WO2014112482A1 - Glass substrate with laminated film and manufacturing method therefor - Google Patents

Glass substrate with laminated film and manufacturing method therefor Download PDF

Info

Publication number
WO2014112482A1
WO2014112482A1 PCT/JP2014/050466 JP2014050466W WO2014112482A1 WO 2014112482 A1 WO2014112482 A1 WO 2014112482A1 JP 2014050466 W JP2014050466 W JP 2014050466W WO 2014112482 A1 WO2014112482 A1 WO 2014112482A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
glass
oxide layer
tin oxide
glass ribbon
Prior art date
Application number
PCT/JP2014/050466
Other languages
French (fr)
Japanese (ja)
Inventor
啓明 岩岡
宏佑 長南
淳志 関
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480005022.5A priority Critical patent/CN104936922A/en
Publication of WO2014112482A1 publication Critical patent/WO2014112482A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2453Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • C03C2218/1525Deposition methods from the vapour phase by cvd by atmospheric CVD

Definitions

  • the injector 60 is composed of six injectors 60a to 60f (hereinafter, each of the injectors 60a to 60f is also referred to as the injector 60), and forms a laminated film on the conveyed glass ribbon 70.
  • An electric heater 56 is provided between the injectors 60.
  • the number of injectors 60 is not limited to this, and is preferably in the range of 2 to 9, and the electric heater 56 can be increased or decreased as necessary.
  • These electric heaters 56 prevent the temperature of the glass ribbon 70 from excessively decreasing from the inlet to the outlet in the slow cooling furnace.
  • the electric heater 56 installed between the adjacent injectors 60 can heat the glass ribbon 70 between the adjacent injectors 60, but cannot heat the glass ribbon 70 on the lower surface of the injector 60. The installation of the electric heater 56 does not affect the temperature change of the glass ribbon that is cooled from the inlet to the outlet of the injector 60.
  • the injector 60 is disposed above the glass ribbon 70 with an interval of 3 mm to 30 mm. Therefore, the lower surface 65 of the injector 60 is disposed to face the glass ribbon 70 conveyed into the slow cooling furnace 54 with a gap of 3 mm to 30 mm.
  • the smaller the gap the more advantageous the film thickness, film quality, and film formation speed during film formation.
  • the gap fluctuates due to warping or vibration of the glass ribbon 70, the influence on the film thickness and film quality increases.
  • the gap is large, the efficiency of the raw material during film formation is reduced.
  • the gap is preferably 4 to 12 mm, more preferably 5 to 10 mm.
  • the thickness of the glass substrate 12 is preferably 0.1 to 6.0 mm. Within the above range, the balance between mechanical strength and translucency is excellent.
  • the temperature drop per unit length of the glass ribbon 70 in the temperature region where all the laminated films are formed is referred to as K1 (hereinafter, also simply referred to as the temperature drop K1), 0 ° C./m ⁇ K1 ⁇ 10° C. / m, preferably 1 ° C./m ⁇ K1 ⁇ 5° C./m, more preferably 2 ° C./m ⁇ K1 ⁇ 3.0° C./m.
  • the temperature drop K1 is the “temperature difference between the glass ribbon temperature at the inlet of the first injector and the glass ribbon temperature at the outlet of the last injector when forming the laminated film” in the temperature region where the laminated film is formed.
  • the first injector for forming the titanium oxide layer vaporized tetraisopropoxy titanium (main raw material) as a raw material for the titanium oxide layer and nitrogen gas as a carrier gas on a glass ribbon at 585 ° C. (Sub-original) was sprayed to form a titanium oxide layer on the surface of the glass ribbon being conveyed.
  • the temperature of the glass ribbon in the on-line CVD (the above-mentioned 585 ° C. and the subsequent film formation temperature) is obtained by calculating the glass temperature at the central position of the injector from the temperature measurement positions at the front and rear of the injector in the transport direction.
  • the thickness of the titanium oxide layer was 10 nm.
  • Tetratitanium isopropoxide was vaporized by a vaporizer kept at about 170 ° C. and transported to the first injector through a stainless steel pipe. Table 1 shows the conditions for forming the titanium oxide layer.
  • tin tetrachloride and water as raw materials for the second tin oxide layer are formed by the fourth and fifth injectors. Then, hydrogen fluoride and nitrogen gas as a carrier gas were sprayed to form a second tin oxide layer doped with fluorine on the surface of the first tin oxide layer of the glass substrate being conveyed.
  • tin tetrachloride and water were transported to the injector by the same method as in the case of the first tin oxide layer.
  • hydrogen fluoride transported the vaporized hydrogen fluoride to the injector with the stainless steel pipe, and was supplied on the 1st tin oxide layer in the state mixed with the tin tetrachloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A glass substrate with a laminated film, wherein the laminated film is formed on a glass ribbon by the CVD method with multiple injectors provided in an annealing furnace. When the glass transition temperature is Tg and the glass strain temperature is Ts, the laminated film is formed at Tg+50°C or less, and at least two or more layers of the laminated film are formed in a temperature range of from Tg+50°C to Ts. Further, the drop temperature K1 per unit length of the glass ribbon in a temperature range in which all layers of the laminated film are formed is 0°C/m<K1<10°C/m, and the laminated film includes a fluorine doped tin oxide layer which has a specific resistance of 4.7×10-4Ω∙cm or less and a carrier density of 2.5×1020 cm-3 or more.

Description

積層膜付きガラス基板及びその製造方法Glass substrate with laminated film and method for producing the same
 本発明は、積層膜付きガラス基板、特にオンラインCVD(Chemical Vapor Deposition)法により徐冷炉内でガラスリボン上に積層膜が形成された積層膜付きガラス基板に関する。 The present invention relates to a glass substrate with a laminated film, and more particularly to a glass substrate with a laminated film in which a laminated film is formed on a glass ribbon in a slow cooling furnace by an on-line CVD (Chemical Vapor Deposition) method.
 オンラインCVD法によりガラスリボン上に膜を形成する方法として、例えば特許文献1~3に記載の方法が知られている。
 特許文献1には、フロートバス内のガラスリボン上にケイ素及び酸素を含有する酸化物をCVD法で成膜することが開示されている。この際にフロートバスの溶融金属の酸素ガスによる酸化を防止するために、不飽和炭化水素化合物と二酸化炭素を酸素源として使用することが開示されている。
 特許文献2には、フロートバスに配置した被覆ステーション(インジェクター)と徐冷炉に配置した被覆ステーションでガラスリボン上に二酸化ケイ素被膜、酸化錫被膜を順次形成する方法が開示されている。
 特許文献3には、フロートバスの出口と徐冷炉入口との間の領域にノズル(インジェクター)を設けて、ガラスリボン上に成膜する方法が開示されている。
As a method for forming a film on a glass ribbon by an on-line CVD method, for example, methods described in Patent Documents 1 to 3 are known.
Patent Document 1 discloses that an oxide containing silicon and oxygen is formed on a glass ribbon in a float bath by a CVD method. In this case, it is disclosed that an unsaturated hydrocarbon compound and carbon dioxide are used as an oxygen source in order to prevent oxidation of molten metal in the float bath by oxygen gas.
Patent Document 2 discloses a method of sequentially forming a silicon dioxide film and a tin oxide film on a glass ribbon at a coating station (injector) disposed in a float bath and a coating station disposed in a slow cooling furnace.
Patent Document 3 discloses a method of forming a film on a glass ribbon by providing a nozzle (injector) in a region between the float bath outlet and the annealing furnace inlet.
