water vapor (water) as an auxiliary raw material from the opening at the lower end of the injector 18.
  • Two auxiliary raw material outlets 26 are formed so as to sandwich the main raw material outlet 24 in the upstream and downstream of the conveyance direction of the glass substrate 12.
  • FIG. 1 The suction port 28 sucks the raw material gas that has not been used for the film formation of tin oxide or the hydrochloric acid gas by-produced by the film formation of tin oxide from the opening at the lower end of the injector 18 and discharges it from the film formation unit.
  • Two suction ports 28 are formed so as to sandwich the auxiliary material outlet 26 upstream and downstream in the conveyance direction of the glass substrate 12.
  • the injector 18 is provided with a supply means for supplying a gas of tin tetrachloride (or a tin chloride compound other than the above-described tin tetrachloride) to the main raw material outlet 24, and steam is supplied to the auxiliary raw material outlet 26.
  • the supply means for supplying the gas and the suction means for sucking the suction port 28 are connected.
  • supply means for supplying hydrogen fluoride (HF) to the main material outlet 24 or the auxiliary material outlet 26 is connected to the injector 18. Yes.
  • a known unit used for film formation by an atmospheric pressure CVD method using an injector may be used.
  • the manufacturing apparatus of the illustrated example sprays a gas of tin tetrachloride (or a tin chloride compound other than tin tetrachloride described above) and water vapor onto the glass substrate 12 conveyed in the slow cooling furnace 20 from the injector 18.
  • the tin oxide film 14 is formed on the surface of the glass substrate 12 by the atmospheric pressure CVD method by the hydrolysis reaction of tin tetrachloride, and the TCO substrate 10 is manufactured.
  • hydrogen fluoride (HF) is further sprayed from the injector 18.
  • the slow cooling furnace 20 shown in FIG. 2 is a slow cooling furnace of a plate glass manufacturing line made of glass having the above composition.
  • the TCO substrate 10 having a high mobility of the tin oxide film 14 can be manufactured.
  • the glass substrate 12 comprised with the glass of the composition mentioned above preferably has a strain point as high as 550 ° C. or higher, the tin oxide film 14 is formed in the plate glass manufacturing process (or offline process) by the float process. When the film is formed, the TCO substrate 10 can be manufactured at a high film formation rate and with high productivity by increasing the film formation temperature of the tin oxide film 14.
  • the conditions for forming the tin oxide film using the production apparatus of the illustrated example are not particularly limited.
  • the gas flow rate of tin tetrachloride blown from the main raw material outlet 24 is 60 to 150 cm / s, and
  • the supply amount of tin tetrachloride may be 0.3 to 2.5 vol% of the total volume of the raw material gas blown from the injector 18.
  • the quantity ratio of tin tetrachloride blown out from the main raw material outlet 24 and water vapor blown out from the auxiliary raw material outlet 26 may be 20 to 110 in terms of a molar ratio of water vapor / tin tetrachloride.
  • the temperature of the injector 18 is 200 degrees C or less. Since the temperature of the injector 18 is low, it is possible to reduce the adhesion of the tin oxide powder generated by the reaction of the raw material gas in the gas phase to the inside of the suction port 28 of the injector 18.
  • Examples 1 to 9 are shown as examples of the glass substrate for forming a transparent conductive film and the substrate with a transparent conductive film of the present invention, and Comparative Examples 1 to 3 are shown below as comparative examples.
  • the data of Examples 1 and 2 and Comparative Example 1 shown in Table 1 are based on the thickness of the tin oxide film shown in Table 1, and Examples 1, 2 and Comparative Example shown in Table 2 Each data of 1 is for the film thickness (345 nm) of a tin oxide film described later.
  • Example 1 In the manufacture of plate glass by the float process, a tin oxide film is formed on the glass substrate 12 by using an injector 18 as shown in FIG. 2 and using a slow cooling furnace 20 using tin tetrachloride, water and hydrogen fluoride as source gases. did.
  • the composition of the glass substrate 12 is expressed in terms of mass% on the basis of oxide, SiO 2 : 57.6, Al 2 O 3 : 7.0, SiO 2 + Al 2 O 3 : 64.6, MgO 2: 2.0 , CaO: 5.0, SrO: 7.0, BaO: 8.0, RO (MgO + CaO: + SrO + BaO): 22.0, MgO + CaO: 7.0, Na 2 O: 4.1, K 2 O: 6. 3, Na 2 O + K 2 O: 10.4, ZrO 2: was used which consists of 3.0 glass.
  • a 30 nm silicon oxide film was formed on the surface of the glass substrate 12 by atmospheric pressure CVD as an undercoat film upstream of the injector 18. Under such conditions, in the on-line annealing furnace 20, a fluorine-doped tin oxide film is formed as a tin oxide film 14 on the silicon oxide film of the glass substrate 12 having a 30 nm silicon oxide film on the surface, and the TCO substrate is formed. 10 was produced.
  • tin tetrachloride gas is 1.16 mol / min
  • hydrogen fluoride gas is 9.1 L / min
  • nitrogen gas is 33. 8 L / min was blown out.
  • 360 g / min of water vapor was blown out from the auxiliary material outlet 26.
  • the film thickness of the produced tin oxide film 14 (fluorine-doped tin oxide film) was 226 nm.
  • the conveyance speed of the glass substrate 12 in the slow cooling furnace 20 was 2.5 m / min.
  • region which faces the injector 18 was 590 degreeC. That is, the film forming temperature is 590 ° C.
  • Example 2 As the glass substrate 12, the composition is expressed in terms of mass% based on oxide, and SiO 2 : 60.7, Al 2 O 3 : 9.6, SiO 2 + Al 2 O 3 : 70.3, MgO: 6.9, CaO: 0.1, SrO: 0.2, BaO: 0.2, RO (MgO + CaO + SrO + BaO): 7.4, MgO + CaO: 7.0, Na 2 O: 11.6, K 2 O: 5.9, Na
  • a TCO substrate was prepared by forming a tin oxide film in the same manner as in Example 1 except that a glass composed of 2 O + K 2 O: 17.5 and ZrO 2 : 4.8 was used.
  • the film thickness of the tin oxide film 14 fluorine-doped tin oxide film
  • the TCO substrate thus fabricated was annealed at 375 ° C. for 10 minutes in a nitrogen atmosphere containing 6 ppm oxygen gas, and the sheet resistance value [ ⁇ / ⁇ of the tin oxide film 14 (fluorine-doped tin oxide film). ], Mobility [cm 2 / V ⁇ s], and carrier concentration [/ cm 3 ] were measured.
  • the sheet resistance value was measured using a Mitsubishi Leka lorester FP. Mobility and carrier concentration were measured using Nanometrics HL5500PC. Further, the Cl concentration [%] in the tin oxide film 14 (fluorine-doped tin oxide film) was measured using an XPS PHI5000 VersaProbe manufactured by ULVAC-PHI.
  • composition of the glass substrate 12 is expressed in terms of mass% based on oxides, and it is SiO 2 72.8, Al 2 O 3 1.9, SiO 2 + Al 2 O 3 74.7, MgO 3.7, CaO 8.1.
  • RO MgO + CaO + SrO + BaO
  • a tin oxide film was formed in the same manner as in Example 1 to produce a TCO substrate.
  • the film thickness of the tin oxide film 14 fluorine-doped tin oxide film) was 260 nm.
  • the glass substrate 12 is composed of glass having RO in the range of 3.5 to 27% by mass and ZrO 2 content of 2 to 5% by mass.
  • the Cl concentration in the tin oxide film was low, and the mobility of the tin oxide film was high.
  • the mobility of the tin oxide film was higher in Example 1 where the Cl concentration in the tin oxide film was lower.
  • a 30 nm silicon oxide film was formed on the surface of the glass substrate as an undercoat film by atmospheric pressure CVD upstream of the injector 18.
  • an injector 18 as shown in FIG. 2, using tin tetrachloride, water and hydrogen fluoride as raw materials, As the tin oxide film 14, a fluorine-doped tin oxide film was formed.
  • tin tetrachloride gas is 1.16 mol / min
  • hydrogen fluoride gas is 9.1 L / min
  • nitrogen gas is 33.8 L / min. min, blown out.
  • the conveyance speed of the glass substrate 12 in the off-line CVD apparatus was 2.5 m / min.
  • region which faces the injector 18 was 590 degreeC. That is, the film forming temperature is 590 ° C.
  • 360 g / min of water vapor was blown out from the auxiliary material outlet 26.
  • a TCO substrate 10 was produced by forming a tin oxide film 14 (fluorine-doped tin oxide film) on a glass substrate 12 having a 30 nm silicon oxide film on the surface in an off-line CVD apparatus.
  • the film thickness of the tin oxide film 14 (fluorine-doped tin oxide film) was 345 nm, respectively.
  • the thus fabricated TCO substrate is annealed at 375 ° C. for 10 minutes in a nitrogen atmosphere containing 6 ppm oxygen gas, and the mobility of the tin oxide film 14 (fluorine-doped tin oxide film) [cm 2 / V -S] was measured.
  • the mobility was measured using Nanometrics HL5500PC as described above.
  • the Na concentration [count / sec] in the tin oxide film 14 (fluorine-doped tin oxide film) was measured using a Dynamic SIMS ADEPT 1010 manufactured by ULVAC-PHI.
  • the Na concentration [count / sec] in the tin oxide film 14 (fluorine-doped tin oxide film: TCO film) with a SiO 2 base film was measured using a Dynamic SIMS ADEPT 1010 manufactured by ULVAC-PHI.
  • the mobility of the tin oxide film 14 [cm 2 / V ⁇ s] for the substrate with a transparent conductive film on which the tin oxide film obtained in Examples 3 to 9 and Comparative Examples 1 to 3 was formed.
  • Table 2 shows the measurement results.
  • the glass composition, mobility, and other measurement data of the glass substrates of Examples 1 and 2 are also shown.
  • the mobility data of the TCO film with the SiO 2 base film is a value obtained by measuring the mobility of the TCO film using Nanometrics HL5500PC after annealing the TCO film.
  • FIG. 3 shows the relationship between the Na concentration [count / sec] and the mobility of the tin oxide film.
  • the mobility of the tin oxide film is higher in Examples 1 to 9 than in Comparative Examples 1 to 3. Further, as can be seen from FIG. 3, it was found that the mobility of the tin oxide film was higher as the Na concentration in the SnO 2 film was lower. According to this result, it is considered that Na in SnO 2 inhibits carrier movement as an impurity, and it is necessary to reduce Na impurity in the SnO 2 film in order to obtain high mobility. I understand. From these results, the present inventors have found the glass composition of the glass substrate for reducing Na impurities in the SnO 2 film as described above.
  • the SnO 2 film is reduced when the Al 2 O 3 / Na 2 O mass ratio is decreased. It can be seen that the concentration of medium Na increases and the mobility of the tin oxide film decreases. This is described, for example, in the amount of Al 2 O 3 in the glass, as described in [MA A. Rana et al, Phys. Chem. Of Glasses, Vol. 8 (1967), No. 5, 178].
  • the present inventors have found that it is desirable that the amount of Al 2 O 3 is large and the amount of Na 2 O is small. From the result, it was found that the desired mobility can be obtained when the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more.
  • the glass substrates of Examples 8 and 9 satisfy the condition that SiO 2 is less than 55% by mass and the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less.
  • the amount of Na in the SnO 2 film is small compared to From the result of FIG. 3 found by the present inventor, a linear relational expression can be derived for the mobility and the Na concentration in the SnO 2 film.
  • Examples 1 to 9 and Comparative Examples 1 to 3 were formed using a SiO 2 film alkali barrier film (underlying film). It is known from the experimental results so far that the amount of Na in the SnO 2 film is about 4.0 times when there is no alkali barrier film. Therefore, the amount of Na in the SnO 2 film without the SiO 2 base film is calculated as shown in Table 2. Further, when the mobility is calculated from Equation 1, the normal barrier film used in Comparative Example 1 is used. It is expected that a mobility similar to that in FIG.
  • substrate with a transparent conductive film of this invention can be utilized suitably for manufacture of the board
  • the entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2012-025968 filed on February 9, 2012 are incorporated herein by reference. .
  • TCO (with transparent conductive film) substrate 12 Glass substrate 14 Tin oxide film 18 Injector 20 Slow cooling furnace 24 Main raw material outlet 26 Sub raw material outlet 28 Suction port

Abstract

Provided is a substrate with a transparent conductive film, which is obtained by forming a tin oxide film on a glass substrate, said tin oxide film having high mobility and low resistance. A substrate with a transparent conductive film, which is characterized by having a tin oxide film on a glass substrate that has a composition described below. A composition which is composed of, in mass% based on oxides, 55-72 of SiO2, 5-18 of Al2O3, 2-8 of MgO, 0-8 of CaO, 0-8 of SrO, 0-10 of BaO, 0-15 of Na2O, 0-12 of K2O, 0-5 of ZrO2 and 0-5 of TiO2, with MgO + CaO + SrO + BaO being 3.5-27, and which does not substantially contain B2O3.

Description

透明導電膜形成用ガラス基板、および透明導電膜付き基板Glass substrate for forming transparent conductive film, and substrate with transparent conductive film
 本発明は、太陽電池等に利用される透明導電膜形成用ガラス基板、および透明導電膜付き基板に関し、詳しくは、高い移動度など優れた電気的特性が得られる透明導電膜形成用ガラス基板、および透明導電膜付き基板に関する。 The present invention relates to a glass substrate for forming a transparent conductive film used for solar cells and the like, and a substrate with a transparent conductive film, and more specifically, a glass substrate for forming a transparent conductive film from which excellent electrical characteristics such as high mobility can be obtained, And a substrate with a transparent conductive film.
 太陽電池などに、ガラス基板の表面に透明で、かつ導電性を有する酸化スズ膜等の透明導電膜を成膜してなる透明導電膜付き基板が利用されている。 A substrate with a transparent conductive film formed by forming a transparent conductive film such as a tin oxide film that is transparent and conductive on the surface of a glass substrate is used for solar cells and the like.
 このような酸化スズ膜を成膜してなる基板の製造方法として、四塩化スズの加水分解反応などを利用して、大気圧CVD法によってガラス基板の表面に酸化スズを成膜する方法が知られている。 As a method of manufacturing a substrate formed by forming such a tin oxide film, a method of forming a tin oxide film on the surface of a glass substrate by an atmospheric pressure CVD method using a hydrolysis reaction of tin tetrachloride is known. It has been.