日本国特開平1-201046号公報Japanese Laid-Open Patent Publication No. 1-201046 日本国特開平3-33036号公報Japanese Unexamined Patent Publication No. 3-33036 日本国特公平4-35558号公報Japanese Patent Publication 4-35558
 フロートバス内では、溶融金属の周りは、溶融金属の酸化を防ぐために非酸化雰囲気とされるのが通常である。また、フロートバス内ではガラスリボンは柔らかい状態であり、フロートバス内の柔らかいガラスリボンにCVD法で成膜する場合は、温度差に起因するガラスリボンの反りや割れは起こりにくい。
 特許文献1には、フロートバスの溶融金属の酸化防止のために不飽和炭化水素化合物と二酸化炭素を酸素ガス源として使用することが開示されている。非酸化雰囲気で酸化物を成膜する場合は酸素ガスを使用することができず、酸素分子を含んだ反応ガスを用いる必要があるためである。しかしこの方法でケイ素及び酸素を含有する酸化物を成膜した場合、酸化物膜に炭化水素や二酸化炭素由来のカーボン(C)が混入される。その結果、膜の吸収が増え、カーボンを含まない膜に比べて透過率が悪化した膜になる。
 このために、フロートバス内ではCVD法で酸化物を成膜する場合には膜質が劣化する問題があり、フロートバス外での成膜が望まれている。
In the float bath, the periphery of the molten metal is usually a non-oxidizing atmosphere to prevent oxidation of the molten metal. Further, the glass ribbon is in a soft state in the float bath, and when the film is formed on the soft glass ribbon in the float bath by the CVD method, the glass ribbon is not easily warped or cracked due to a temperature difference.
Patent Document 1 discloses that an unsaturated hydrocarbon compound and carbon dioxide are used as an oxygen gas source for preventing oxidation of molten metal in a float bath. This is because oxygen gas cannot be used when forming an oxide film in a non-oxidizing atmosphere, and a reaction gas containing oxygen molecules needs to be used. However, when an oxide containing silicon and oxygen is formed by this method, hydrocarbon or carbon dioxide (C) derived from carbon dioxide is mixed into the oxide film. As a result, the absorption of the film is increased, and the film has a reduced transmittance as compared with the film not containing carbon.
For this reason, there is a problem that the film quality deteriorates when an oxide film is formed in the float bath by the CVD method, and the film formation outside the float bath is desired.
 特許文献2には、徐冷炉内に被覆ステーションを備えた場合に、成膜するための温度条件とガラスリボンを徐冷するための温度条件が異なるために問題が生ずることが開示されており、多層被覆を形成する場合は更に問題が複雑になることも開示されている。そのため、特許文献2では、予備混合した酸素及び被覆プレカーサーをフロートバス内でガラスリボン上に接触させることを推奨している。しかし、この方法では酸素ガスを密閉するためにシールが必要で装置が複雑になる。また、徐冷炉内に被覆ステーションを備え、ガラスリボン上に金属酸化物被膜を形成しようとすると、ガラスリボンとインジェクターとの熱交換により、被覆ステーションを備えない場合に比べてガラスリボンから急激な脱熱が生じる。その結果、ガラスリボンが変形したり、傷及び割れが発生したりするおそれがある。これは特に、被覆ステーションの数が多くなればなるほど傷及び割れが発生するおそれが高くなり、反ったガラスリボンが被覆ステーションに接触することにより、ガラスリボンに傷及び割れが発生することがある。 Patent Document 2 discloses that when a coating station is provided in a slow cooling furnace, a problem arises because the temperature conditions for film formation and the temperature conditions for slow cooling of the glass ribbon are different. It has also been disclosed that the problem is further complicated when forming a coating. For this reason, Patent Document 2 recommends that the premixed oxygen and the coating precursor are brought into contact with the glass ribbon in the float bath. However, this method requires a seal to seal the oxygen gas and complicates the apparatus. Also, when a coating station is provided in the slow cooling furnace and a metal oxide film is to be formed on the glass ribbon, the heat exchange between the glass ribbon and the injector causes a rapid heat removal from the glass ribbon compared to the case without the coating station. Occurs. As a result, the glass ribbon may be deformed, or scratches and cracks may occur. In particular, as the number of coating stations increases, the risk of scratches and cracks increases, and the glass ribbons may be scratched and cracked when the warped glass ribbon contacts the coating stations.
 このため、特許文献2は、多層被覆を形成する際に一つ以上の被覆ステーションを徐冷炉内に備えた場合、異なる温度制御を確立しなければならないという問題があることを開示している。一方で、徐冷炉内に複数の被覆ステーションを配置した場合の適切な温度管理方法を具体的には何ら開示していない。 Therefore, Patent Document 2 discloses that when one or more coating stations are provided in a slow cooling furnace when forming a multilayer coating, there is a problem that different temperature control must be established. On the other hand, there is no specific disclosure of an appropriate temperature management method in the case where a plurality of coating stations are arranged in a slow cooling furnace.
 特許文献3には、フロートバスの出口と徐冷炉入口との間の領域にガラス全体の幅を被覆するようにノズル(インジェクター)を設けることが開示されている。しかし、従来のフロート製造装置をそのまま利用しようとしても、フロートバスと徐冷炉との間にノズルを配置する十分なスペースはない。また、フロートバスと徐冷炉の間の空間では、ガラスリボンの温度制御を行っておらず、フロートバスと徐冷炉の間の空間で成膜すると、ノズルとガラスリボンとの熱交換によりガラスリボンに急激な脱熱が生ずる問題がある。 Patent Document 3 discloses that a nozzle (injector) is provided in an area between the float bath outlet and the annealing furnace inlet so as to cover the entire width of the glass. However, even if the conventional float manufacturing apparatus is used as it is, there is not sufficient space for disposing the nozzle between the float bath and the slow cooling furnace. In addition, the temperature of the glass ribbon is not controlled in the space between the float bath and the slow cooling furnace, and if a film is formed in the space between the float bath and the slow cooling furnace, the glass ribbon is rapidly changed due to heat exchange between the nozzle and the glass ribbon. There is a problem of heat removal.
 本発明は、以上の問題点に着目してなされたものであり、徐冷炉内に設けられた複数のインジェクターを用いてオンラインCVD法によって積層膜を形成するに際し、ガラスリボンの適切な温度管理を行うことで、比抵抗が4.7×10-4Ω・cm以下であり、且つ、キャリア濃度が2.5×1020cm-3以上であるフッ素ドープ酸化スズ層を含む積層膜付きガラス基板及びその製造方法を提供する。 The present invention has been made paying attention to the above-mentioned problems, and performs appropriate temperature management of a glass ribbon when forming a laminated film by an on-line CVD method using a plurality of injectors provided in a slow cooling furnace. A glass substrate with a laminated film including a fluorine-doped tin oxide layer having a specific resistance of 4.7 × 10 −4 Ω · cm or less and a carrier concentration of 2.5 × 10 20 cm −3 or more; A manufacturing method thereof is provided.
 本発明は、以下の態様を提供するものである。
(1) ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて製造される積層膜付きガラス基板であって、
 前記積層膜は、CVD法により前記徐冷炉内に設けられた複数のインジェクターによって前記ガラスリボン上に形成され、
 前記積層膜は、ガラス転位温度をTg、ガラス歪温度をTsとした場合に、Tg+50℃以下で形成され、且つ、前記積層膜のうち少なくとも2以上の層がTg+50℃からTsの温度領域で形成され、
 前記積層膜の全ての層を形成する温度領域における前記ガラスリボンの単位長さ当たりの降下温度K1が0℃/m<K1<10℃/mであり、
 前記積層膜は、フッ素ドープ酸化スズ層を含み、
 該フッ素ドープ酸化スズ層は、比抵抗が4.7×10-4Ω・cm以下であり、且つ、キャリア濃度が2.5×1020cm-3以上であることを特徴とする積層膜付きガラス基板。
(2) 前記積層膜は、移動度が45cm/V・s以上であることを特徴とする(1)に記載の積層膜付きガラス基板。
(3) 前記積層膜のうち少なくとも2以上の層がTg+50℃からTgの温度領域で形成されることを特徴とする(1)又は(2)に記載の積層膜付きガラス基板。
(4) 前記積層膜は、酸化ケイ素層を含むことを特徴とする(1)~(3)のいずれかに記載の積層膜付きガラス基板。
(5) 前記積層膜は、さらにフッ素ドープされていない酸化スズ層を含むことを特徴とする(1)~(4)のいずれかに記載の積層膜付きガラス基板。
(6) 前記フッ素ドープ酸化スズ層と前記フッ素ドープされていない酸化スズ層からなる酸化スズ層は、厚さ600nmにおける波長550nmのヘイズ率が10%以上であることを特徴とする(5)に記載の積層膜付きガラス基板。
(7) 前記フッ素ドープ酸化スズ層と前記フッ素ドープされていない酸化スズ層からなる酸化スズ層は、厚さ730nmにおける波長550nmのヘイズ率が15%以上であることを特徴とする(5)に記載の積層膜付きガラス基板。
(8) ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて、CVD法により前記徐冷炉内に設けられた複数のインジェクターで前記ガラスリボン上に積層膜を形成し、前記ガラスリボンを切断する積層膜付きガラス基板の製造方法であって、
 ガラス転位温度をTg、ガラス歪温度をTsとした場合に、前記積層膜はTg+50℃以下で形成され、且つ、前記積層膜のうち少なくとも2以上の層がTg+50℃からTsの温度領域で形成され、
 前記積層膜の全ての層を形成する温度領域における前記ガラスリボンの単位長さ当たりの降下温度K1が0℃/m<K1<10℃/mであり、
 前記積層膜は、比抵抗が4.7×10-4Ω・cm以下であるフッ素ドープ酸化スズ層を含み、四塩化錫とフッ化水素ガスがモル比で、HF/SnCl=1.0よりも大きくなるように原料ガスを吹き付けることにより該フッ素ドープ酸化スズ層を形成することを特徴とする積層膜付きガラス基板の製造方法。
The present invention provides the following aspects.
(1) Using a glass manufacturing apparatus comprising a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon. A glass substrate with a laminated film to be manufactured,
The laminated film is formed on the glass ribbon by a plurality of injectors provided in the slow cooling furnace by a CVD method,
The laminated film is formed at Tg + 50 ° C. or lower when the glass transition temperature is Tg and the glass strain temperature is Ts, and at least two layers of the laminated film are formed in a temperature range of Tg + 50 ° C. to Ts. And
The temperature drop K1 per unit length of the glass ribbon in the temperature region for forming all the layers of the laminated film is 0 ° C./m<K1<10° C./m,
The laminated film includes a fluorine-doped tin oxide layer,
The fluorine-doped tin oxide layer has a laminated film characterized by having a specific resistance of 4.7 × 10 −4 Ω · cm or less and a carrier concentration of 2.5 × 10 20 cm −3 or more. Glass substrate.
(2) The glass substrate with a laminated film according to (1), wherein the laminated film has a mobility of 45 cm 2 / V · s or more.
(3) The glass substrate with a laminated film according to (1) or (2), wherein at least two layers of the laminated film are formed in a temperature range of Tg + 50 ° C. to Tg.
(4) The glass substrate with a laminated film according to any one of (1) to (3), wherein the laminated film includes a silicon oxide layer.
(5) The glass substrate with a laminated film according to any one of (1) to (4), wherein the laminated film further includes a tin oxide layer not doped with fluorine.
(6) The tin oxide layer composed of the fluorine-doped tin oxide layer and the non-fluorine-doped tin oxide layer has a haze ratio of 10% or more at a wavelength of 550 nm at a thickness of 600 nm. The glass substrate with a laminated film as described.
(7) The tin oxide layer composed of the fluorine-doped tin oxide layer and the non-fluorine-doped tin oxide layer has a haze ratio of 15% or more at a wavelength of 550 nm at a thickness of 730 nm. The glass substrate with a laminated film as described.
(8) Using a glass manufacturing apparatus comprising a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon. A method for producing a laminated film-attached glass substrate by forming a laminated film on the glass ribbon with a plurality of injectors provided in the slow cooling furnace by a CVD method, and cutting the glass ribbon;
When the glass transition temperature is Tg and the glass strain temperature is Ts, the laminated film is formed at Tg + 50 ° C. or lower, and at least two layers of the laminated film are formed at a temperature range of Tg + 50 ° C. to Ts. ,
The temperature drop K1 per unit length of the glass ribbon in the temperature region for forming all the layers of the laminated film is 0 ° C./m<K1<10° C./m,
The laminated film includes a fluorine-doped tin oxide layer having a specific resistance of 4.7 × 10 −4 Ω · cm or less, tin tetrachloride and hydrogen fluoride gas are in a molar ratio, and HF / SnCl 4 = 1.0. A method for producing a glass substrate with a laminated film, wherein the fluorine-doped tin oxide layer is formed by spraying a raw material gas so as to be larger than that.
 本発明の積層膜付きガラス基板及びその製造方法によれば、適切な温度管理を行いながら、オンラインCVD法によりガラス製造装置の徐冷炉内でガラスリボン上にフッ素ドープ酸化スズ層を含む積層膜を形成することで、従来のオフラインCVD法で製造された積層膜付きガラス基板のフッ素ドープ酸化スズ層に比べて、比抵抗が4.7×10-4Ω・cm以下である低抵抗のフッ素ドープ酸化スズ層を得ることができる。これにより、Low-Eガラス等の低抵抗層を要する光学部材等にも適用することができる。
 さらに、オンライン上で積層膜を形成することで、一度冷却したガラスを再度加熱することなく積層膜を形成することができるので、製造工程を簡略化することができ、製造コストを抑制することができる。
According to the glass substrate with a laminated film of the present invention and the method for producing the same, a laminated film containing a fluorine-doped tin oxide layer is formed on the glass ribbon in the slow cooling furnace of the glass production apparatus by online CVD while performing appropriate temperature control. As a result, the specific resistance is 4.7 × 10 −4 Ω · cm or less of the low-resistance fluorine-doped oxidation compared to the fluorine-doped tin oxide layer of the glass substrate with a laminated film manufactured by the conventional off-line CVD method. A tin layer can be obtained. Thereby, it is applicable also to an optical member etc. which require a low resistance layer, such as Low-E glass.
Furthermore, by forming the laminated film online, the laminated film can be formed without reheating the glass once cooled, so that the manufacturing process can be simplified and the manufacturing cost can be suppressed. it can.
本発明に係る積層膜付きガラス基板を製造可能なガラス製造装置の一実施形態の概略図である。It is the schematic of one Embodiment of the glass manufacturing apparatus which can manufacture the glass substrate with a laminated film which concerns on this invention. 本発明に係る積層膜付きガラス基板を製造可能なインジェクターの一実施形態の断面図である。It is sectional drawing of one Embodiment of the injector which can manufacture the glass substrate with a laminated film which concerns on this invention. 本発明の積層膜付きガラス基板の一実施形態である太陽電池用透明導電性基板の断面図である。It is sectional drawing of the transparent conductive substrate for solar cells which is one Embodiment of the glass substrate with a laminated film of this invention. 徐冷炉内のガラスリボンの温度制御を説明するグラフである。It is a graph explaining temperature control of the glass ribbon in a slow cooling furnace. フッ化水素(HF)の添加量とキャリア電子の移動度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of hydrogen fluoride (HF), and the mobility of a carrier electron. フッ化水素(HF)の添加量とキャリア濃度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of hydrogen fluoride (HF), and carrier concentration. フッ化水素(HF)の添加量と比抵抗との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of hydrogen fluoride (HF), and specific resistance.
 先ず、図1を参照して本発明の積層膜付きガラス基板を製造するガラス製造装置の一態様について説明する。なお、以下の説明において、積層膜の少なくとも1つの層を形成することを含めて成膜と呼ぶことがある。
 図1に示すように、ガラス製造装置50は、ガラスの原料を溶解する溶解炉51と、溶解された溶融ガラスを溶融錫上に浮かせて平坦なガラスリボン70を成形するフロートバス52と、リフトアウトロール53によってガラスリボン70をフロートバス52から引き出した後に、ガラスリボン70の温度を徐々に下げることで徐冷する徐冷炉54と、を備えて構成される。
First, with reference to FIG. 1, the one aspect | mode of the glass manufacturing apparatus which manufactures the glass substrate with a laminated film of this invention is demonstrated. In the following description, the term “film formation” may include the formation of at least one layer of a laminated film.