 また、大気圧CVD法により酸化スズを成膜する際には、成膜温度(すなわち、成膜時のガラス基板の温度)が高いほど、移動度が高い酸化スズを成膜することができる。
 そのため、フロート法による板ガラスの製造工程(いわゆる、オンライン(On-Line))において、大気圧CVD法により、ガラス基板に酸化スズ膜を成膜して、透明導電膜付き基板を製造することも、行なわれている。この成膜方法によれば、フロートバスや徐冷炉において酸化スズ膜を成膜することができる。
When tin oxide is formed by atmospheric pressure CVD, tin oxide having higher mobility can be formed as the film formation temperature (that is, the temperature of the glass substrate during film formation) is higher.
Therefore, in a plate glass manufacturing process by float method (so-called on-line), a tin oxide film is formed on a glass substrate by atmospheric pressure CVD method to manufacture a substrate with a transparent conductive film. It is done. According to this film forming method, a tin oxide film can be formed in a float bath or a slow cooling furnace.
 例えば、特許文献1には、板ガラスの製造工程において、徐冷炉内で、原料として四塩化スズおよび水(水蒸気)を用いて、板ガラスの表面に酸化スズを成膜することが記載されている。
 具体的には、特許文献1には、板ガラスの製造工程において、四塩化スズの濃度を2.5×10-3~10-2気圧の分圧相当、水蒸気の濃度を10×10-3~200×10-3気圧の分圧相当とし、原料ガスの温度(すなわち、原料ガスを噴出させるインジェクタ部分の温度)を300℃以上とし、さらに、ガラスの温度を550~650℃として、徐冷炉内において、大気圧CVDで板ガラスの表面に酸化スズを成膜することが記載されている。
For example, Patent Document 1 describes that in a plate glass manufacturing process, tin oxide is formed on the surface of a plate glass using tin tetrachloride and water (water vapor) as raw materials in a slow cooling furnace.
Specifically, Patent Document 1 discloses that in the plate glass manufacturing process, the concentration of tin tetrachloride is equivalent to a partial pressure of 2.5 × 10 −3 to 10 −2 atm, and the concentration of water vapor is 10 × 10 −3 to In the slow cooling furnace, the partial pressure is 200 × 10 −3 atm, the temperature of the raw material gas (that is, the temperature of the injector portion from which the raw material gas is ejected) is 300 ° C. or higher, and the glass temperature is 550 to 650 ° C. In addition, it is described that tin oxide is formed on the surface of a plate glass by atmospheric pressure CVD.
日本特公昭61-50892号公報Japanese Patent Special Publication No. 61-50892
 ガラス基板の表面に酸化スズ膜を成膜してなる透明導電膜付き基板では、酸化スズ膜の移動度の向上が求められている。上述したように、大気圧CVDで酸化スズを成膜する際には、成膜温度が高いほど、移動度が高い酸化スズを成膜することができるが、成膜温度の制御のみでは、移動度の向上に限界がある。 In a substrate with a transparent conductive film formed by forming a tin oxide film on the surface of a glass substrate, improvement in the mobility of the tin oxide film is required. As described above, when the tin oxide film is formed by atmospheric pressure CVD, the higher the film formation temperature, the higher the mobility of the tin oxide film can be formed. There is a limit to improving the degree.
 本発明の目的は、前記従来技術の問題点を解決することにあり、ガラス基板に酸化スズ膜等の透明導電膜を成膜してなる透明導電膜付き基板において、高い移動度を有する低抵抗の酸化スズ膜等の透明導電膜を有する透明導電膜付き基板を提供すること、また高い移動度を有する透明導電膜付き基板を得ることができる透明導電膜形成用ガラス基板を提供することにある。 An object of the present invention is to solve the problems of the prior art, and in a substrate with a transparent conductive film formed by forming a transparent conductive film such as a tin oxide film on a glass substrate, a low resistance having high mobility. To provide a substrate with a transparent conductive film having a transparent conductive film such as a tin oxide film, and to provide a glass substrate for forming a transparent conductive film from which a substrate with a transparent conductive film having high mobility can be obtained. .
 本発明者らは、上記の目的を達成すべく鋭意検討した結果、特定ガラス組成のガラス基板上に、酸化スズ膜等の透明導電膜を成膜することで、高い移動度を有する低抵抗の酸化スズ膜等の透明導電膜が得られることを見出した。
 本発明は、上記した知見に基づいてなされたものであり、下記のガラス組成を有する透明導電性膜形成用ガラス基板、および透明導電膜付き基板を提供する。
As a result of intensive studies to achieve the above object, the present inventors have formed a transparent conductive film such as a tin oxide film on a glass substrate having a specific glass composition, and thus have a low mobility with high mobility. It has been found that a transparent conductive film such as a tin oxide film can be obtained.
This invention is made | formed based on above-described knowledge, and provides the glass substrate for transparent conductive film formation which has the following glass composition, and a board | substrate with a transparent conductive film.
(1)下記酸化物基準の質量%表示で、下記のガラス組成を有し、B を実質的に含有しないことを特徴とする透明導電性膜形成用ガラス基板。
  SiO   :      45~80%、
  Al :      5~18%、
  MgO  :      2~8%、
  CaO  :      0~9%、
  SrO  :      0~8%、
  BaO  :      0~10%、
  MgO+CaO+SrO+BaO : 3.5~27%、
  NaO :      0~15%、
  KO  :      0~12%、
  ZrO :      0~5%、
  TiO :      0~5%。
 上記した「MgO+CaO+SrO+BaO」とは、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも一種を含有し、含有されるこれらの成分の合量を示し、以下、本明細書において、この表記は、同様の意味を示すものとする。
(1) A transparent conductive film-forming glass substrate having the following glass composition and substantially not containing B 2 O 3 in terms of mass% based on the following oxides.
SiO 2 : 45-80%,
Al 2 O 3 : 5 to 18%,
MgO: 2-8%,
CaO: 0-9%,
SrO: 0-8%,
BaO: 0 to 10%,
MgO + CaO + SrO + BaO: 3.5-27%
Na 2 O: 0 to 15%,
K 2 O: 0-12%,
ZrO 2 : 0 to 5%,
TiO 2 : 0 to 5%.
The above-mentioned “MgO + CaO + SrO + BaO” contains at least one selected from the group consisting of MgO, CaO, SrO and BaO, and indicates the total amount of these components contained. Hereinafter, in this specification, The same meaning shall be shown.
(2)下記酸化物基準の質量%表示で、下記のガラス組成を有し、Bを実質的に含有しない、上記(1)に記載の透明導電性膜形成用ガラス基板。
  SiO   :     55~72%、
  Al :     5~18%、
  MgO  :     2~8%、
  CaO  :     0~8%、
  SrO  :     0~8%、
  BaO  :     0~10%、
  MgO+CaO+SrO+BaO : 3.5~27%、
  NaO :     0~15%、
  KO  :     0~12%、
  ZrO :     0~5%、
  TiO :     0~5%。
(2) The glass substrate for forming a transparent conductive film according to the above (1), which has the following glass composition and does not substantially contain B 2 O 3 in terms of mass% based on the following oxide.
SiO 2 : 55 to 72%,
Al 2 O 3 : 5 to 18%,
MgO: 2-8%,
CaO: 0-8%,
SrO: 0-8%,
BaO: 0 to 10%,
MgO + CaO + SrO + BaO: 3.5-27%
Na 2 O: 0 to 15%,
K 2 O: 0-12%,
ZrO 2 : 0 to 5%,
TiO 2 : 0 to 5%.
(3)酸化錫を主成分とする透明導電膜が形成されるガラス基板である、上記(2)に記載の透明導電性膜形成用ガラス基板。
(4)前記ガラス基板のガラス組成は、下記酸化物基準の質量%表示において、
 SiO が55%以上の場合には、Al/NaOの質量比が0.5以上であり、
 SiO が55%未満の場合には、(SrO+BaO)/Alの質量比が1.0以下である、上記(1)に記載の透明導電性膜形成用ガラス基板。
(5)前記ガラス基板のガラス組成は、下記酸化物基準の質量%表示において、SiO が55%未満の場合には、Al/NaOの質量比が0.5以上であり、かつAl/SiOの質量比が0.25以上である、上記(1)に記載の透明導電性膜形成用ガラス基板。
(3) The glass substrate for forming a transparent conductive film according to (2) above, which is a glass substrate on which a transparent conductive film containing tin oxide as a main component is formed.
(4) The glass composition of the glass substrate is expressed in mass% on the basis of the following oxide,
When SiO 2 is 55% or more, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more,
When SiO 2 is less than 55%, the transparent conductive film-forming glass substrate according to (1) above, wherein the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less.
(5) The glass composition of the glass substrate has a mass ratio of Al 2 O 3 / Na 2 O of 0.5 or more when SiO 2 is less than 55% in the mass% display based on the following oxides. and the mass ratio of Al 2 O 3 / SiO 2 is 0.25 or more, a transparent conductive film for forming a glass substrate according to (1).
(6)前記ガラス基板は、下記酸化物基準の質量%表示で、ZrOを0.5~5%含有するガラス組成である、上記(1)~(5)のいずれかに記載の透明導電膜形成用ガラス基板。
(7)前記ガラス基板は、下記酸化物基準の質量%表示で、NaOおよびKOの少なくともいずれかを、NaOおよびKOの合量で、1~19%含有するガラス組成である、上記(1)~(6)のいずれかに記載の透明導電膜形成用ガラス基板。
(6) The transparent glass according to any one of (1) to (5), wherein the glass substrate has a glass composition containing 0.5 to 5% of Zr 2 O in terms of mass% based on the following oxides. A glass substrate for forming a conductive film.
(7) Glass the glass substrate, by mass% based on the following oxides, at least one of Na 2 O and K 2 O, in a total amount of Na 2 O and K 2 O, containing from 1 to 19% The glass substrate for forming a transparent conductive film according to any one of the above (1) to (6), which has a composition.
(8)前記ガラス基板は、下記酸化物基準の質量%表示で、MgOおよびCaOの少なくともいずれかを、MgOおよびCaOの合量で、2~16%含有するガラス組成である、上記(1)~(7)のいずれかに記載の透明導電膜形成用ガラス基板。
(9)前記ガラス基板は、下記酸化物基準の質量%表示で、SiOおよびAlの少なくともいずれかを、SiOおよびAlの合量で、64~82%含有するガラス組成である、上記(1)~(8)のいずれかに記載の透明導電膜形成用ガラス基板。
(8) The glass substrate described above (1), wherein the glass substrate contains 2 to 16% of the total amount of MgO and CaO in terms of mass% based on the following oxides based on the total amount of MgO and CaO. The glass substrate for forming a transparent conductive film according to any one of (7) to (7).
(9) The glass substrate, by mass% based on the following oxides, at least one of SiO 2 and Al 2 O 3, in a total amount of SiO 2 and Al 2 O 3, glass containing 64 to 82% The glass substrate for forming a transparent conductive film according to any one of the above (1) to (8), which has a composition.
(10)前記ガラス基板の歪点が550℃以上である、上記(1)~(9)のいずれかに記載の透明導電膜形成用ガラス基板。
(11)前記ガラス基板は、50~300℃での平均熱膨張係数が50×10-7~105×10-7/℃である、上記(1)~(10)のいずれかに記載の透明導電膜形成用ガラス基板。
(10) The glass substrate for forming a transparent conductive film according to any one of (1) to (9), wherein the glass substrate has a strain point of 550 ° C. or higher.
(11) The transparent glass according to any one of (1) to (10), wherein the glass substrate has an average coefficient of thermal expansion at 50 to 300 ° C. of 50 × 10 −7 to 105 × 10 −7 / ° C. A glass substrate for forming a conductive film.
(12)前記ガラス基板は、粘度をη[dPa・s]とするとき、logη=2を満たす温度が1500℃超であり、logη=4を満たす温度が1100~1260℃である、上記(1)~(11)のいずれかに記載の透明導電膜形成用ガラス基板。
(13)前記ガラス基板は、フロート板ガラスである、上記(1)~(12)のいずれかに記載の透明導電膜形成用ガラス基板。
(12) When the viscosity is η [dPa · s], the glass substrate has a temperature satisfying log η = 2 of more than 1500 ° C., and a temperature satisfying log η = 4 is 1100 to 1260 ° C. The glass substrate for forming a transparent conductive film according to any one of (1) to (11).
(13) The glass substrate for forming a transparent conductive film according to any one of (1) to (12), wherein the glass substrate is float glass.
(14)前記ガラス基板は、下記酸化物基準の質量%表示で、Feを0.005~0.1%、さらに含有するガラス組成である、上記(1)~(13)のいずれかに記載の透明導電膜形成用ガラス基板。
(15)上記(1)~(14)のいずれかに記載のガラス基板面上に透明導電膜が形成された透明導電膜付き基板。
(14) The glass substrate according to any one of (1) to (13), wherein the glass substrate further contains 0.005 to 0.1% Fe 2 O 3 in terms of mass% based on the following oxides: A glass substrate for forming a transparent conductive film according to claim 1.
(15) A substrate with a transparent conductive film, wherein a transparent conductive film is formed on the glass substrate surface according to any one of (1) to (14).
(16)上記(1)~(14)のいずれかに記載のガラス基板面上に、膜厚250nmにおける移動度が36cm/V・s以上の透明導電膜を有する透明導電膜付き基板。 (16) A substrate with a transparent conductive film, comprising a transparent conductive film having a mobility at a film thickness of 250 nm of 36 cm 2 / V · s or more on the glass substrate surface according to any one of (1) to (14).
(17)上記(1)~(14)のいずれかに記載のガラス基板面上に、酸化スズ膜を有する透明導電膜が形成された透明導電膜付き基板。
(18)前記酸化スズ膜は、ドーパントとしてフッ素を含有する、酸化スズ膜である、上記(17)に記載の透明導電膜付き基板。
(17) A substrate with a transparent conductive film, wherein a transparent conductive film having a tin oxide film is formed on the glass substrate surface according to any one of (1) to (14).
(18) The substrate with a transparent conductive film according to (17), wherein the tin oxide film is a tin oxide film containing fluorine as a dopant.
(19)前記酸化スズ膜は、大気圧CVD法を用いて上記(1)~(14)のいずれかに記載のガラス基板上に成膜されている、(17)または(18)に記載の透明導電膜付き基板。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
(19) The tin oxide film according to (17) or (18), wherein the tin oxide film is formed on the glass substrate according to any one of (1) to (14) using an atmospheric pressure CVD method. A substrate with a transparent conductive film.
The term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value. Unless otherwise specified, “to” is the same in the following specification. Used with meaning.
 本発明によれば、高い移動度を有する透明導電膜を形成することができるガラス基板を得ることができ、かかる特定ガラス組成のガラス基板上に、酸化スズ膜等の透明導電膜を成膜することで、高い移動度を有する透明導電膜付き基板を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the glass substrate which can form the transparent conductive film which has high mobility can be obtained, and transparent conductive films, such as a tin oxide film, are formed into a film on the glass substrate of this specific glass composition. Thus, a substrate with a transparent conductive film having high mobility can be obtained.