As shown in FIG. 1, a glass manufacturing apparatus 50 includes a melting furnace 51 that melts a glass raw material, a float bath 52 that floats the molten glass on molten tin to form a flat glass ribbon 70, a lift And a slow cooling furnace 54 that gradually cools the glass ribbon 70 by gradually lowering the temperature of the glass ribbon 70 after the glass ribbon 70 is pulled out from the float bath 52 by the out roll 53.
 徐冷炉54は、例えば、燃焼ガス又は電気ヒーターにより、その出力が制御された熱量を炉内の必要位置に供給して搬送ローラー55で搬送されるガラスリボン70を常温に近い温度域までゆっくり冷却する。これにより、ガラスリボン70に内在する残留応力をなくし、ガラスリボン70に反りや割れが発生するのを抑制する作用を有する。徐冷炉54内には、インジェクター60が設けられ、ガラスリボン70上にCVD法により積層膜を形成する。なお、徐冷炉54に入る際のガラスリボン70の温度は、ソーダライムシリケートガラスの場合610℃(Tg+50℃)前後であることが多い。 The slow cooling furnace 54 supplies, for example, a heat amount whose output is controlled by a combustion gas or an electric heater to a required position in the furnace, and slowly cools the glass ribbon 70 conveyed by the conveying roller 55 to a temperature range close to room temperature. . Thereby, the residual stress inherent in the glass ribbon 70 is eliminated, and the glass ribbon 70 has an effect of suppressing warpage and cracking. An injector 60 is provided in the slow cooling furnace 54, and a laminated film is formed on the glass ribbon 70 by a CVD method. The temperature of the glass ribbon 70 when entering the slow cooling furnace 54 is often around 610 ° C. (Tg + 50 ° C.) in the case of soda lime silicate glass.
 インジェクター60は、6個のインジェクター60a~60f(以下、各インジェクター60a~60fについてもインジェクター60と表記する。)なり、搬送されるガラスリボン70上に積層膜を形成する。各インジェクター60間には、電気ヒーター56が設けられている。なお、インジェクター60の数は、これに限定されず、好ましくは2~9個の範囲内であり、電気ヒーター56も必要に応じて増減することができる。これらの電気ヒーター56により、徐冷炉内の入口から出口までにガラスリボン70の温度が低下しすぎることを防止する。一方で隣り合うインジェクター60間に設置され電気ヒーター56は、隣り合うインジェクター60間のガラスリボン70を加熱できるが、インジェクター60下面のガラスリボン70を加熱することはできない。この電気ヒーター56の設置によって、インジェクター60の入口から出口までに冷却されるガラスリボンの温度変化への影響はない。 The injector 60 is composed of six injectors 60a to 60f (hereinafter, each of the injectors 60a to 60f is also referred to as the injector 60), and forms a laminated film on the conveyed glass ribbon 70. An electric heater 56 is provided between the injectors 60. The number of injectors 60 is not limited to this, and is preferably in the range of 2 to 9, and the electric heater 56 can be increased or decreased as necessary. These electric heaters 56 prevent the temperature of the glass ribbon 70 from excessively decreasing from the inlet to the outlet in the slow cooling furnace. On the other hand, the electric heater 56 installed between the adjacent injectors 60 can heat the glass ribbon 70 between the adjacent injectors 60, but cannot heat the glass ribbon 70 on the lower surface of the injector 60. The installation of the electric heater 56 does not affect the temperature change of the glass ribbon that is cooled from the inlet to the outlet of the injector 60.
 インジェクター60は、図2に示すように、ガラスリボン70を挟んで搬送ローラー55と反対側であるガラスリボン70の上方に配置される。各インジェクター60は、ガラスリボン70の搬送方向に対して直角方向に細長いスリット状の吹出口61が下面65の略中央部に設けられ、吹出口61の前後方向両側にそれぞれ吹出口61と平行に延びる排気口62が設けられる。 As shown in FIG. 2, the injector 60 is disposed above the glass ribbon 70 on the opposite side of the conveyance roller 55 with the glass ribbon 70 interposed therebetween. Each injector 60 has a slit-like air outlet 61 that is elongated in a direction perpendicular to the conveying direction of the glass ribbon 70 at a substantially central portion of the lower surface 65, and is parallel to the air outlet 61 on both sides in the front-rear direction of the air outlet 61. An extending exhaust port 62 is provided.
 吹出口61では、中央に位置する第1のオリフィス61aと、第1のオリフィス61aを挟んで前後方向に位置しそれぞれ第1のオリフィス61aに向かって原料ガス供給源から流路が傾斜するように構成された第2及び第3のオリフィス61b、61cが開口する。これらの吹出口61と排気口62の幅は、ガラスリボン70の幅よりも狭く、分離回収される耳部を除いたガラスリボン70の製品幅以上に設定される。また、符号66a、66bは冷却ダクトであり、冷却ガスやオイル等の冷却媒体を循環させて、インジェクター60を最適な温度、例えば100~220℃(インジェクター下面で測定)に保つ。インジェクター60の下面は、原料ガスと接触する面であり、温度が高過ぎるとインジェクター60の下面に接触した原料ガスが熱で反応を起こし付着して不要な膜が成膜される。このために上限は250℃以下が好ましい。また、温度が低すぎるとガラスリボン70との熱交換量が多くなり、ガラスリボン70の急激な温度低下を起こす。このために下限は100℃以上が望ましい。 In the blower outlet 61, the first orifice 61a located in the center and the first orifice 61a are positioned in the front-rear direction so as to incline the flow path from the source gas supply source toward the first orifice 61a. The configured second and third orifices 61b and 61c are opened. The widths of the air outlet 61 and the air outlet 62 are narrower than the width of the glass ribbon 70, and are set to be equal to or larger than the product width of the glass ribbon 70 excluding the ears to be separated and recovered. Reference numerals 66a and 66b denote cooling ducts, which circulate a cooling medium such as cooling gas or oil, and maintain the injector 60 at an optimum temperature, for example, 100 to 220 ° C. (measured on the lower surface of the injector). The lower surface of the injector 60 is a surface in contact with the raw material gas. If the temperature is too high, the raw material gas in contact with the lower surface of the injector 60 reacts with heat and adheres to form an unnecessary film. For this reason, the upper limit is preferably 250 ° C. or less. On the other hand, if the temperature is too low, the amount of heat exchange with the glass ribbon 70 increases, causing a rapid temperature drop of the glass ribbon 70. For this reason, the lower limit is desirably 100 ° C. or higher.
 インジェクター60は、ガラスリボン70上に3mm~30mmの間隔を空けて上方に配置される。従って、インジェクター60の下面65が、徐冷炉54内に搬送されるガラスリボン70と3mm~30mmの隙間を介して対向配置されることとなる。隙間は小さいほど成膜時の膜厚、膜質、成膜速度に有利であるが、ガラスリボン70の反りや振動で隙間が変動した場合には、膜厚、膜質への影響が大きくなる。また、隙間が大きい場合には、成膜時の原料の効率の低下が生じる。膜厚、膜質、成膜速度を考慮すると、隙間は好ましくは4~12mm、より好ましくは5~10mmである。 The injector 60 is disposed above the glass ribbon 70 with an interval of 3 mm to 30 mm. Therefore, the lower surface 65 of the injector 60 is disposed to face the glass ribbon 70 conveyed into the slow cooling furnace 54 with a gap of 3 mm to 30 mm. The smaller the gap, the more advantageous the film thickness, film quality, and film formation speed during film formation. However, when the gap fluctuates due to warping or vibration of the glass ribbon 70, the influence on the film thickness and film quality increases. In addition, when the gap is large, the efficiency of the raw material during film formation is reduced. Considering the film thickness, film quality, and film forming speed, the gap is preferably 4 to 12 mm, more preferably 5 to 10 mm.