本発明の透明導電膜付き基板の一例の概念図である。It is a conceptual diagram of an example of the board | substrate with a transparent conductive film of this invention. 本発明の透明導電膜付き基板の製造方法を説明するための概念図である。It is a conceptual diagram for demonstrating the manufacturing method of the board | substrate with a transparent conductive film of this invention. 透明導電膜である酸化スズ膜中のNa濃度[count/sec]と酸化スズ膜の移動度の関係を示すグラフである。It is a graph which shows the relationship between Na density | concentration [count / sec] in the tin oxide film | membrane which is a transparent conductive film, and the mobility of a tin oxide film.
 以下、本発明の透明導電膜形成用ガラス基板および透明導電膜付き基板について、図面および好適な実施例を参照して、詳細に説明する。 Hereinafter, the glass substrate for forming a transparent conductive film and the substrate with a transparent conductive film of the present invention will be described in detail with reference to the drawings and preferred embodiments.
 図1に、本発明の一実施態様に係る透明導電膜(以下、透明導電膜を「TCO膜」とも称する。)がガラス基板に形成された透明導電膜付き基板(以下、この透明導電膜付き基板を「TCO基板」とも称する。)を概念的に示す。
 図1に示す透明導電膜付き基板10(以下、TCO基板10とも称する。)は、ガラス基板12と、このガラス基板12面の上に成膜(すなわち、形成)された、透明導電膜である酸化スズ膜14(SnO膜)と、を有するものである。
FIG. 1 shows a substrate with a transparent conductive film (hereinafter referred to as this transparent conductive film) in which a transparent conductive film (hereinafter referred to as a “TCO film”) according to an embodiment of the present invention is formed on a glass substrate. The substrate is also referred to as a “TCO substrate”).
A substrate 10 with a transparent conductive film (hereinafter also referred to as a TCO substrate 10) shown in FIG. 1 is a transparent conductive film formed on a glass substrate 12 and the surface of the glass substrate 12 (that is, formed). A tin oxide film 14 (SnO 2 film).
 本発明のTCO基板10において、ガラス基板12は、下記組成の実施態様(1)~(4)のガラス組成を有するガラスからなるものである。
(1)下記酸化物基準の質量%表示で、SiO:45~80%、Al:5~18%、MgO:2~8%、CaO:0~8%、SrO:0~8%、BaO:0~10%、MgO+CaO+SrO+BaO:3.5~27%、NaO:0~15%、KO:0~12%、ZrO:0~5%、TiO:0~5%、からなり、Bを実質的に含有しないガラス。
(2)下記酸化物基準の質量%表示で、SiO:55~72%、Al:5~18%、MgO:2~8%、CaO:0~8%、SrO:0~8%、BaO:0~10%、MgO+CaO+SrO+BaO:3.5~27%、NaO:0~15%、KO:0~12%、ZrO:0~5%、TiO:0~5%、からなり、Bを実質的に含有しないガラス。
(3)上記(1)のガラス組成において、SiO が55%以上の場合には、Al/NaOの質量比が0.5以上であり、SiO が55%未満の場合には、(SrO+BaO)/Alの質量比が1.0以下であるガラス。
(4)上記(1)のガラス組成において、SiO が55%未満の場合には、Al/NaOの質量比が0.5以上であり、かつAl/SiO質量比が0.25以上であるガラス。
In the TCO substrate 10 of the present invention, the glass substrate 12 is made of glass having the glass composition of Embodiments (1) to (4) having the following composition.
(1) SiO 2 : 45 to 80%, Al 2 O 3 : 5 to 18%, MgO: 2 to 8%, CaO: 0 to 8%, SrO: 0 to 8 in terms of mass% based on the following oxides %, BaO: 0 to 10%, MgO + CaO + SrO + BaO: 3.5 to 27%, Na 2 O: 0 to 15%, K 2 O: 0 to 12%, ZrO 2 : 0 to 5%, TiO 2 : 0 to 5 %, And glass containing substantially no B 2 O 3 .
(2) SiO 2 : 55 to 72%, Al 2 O 3 : 5 to 18%, MgO: 2 to 8%, CaO: 0 to 8%, SrO: 0 to 8 in terms of mass% based on the following oxides %, BaO: 0 to 10%, MgO + CaO + SrO + BaO: 3.5 to 27%, Na 2 O: 0 to 15%, K 2 O: 0 to 12%, ZrO 2 : 0 to 5%, TiO 2 : 0 to 5 %, And glass containing substantially no B 2 O 3 .
(3) In the glass composition of (1) above, when SiO 2 is 55% or more, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, and SiO 2 is less than 55% The glass having a mass ratio of (SrO + BaO) / Al 2 O 3 of 1.0 or less.
(4) In the glass composition of (1) above, when SiO 2 is less than 55%, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, and Al 2 O 3 / SiO 2 Glass whose mass ratio is 0.25 or more.
 次に各ガラス成分の組成範囲について説明する。
 SiO(酸化ケイ素)はガラスの骨格を形成する主成分である。
 上記(1)のガラス組成の場合、SiOが45質量%未満では、ガラスの構造が不安定となり、熱的安定性および化学的耐久性が悪化する。80%質量%を超えると、ガラスの初期溶解性が悪化するとともに、粘性が高くなりすぎるため均質なガラスが得られない。
 SiOの含有量は、57~72質量%であることが好ましい。
Next, the composition range of each glass component will be described.
SiO 2 (silicon oxide) is a main component that forms a glass skeleton.
In the case of the glass composition of (1) above, if SiO 2 is less than 45% by mass, the glass structure becomes unstable, and the thermal stability and chemical durability deteriorate. If it exceeds 80% by mass, the initial solubility of the glass deteriorates and the viscosity becomes too high, so that a homogeneous glass cannot be obtained.
The content of SiO 2 is preferably 57 to 72% by mass.
 Al(酸化アルミニウム)はガラスの耐久性を向上させる成分であることから5質量%以上含有させる。但し、18質量%を超えるとガラスの溶解が極めて困難になる。
 Alの含有量は、6~15質量%であることが好ましく、7.5~14質量%であることがより好ましい。
Al 2 O 3 (aluminum oxide) is a component that improves the durability of the glass, so it is contained in an amount of 5% by mass or more. However, if it exceeds 18% by mass, melting of the glass becomes extremely difficult.
The content of Al 2 O 3 is preferably 6 to 15% by mass, and more preferably 7.5 to 14% by mass.
 また、SiOとAlとの合量(SiO+Al)は、ガラスの化学的耐久性を高めるために64質量%以上であることが好ましく、ガラス融液を安定して確保するために、高温粘性が高くなりすぎないようにするため、82質量%以下であることが好ましい。 Further, the total amount of SiO 2 and Al 2 O 3 (SiO 2 + Al 2 O 3 ) is preferably 64% by mass or more in order to increase the chemical durability of the glass, and the glass melt can be stabilized. In order to ensure that the high-temperature viscosity does not become too high, it is preferably 82% by mass or less.
 アルカリ土類金属の酸化物、すなわち、MgO(酸化マグネシウム)、CaO(酸化カルシウム)、SrO(酸化ストロンチウム)およびBaO(酸化バリウム)は、ガラスの耐久性を向上させるとともに、成形時の失透温度、粘度を調整するのに用いられる。
 MgOが8質量%を超えると失透温度が上昇する。CaOが9質量%を超えると失透温度が上昇する。SrOが8質量%を超えると失透温度が上昇する。BaOが10質量%を超えると失透温度が上昇する。CaOの含有量は、好ましくは8質量%以下である。 また、アルカリ土類金属の酸化物の合量(すなわち、「MgO+CaO+SrO+BaO」。含有されるこれらアルカリ土類金属の酸化物の合量を「RO」とも称する。)が、3.5質量%未満ではガラスの耐久性が低下し、27質量%を超えると失透温度が上昇する。
Alkaline earth metal oxides, that is, MgO (magnesium oxide), CaO (calcium oxide), SrO (strontium oxide) and BaO (barium oxide) improve the durability of the glass and the devitrification temperature during molding. Used to adjust viscosity.
When MgO exceeds 8 mass%, devitrification temperature will rise. When CaO exceeds 9 mass%, devitrification temperature will rise. When SrO exceeds 8% by mass, the devitrification temperature rises. When BaO exceeds 10 mass%, devitrification temperature will rise. The content of CaO is preferably 8% by mass or less. Further, when the total amount of the alkaline earth metal oxide (that is, “MgO + CaO + SrO + BaO”. The total amount of these alkaline earth metal oxides also referred to as “RO”) is less than 3.5% by mass. The durability of the glass decreases, and when it exceeds 27% by mass, the devitrification temperature increases.
 また、アルカリ土類金属の酸化物の合量(RO)が、3.5~27質量%であると、TCO膜へのNa拡散量が減少する。さらに、TCO膜が酸化スズ膜である場合、ガラス基板上に成膜される酸化スズ膜中のCl濃度が低くなり、該酸化スズ膜の移動度が向上する。ここで、酸化スズ膜中のClの発生源は、大気圧CVD法により酸化スズ膜を成膜する際に、Sn原料として使用する塩化スズ化合物(たとえば、SnCl、SnHCl、SnHCl、SnHClといった無機系の塩化スズ化合物や、モノブチルスズトリクロライド、ジブチルスズジクロライドといった有機系の塩化スズ化合物)である。
 ROが上記の範囲の場合に、TCO膜へのNa拡散量が減少する理由、及びガラス基板上に成膜される酸化スズ膜中のCl濃度が低くなる理由は以下の通りであると考える。
 大気圧CVD法を用いてガラス基板上に酸化スズ膜を成膜する際、ガラスTg温度付近で加熱する。ガラス基板を構成するガラスのROが上記の範囲の組成である場合、ガラス基板中の二価のRカチオンが、Na拡散を阻害する。これに伴い、ガラス基板上の核形成サイトが増加するとともに、不純物であるNaイオンの膜への拡散が抑制されることで、成膜される酸化スズ膜の結晶化度が向上すると考えられる。この結果、酸化スズ膜の移動度が増加するとともに、該酸化スズ膜中の粒界等の不純物サイトが減少し、Cl濃度が低下すると考えられる。
 一方、ガラス基板を構成するガラスのROが上記の範囲外である場合、ガラス基板上の核形成サイトが減少し、Naイオンの膜への拡散量が増加することで成膜される酸化スズ膜の結晶化度が低下すると考えられる。結晶化度が低いことに起因して、酸化スズ膜の移動度が低下するとともに、該酸化スズ膜中の不純物サイトに残留するCl濃度が増加すると考えられる。
 ガラス基板を構成するガラスのROは、5~27質量%であることが好ましい。
Further, when the total amount (RO) of the alkaline earth metal oxide is 3.5 to 27% by mass, the amount of Na diffusion into the TCO film decreases. Furthermore, when the TCO film is a tin oxide film, the Cl concentration in the tin oxide film formed on the glass substrate is lowered, and the mobility of the tin oxide film is improved. Here, the generation source of Cl in the tin oxide film is a tin chloride compound (for example, SnCl 4 , SnHCl 3 , SnH 2 Cl 2) used as the Sn raw material when forming the tin oxide film by the atmospheric pressure CVD method. Inorganic tin chloride compounds such as SnH 3 Cl and organic tin chloride compounds such as monobutyltin trichloride and dibutyltin dichloride).
The reason why the amount of Na diffused into the TCO film decreases when the RO is in the above range and the reason why the Cl concentration in the tin oxide film formed on the glass substrate decreases is as follows.
When a tin oxide film is formed on a glass substrate using the atmospheric pressure CVD method, heating is performed near the glass Tg temperature. When the RO of the glass constituting the glass substrate has a composition in the above range, the divalent R cation in the glass substrate inhibits Na diffusion. Along with this, the nucleation sites on the glass substrate increase and the diffusion of Na ions, which are impurities, into the film is suppressed, so that the crystallinity of the formed tin oxide film is considered to be improved. As a result, the mobility of the tin oxide film increases, impurity sites such as grain boundaries in the tin oxide film decrease, and the Cl concentration decreases.
On the other hand, when the RO of the glass constituting the glass substrate is outside the above range, the nucleation site on the glass substrate is reduced, and the tin oxide film is formed by increasing the amount of Na ions diffused into the film. It is thought that the degree of crystallinity of the decreases. It is considered that due to the low crystallinity, the mobility of the tin oxide film is lowered and the concentration of Cl remaining at the impurity sites in the tin oxide film is increased.
The RO of the glass constituting the glass substrate is preferably 5 to 27% by mass.
 TCO膜が酸化スズ膜である場合、上述したガラス基板上に成膜される酸化スズ膜中へのNa拡散量を減少させ、Cl濃度を低下させる作用についてみた場合、アルカリ土類金属の酸化物の中でも、MgOおよびCaOによる影響が大きい。このため、MgOおよびCaOの少なくともいずれかを含み、含まれるMgOとCaOとの合量(以下、この合量を「MgO+CaO」とも称する。)が、2~16質量%であることが好ましく、5~15質量%であることがより好ましい。 In the case where the TCO film is a tin oxide film, the alkaline earth metal oxide is reduced when the amount of Na diffusion into the tin oxide film formed on the glass substrate is reduced and the Cl concentration is reduced. Among these, the influence by MgO and CaO is large. Therefore, the total amount of MgO and CaO that contains at least one of MgO and CaO (hereinafter, this total amount is also referred to as “MgO + CaO”) is preferably 2 to 16% by mass. More preferably, it is ˜15% by mass.
 NaO(酸化ナトリウム)およびKO(酸化カリウム)はガラスの溶解促進剤として用いられる。但し、NaOが15質量%を超えるとガラスの耐久性が低下する。また、KOはNaOに比して原料が高価であるため、12質量%を超えるのは好ましくない。
 また、ガラスの耐久性を低下させないためには、NaOとKOとの合量(NaOとKOとの合量を「Na+KO」とも称する。)が19質量%以下であることが好ましく、ガラスの溶解促進剤として作用させるためには、Na2O+K2Oが1質量%以上であることが好ましい。
Na 2 O (sodium oxide) and K 2 O (potassium oxide) are used as glass melting accelerators. However, if Na 2 O exceeds 15% by mass, the durability of the glass is lowered. Moreover, since K 2 O is more expensive than Na 2 O, it is not preferable to exceed 12% by mass.
Further, in order not to lower the durability of the glass (also referred to the total amount of Na 2 O and K 2 O as "Na 2 + K 2 O".) The total amount of Na 2 O and K 2 O is 19 The content is preferably not more than mass%, and in order to act as a glass melting accelerator, Na 2 O + K 2 O is preferably at least 1 mass%.
 ZrO(酸化ジルコニウム)は、アルカリ土類金属の酸化物と同じく、TCO膜が酸化スズ膜である場合、ガラス基板上に成膜される酸化スズ膜中のCl濃度が低下させる作用を有することから、5質量%まで含有させることができる。ZrOの含有量が5質量%を超えると、ガラス基板上の核形成サイトが減少し、成膜される酸化スズ膜の結晶化度が低下すると考えられる。この結果、酸化スズ膜中のCl濃度が増加し、該酸化スズ膜の移動度が低下すると考えられる。
 ZrOの含有量は、0.5~5質量%がより好ましい。
ZrO 2 (zirconium oxide) has the effect of reducing the Cl concentration in the tin oxide film formed on the glass substrate when the TCO film is a tin oxide film, like the oxide of an alkaline earth metal. To 5% by mass. If the content of ZrO 2 exceeds 5% by mass, the nucleation sites on the glass substrate are decreased, and the crystallinity of the tin oxide film formed is considered to be decreased. As a result, it is considered that the Cl concentration in the tin oxide film increases and the mobility of the tin oxide film decreases.
The content of ZrO 2 is more preferably 0.5 to 5% by mass.
 TiO(酸化チタン)は、ガラスの高温粘性を下げる作用を有することから、5質量%まで含有させることができる。TiOの含有量が5質量%を超えると、ガラスが失透しやすくなる。
 Bは、揮発等による成形時の不都合が生じるので、ガラス基板を構成するガラスは実質的にBを含まない組成とする。
 ここにおいて、実質的に含まないとは、不可避的に不純物として含まれることは許容されることを意味する。例えば、0.1%未満であれば含まれてもよいことを意味する。
 ガラス基板を構成するガラスには、Fe(酸化鉄)を0.005~0.1質量%含有させることができる。
 Feの含有量が0.005質量%未満であると、溶融ガラスの熱線透過率が高くなるため、ガラス製造時において、溶解槽内での温度分布がつきにくく、溶融ガラスの対流を起こしにくくなるため、均質なガラスを得にくい。Feの含有量が0.1質量%超であると、ガラスの熱線透過率が低下するため、透明導電膜付き基板を用いて作製した太陽電池の電池効率が下がるため、好ましくない。Feの含有量は、0.007~0.08質量%がより好ましい。
Since TiO 2 (titanium oxide) has an effect of lowering the high temperature viscosity of the glass, it can be contained up to 5% by mass. When the content of TiO 2 exceeds 5 mass%, the glass tends to be devitrified.
Since B 2 O 3 causes inconvenience during molding due to volatilization or the like, the glass constituting the glass substrate has a composition that does not substantially contain B 2 O 3 .
Here, “substantially free” means that it is inevitably included as an impurity. For example, it means that it may be contained if it is less than 0.1%.
The glass constituting the glass substrate can contain 0.005 to 0.1% by mass of Fe 2 O 3 (iron oxide).
When the content of Fe 2 O 3 is less than 0.005% by mass, the heat ray transmittance of the molten glass is increased. Therefore, during glass production, the temperature distribution in the melting tank is difficult to be attached, and the convection of the molten glass is prevented. Because it is difficult to wake up, it is difficult to obtain homogeneous glass. When the content of Fe 2 O 3 is more than 0.1% by mass, the heat ray transmittance of the glass is lowered, so that the battery efficiency of the solar cell produced using the substrate with a transparent conductive film is lowered, which is not preferable. The content of Fe 2 O 3 is more preferably 0.007 to 0.08 mass%.
 上記した(1)のガラス組成において、SiO が55%以上の場合には、Al/NaOの質量比を0.5以上とするのが好ましい。Al/NaOの質量比が0.5未満であると、ガラス基板上に製膜した透明導電膜の移動度が低くなりすぎるため、好ましくない。高い移動度を得るためには、Al/NaOの質量比を0.7以上とするのがより好ましく、0.8以上とするのがさらに好ましい。
 また、SiO が55%未満の場合には、(SrO+BaO)/Alの質量比を1.0以下とするのが好ましい。(SrO+BaO)/Alの質量比が1.0超であると、ガラス上に製膜した透明導電膜の移動度が低くなりすぎるため、好ましくない。なお、(SrO+BaO)とは、SrOおよびBaOの少なくともいずれかを含み、含まれるSrOとBaOとの合量を示す。
In the glass composition (1) described above, when SiO 2 is 55% or more, the mass ratio of Al 2 O 3 / Na 2 O is preferably 0.5 or more. When the mass ratio of Al 2 O 3 / Na 2 O is less than 0.5, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable. In order to obtain high mobility, the mass ratio of Al 2 O 3 / Na 2 O is more preferably 0.7 or more, and further preferably 0.8 or more.
When SiO 2 is less than 55%, the mass ratio of (SrO + BaO) / Al 2 O 3 is preferably 1.0 or less. If the mass ratio of (SrO + BaO) / Al 2 O 3 is more than 1.0, the mobility of the transparent conductive film formed on the glass becomes too low, which is not preferable. Note that (SrO + BaO) includes at least one of SrO and BaO, and indicates the total amount of SrO and BaO contained.
 また、上記した(1)のガラス組成において、SiO が55%未満の場合には、Al/NaOの質量比を0.5以上とし、かつAl/SiO質量比を0.25以上とするのが好ましい。Al/NaOの質量比が0.5未満であると、ガラス基板上に製膜した透明導電膜の移動度が低くなりすぎるため、好ましくない。高い移動度を得るためには、Al/NaOの質量比を0.7以上とするのがより好ましく、0.8以上とするのがさらに好ましい。また、Al/SiO質量比が0.25未満であると、ガラス基板上に製膜した透明導電膜の移動度が低くなりすぎるため、好ましくない。 In the glass composition (1) described above, when SiO 2 is less than 55%, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, and Al 2 O 3 / SiO 2 mass The ratio is preferably 0.25 or more. When the mass ratio of Al 2 O 3 / Na 2 O is less than 0.5, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable. In order to obtain high mobility, the mass ratio of Al 2 O 3 / Na 2 O is more preferably 0.7 or more, and further preferably 0.8 or more. Further, if the Al 2 O 3 / SiO 2 mass ratio is less than 0.25, the mobility of the transparent conductive film formed on the glass substrate becomes too low, which is not preferable.
 上記の組成のガラスで構成されるガラス基板は歪点が550℃以上であることが好ましい。
 ガラス基板として、このような歪点が高いガラスを用いることにより、フロート法による板ガラスの製造工程において(オンライン(on-Line)で)、大気圧CVD法により、ガラス基板上に透明導電膜である酸化スズ膜を成膜する際に成膜温度を高くでき、高温で高速での成膜が可能となる。
 ガラス基板の歪点は、565℃以上であるのがより好ましい。
 なお、本発明において、歪点とは、『JIS R3103-2』に準拠して測定された歪点である。
The glass substrate composed of glass having the above composition preferably has a strain point of 550 ° C. or higher.
By using such a glass having a high strain point as the glass substrate, a transparent conductive film is formed on the glass substrate by atmospheric pressure CVD in the manufacturing process of the plate glass by the float method (on-line). When forming the tin oxide film, the film forming temperature can be increased, and the film can be formed at a high temperature and at a high speed.
The strain point of the glass substrate is more preferably 565 ° C. or higher.
In the present invention, the strain point is a strain point measured according to “JIS R3103-2”.
 また、上記の組成のガラスで構成されるガラス基板は、50~300℃での平均熱膨張係数が50×10-7~105×10-7/℃であることが好ましい。
 ガラス基板の50~300℃での平均熱膨張係数は、54×10-7~100×10-7/℃であることがより好ましい。
In addition, the glass substrate composed of the glass having the above composition preferably has an average coefficient of thermal expansion at 50 to 300 ° C. of 50 × 10 −7 to 105 × 10 −7 / ° C.
The average thermal expansion coefficient of the glass substrate at 50 to 300 ° C. is more preferably 54 × 10 −7 to 100 × 10 −7 / ° C.
 また、上記の組成のガラスで構成されるガラス基板は、粘度をη[dPa・s]とするとき、logη=2を満たす温度が1500℃超であり、logη=4を満たす温度が1100~1260℃であることが好ましい。ここで、logη=2を満たす温度は溶解性の指標となる温度であり、logη=4を満たす温度はガラスの成形性の指標となる温度である。logη=4を満たす温度が上記の範囲であればフロート成形に適している。
 したがって、ガラス基板は、好ましくはフロート板ガラスである。
The glass substrate composed of the glass having the above composition has a temperature satisfying log η = 2 of more than 1500 ° C. and a temperature satisfying log η = 4 of 1100 to 1260 when the viscosity is η [dPa · s]. It is preferable that it is ° C. Here, the temperature satisfying log η = 2 is a temperature serving as an index of solubility, and the temperature satisfying log η = 4 is a temperature serving as an index of formability of glass. If the temperature satisfying log η = 4 is in the above range, it is suitable for float forming.
Therefore, the glass substrate is preferably float glass.
 本発明のTCO基板10において、ガラス基板12の厚さには、特に限定は無く、TCO基板10の用途などに応じて、適宜、決定すればよいが、通常、1.5~6mm程度である。 In the TCO substrate 10 of the present invention, the thickness of the glass substrate 12 is not particularly limited and may be appropriately determined according to the use of the TCO substrate 10 or the like, but is usually about 1.5 to 6 mm. .
 本発明のTCO基板10において、ガラス基板12の上に、透明導電膜として酸化スズ膜14を形成する(すなわち、成膜する)手段は特に限定されないが、好ましくは、後述するように、板ガラスの製造工程において、原料として四塩化スズと水およびHFとを用い、大気圧CVD(Chemical Vapor Deposition)法によって成膜された酸化スズ膜14である。また、TCO膜は、例えば、ジエチル亜鉛TEEDA(TEEDA=N,N,N´,N´-テトラエチルエチレンジアミン)、ジエチル亜鉛TMEDA(TMEDA=N,N,N´,N´-テトラメエチルエチレンジアミン)、ジエチル亜鉛TMPDA(TMPDA=N,N,N´,N´-テトラメチル-1,3-プロパンジアミン)、ジメチル亜鉛TEEDA、ジメチル亜鉛TMEDA、ジメチル亜鉛TMPDA等のジエチル及びジメル亜鉛付加物と、酸素含有無機化合物を用いたCVD法によって成膜された酸化亜鉛膜であってもよい。これらの場合は、原料にClは含まれていないが、膜中のNa不純物が減少するという効果によって、移動度の増大効果が発現する。 In the TCO substrate 10 of the present invention, the means for forming (that is, forming) the tin oxide film 14 as the transparent conductive film on the glass substrate 12 is not particularly limited, but preferably, as described later, This is a tin oxide film 14 formed by an atmospheric pressure CVD (Chemical Vapor Deposition) method using tin tetrachloride, water, and HF as raw materials in the manufacturing process. The TCO film may be, for example, diethyl zinc TEEDA (TEEDA = N, N, N ′, N′-tetraethylethylenediamine), diethylzinc TMEDA (TMEDA = N, N, N ′, N′-tetramethylethylenediamine), Diethylzinc TMPDA (TMPDA = N, N, N ′, N′-tetramethyl-1,3-propanediamine), dimethylzinc TEEDA, dimethylzinc TMEDA, dimethylzinc TMPDA and other diethyl and dimerzinc adducts and oxygen-containing A zinc oxide film formed by a CVD method using an inorganic compound may be used. In these cases, the raw material does not contain Cl, but the effect of increasing the mobility is manifested by the effect that the Na impurity in the film is reduced.
 本発明のTCO基板10において、酸化スズ膜14の膜厚には、特に限定はなく、TCO基板10の用途等に応じて、適宜、決定すればよいが、通常、300~1500nm程度である。 In the TCO substrate 10 of the present invention, the film thickness of the tin oxide film 14 is not particularly limited, and may be appropriately determined according to the use of the TCO substrate 10 or the like, but is usually about 300 to 1500 nm.
 TCO基板10において、酸化スズ膜14は、高い導電性を得るために、ドーパントとして、フッ素を含有するもの(フッ素ドープ酸化スズ膜)であるのが好ましい。
 酸化スズ膜14がフッ素ドープ酸化スズ膜の場合、フッ素の濃度がSnO2に対して0.01~4mol%であるのが好ましく、0.02~2mol%であるのがより好ましい。上記範囲であると、導電性が優れたものとなる。
 酸化スズ膜14がフッ素ドープ酸化スズ膜の場合、SnO2の割合が90mol%以上であるのが好ましく、95mol%以上であるのがより好ましい。
 酸化スズ膜14がフッ素ドープ酸化スズ膜の場合、フッ素がドープされていることにより、キャリア濃度が高くなっている。具体的には、キャリア濃度が5×1019~4×1020cm-3であるのが好ましく、1×1020~2.5×1020cm-3であるのがより好ましい。上記範囲であると、導電性と近赤外光の吸収とのバランスに優れる。
 また、TCO基板10において、酸化スズ膜14は、ドーパントを含まない酸化スズ膜と、フッ素ドープ酸化スズ膜と、が積層された構造であってもよい。
In the TCO substrate 10, the tin oxide film 14 is preferably a film containing fluorine as a dopant (fluorine-doped tin oxide film) in order to obtain high conductivity.
When the tin oxide film 14 is a fluorine-doped tin oxide film, the fluorine concentration is preferably 0.01 to 4 mol%, more preferably 0.02 to 2 mol% with respect to SnO 2 . Within the above range, the conductivity is excellent.
When the tin oxide film 14 is a fluorine-doped tin oxide film, the SnO 2 ratio is preferably 90 mol% or more, and more preferably 95 mol% or more.
When the tin oxide film 14 is a fluorine-doped tin oxide film, the carrier concentration is high because fluorine is doped. Specifically, the carrier concentration is preferably 5 × 10 19 to 4 × 10 20 cm −3 , and more preferably 1 × 10 20 to 2.5 × 10 20 cm −3 . It is excellent in balance with electroconductivity and absorption of near-infrared light in it being the said range.
Further, in the TCO substrate 10, the tin oxide film 14 may have a structure in which a tin oxide film not containing a dopant and a fluorine-doped tin oxide film are laminated.
 本発明のTCO基板10は、ガラス基板12の上に酸化スズ膜を主成分とする膜14を有するものが好ましく、それ以外に特に限定はなく、各種の構成が利用可能である。また、TCO膜としては、この他に、ZnO(酸化亜鉛)を主成分とする膜であってもよい。ここでいう主成分とは、膜組成中の80%以上を占めるということを意味する。
 例えば、図1に示す例のように、ガラス基板12の表面に酸化スズ膜14が成膜されている構成に限定はされず、必要に応じて、ガラス基板12と酸化スズ膜14との間に、1層あるいは複数層の膜(たとえば、下地膜、バリヤー膜)を有してもよい。
The TCO substrate 10 of the present invention preferably has a film 14 mainly composed of a tin oxide film on a glass substrate 12, and there is no particular limitation other than that, and various configurations can be used. In addition, the TCO film may be a film mainly composed of ZnO (zinc oxide). The main component here means that it accounts for 80% or more of the film composition.