 第1のオリフィス61aからは酸化物膜を形成する化合物の主原料を含むガスを吹き出す。また、第2及び第3のオリフィス61b、61cからは酸化物膜を形成する際の反応ガス(酸素源になるガス)を吹き出す。また、排気口62は、CVD反応後の余分なガスを排気する。 From the first orifice 61a, a gas containing the main raw material of the compound that forms the oxide film is blown out. Further, a reactive gas (a gas that becomes an oxygen source) for forming the oxide film is blown out from the second and third orifices 61b and 61c. The exhaust port 62 exhausts excess gas after the CVD reaction.
 ガラスリボン70の組成はフロート法で成形可能であれば適宜選択可能であり、ソーダライムシリケートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラス、無アルカリガラスが挙げられる。中でも、無色透明であり、安価である点で、ソーダライムシリケートガラスが好ましい。 The composition of the glass ribbon 70 can be appropriately selected as long as it can be molded by the float process, and examples thereof include soda lime silicate glass, aluminosilicate glass, lithium aluminosilicate glass, borosilicate glass, and alkali-free glass. Among them, soda lime silicate glass is preferable because it is colorless and transparent and inexpensive.
 ガラスリボン70の厚さは、適宜選択可能であり、ガラス厚さ0.1~6.0mmであることが好ましい。薄いガラスでは表と裏の温度差が起こりにくいためにインジェクター側への反りの発生は少ないが、ガラス自身が軽いためにインジェクター側に一度反ったガラスは自重で反りが戻らない。また、厚いガラスは表と裏の温度差が起こりやすいが、自重があるために反りを減らす力が働く。このために、ガラスの厚さが0.1~6.0mmの間で変化しても反り量自身はあまり大きく変化しない。
 また、ガラスリボン70は、本発明の効果を損しない範囲で徐冷炉より前の工程で、例えばフロートバス内でのベース層の形成など、その表面に予め1層以上の薄膜が形成されていてもよい。
The thickness of the glass ribbon 70 can be selected as appropriate, and the glass thickness is preferably 0.1 to 6.0 mm. In thin glass, the temperature difference between the front and back is less likely to occur, so there is little warpage on the injector side, but because the glass itself is light, the glass that has warped once on the injector side does not return warp due to its own weight. Thick glass tends to cause a temperature difference between the front and back, but because of its own weight, it works to reduce warpage. For this reason, even if the glass thickness changes between 0.1 and 6.0 mm, the warpage amount itself does not change so much.
Further, the glass ribbon 70 may be a process before the annealing furnace within a range not impairing the effects of the present invention, for example, by forming one or more thin films on the surface in advance such as formation of a base layer in a float bath. Good.
 成膜される積層膜の種類、構成等は特に限定されるものではなく適宜選択することができるが、以下の説明においては、太陽電池用透明導電膜を形成する例を用いて説明する。太陽電池用透明導電膜以外の用途として、例えば反射防止膜、熱線反射膜、低放射(Low-E)膜などが挙げられる。 The type, configuration, and the like of the laminated film to be formed are not particularly limited and can be appropriately selected. In the following description, an example of forming a transparent conductive film for a solar cell will be described. Examples of uses other than the transparent conductive film for solar cells include an antireflection film, a heat ray reflective film, and a low emission (Low-E) film.
 図3は、本発明の積層膜付きガラス基板の製造方法で製造される太陽電池用透明導電性基板の一実施形態の断面図である。図3の下側に太陽電池用透明導電性基板の入射光側が位置するように図示してある。 FIG. 3 is a cross-sectional view of an embodiment of a transparent conductive substrate for a solar cell manufactured by the method for manufacturing a glass substrate with a laminated film of the present invention. It is illustrated so that the incident light side of the transparent conductive substrate for solar cell is located on the lower side of FIG.
 図3に示されるように、太陽電池用透明導電性基板10は、ガラス基板12上に、ガラス基板12側から、積層膜13として、酸化チタン層14と、酸化ケイ素層16と、第1の酸化スズ層18(フッ素ドープされていない酸化スズ層)と、第2の酸化スズ層20(フッ素ドープ酸化スズ層)とをこの順に有する。 As shown in FIG. 3, the transparent conductive substrate 10 for a solar cell includes a titanium oxide layer 14, a silicon oxide layer 16, and a first film as a laminated film 13 on the glass substrate 12 from the glass substrate 12 side. It has the tin oxide layer 18 (tin oxide layer not fluorine-doped) and the second tin oxide layer 20 (fluorine-doped tin oxide layer) in this order.
 ガラス基板12の材質は、特に限定されず、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラス、無アルカリガラスが挙げられる。中でも、無色透明であり、安価である点で、ソーダライムシリケートガラスが好ましい。 The material of the glass substrate 12 is not particularly limited, and examples thereof include soda lime silicate glass, aluminosilicate glass, lithium aluminosilicate glass, borosilicate glass, and alkali-free glass. Among them, soda lime silicate glass is preferable because it is colorless and transparent and inexpensive.
 ガラス基板12の厚さは、0.1~6.0mmであるのが好ましい。上記範囲であると、機械的強度および透光性のバランスに優れる。 The thickness of the glass substrate 12 is preferably 0.1 to 6.0 mm. Within the above range, the balance between mechanical strength and translucency is excellent.
 図3においては、ガラス基板12上に、酸化チタン層14が形成されている。本発明において、ガラス基板12と酸化ケイ素層16との間に酸化チタン層14を有する態様は、ガラス基板12と酸化スズ層18、20との屈折率の差異によって発生するガラス基板12と酸化スズ層18、20との界面での反射を抑制することができるため、好適な態様の一つである。 In FIG. 3, a titanium oxide layer 14 is formed on the glass substrate 12. In the present invention, the aspect having the titanium oxide layer 14 between the glass substrate 12 and the silicon oxide layer 16 is the glass substrate 12 and tin oxide generated due to the difference in refractive index between the glass substrate 12 and the tin oxide layers 18 and 20. Since reflection at the interface with the layers 18 and 20 can be suppressed, this is one of preferred embodiments.
 この太陽電池用透明導電性基板10の積層膜13を図1に示すガラス製造装置50の徐冷炉54内で、CVD法により形成するためには、例えばガラスリボン70上に第1のインジェクター60aで酸化チタン層14を形成し、第2のインジェクター60bで酸化ケイ素層16を形成し、第3のインジェクター60cで第1の酸化スズ層18を形成し、第4~第6のインジェクター60d~60fで第2の酸化スズ層20を形成する。 In order to form the laminated film 13 of the transparent conductive substrate 10 for solar cells in the slow cooling furnace 54 of the glass manufacturing apparatus 50 shown in FIG. 1 by the CVD method, for example, it is oxidized on the glass ribbon 70 by the first injector 60a. The titanium layer 14 is formed, the silicon oxide layer 16 is formed by the second injector 60b, the first tin oxide layer 18 is formed by the third injector 60c, and the first to the sixth injectors 60d to 60f are the first ones. Two tin oxide layers 20 are formed.
 この場合、第1のインジェクター60aの吹出口61では、第1のオリフィス61aからは気化したテトライソプロポキシチタンが吹き付けられ、第2及び第3のオリフィス61b、61cからは窒素ガスが吹き付けられる。これにより、テトライソプロポキシチタンがガラスリボン70上で熱分解反応をして、搬送されている状態のガラスリボン70の表面に酸化チタン層14が形成される。 In this case, at the outlet 61 of the first injector 60a, vaporized tetraisopropoxy titanium is blown from the first orifice 61a, and nitrogen gas is blown from the second and third orifices 61b and 61c. As a result, the tetraisopropoxy titanium undergoes a thermal decomposition reaction on the glass ribbon 70, and the titanium oxide layer 14 is formed on the surface of the glass ribbon 70 being conveyed.