For example, as in the example shown in FIG. 1, the configuration in which the tin oxide film 14 is formed on the surface of the glass substrate 12 is not limited, and between the glass substrate 12 and the tin oxide film 14 as necessary. In addition, a single layer or a plurality of layers (for example, a base film or a barrier film) may be provided.
 ガラス基板12と酸化スズ膜14との間に下地膜を有する場合としては、ガラス基板12と酸化スズ膜14との間に、酸化ケイ素膜(SiO2膜)および酸化チタン膜(TiO2膜)の少なくとも一方を下地膜として有する構成が好ましく例示される。
 ガラス基板12と酸化スズ膜14との間に、酸化ケイ素膜および/または酸化チタン膜を下地膜として有することにより、ガラス基板12から酸化スズ膜14にアルカリ成分が拡散して、電気特性等が低下するのを防止できる、ガラス基板12と酸化スズ膜14との界面での光の反射を低減できる(すなわち、反射防止効果が良好になる)等の点で、好ましい結果を得ることができる。
 なお、これらガラス基板12と酸化スズ膜14との間に、酸化ケイ素膜および/または酸化チタン膜を下地膜として有する場合においても、上述したガラス基板上に成膜される酸化スズ膜中のCl濃度が低下させる作用は発揮される。
In the case where a base film is provided between the glass substrate 12 and the tin oxide film 14, a silicon oxide film (SiO 2 film) and a titanium oxide film (TiO 2 film) are provided between the glass substrate 12 and the tin oxide film 14. A configuration having at least one of the above as a base film is preferably exemplified.
By having a silicon oxide film and / or a titanium oxide film as a base film between the glass substrate 12 and the tin oxide film 14, an alkali component diffuses from the glass substrate 12 to the tin oxide film 14, and electrical characteristics and the like are improved. A preferable result can be obtained in that it can be prevented from being lowered and light reflection at the interface between the glass substrate 12 and the tin oxide film 14 can be reduced (that is, the antireflection effect is improved).
In addition, even when it has a silicon oxide film and / or a titanium oxide film as a base film between the glass substrate 12 and the tin oxide film 14, Cl in the tin oxide film formed on the glass substrate described above is used. The effect of reducing the concentration is exhibited.
 ガラス基板12と酸化スズ膜14との間に、酸化ケイ素膜および/または酸化チタン膜を有する場合には、酸化ケイ素膜の膜厚は10~50nm、酸化チタン膜の膜厚は5~22nmとするのが好ましい。
 酸化ケイ素膜および酸化チタン膜の膜厚を、上記範囲とすることにより、反射防止効果が良好なTCO基板10を得られる等の点で好ましい結果を得られる。
In the case where a silicon oxide film and / or a titanium oxide film is provided between the glass substrate 12 and the tin oxide film 14, the thickness of the silicon oxide film is 10 to 50 nm, and the thickness of the titanium oxide film is 5 to 22 nm. It is preferable to do this.
By setting the film thicknesses of the silicon oxide film and the titanium oxide film within the above ranges, preferable results can be obtained in that the TCO substrate 10 having a good antireflection effect can be obtained.
 図2に、このような本発明のTCO基板10の製造方法の一例を概念的に示す。 FIG. 2 conceptually shows an example of a method for manufacturing the TCO substrate 10 of the present invention.
 図2に示す例は、いわゆるフロート法による板ガラスの生産ライン(オンライン(On-Line))で、フロートバスの下流に配置される徐冷炉(徐冷ライン)20において、ローラ20aに載置されて矢印y方向に搬送されつつ徐冷されるガラス基板12の表面に、大気圧CVD法により酸化スズ膜14を成膜して、TCO基板10を製造するものである。なお、図2は、大気圧CVD装置部分のみを示したものである。 The example shown in FIG. 2 is a so-called float glass plate production line (on-line), and is placed on a roller 20a in a slow cooling furnace (slow cooling line) 20 arranged downstream of a float bath. The TCO substrate 10 is manufactured by forming a tin oxide film 14 on the surface of the glass substrate 12 that is gradually cooled while being conveyed in the y direction by an atmospheric pressure CVD method. FIG. 2 shows only the atmospheric pressure CVD apparatus portion.
 なお、本発明のTCO基板10(すなわち、透明導電膜付き基板)は、このようなオンラインの徐冷炉等において、ガラス基板12の表面に、大気圧CVD法により酸化スズ膜を成膜して製造するものに限定はされない。
 すなわち、本発明のTCO基板10の製造方法としては、板ガラスの製造工程上ではなく、ガラス板として完成したガラス板を基板として、大気圧CVD法により酸化スズ膜を成膜する、いわゆるオフライン(Off-Line)での製造も、好適に利用可能である。なお、オフラインでは、ガラス基板をヒータで加熱し成膜した後、ガラス基板を冷却ゾーンで徐冷する。この冷却ゾーンを徐冷炉と呼ぶ。
The TCO substrate 10 of the present invention (that is, the substrate with a transparent conductive film) is produced by forming a tin oxide film on the surface of the glass substrate 12 by an atmospheric pressure CVD method in such an online annealing furnace or the like. The thing is not limited.
That is, as a method of manufacturing the TCO substrate 10 of the present invention, a so-called off-line (off-off) method is used in which a tin oxide film is formed by an atmospheric pressure CVD method using a glass plate completed as a glass plate as a substrate instead of a plate glass manufacturing process. -Line) can also be used advantageously. In the offline mode, the glass substrate is heated with a heater to form a film, and then the glass substrate is gradually cooled in a cooling zone. This cooling zone is called a slow cooling furnace.
 図2に示す例においては、主原料として四塩化スズ(SnCl4)を、副原料として水(H2O)を、それぞれ用いて、大気圧CVD法により酸化スズ膜を成膜する。
 具体的には、徐冷炉20で搬送されるガラス基板12に、インジェクタ18から、四塩化スズのガスと水蒸気とを吹き付けることにより、四塩化スズの加水分解反応によって、ガラス基板12の表面に、酸化スズ膜を成膜する。
 なお、図2に示す例においては、主原料として、四塩化スズ(SnCl4)を用いているが、四塩化スズの代わりに、SnHCl3、SnH2Cl2、SnH3Clといった他の無機系の塩化スズ化合物や、モノブチルスズトリクロライドやジブチルスズジクロライドといった有機系の塩化スズ化合物もSn原料として用いることができる。これらの塩化スズ化合物(SnCl4、SnHCl3、SnH2Cl2、SnH3Clといった無機系の塩化スズ化合物や、モノブチルスズトリクロライド、ジブチルスズジクロライドといった有機系の塩化スズ化合物)を使用する理由は、Sn原料として、塩化スズ化合物を使用した場合、原料配管として一般的なステンレス鋼部材を使用でき、かつステンレス鋼の耐熱温度の範囲内で工業的に十分な量を供給できるだけの低い蒸気圧を有するからである。
 また、酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜する場合は、上述した四塩化スズ(SnCl4)、水(H2O)に加えて、F原料としてフッ化水素(HF)をインジェクタ18から吹き付けることになる。
In the example shown in FIG. 2, a tin oxide film is formed by atmospheric pressure CVD using tin tetrachloride (SnCl 4 ) as a main material and water (H 2 O) as an auxiliary material.
Specifically, by spraying a gas and water vapor of tin tetrachloride from the injector 18 onto the glass substrate 12 conveyed in the slow cooling furnace 20, oxidation is performed on the surface of the glass substrate 12 by a hydrolysis reaction of tin tetrachloride. A tin film is formed.
In the example shown in FIG. 2, tin tetrachloride (SnCl 4 ) is used as the main raw material, but other inorganic materials such as SnHCl 3 , SnH 2 Cl 2 , and SnH 3 Cl are used instead of tin tetrachloride. An organic tin chloride compound such as monobutyltin trichloride or dibutyltin dichloride can also be used as the Sn raw material. The reason for using these tin chloride compounds (inorganic tin chloride compounds such as SnCl 4 , SnHCl 3 , SnH 2 Cl 2 , SnH 3 Cl and organic tin chloride compounds such as monobutyltin trichloride and dibutyltin dichloride) When a tin chloride compound is used as the Sn raw material, a general stainless steel member can be used as the raw material pipe, and the vapor pressure is low enough to supply an industrially sufficient amount within the range of the heat resistant temperature of stainless steel. Because.
When a fluorine-doped tin oxide film is formed as the tin oxide film 14, in addition to the above-described tin tetrachloride (SnCl 4 ) and water (H 2 O), hydrogen fluoride (HF) is used as the F raw material. It will be sprayed from the injector 18.
 このようなインジェクタ18は、主原料吹出口24と、副原料吹出口26と、吸引口28とを有する。主原料吹出口24、副原料吹出口26、および、吸引口28は、いずれも、ガラス基板12の幅方向(ガラス基板12の搬送方向と直交する方向(図2紙面と直交方向))に延在する長尺なガス流路である。 Such an injector 18 has a main raw material outlet 24, an auxiliary raw material outlet 26, and a suction port 28. The main raw material outlet 24, the auxiliary raw material outlet 26, and the suction port 28 all extend in the width direction of the glass substrate 12 (direction perpendicular to the conveying direction of the glass substrate 12 (direction perpendicular to the paper surface of FIG. 2)). It is an existing long gas flow path.
 主原料吹出口24は、主原料である四塩化スズ(または上記した四塩化スズ以外の塩化スズ化合物)のガスを、インジェクタ18の下端の開口から吹き出すものである。
 副原料吹出口26は、副原料である水蒸気(水)を、インジェクタ18の下端の開口から吹き出すものである。副原料吹出口26は、ガラス基板12の搬送方向の上下流で、主原料吹出口24を挟むように、2つが形成される。
 なお、酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜する場合は、主原料吹出口24および副原料吹出口26のいずれから、フッ化水素(HF)を吹き出すようにしてもよい。
 吸引口28は、酸化スズの成膜に供されなかった原料ガスや、酸化スズの成膜によって副生された塩酸ガスなどを、インジェクタ18の下端の開口から吸引して、成膜部から排出するものである。吸引口28は、ガラス基板12の搬送方向の上下流で、副原料吹出口26を挟むように、2つが形成される。
The main raw material outlet 24 blows out a gas of tin tetrachloride (or a tin chloride compound other than the above-described tin tetrachloride), which is the main raw material, from the opening at the lower end of the injector 18.
The auxiliary raw material outlet 26 blows out water vapor (water) as an auxiliary raw material from the opening at the lower end of the injector 18. Two auxiliary raw material outlets 26 are formed so as to sandwich the main raw material outlet 24 in the upstream and downstream of the conveyance direction of the glass substrate 12.
In addition, when forming a fluorine dope tin oxide film as the tin oxide film 14, you may make it blow off hydrogen fluoride (HF) from either the main raw material blower outlet 24 or the auxiliary | assistant raw material blower outlet 26. FIG.
The suction port 28 sucks the raw material gas that has not been used for the film formation of tin oxide or the hydrochloric acid gas by-produced by the film formation of tin oxide from the opening at the lower end of the injector 18 and discharges it from the film formation unit. To do. Two suction ports 28 are formed so as to sandwich the auxiliary material outlet 26 upstream and downstream in the conveyance direction of the glass substrate 12.
 また、図示は省略するが、インジェクタ18には、主原料吹出口24に四塩化スズ(または上記した四塩化スズ以外の塩化スズ化合物)のガスを供給する供給手段、副原料吹出口26に水蒸気を供給する供給手段、および、吸引口28を吸引する吸引手段が、接続される。なお、酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜する場合は、主原料吹出口24または副原料吹出口26にフッ化水素(HF)を供給する供給手段がインジェクタ18に接続されている。
 供給手段および吸引手段は、インジェクタを用いる大気圧CVD法による成膜で利用される、公知の手段を用いればよい。
Although not shown, the injector 18 is provided with a supply means for supplying a gas of tin tetrachloride (or a tin chloride compound other than the above-described tin tetrachloride) to the main raw material outlet 24, and steam is supplied to the auxiliary raw material outlet 26. The supply means for supplying the gas and the suction means for sucking the suction port 28 are connected. When a fluorine-doped tin oxide film is formed as the tin oxide film 14, supply means for supplying hydrogen fluoride (HF) to the main material outlet 24 or the auxiliary material outlet 26 is connected to the injector 18. Yes.
As the supply unit and the suction unit, a known unit used for film formation by an atmospheric pressure CVD method using an injector may be used.
 前述のように、図示例の製造装置は、徐冷炉20で搬送されるガラス基板12に、インジェクタ18から、四塩化スズ(または上記した四塩化スズ以外の塩化スズ化合物)のガスと水蒸気とを吹き付けることにより、四塩化スズの加水分解反応によって、大気圧CVD法によりガラス基板12の表面に、酸化スズ膜14を成膜して、TCO基板10を製造する。酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜する場合は、さらにフッ化水素(HF)をインジェクタ18から吹き付ける。
 ここで、本発明においては、ガラス基板12として、上記した組成のガラスで構成されるものを用いる。すなわち、オンライン工程によるTCO基板の製造プロセスにおいては、図2に示す徐冷炉20は、上記した組成のガラスで構成される板ガラスの製造ラインの徐冷炉である。
 本発明は、ガラス基板12として、上述した組成のガラスで構成されるものを用いることにより、酸化スズ膜14の移動度が高いTCO基板10の製造することができる。
 また、上述した組成のガラスで構成されるガラス基板12は、好ましくは、歪点が550℃以上と高いため、フロート法による板ガラスの製造工程(あるいは、オフライン工程)などで、酸化スズ膜14を成膜する際に、酸化スズ膜14の成膜温度を高くすることにより、高い成膜速度で、高い生産性をもって、TCO基板10を製造することを可能にしている。
As described above, the manufacturing apparatus of the illustrated example sprays a gas of tin tetrachloride (or a tin chloride compound other than tin tetrachloride described above) and water vapor onto the glass substrate 12 conveyed in the slow cooling furnace 20 from the injector 18. Thus, the tin oxide film 14 is formed on the surface of the glass substrate 12 by the atmospheric pressure CVD method by the hydrolysis reaction of tin tetrachloride, and the TCO substrate 10 is manufactured. When a fluorine-doped tin oxide film is formed as the tin oxide film 14, hydrogen fluoride (HF) is further sprayed from the injector 18.