 第2のインジェクター60bの吹出口61では、第1のオリフィス61aからはシランガスが吹き付けられ、第2及び第3のオリフィス61b、61cからは酸素ガスが吹き付けられる。これにより、シランガスと酸素ガスとがガラスリボン70の酸化チタン層14上で混合され反応して、搬送されている状態のガラスリボン70の酸化チタン層14の表面に酸化ケイ素層16が形成される。 At the outlet 61 of the second injector 60b, silane gas is blown from the first orifice 61a, and oxygen gas is blown from the second and third orifices 61b and 61c. Thereby, the silane gas and the oxygen gas are mixed and reacted on the titanium oxide layer 14 of the glass ribbon 70, and the silicon oxide layer 16 is formed on the surface of the titanium oxide layer 14 of the glass ribbon 70 being conveyed. .
 第3のインジェクター60cの吹出口61では、第1のオリフィス61aからは四塩化スズが吹き付けられ、第2及び第3のオリフィス61b、61cからは水蒸気が吹き付けられる。これにより、四塩化スズと水とがガラスリボン70の酸化ケイ素層16上で混合され反応して、搬送されている状態のガラスリボン70の酸化ケイ素層16の表面にフッ素がドープされてない第1の酸化スズ層18が形成される。 At the outlet 61 of the third injector 60c, tin tetrachloride is blown from the first orifice 61a, and water vapor is blown from the second and third orifices 61b and 61c. Thus, tin tetrachloride and water are mixed and reacted on the silicon oxide layer 16 of the glass ribbon 70, and the surface of the silicon oxide layer 16 of the glass ribbon 70 in the state of being conveyed is not doped with fluorine. 1 tin oxide layer 18 is formed.
 第4~第6のインジェクター60d~60fの吹出口61では、第1のオリフィス61aからは四塩化スズが吹き付けられ、第2及び第3のオリフィス61b、61cからは水蒸気と気化させたフッ化水素が吹き付けられる。これにより、四塩化スズと水とフッ化水素とがガラスリボン70の第1の酸化スズ層18上で混合され反応して、搬送されている状態のガラスリボン70の第1の酸化スズ層18の表面にフッ素がドープされている第2の酸化スズ層20が形成される。 At the outlets 61 of the fourth to sixth injectors 60d to 60f, tin tetrachloride is blown from the first orifice 61a, and hydrogen fluoride vaporized from water vapor is emitted from the second and third orifices 61b and 61c. Is sprayed. As a result, tin tetrachloride, water, and hydrogen fluoride are mixed and reacted on the first tin oxide layer 18 of the glass ribbon 70, and the first tin oxide layer 18 of the glass ribbon 70 in the state of being conveyed. A second tin oxide layer 20 doped with fluorine is formed on the surface.
 第2の酸化スズ層20が形成されたガラスリボン70は、搬送されながら徐冷炉54から排出され室温付近まで冷却され、所望の大きさに切断され、太陽電池用透明導電性基板10となって搬出される。
 このように、酸化チタン、酸化ケイ素、酸化スズのような酸化物材料を成膜することが、徐冷炉54内の成膜において好ましい。徐冷炉54内の雰囲気は空気であり、酸化物を作る際の酸素ガスなどの酸素分子を供給しやすいためである。
The glass ribbon 70 on which the second tin oxide layer 20 is formed is discharged from the slow cooling furnace 54 while being transported, cooled to near room temperature, cut to a desired size, and taken out as the transparent conductive substrate 10 for solar cells. Is done.
Thus, it is preferable to form an oxide material such as titanium oxide, silicon oxide, and tin oxide in the slow cooling furnace 54. This is because the atmosphere in the slow cooling furnace 54 is air, and it is easy to supply oxygen molecules such as oxygen gas when forming an oxide.
 ここで、図4も参照して、成膜時のガラスリボン70の温度制御について説明する。
 徐冷炉54の入口を通過する際のガラスリボン70の表面温度をTin、徐冷炉54の出口を通過する際のガラスリボン70の表面温度をTout、ガラス転位温度をTg、ガラス歪温度をTsとしたときに、成膜されるガラスリボン70の表面温度は、Tg+50℃以下である。ガラスリボン70の表面温度が、Tg+50℃より高いとガラスリボンは「刻印きず」や平面欠陥が起きやすくなる。また、積層膜のうち2以上の層がガラスリボン70の表面温度がTg+50℃からTsの温度領域で形成される。全ての積層膜をTsより低い温度で成膜しようとすると、原料ガスの反応が不十分になり、膜質の低下や、成膜速度の極端な減少が発生するおそれがある。
 上述した酸化チタン層14と、酸化ケイ素層16と、第1の酸化スズ層18と、第2の酸化スズ層20からなる積層膜13は、好ましくはTg+50℃からTsの範囲内、より好ましくはTg+50℃からTgの温度領域(TinがTg+50℃より低い場合には、TinからTgの温度領域)で形成される。
Here, the temperature control of the glass ribbon 70 during film formation will be described with reference to FIG.
When the surface temperature of the glass ribbon 70 when passing through the inlet of the slow cooling furnace 54 is Tin, the surface temperature of the glass ribbon 70 when passing through the outlet of the slow cooling furnace 54 is Tout, the glass transition temperature is Tg, and the glass strain temperature is Ts. In addition, the surface temperature of the glass ribbon 70 to be formed is Tg + 50 ° C. or less. When the surface temperature of the glass ribbon 70 is higher than Tg + 50 ° C., the glass ribbon is likely to be “not engraved” or have a plane defect. Also, two or more layers of the laminated film are formed in a temperature region where the surface temperature of the glass ribbon 70 is Tg + 50 ° C. to Ts. If an attempt is made to form all the laminated films at a temperature lower than Ts, the reaction of the raw material gas becomes insufficient, and there is a possibility that the film quality is deteriorated or the film forming speed is extremely reduced.
The laminated film 13 composed of the titanium oxide layer 14, the silicon oxide layer 16, the first tin oxide layer 18, and the second tin oxide layer 20 is preferably within a range of Tg + 50 ° C. to Ts, more preferably It is formed in a temperature range from Tg + 50 ° C. to Tg (when Tin is lower than Tg + 50 ° C., a temperature range from Tin to Tg).
 ガラスリボンの温度がTgより下がると、ガラスの粘性変化に伴う収縮によりガラスリボンのばたつきが大きく生じるおそれがあるが、Tg+50℃からTgの温度領域で全ての層が形成されることで、ガラスの粘性に関わらず、ガラスリボンのばたつきを抑制することができる。なお、TgからTsの温度領域でも成膜する場合には、TgからTsの温度領域で成膜される層数は3層以下が好ましく、2層以下であることがより好ましい。 When the temperature of the glass ribbon falls below Tg, there is a risk that the glass ribbon flutters greatly due to shrinkage accompanying the change in the viscosity of the glass. However, by forming all layers in the temperature range from Tg + 50 ° C. to Tg, Regardless of the viscosity, flapping of the glass ribbon can be suppressed. In the case where the film is formed even in the temperature range from Tg to Ts, the number of layers formed in the temperature range from Tg to Ts is preferably 3 or less, and more preferably 2 or less.
 インジェクター60は、ガラスリボン70より低い温度に維持されているため、成膜中にインジェクター60との間で熱交換がなされガラスリボン70の温度を低下させる。 Since the injector 60 is maintained at a temperature lower than that of the glass ribbon 70, heat exchange is performed with the injector 60 during film formation, and the temperature of the glass ribbon 70 is lowered.
 「全ての積層膜を形成する温度領域におけるガラスリボン70の単位長さ当たりの降下温度」をK1(以下、単に降下温度K1とも呼ぶ。)と呼ぶと、0℃/m<K1<10℃/m、好ましくは1℃/m≦K1≦5℃/m、より好ましくは2℃/m≦K1≦3.0℃/mに設定している。なお、降下温度K1は、積層膜を形成する温度領域における「積層膜を形成する際の最初のインジェクターの入口のガラスリボン温度と最後のインジェクターの出口のガラスリボン温度の温度差」を「積層膜を形成する最初のインジェクターの入口位置と最後のインジェクターの出口位置の距離の差」で割ったものである。降下温度K1が10℃/m以上だとガラスリボン70が大きく変形し、インジェクター60とガラスリボン70の接触によるガラスリボン70の傷及び割れが発生するおそれがあり、降下温度K1が0℃/mだと成膜時に徐冷炉54内でガラスリボン70が徐冷されないこととなり、成膜後に徐冷することになるため徐冷炉54の長さが長くなってしまう。 When “the temperature drop per unit length of the glass ribbon 70 in the temperature region where all the laminated films are formed” is referred to as K1 (hereinafter, also simply referred to as the temperature drop K1), 0 ° C./m<K1<10° C. / m, preferably 1 ° C./m≦K1≦5° C./m, more preferably 2 ° C./m≦K1≦3.0° C./m. Note that the temperature drop K1 is the “temperature difference between the glass ribbon temperature at the inlet of the first injector and the glass ribbon temperature at the outlet of the last injector when forming the laminated film” in the temperature region where the laminated film is formed. Divided by the difference in the distance between the inlet position of the first injector and the outlet position of the last injector. If the temperature drop K1 is 10 ° C./m or more, the glass ribbon 70 is greatly deformed, and the glass ribbon 70 may be scratched or cracked due to contact between the injector 60 and the glass ribbon 70. The temperature drop K1 is 0 ° C./m. In this case, the glass ribbon 70 is not slowly cooled in the slow cooling furnace 54 at the time of film formation, and the length of the slow cooling furnace 54 becomes long because the glass ribbon 70 is gradually cooled after the film formation.
 インジェクター60により温度が低下したガラスリボン70を、ガラスリボン70の搬送方向に沿って隣り合うインジェクター60間に設けられた電気ヒーター56等により加熱して降下温度K1を緩やかにしてもよい。また、インジェクター60による脱熱量は、ガラスリボン70に対向するインジェクター60の下面65の面積にも依存するため、予め脱熱量を小さくするために下面65の面積を小さくしても良い。 The glass ribbon 70 whose temperature has been lowered by the injector 60 may be heated by an electric heater 56 or the like provided between the injectors 60 adjacent to each other along the conveying direction of the glass ribbon 70 to moderate the temperature drop K1. Further, the amount of heat removed by the injector 60 also depends on the area of the lower surface 65 of the injector 60 facing the glass ribbon 70, so that the area of the lower surface 65 may be reduced in advance in order to reduce the amount of heat removal.
 降下温度K1を算出するために使用されるガラスリボン70の温度は、ガラスリボンの上面(成膜側)の温度である。成膜中におけるガラスリボン70の上面とその位置の下面の温度差は10℃以内が好ましい。ガラスリボン70の上面とその位置の下面の温度差を10℃以内とすることで、インジェクター60の下方でのガラスリボン70の反りがさらに抑制され、インジェクター60とガラスリボン70の接触がより確実に抑制される。 The temperature of the glass ribbon 70 used for calculating the temperature drop K1 is the temperature of the upper surface (film formation side) of the glass ribbon. The temperature difference between the upper surface of the glass ribbon 70 and the lower surface at that position during film formation is preferably within 10 ° C. By setting the temperature difference between the upper surface of the glass ribbon 70 and the lower surface at that position to be within 10 ° C., the warp of the glass ribbon 70 below the injector 60 is further suppressed, and the contact between the injector 60 and the glass ribbon 70 is more reliably performed. It is suppressed.
 ガラスリボン70を上記の条件により冷却した後、所望の大きさに切断することで、太陽電池用透明導電性基板10(積層膜付きガラス基板)が得られる。 After cooling the glass ribbon 70 under the above conditions, the glass ribbon 70 is cut into a desired size to obtain a transparent conductive substrate 10 for solar cells (a glass substrate with a laminated film).
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
1.太陽電池用透明導電性基板の製造
<オンラインCVD>
 太陽電池用透明導電性基板の製造に際し、フロートガラス製造装置の徐冷炉内に6個のインジェクターと各インジェクターの間に電気ヒーターを配置し、ガラスリボン上に第1のインジェクターで酸化チタン層を形成し、第2のインジェクターで酸化ケイ素層を形成し、第3のインジェクターで第1の酸化スズ層を形成し、第4~第6のインジェクターで第2の酸化スズ層20(3層)を形成し、ガラス基板上にこれらの6層が積層された太陽電池用透明導電膜を形成した。なお、温度測定は接触式のK型熱電対(センサ、安立計器社製:213K-TC1-ASP)で測定した。
1. Production of transparent conductive substrates for solar cells <On-line CVD>
In the production of a transparent conductive substrate for solar cells, six heaters are placed in a slow cooling furnace of a float glass manufacturing apparatus and an electric heater is placed between each injector, and a titanium oxide layer is formed on the glass ribbon by the first injector. The second injector forms the silicon oxide layer, the third injector forms the first tin oxide layer, and the fourth to sixth injectors form the second tin oxide layer 20 (three layers). A transparent conductive film for a solar cell in which these 6 layers were laminated on a glass substrate was formed. The temperature was measured with a contact-type K-type thermocouple (sensor, manufactured by Anri Keiki Co., Ltd .: 213K-TC1-ASP).
 徐冷炉の入口におけるガラスリボン温度を610℃、徐冷炉の出口におけるガラスリボン温度を250℃とし、ガラス転位温度Tgが560℃、ガラス歪温度Tsが510℃のソーダライムガラスを用いた。このガラスリボンにおいてTg+50℃からTgの温度領域、即ち、610℃から560℃の温度領域に3つのインジェクターを配置し、Tg+50℃からTgの温度領域で3層(酸化チタン層、酸化ケイ素層、第1の酸化スズ層)形成した。また、560℃から510℃の温度領域に3つのインジェクターを配置し、TgからTsの温度領域で3層(第2の酸化スズ層)形成した。この際、電気ヒーターでガラスリボンを加熱することで、Tg+50℃からTgの温度領域における単位長さ当たりの降下温度を2℃/m~3℃/m且つ平均で2.5℃/mに維持した。TgからTsの温度領域における単位長さ当たりの降下温度も2℃/m~3℃/m、且つ、全ての積層膜を形成する温度領域におけるガラスリボンの単位長さ当たりの降下温度K1は2.5℃/mであった。このとき、各インジェクターの入口から出口までに冷却されるガラスリボンの温度は、2℃~8℃であった。また、ガラス歪温度510℃から出口温度である250℃までは、10℃/m~14℃/m且つ、平均で13℃/mの単位長さ当たりの降下温度でガラスリボンを徐冷した。ガラスリボンは冷却後、所望の大きさに切断され、太陽電池用透明導電膜付き基板を得た。 The glass ribbon temperature at the inlet of the slow cooling furnace was 610 ° C., the glass ribbon temperature at the outlet of the slow cooling furnace was 250 ° C., soda lime glass having a glass transition temperature Tg of 560 ° C. and a glass strain temperature Ts of 510 ° C. was used. In this glass ribbon, three injectors are arranged in the temperature range of Tg + 50 ° C. to Tg, that is, in the temperature range of 610 ° C. to 560 ° C., and three layers (titanium oxide layer, silicon oxide layer, first layer in the temperature range of Tg + 50 ° C. to Tg). 1 tin oxide layer). In addition, three injectors were arranged in the temperature range from 560 ° C. to 510 ° C., and three layers (second tin oxide layers) were formed in the temperature range from Tg to Ts. At this time, the temperature drop per unit length in the temperature range from Tg + 50 ° C. to Tg is maintained at 2 ° C./m to 3 ° C./m and an average of 2.5 ° C./m by heating the glass ribbon with an electric heater. did. The temperature drop per unit length in the temperature range from Tg to Ts is also 2 ° C./m to 3 ° C./m, and the temperature drop K1 per unit length of the glass ribbon in the temperature range where all laminated films are formed is 2 It was 5 ° C / m. At this time, the temperature of the glass ribbon cooled from the inlet to the outlet of each injector was 2 ° C to 8 ° C. From the glass strain temperature of 510 ° C. to the outlet temperature of 250 ° C., the glass ribbon was gradually cooled at a temperature drop of 10 ° C./m to 14 ° C./m and a unit temperature of 13 ° C./m on average. After cooling, the glass ribbon was cut into a desired size to obtain a substrate with a transparent conductive film for solar cells.