Here, in this invention, what is comprised with the glass of an above-described composition is used as the glass substrate 12. FIG. That is, in the manufacturing process of the TCO substrate by the on-line process, the slow cooling furnace 20 shown in FIG. 2 is a slow cooling furnace of a plate glass manufacturing line made of glass having the above composition.
In the present invention, by using the glass substrate 12 made of the glass having the above-described composition, the TCO substrate 10 having a high mobility of the tin oxide film 14 can be manufactured.
Moreover, since the glass substrate 12 comprised with the glass of the composition mentioned above preferably has a strain point as high as 550 ° C. or higher, the tin oxide film 14 is formed in the plate glass manufacturing process (or offline process) by the float process. When the film is formed, the TCO substrate 10 can be manufactured at a high film formation rate and with high productivity by increasing the film formation temperature of the tin oxide film 14.
 図示例の製造装置を用いて、酸化スズ膜を成膜する際の条件は特に限定されないが、たとえば、主原料吹出口24から吹き出す四塩化スズのガス流速を60~150cm/sとし、かつ、四塩化スズの供給量を、インジェクタ18から吹き出す原料ガスの総体積の0.3~2.5vol%とすればよい。主原料吹出口24から吹き出す四塩化スズと、副原料吹出口26から吹き出す水蒸気と、の量比が、水蒸気/四塩化スズのmol比で20~110とすればよい。
 また、インジェクタ18の温度は200℃以下であることが好ましい。インジェクタ18の温度が低いことで、原料ガスが気相中で反応し発生した酸化スズの粉が、インジェクタ18の吸引口28の内部に付着することを低減できる。
The conditions for forming the tin oxide film using the production apparatus of the illustrated example are not particularly limited. For example, the gas flow rate of tin tetrachloride blown from the main raw material outlet 24 is 60 to 150 cm / s, and The supply amount of tin tetrachloride may be 0.3 to 2.5 vol% of the total volume of the raw material gas blown from the injector 18. The quantity ratio of tin tetrachloride blown out from the main raw material outlet 24 and water vapor blown out from the auxiliary raw material outlet 26 may be 20 to 110 in terms of a molar ratio of water vapor / tin tetrachloride.
Moreover, it is preferable that the temperature of the injector 18 is 200 degrees C or less. Since the temperature of the injector 18 is low, it is possible to reduce the adhesion of the tin oxide powder generated by the reaction of the raw material gas in the gas phase to the inside of the suction port 28 of the injector 18.
 以下、本発明の実施例および比較例を挙げることにより、本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
 本発明の透明導電膜形成用ガラス基板および透明導電膜付き基板の実施例として実施例1~9を示し、比較例として比較例1~3を、それぞれ以下に示す。なお、表1に示した実施例1,2及び比較例1の各データは、表1に記載の酸化スズ膜の膜厚におけるものであり、表2に示した実施例1,2及び比較例1の各データは、後述する酸化スズ膜の膜厚(345nm)におけるものである。
EXAMPLES Hereinafter, although an Example and comparative example of this invention are given and this invention is demonstrated in more detail, this invention is not limited to these Examples.
Examples 1 to 9 are shown as examples of the glass substrate for forming a transparent conductive film and the substrate with a transparent conductive film of the present invention, and Comparative Examples 1 to 3 are shown below as comparative examples. The data of Examples 1 and 2 and Comparative Example 1 shown in Table 1 are based on the thickness of the tin oxide film shown in Table 1, and Examples 1, 2 and Comparative Example shown in Table 2 Each data of 1 is for the film thickness (345 nm) of a tin oxide film described later.
 [実施例1]
 フロート法による板ガラスの製造において、図2に示すようなインジェクタ18を用いて、徐冷炉20で、原料ガスとして四塩化スズ、水およびフッ化水素を用いて、ガラス基板12に酸化スズ膜を成膜した。
[Example 1]
In the manufacture of plate glass by the float process, a tin oxide film is formed on the glass substrate 12 by using an injector 18 as shown in FIG. 2 and using a slow cooling furnace 20 using tin tetrachloride, water and hydrogen fluoride as source gases. did.
 ガラス基板12としては、その組成が酸化物基準の質量%表示で、SiO2 :57.6、Al23 :7.0、SiO2+Al23 :64.6、MgO :2.0、CaO :5.0、SrO :7.0、BaO :8.0、RO(MgO+CaO:+SrO+BaO) :22.0、MgO+CaO :7.0、Na2O :4.1、K2O :6.3、Na2O+K2O :10.4、ZrO2 :3.0のガラスで構成されるものを用いた。 The composition of the glass substrate 12 is expressed in terms of mass% on the basis of oxide, SiO 2 : 57.6, Al 2 O 3 : 7.0, SiO 2 + Al 2 O 3 : 64.6, MgO 2: 2.0 , CaO: 5.0, SrO: 7.0, BaO: 8.0, RO (MgO + CaO: + SrO + BaO): 22.0, MgO + CaO: 7.0, Na 2 O: 4.1, K 2 O: 6. 3, Na 2 O + K 2 O: 10.4, ZrO 2: was used which consists of 3.0 glass.
 ガラス基板12の表面には、下地膜として、インジェクタ18の上流において、大気圧CVDによって30nmの酸化ケイ素膜を成膜した。
 このような条件の下、オンラインの徐冷炉20において、表面に30nmの酸化ケイ素膜を有するガラス基板12の酸化ケイ素膜に、酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜して、TCO基板10を作製した。
A 30 nm silicon oxide film was formed on the surface of the glass substrate 12 by atmospheric pressure CVD as an undercoat film upstream of the injector 18.
Under such conditions, in the on-line annealing furnace 20, a fluorine-doped tin oxide film is formed as a tin oxide film 14 on the silicon oxide film of the glass substrate 12 having a 30 nm silicon oxide film on the surface, and the TCO substrate is formed. 10 was produced.
 上記したフッ素ドープ酸化スズ膜の成膜の際には、主原料吹出口24から、四塩化スズガスを1.16mol/min、フッ化水素ガスを9.1L/min、および、窒素ガスを33.8L/min、吹き出した。
 また、副原料吹出口26から、水蒸気を360g/min、吹き出した。
 作製された酸化スズ膜14(フッ素ドープ酸化スズ膜)の膜厚は、226nmであった。
 徐冷炉20におけるガラス基板12の搬送速度は、2.5m/minとした。なお、インジェクタ18と対面する領域におけるガラス基板12の温度は、590℃であった。すなわち、成膜温度は590℃である。
When forming the above fluorine-doped tin oxide film, tin tetrachloride gas is 1.16 mol / min, hydrogen fluoride gas is 9.1 L / min, and nitrogen gas is 33. 8 L / min was blown out.
Moreover, 360 g / min of water vapor was blown out from the auxiliary material outlet 26.
The film thickness of the produced tin oxide film 14 (fluorine-doped tin oxide film) was 226 nm.
The conveyance speed of the glass substrate 12 in the slow cooling furnace 20 was 2.5 m / min. In addition, the temperature of the glass substrate 12 in the area | region which faces the injector 18 was 590 degreeC. That is, the film forming temperature is 590 ° C.
 [実施例2]
 ガラス基板12として、その組成が酸化物基準の質量%表示で、SiO2 :60.7、Al23 :9.6、SiO2+Al23 :70.3、MgO :6.9、CaO :0.1、SrO :0.2、BaO :0.2、RO(MgO+CaO+SrO+BaO) :7.4、MgO+CaO :7.0、Na2O :11.6、K2O :5.9、Na2O+K2O :17.5、ZrO2 :4.8のガラスで構成されるものを用いた以外は、実施例1と同様にして酸化スズ膜を成膜して、TCO基板を作製した。酸化スズ膜14(フッ素ドープ酸化スズ膜)の膜厚は、254nmであった。
[Example 2]
As the glass substrate 12, the composition is expressed in terms of mass% based on oxide, and SiO 2 : 60.7, Al 2 O 3 : 9.6, SiO 2 + Al 2 O 3 : 70.3, MgO: 6.9, CaO: 0.1, SrO: 0.2, BaO: 0.2, RO (MgO + CaO + SrO + BaO): 7.4, MgO + CaO: 7.0, Na 2 O: 11.6, K 2 O: 5.9, Na A TCO substrate was prepared by forming a tin oxide film in the same manner as in Example 1 except that a glass composed of 2 O + K 2 O: 17.5 and ZrO 2 : 4.8 was used. The film thickness of the tin oxide film 14 (fluorine-doped tin oxide film) was 254 nm.
 このようにして作製したTCO基板について、6ppmの酸素ガスを含む窒素雰囲気下で、375℃のアニール処理を10分間行ない、酸化スズ膜14(フッ素ドープ酸化スズ膜)のシート抵抗値[Ω/□]、移動度[cm2/V・s]、および、キャリア濃度[/cm3]を測定した。
 シート抵抗値は、三菱油化製ロレスターFPを用いて測定した。移動度およびキャリア濃度は、Nanometrics製HL5500PCを用いて測定した。
 また、酸化スズ膜14(フッ素ドープ酸化スズ膜)中のCl濃度[%]をアルバックファイ社製XPS PHI5000 VersaProbeを用いて測定した。
The TCO substrate thus fabricated was annealed at 375 ° C. for 10 minutes in a nitrogen atmosphere containing 6 ppm oxygen gas, and the sheet resistance value [Ω / □ of the tin oxide film 14 (fluorine-doped tin oxide film). ], Mobility [cm 2 / V · s], and carrier concentration [/ cm 3 ] were measured.
The sheet resistance value was measured using a Mitsubishi Leka lorester FP. Mobility and carrier concentration were measured using Nanometrics HL5500PC.
Further, the Cl concentration [%] in the tin oxide film 14 (fluorine-doped tin oxide film) was measured using an XPS PHI5000 VersaProbe manufactured by ULVAC-PHI.
 [比較例1]
 ガラス基板12として、その組成が酸化物基準の質量%表示で、SiO2 72.8、Al23 1.9、SiO2+Al23 74.7、MgO 3.7、CaO 8.1、RO(MgO+CaO+SrO+BaO) 11.8、MgO+CaO 11.8、Na2O 13.1、K2O 0.3、Na2O+K2O 13.4のガラスで構成されるものを用いた以外は、実施例1と同様にして酸化スズ膜を成膜して、TCO基板を作製した。酸化スズ膜14(フッ素ドープ酸化スズ膜)の膜厚は、260nmであった。
[Comparative Example 1]
The composition of the glass substrate 12 is expressed in terms of mass% based on oxides, and it is SiO 2 72.8, Al 2 O 3 1.9, SiO 2 + Al 2 O 3 74.7, MgO 3.7, CaO 8.1. RO (MgO + CaO + SrO + BaO) 11.8, MgO + CaO 11.8, Na 2 O 13.1, K 2 O 0.3, Na 2 O + K 2 O 13.4 A tin oxide film was formed in the same manner as in Example 1 to produce a TCO substrate. The film thickness of the tin oxide film 14 (fluorine-doped tin oxide film) was 260 nm.
 上記した測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
The above measurement results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 上記表に示されるように、ガラス基板12として、ROが3.5~27質量%の範囲であり、ZrO2の含有量が2~5質量%であるガラスで構成されるものを用いた実施例1、2では、酸化スズ膜中のCl濃度が低く、酸化スズ膜の移動度が高かった。実施例1、2を比較すると、酸化スズ膜中のCl濃度がより低い実施例1の方が酸化スズ膜の移動度が高かった。 As shown in the above table, the glass substrate 12 is composed of glass having RO in the range of 3.5 to 27% by mass and ZrO 2 content of 2 to 5% by mass. In Examples 1 and 2, the Cl concentration in the tin oxide film was low, and the mobility of the tin oxide film was high. When Examples 1 and 2 were compared, the mobility of the tin oxide film was higher in Example 1 where the Cl concentration in the tin oxide film was lower.
[実施例3~9]および[比較例1~3]
 実施例3~9のガラス基板として、また比較例1~3のガラス基板として、各ガラス基板が、表2で表示したガラス組成になるように各ガラス成分の原料を調合し、該ガラス基板用成分の母組成原料100質量部に対し、硫酸塩をSO換算で0.1質量部原料に添加し、白金坩堝を用いて加熱し溶解した。溶解にあたっては、白金スターラーを挿入し、1時間攪拌し溶融ガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後、歪をとり除く目的で、ガラス転移点の温度+30℃の温度で1時間保持した後、室温まで-1℃/分で冷却し、ガラス板を得た。得られたガラス板を加工、研磨を施すことで、板厚0.5mmのガラス基板とした。
[Examples 3 to 9] and [Comparative Examples 1 to 3]
As glass substrates of Examples 3 to 9 and as glass substrates of Comparative Examples 1 to 3, raw materials for each glass component were prepared so that each glass substrate had the glass composition shown in Table 2, and for the glass substrate Sulfate was added to 0.1 parts by mass of the raw material in terms of SO 3 with respect to 100 parts by mass of the mother composition raw material of the component, and heated and dissolved using a platinum crucible. In melting, a platinum stirrer was inserted and stirred for 1 hour to homogenize the molten glass. Next, molten glass is poured out, and after forming into a plate shape, for the purpose of removing strain, the glass transition temperature is maintained at a temperature of + 30 ° C. for 1 hour, and then cooled to room temperature at −1 ° C./minute to obtain a glass plate. It was. The obtained glass plate was processed and polished to obtain a glass substrate having a plate thickness of 0.5 mm.
 ガラス基板の表面には、下地膜として、インジェクタ18の上流において、大気圧CVDによって30nmの酸化ケイ素膜を成膜した。
 次いで、表面に30nmの酸化ケイ素膜が形成されたガラス基板12の酸化ケイ素膜面に、図2に示すようなインジェクタ18を用いて、原料として四塩化スズ、水およびフッ化水素を用いて、酸化スズ膜14として、フッ素ドープ酸化スズ膜を成膜した。フッ素ドープ酸化スズ膜の成膜の際には、主原料吹出口24から、四塩化スズガスを1.16mol/min、フッ化水素ガスを9.1L/min、および、窒素ガスを33.8L/min、吹き出した。
A 30 nm silicon oxide film was formed on the surface of the glass substrate as an undercoat film by atmospheric pressure CVD upstream of the injector 18.
Next, on the silicon oxide film surface of the glass substrate 12 having a 30 nm silicon oxide film formed on the surface, using an injector 18 as shown in FIG. 2, using tin tetrachloride, water and hydrogen fluoride as raw materials, As the tin oxide film 14, a fluorine-doped tin oxide film was formed. During film formation of the fluorine-doped tin oxide film, from the main raw material outlet 24, tin tetrachloride gas is 1.16 mol / min, hydrogen fluoride gas is 9.1 L / min, and nitrogen gas is 33.8 L / min. min, blown out.
 オフラインCVD装置におけるガラス基板12の搬送速度は、2.5m/minとした。なお、インジェクタ18と対面する領域におけるガラス基板12の温度は、590℃であった。すなわち、成膜温度は590℃である。
 また、副原料吹出口26から、水蒸気を360g/min、吹き出した。
The conveyance speed of the glass substrate 12 in the off-line CVD apparatus was 2.5 m / min. In addition, the temperature of the glass substrate 12 in the area | region which faces the injector 18 was 590 degreeC. That is, the film forming temperature is 590 ° C.
Moreover, 360 g / min of water vapor was blown out from the auxiliary material outlet 26.
 このような条件の下、オフラインCVD装置において、表面に30nmの酸化ケイ素膜を有するガラス基板12に、酸化スズ膜14(フッ素ドープ酸化スズ膜)を成膜して、TCO基板10を作製した。
 酸化スズ膜14(フッ素ドープ酸化スズ膜)の膜厚は、それぞれ345nmであった。
Under such conditions, a TCO substrate 10 was produced by forming a tin oxide film 14 (fluorine-doped tin oxide film) on a glass substrate 12 having a 30 nm silicon oxide film on the surface in an off-line CVD apparatus.
The film thickness of the tin oxide film 14 (fluorine-doped tin oxide film) was 345 nm, respectively.
 このようにして作製したTCO基板について、6ppmの酸素ガスを含む窒素雰囲気下で、375℃のアニール処理を10分間行ない、酸化スズ膜14(フッ素ドープ酸化スズ膜)の移動度[cm2/V・s]を測定した。
 移動度は、前述したように、Nanometrics製HL5500PCを用いて測定した。
 また、酸化スズ膜14(フッ素ドープ酸化スズ膜)中のNa濃度[count/sec]をアルバックファイ社製Dynamic SIMS ADEPT1010を用いて測定した。
 また、SiO下地膜付き酸化スズ膜14(フッ素ドープ酸化スズ膜:TCO膜)中のNa濃度[count/sec]をアルバックファイ社製Dynamic SIMS ADEPT1010を用いて測定した。
The thus fabricated TCO substrate is annealed at 375 ° C. for 10 minutes in a nitrogen atmosphere containing 6 ppm oxygen gas, and the mobility of the tin oxide film 14 (fluorine-doped tin oxide film) [cm 2 / V -S] was measured.
The mobility was measured using Nanometrics HL5500PC as described above.
Further, the Na concentration [count / sec] in the tin oxide film 14 (fluorine-doped tin oxide film) was measured using a Dynamic SIMS ADEPT 1010 manufactured by ULVAC-PHI.
Further, the Na concentration [count / sec] in the tin oxide film 14 (fluorine-doped tin oxide film: TCO film) with a SiO 2 base film was measured using a Dynamic SIMS ADEPT 1010 manufactured by ULVAC-PHI.
 実施例3~9および比較例1~3により得られた酸化スズ膜が形成された透明導電膜付き基板について、酸化スズ膜14(フッ素ドープ酸化スズ膜)の移動度[cm2/V・s]を測定した結果を、表2に示す。表2に、併せて実施例1および2のガラス基板のガラス組成、移動度、その他の測定データを併記する。
 なお、表2において、SiO下地膜付きTCO膜の移動度のデータは、TCO膜を徐冷処理した後、TCO膜の移動度を、Nanometrics製HL5500PCを用いて測定した値である。
 また、SiO下地膜なしのTCO膜中のNa濃度は、計算値であり、SiO下地膜のアルカリバリア膜がない場合、SnO膜中のNa量は約4.0倍になることがこれまでの実験結果により確認されている。よって、(SiO下地膜なしのSnO膜中のNa量)=4.0×(SiO膜下地膜ありのSnO膜中のNa量)の計算によって求めたものである。
The mobility of the tin oxide film 14 (fluorine-doped tin oxide film) [cm 2 / V · s] for the substrate with a transparent conductive film on which the tin oxide film obtained in Examples 3 to 9 and Comparative Examples 1 to 3 was formed. Table 2 shows the measurement results. In Table 2, the glass composition, mobility, and other measurement data of the glass substrates of Examples 1 and 2 are also shown.
In Table 2, the mobility data of the TCO film with the SiO 2 base film is a value obtained by measuring the mobility of the TCO film using Nanometrics HL5500PC after annealing the TCO film.
Further, the Na concentration in the TCO film without the SiO 2 underlayer is a calculated value, and when there is no alkali barrier film of the SiO 2 underlayer, the amount of Na in the SnO 2 film may be about 4.0 times. It has been confirmed by the experimental results so far. Therefore, those obtained by the calculation of (SiO 2 Na amount of SnO 2 film without the underlying film) = 4.0 × (Na content in SnO 2 film has SiO 2 film base film).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、実施例1~9および比較例1~3のサンプルについて、SnO膜中のNa濃度[count/sec]と、酸化スズ膜の移動度のデータを図にプロットし、SnO膜中のNa濃度[count/sec]と、酸化スズ膜の移動度の関係を示したのが図3である。 Also, the samples of Examples 1-9 and Comparative Examples 1-3, a Na concentration [count / sec] in the SnO 2 film, the data of the mobility of the tin oxide film is plotted in FIG., In SnO 2 film FIG. 3 shows the relationship between the Na concentration [count / sec] and the mobility of the tin oxide film.
 表2から見られるように、実施例1~9では比較例1~3よりも酸化スズ膜の移動度が高いことが示される。また、図3から見られるように、SnO膜中のNa濃度が低い程、酸化スズ膜の移動度が高いことが見出された。
 この結果によれば、SnO中のNaが不純物としてキャリアの移動を阻害するためと考えられ、高い移動度を得るためには、SnO膜中のNa不純物を減らすことが必要であることが分かる。これらの結果から、本発明者は、SnO膜へのNa不純物を低減させるためのガラス基板のガラス組成を前述したように本発明として見出したものである。
As can be seen from Table 2, the mobility of the tin oxide film is higher in Examples 1 to 9 than in Comparative Examples 1 to 3. Further, as can be seen from FIG. 3, it was found that the mobility of the tin oxide film was higher as the Na concentration in the SnO 2 film was lower.
According to this result, it is considered that Na in SnO 2 inhibits carrier movement as an impurity, and it is necessary to reduce Na impurity in the SnO 2 film in order to obtain high mobility. I understand. From these results, the present inventors have found the glass composition of the glass substrate for reducing Na impurities in the SnO 2 film as described above.
 本発明のガラス基板における組成において、SiOが55質量%以上の場合、実施例1~6及び比較例1に見られるように、Al/NaO質量比が小さくなるとSnO膜中Na濃度が増加し、酸化スズ膜の移動度が低下することが分かる。これは、たとえば、[M. A. Rana et al, Phys. Chem. Of Glasses, Vol. 8(1967), No. 5, 178]で述べられているように、ガラス中のAl量が増加すると、NaイオンがAlO4四面体構造にトラップされるため、Naイオンの拡散が抑制され、SnO膜へのNaイオンの拡散が抑制されると考えられる。したがって、Al量が多く、NaO量が少ないことが望ましいことが本発明者によって見出された。その結果より、Al/NaOの質量比が0.5以上の場合に、所望の移動度が得られることが見出された。 In the composition of the glass substrate of the present invention, when SiO 2 is 55% by mass or more, as seen in Examples 1 to 6 and Comparative Example 1, the SnO 2 film is reduced when the Al 2 O 3 / Na 2 O mass ratio is decreased. It can be seen that the concentration of medium Na increases and the mobility of the tin oxide film decreases. This is described, for example, in the amount of Al 2 O 3 in the glass, as described in [MA A. Rana et al, Phys. Chem. Of Glasses, Vol. 8 (1967), No. 5, 178]. There the increases, the Na + ions are trapped in AlO4 tetrahedra, it is suppressed diffusion of Na + ions is believed that the diffusion of Na + ions into the SnO 2 film is suppressed. Therefore, the present inventors have found that it is desirable that the amount of Al 2 O 3 is large and the amount of Na 2 O is small. From the result, it was found that the desired mobility can be obtained when the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more.
 一方、SiOが55質量%未満の場合は、比較例2、3に見られるように、Al/NaOの質量比が0.5以上であっても十分な移動度が得られない。これは、ネットワークフォーマーであるSiO量が少なくなるため、ガラス中のNaイオンの拡散サイトが増加してしまうためと考えられる。また、実施例7ではSiOが55%未満であるにもかかわらず高い移動度を示している。イオン半径の大きなアルカリ土類金属元素であるSrO及びBaOは、AlによるNaイオン拡散抑制効果を阻害すると考えられる。結果として、Alが多くSrO及びBaOの少ないことが移動度向上には望ましい。今回の結果から、(SrO+BaO)/Alの質量比が1.0以下の時、所望の移動度が得られることが見出された。また、上述の通り、SiOに対してAl量が大きいことが必要であるが、Al/SiO質量比が0.25以上の場合にも移動度が高くなることが見出された。 On the other hand, when SiO 2 is less than 55% by mass, as seen in Comparative Examples 2 and 3, sufficient mobility is obtained even when the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more. I can't. This is presumably because the diffusion site of Na + ions in the glass increases because the amount of SiO 2 that is a network former decreases. Further, Example 7 shows high mobility even though SiO 2 is less than 55%. It is considered that SrO and BaO, which are alkaline earth metal elements having a large ionic radius, inhibit the Na + ion diffusion suppressing effect by Al 2 O 3 . As a result, a large amount of Al 2 O 3 and a small amount of SrO and BaO are desirable for improving the mobility. From this result, it was found that the desired mobility can be obtained when the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less. Further, as described above, it is necessary that the amount of Al 2 O 3 with respect to SiO 2 is large, that Al 2 O 3 / SiO 2 mass ratio increases mobility in the case of 0.25 or higher It was found.
 なお、実施例8、9のガラス基板は、SiOが55質量%未満であり、(SrO+BaO)/Alの質量比が1.0以下の条件を満たしており、比較例2、3と比べてSnO膜中のNa量が少ない。
 本発明者によって見出された図3の結果から移動度とSnO膜中のNa濃度には一次の関係式が導き出せる。この一次の関係式は、移動度をy、SnO膜中のNa濃度をxとすると、下式のような直線関係となる。
   y=-11.749x+55.357     (式1)
 図3に示された結果から、実施例8、9についても記載のような高い移動度が得られるものと推察される。
In addition, the glass substrates of Examples 8 and 9 satisfy the condition that SiO 2 is less than 55% by mass and the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less. The amount of Na in the SnO 2 film is small compared to
From the result of FIG. 3 found by the present inventor, a linear relational expression can be derived for the mobility and the Na concentration in the SnO 2 film. This linear relational expression is a linear relation such as the following expression, where the mobility is y and the Na concentration in the SnO 2 film is x.
y = -111.749x + 55.357 (Formula 1)
From the results shown in FIG. 3, it is presumed that high mobility as described in Examples 8 and 9 can be obtained.
 また、実施例1~9および比較例1~3のサンプルは、SiO膜アルカリバリア膜(下地膜)を用いて製膜した。アルカリバリア膜がない場合、SnO膜中Na量は約4.0倍になることがこれまでの実験結果により分かっている。よって、SiO下地膜なしのSnO膜中のNa量は表2の値のように計算され、さらに式1から移動度を算出すると、通常用いられる比較例1でアルカリバリア膜を用いたものと同程度、あるいは遜色少ない移動度が得られると予想される。 In addition, the samples of Examples 1 to 9 and Comparative Examples 1 to 3 were formed using a SiO 2 film alkali barrier film (underlying film). It is known from the experimental results so far that the amount of Na in the SnO 2 film is about 4.0 times when there is no alkali barrier film. Therefore, the amount of Na in the SnO 2 film without the SiO 2 base film is calculated as shown in Table 2. Further, when the mobility is calculated from Equation 1, the normal barrier film used in Comparative Example 1 is used. It is expected that a mobility similar to that in FIG.
 本発明の透明導電膜付き基板は、太陽電池用の基板の製造や、各種のタッチパネルの基板の製造等に、好適に利用可能である。
 なお、2012年2月9日に出願された日本特許出願2012-025968号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The board | substrate with a transparent conductive film of this invention can be utilized suitably for manufacture of the board | substrate for solar cells, manufacture of the board | substrate of various touch panels, etc.
The entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2012-025968 filed on February 9, 2012 are incorporated herein by reference. .
 10 TCO(透明導電膜付き)基板
 12 ガラス基板
 14 酸化スズ膜
 18 インジェクタ
 20 徐冷炉
 24 主原料吹出口
 26 副原料吹出口
 28 吸引口
10 TCO (with transparent conductive film) substrate 12 Glass substrate 14 Tin oxide film 18 Injector 20 Slow cooling furnace 24 Main raw material outlet 26 Sub raw material outlet 28 Suction port

Claims (19)

  1.  下記酸化物基準の質量%表示で、下記のガラス組成を有し、B を実質的に含有しないことを特徴とする透明導電性膜形成用ガラス基板。
      SiO  :      45~80%、
      Al :      5~18%、
      MgO  :      2~8%、
      CaO  :      0~9%、
      SrO  :      0~8%、
      BaO  :       0~10%、
      MgO+CaO+SrO+BaO : 3.5~27%、
      NaO :      0~15%、
      KO  :      0~12%、
      ZrO :      0~5%、
      TiO :      0~5%。
    A glass substrate for forming a transparent conductive film, characterized by having the following glass composition and substantially not containing B 2 O 3 in terms of mass% based on the following oxide.
    SiO 2 : 45-80%,
    Al 2 O 3 : 5 to 18%,
    MgO: 2-8%,
    CaO: 0-9%,
    SrO: 0-8%,
    BaO: 0 to 10%,
    MgO + CaO + SrO + BaO: 3.5-27%
    Na 2 O: 0 to 15%,
    K 2 O: 0-12%,
    ZrO 2 : 0 to 5%,
    TiO 2 : 0 to 5%.
  2.  下記酸化物基準の質量%表示で、下記のガラス組成を有し、Bを実質的に含有しない、請求項1に記載の透明導電性膜形成用ガラス基板。
      SiO2  :     55~72%、
      Al23 :     5~18%、
      MgO  :     2~8%、
      CaO  :     0~8%、
      SrO  :     0~8%、
      BaO  :     0~10%、
      MgO+CaO+SrO+BaO : 3.5~27%、
      Na2O  :     0~15%、
      K2O   :     0~12%、
      ZrO2  :     0~5%、
      TiO2  :     0~5%。
    By mass% based on the following oxides, have a glass of the following composition, not containing B 2 O 3 substantially transparent conductive film for forming a glass substrate of claim 1.
    SiO 2 : 55 to 72%,
    Al 2 O 3 : 5 to 18%,
    MgO: 2-8%,
    CaO: 0-8%,
    SrO: 0-8%,
    BaO: 0 to 10%,
    MgO + CaO + SrO + BaO: 3.5-27%
    Na 2 O: 0 to 15%,
    K 2 O: 0-12%,
    ZrO 2 : 0 to 5%,
    TiO 2 : 0 to 5%.
  3.  酸化錫を主成分とする透明導電膜が形成されるガラス基板である、請求項2に記載の透明導電性膜形成用ガラス基板。 The glass substrate for forming a transparent conductive film according to claim 2, which is a glass substrate on which a transparent conductive film mainly composed of tin oxide is formed.
  4.  前記ガラス基板のガラス組成は、下記酸化物基準の質量%表示において、
     SiO が55%以上の場合には、Al/NaOの質量比が0.5以上であり、
     SiO が55%未満の場合には、(SrO+BaO)/Alの質量比が1.0以下である、請求項1に記載の透明導電性膜形成用ガラス基板。
    The glass composition of the glass substrate is expressed in mass% based on the following oxide,
    When SiO 2 is 55% or more, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more,
    2. The glass substrate for forming a transparent conductive film according to claim 1, wherein when SiO 2 is less than 55%, the mass ratio of (SrO + BaO) / Al 2 O 3 is 1.0 or less.
  5.  前記ガラス基板のガラス組成は、下記酸化物基準の質量%表示において、
     SiO が55%未満の場合には、Al/NaOの質量比が0.5以上であり、かつAl/SiOの質量比が0.25以上である、請求項1に記載の透明導電性膜形成用ガラス基板。
    The glass composition of the glass substrate is expressed in mass% based on the following oxide,
    When SiO 2 is less than 55%, the mass ratio of Al 2 O 3 / Na 2 O is 0.5 or more, and the mass ratio of Al 2 O 3 / SiO 2 is 0.25 or more, Item 2. A glass substrate for forming a transparent conductive film according to Item 1.
  6.  前記ガラス基板は、下記酸化物基準の質量%表示で、ZrOを0.5~5%含有するガラス組成である、請求項1~5のいずれか1項に記載の透明導電膜形成用ガラス基板。 The transparent conductive film-forming material according to any one of claims 1 to 5, wherein the glass substrate has a glass composition containing 0.5 to 5% of Zr 2 O in terms of mass% based on the following oxides. Glass substrate.
  7.  前記ガラス基板は、下記酸化物基準の質量%表示で、NaOおよびKOの少なくともいずれかを、NaOおよびKOの合量で、1~19%含有するガラス組成である、請求項1~6のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate, by mass% based on the following oxides, at least one of Na 2 O and K 2 O, in a total amount of Na 2 O and K 2 O, is a glass composition containing 1-19% The glass substrate for forming a transparent conductive film according to any one of claims 1 to 6.
  8.  前記ガラス基板は、下記酸化物基準の質量%表示で、MgOおよびCaOの少なくともいずれかを、MgOおよびCaOの合量で、2~16%含有するガラス組成である、請求項1~7のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate according to any one of claims 1 to 7, which has a glass composition containing 2 to 16% of MgO and CaO in a total amount of MgO and CaO in terms of mass% based on the following oxides. A glass substrate for forming a transparent conductive film according to claim 1.
  9.  前記ガラス基板は、下記酸化物基準の質量%表示で、SiOおよびAlの少なくともいずれかを、SiOおよびAlの合量で、64~82%含有するガラス組成である、請求項1~8のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate, by mass% based on the following oxides, at least one of SiO 2 and Al 2 O 3, in a total amount of SiO 2 and Al 2 O 3, is a glass composition containing 64 to 82% The glass substrate for forming a transparent conductive film according to any one of claims 1 to 8.
  10.  前記ガラス基板の歪点が550℃以上である、請求項1~9のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate for forming a transparent conductive film according to any one of claims 1 to 9, wherein a strain point of the glass substrate is 550 ° C or higher.
  11.  前記ガラス基板は、50~300℃での平均熱膨張係数が50×10-7~105×10-7/℃である、請求項1~10のいずれかに1項に記載の透明導電膜形成用ガラス基板。 11. The transparent conductive film formation according to claim 1, wherein the glass substrate has an average coefficient of thermal expansion at 50 to 300 ° C. of 50 × 10 −7 to 105 × 10 −7 / ° C. Glass substrate.
  12.  前記ガラス基板は、粘度をη[dPa・s]とするとき、logη=2を満たす温度が1500℃超であり、logη=4を満たす温度が1100~1260℃である、請求項1~11のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate has a temperature satisfying log η = 2 of more than 1500 ° C. and a temperature satisfying log η = 4 of 1100 to 1260 ° C. when the viscosity is η [dPa · s]. The glass substrate for transparent conductive film formation of any one of Claims 1.
  13.  前記ガラス基板は、フロート板ガラスである、請求項1~12のいずれか1項に記載の透明導電膜形成用ガラス基板。 The glass substrate for forming a transparent conductive film according to any one of claims 1 to 12, wherein the glass substrate is float plate glass.
  14.  前記ガラス基板は、下記酸化物基準の質量%表示で、Feを0.005~0.1%、さらに含有する組成である、請求項1~13のいずれか1項に記載の透明導電膜形成用ガラス基板。 The transparent substrate according to any one of claims 1 to 13, wherein the glass substrate has a composition further containing 0.005 to 0.1% Fe 2 O 3 in terms of mass% based on the following oxides. A glass substrate for forming a conductive film.
  15.  請求項1~14のいずれか1項に記載のガラス基板面上に透明導電膜が形成された透明導電膜付き基板。 A substrate with a transparent conductive film, wherein the transparent conductive film is formed on the glass substrate surface according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか1項に記載のガラス基板面上に、膜厚250nmにおける移動度が36cm/V・sの透明導電膜を有する透明導電膜付き基板。 A substrate with a transparent conductive film having a transparent conductive film having a mobility of 36 cm 2 / V · s at a film thickness of 250 nm on the glass substrate surface according to any one of claims 1 to 14.
  17.  請求項1~14のいずれか1項に記載のガラス基板面上に、酸化スズ膜を有する透明導電膜を有する透明導電膜付き基板。 A substrate with a transparent conductive film, comprising a transparent conductive film having a tin oxide film on the glass substrate surface according to any one of claims 1 to 14.
  18.  前記酸化スズ膜は、ドーパントとしてフッ素を含有する、酸化スズ膜である、請求項14に記載の透明導電膜付き基板。 The substrate with a transparent conductive film according to claim 14, wherein the tin oxide film is a tin oxide film containing fluorine as a dopant.
  19.  前記酸化スズ膜は、大気圧CVD法を用いてガラス基板上に成膜されている、請求項17または18に記載の透明導電膜付き基板。 The substrate with a transparent conductive film according to claim 17 or 18, wherein the tin oxide film is formed on a glass substrate by using an atmospheric pressure CVD method.
PCT/JP2013/053149 2012-02-09 2013-02-08 Glass substrate for transparent conductive film formation, and substrate with transparent conductive film WO2013118897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025968 2012-02-09
JP2012025968 2012-02-09

Publications (1)

Publication Number Publication Date
WO2013118897A1 true WO2013118897A1 (en) 2013-08-15

Family

ID=48947649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053149 WO2013118897A1 (en) 2012-02-09 2013-02-08 Glass substrate for transparent conductive film formation, and substrate with transparent conductive film

Country Status (3)

Country Link
JP (1) JPWO2013118897A1 (en)
TW (1) TW201343588A (en)
WO (1) WO2013118897A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112415A1 (en) * 2013-01-16 2014-07-24 旭硝子株式会社 Method for manufacturing glass substrate with laminated film
EP3281922A4 (en) * 2015-04-10 2018-11-21 Asahi Glass Company, Limited Glass sheet and method for manufacturing same
US10683231B2 (en) 2015-03-26 2020-06-16 Pilkington Group Limited Glasses
CN112703172A (en) * 2018-09-18 2021-04-23 Agc株式会社 Glass substrate, black matrix substrate and display panel
CN115108719A (en) * 2014-09-03 2022-09-27 日本电气硝子株式会社 Supporting glass substrate and laminate using same
JP7143919B1 (en) * 2021-05-07 2022-09-29 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642307B (en) * 2016-09-12 2020-04-10 株式会社爱发科 Method for manufacturing substrate with transparent conductive film, apparatus for manufacturing substrate with transparent conductive film, and substrate with transparent conductive film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092836A (en) * 1995-04-20 1997-01-07 A G Technol Kk Glass substrate for magnetic disc and magnetic disc
JPH1072235A (en) * 1996-06-20 1998-03-17 Asahi Glass Co Ltd Glass substrate for plasma display panel
JPH1111975A (en) * 1997-06-27 1999-01-19 Asahi Glass Co Ltd Glass substrate for plasma display panel
JPH11171587A (en) * 1997-12-04 1999-06-29 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JPH11233033A (en) * 1997-11-17 1999-08-27 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JP2000226233A (en) * 1999-02-04 2000-08-15 Asahi Glass Co Ltd Float glass for flat panel display substrate
JP2004002062A (en) * 2002-05-29 2004-01-08 Nippon Electric Glass Co Ltd Glass substrate for flat panel display unit
JP2006221942A (en) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd Glass set for manufacturing plasma display panel substrate
JP2009167089A (en) * 2007-12-19 2009-07-30 Nippon Electric Glass Co Ltd Glass substrate
JP2010138045A (en) * 2008-12-15 2010-06-24 Nippon Electric Glass Co Ltd Glass substrate
JP2010262931A (en) * 2003-11-18 2010-11-18 Nippon Sheet Glass Co Ltd Transparent base with transparent conductive film, method of manufacturing same, and photoelectric converter comprising such base
JP2011011951A (en) * 2009-07-03 2011-01-20 Asahi Glass Co Ltd Glass substrate for flat panel display, method for producing the same, and display panel using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092836A (en) * 1995-04-20 1997-01-07 A G Technol Kk Glass substrate for magnetic disc and magnetic disc
JPH1072235A (en) * 1996-06-20 1998-03-17 Asahi Glass Co Ltd Glass substrate for plasma display panel
JPH1111975A (en) * 1997-06-27 1999-01-19 Asahi Glass Co Ltd Glass substrate for plasma display panel
JPH11233033A (en) * 1997-11-17 1999-08-27 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JPH11171587A (en) * 1997-12-04 1999-06-29 Nippon Electric Glass Co Ltd Substrate glass for plasma display
JP2000226233A (en) * 1999-02-04 2000-08-15 Asahi Glass Co Ltd Float glass for flat panel display substrate
JP2004002062A (en) * 2002-05-29 2004-01-08 Nippon Electric Glass Co Ltd Glass substrate for flat panel display unit
JP2010262931A (en) * 2003-11-18 2010-11-18 Nippon Sheet Glass Co Ltd Transparent base with transparent conductive film, method of manufacturing same, and photoelectric converter comprising such base
JP2006221942A (en) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd Glass set for manufacturing plasma display panel substrate
JP2009167089A (en) * 2007-12-19 2009-07-30 Nippon Electric Glass Co Ltd Glass substrate
JP2010138045A (en) * 2008-12-15 2010-06-24 Nippon Electric Glass Co Ltd Glass substrate
JP2011011951A (en) * 2009-07-03 2011-01-20 Asahi Glass Co Ltd Glass substrate for flat panel display, method for producing the same, and display panel using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112415A1 (en) * 2013-01-16 2014-07-24 旭硝子株式会社 Method for manufacturing glass substrate with laminated film
CN115108719A (en) * 2014-09-03 2022-09-27 日本电气硝子株式会社 Supporting glass substrate and laminate using same
US10683231B2 (en) 2015-03-26 2020-06-16 Pilkington Group Limited Glasses
EP3281922A4 (en) * 2015-04-10 2018-11-21 Asahi Glass Company, Limited Glass sheet and method for manufacturing same
US10618836B2 (en) 2015-04-10 2020-04-14 Agc Glass Europe Glass plate and manufacturing method thereof
CN112703172A (en) * 2018-09-18 2021-04-23 Agc株式会社 Glass substrate, black matrix substrate and display panel
CN112703172B (en) * 2018-09-18 2023-03-31 Agc株式会社 Glass substrate, black matrix substrate and display panel
JP7143919B1 (en) * 2021-05-07 2022-09-29 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same
WO2022234811A1 (en) * 2021-05-07 2022-11-10 Agc株式会社 Transparent conductive film-equipped glass substrate and method for manufacturing same
CN116395981A (en) * 2021-05-07 2023-07-07 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing same
JP7396416B2 (en) 2021-05-07 2023-12-12 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same
CN116395981B (en) * 2021-05-07 2024-03-22 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2013118897A1 (en) 2015-05-11
TW201343588A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
WO2013118897A1 (en) Glass substrate for transparent conductive film formation, and substrate with transparent conductive film
US9090501B2 (en) Method for reducing warpage of glass substrate caused by chemical strengthening process, and method for producing chemically strengthened glass substrate
JP5999101B2 (en) Glass substrate for chemical strengthening and method for producing the same
US10573765B2 (en) APCVD of doped titanium oxide and the coated article made thereby
WO2016163199A1 (en) Glass sheet and method for manufacturing same
JP2022123516A (en) Glass substrate for solar cells and solar cell
WO2017119279A1 (en) Glass member
WO2014112415A1 (en) Method for manufacturing glass substrate with laminated film
US10287676B2 (en) Thin film formation method, thin film, and glass plate having thin film attached thereto
JP2009242128A (en) Transparent conductive glass substrate and method for manufacturing the same
JP2021014384A (en) Glass substrate with film and manufacturing method thereof
CN107835793B (en) Glass substrate
WO2014112482A1 (en) Glass substrate with laminated film and manufacturing method therefor
US20110281091A1 (en) Method of depositing and electrically conductive titanium oxide coating
US11542194B2 (en) Coated glass article, method of making the same, and photovoltaic cell made therewith
JP7306502B2 (en) Film-coated glass substrate and manufacturing method thereof
WO2022114028A1 (en) Glass substrate with transparent conductive film and solar cell
JP7143919B1 (en) Glass substrate with transparent conductive film and method for manufacturing the same
JP7160232B1 (en) Transparent electrode substrate and solar cell
JP2014214355A (en) Substrate with laminate film, and manufacturing method for base with laminate film
JP2005190700A (en) Substrate with transparent conductive film and its manufacturing method
CN116969692A (en) Coated toughened glass, electromagnetic shielding glass and preparation method of ITO film
JP2014160689A (en) Base material with transparent conductive oxide film
JP2014037604A (en) Substrate with transparent conductive oxide film attached thereon and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746335

Country of ref document: EP

Kind code of ref document: A1