 より具体的に説明すると、酸化チタン層を形成する第1のインジェクターでは、585℃のガラスリボンに、酸化チタン層の原料となる気化したテトライソプロポキシチタン(主原)とキャリアーガスとしての窒素ガス(副原)とを吹き付け、搬送されているガラスリボンの表面に酸化チタン層を形成した。なお、オンラインCVDにおけるガラスリボンの温度(上記585℃及び以降の成膜温度)は、インジェクターの搬送方向前方及び後方の温度測定位置からインジェクター中心位置のガラス温度を算出したものである。酸化チタン層の膜厚は10nmであった。なお、テトラチタンイソプロポキシドは、170℃程度に保温した気化器により気化させ、ステンレス配管により第1のインジェクターに輸送した。この酸化チタン層の成膜条件を表1に示す。 More specifically, in the first injector for forming the titanium oxide layer, vaporized tetraisopropoxy titanium (main raw material) as a raw material for the titanium oxide layer and nitrogen gas as a carrier gas on a glass ribbon at 585 ° C. (Sub-original) was sprayed to form a titanium oxide layer on the surface of the glass ribbon being conveyed. The temperature of the glass ribbon in the on-line CVD (the above-mentioned 585 ° C. and the subsequent film formation temperature) is obtained by calculating the glass temperature at the central position of the injector from the temperature measurement positions at the front and rear of the injector in the transport direction. The thickness of the titanium oxide layer was 10 nm. Tetratitanium isopropoxide was vaporized by a vaporizer kept at about 170 ° C. and transported to the first injector through a stainless steel pipe. Table 1 shows the conditions for forming the titanium oxide layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 続いて、第2のインジェクターで酸化ケイ素層を570℃にて30nm成膜した基板上に、564℃で、第3のインジェクターにより、第1の酸化スズ層の原料となる四塩化スズと水とキャリアーガスとしての窒素ガスとを吹き付け、搬送されているガラスリボンの酸化ケイ素層の表面にフッ素がドープされていない第1の酸化スズ層を形成した。なお、四塩化スズは、140℃程度に保温した気化器により気化させ、ステンレス配管により第3のインジェクターに輸送した。また、水は、加熱により沸騰して得た水蒸気を別のステンレス配管により第3のインジェクターに輸送した。 Subsequently, tin tetrachloride and water as raw materials for the first tin oxide layer were formed at 564 ° C. on a substrate on which a silicon oxide layer was formed to a thickness of 30 nm at 570 ° C. by a second injector at 564 ° C. Nitrogen gas as a carrier gas was sprayed to form a first tin oxide layer not doped with fluorine on the surface of the silicon oxide layer of the glass ribbon being conveyed. Tin tetrachloride was vaporized by a vaporizer kept at about 140 ° C. and transported to a third injector through stainless steel piping. Moreover, water transported the water vapor | steam obtained by boiling by heating to the 3rd injector by another stainless steel piping.
 更に、表面に第1の酸化スズ層が形成されたガラスリボン上に、557℃、551℃、546℃にて、第4~第6のインジェクターにより、第2の酸化スズ層の原料となる四塩化スズと水とフッ化水素とキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラスリボンの第1の酸化スズ層の表面にフッ素がドープされている第2の酸化スズ層を形成した。なお、四塩化スズおよび水は、第1の酸化スズ層の場合と同様の方法により、第4~第6のインジェクターに輸送した。また、フッ化水素は、気化させたフッ化水素をステンレス配管で第4~第6のインジェクターに輸送し、四塩化スズと混合された状態で供給した。第3のインジェクターで形成される第1の酸化スズ層、第4のインジェクターで形成される第2の酸化スズ層(1層目)、第5のインジェクターで形成される第2の酸化スズ層(2層目)、第6のインジェクターで形成される第2の酸化スズ層(3層目)の膜厚は同じとした。 Further, the fourth tin oxide layer 4 is used as a raw material for the second tin oxide layer on the glass ribbon having the first tin oxide layer formed on the surface thereof at 557 ° C., 551 ° C., and 546 ° C. by the fourth to sixth injectors. A second tin oxide layer in which fluorine is doped on the surface of the first tin oxide layer of the glass ribbon being transported by blowing tin chloride, water, hydrogen fluoride, and nitrogen gas as a carrier gas. Formed. Tin tetrachloride and water were transported to the fourth to sixth injectors in the same manner as in the case of the first tin oxide layer. Hydrogen fluoride was supplied in a state where it was mixed with tin tetrachloride by transporting the vaporized hydrogen fluoride to the fourth to sixth injectors through a stainless steel pipe. The first tin oxide layer formed by the third injector, the second tin oxide layer (first layer) formed by the fourth injector, and the second tin oxide layer formed by the fifth injector ( The second layer) and the second tin oxide layer (third layer) formed by the sixth injector have the same film thickness.
 この第1の酸化スズ層及び第2の酸化スズ層の成膜条件を表2に示す。 The film forming conditions of the first tin oxide layer and the second tin oxide layer are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<オフラインCVD>
 メッシュベルトによってガラス基板を搬送するトンネル式加熱炉に5個のインジェクターを取り付けたタイプのオフライン式CVD装置を用いて、太陽電池用透明導電性基板を製造した。具体的には、以下に示すように、ガラス基板上に、酸化チタン層、酸化ケイ素層、フッ素がドープされていない第1の酸化スズ層、フッ素がドープされている第2の酸化スズ層(2層)の順に形成し、ガラス基板上にこれらの5層が積層された太陽電池用透明導電性基板を得た。
<Offline CVD>
A transparent conductive substrate for a solar cell was manufactured using an off-line type CVD apparatus in which five injectors were attached to a tunnel-type heating furnace that transports a glass substrate by a mesh belt. Specifically, as shown below, a titanium oxide layer, a silicon oxide layer, a first tin oxide layer not doped with fluorine, and a second tin oxide layer doped with fluorine (as shown below) A transparent conductive substrate for a solar cell in which these five layers were laminated on a glass substrate was obtained.
 まず、ガラス基板を搬送しながら、加熱ゾーンにおいて、550℃に加熱した。
 ついで、加熱されたガラス基板に、第1のインジェクターにより、酸化チタン層の原料となる気化したテトライソプロポキシチタンとキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の表面に酸化チタン層を形成した。酸化チタン層の膜厚は12nmであった。なお、テトラチタンイソプロポキシドは、100℃程度に保温したバブラータンクに入れ、窒素ガスによりバブリングして気化させ、ステンレス配管によりインジェクターに輸送した。
First, it heated to 550 degreeC in the heating zone, conveying a glass substrate.
Next, vaporized tetraisopropoxy titanium as a raw material for the titanium oxide layer and nitrogen gas as a carrier gas are sprayed onto the heated glass substrate by the first injector, and the surface of the glass substrate being conveyed is sprayed. A titanium oxide layer was formed. The thickness of the titanium oxide layer was 12 nm. Tetratitanium isopropoxide was put into a bubbler tank kept at about 100 ° C., bubbled with nitrogen gas, vaporized, and transported to an injector through a stainless steel pipe.
 つぎに、表面に酸化チタン層が形成されたガラス基板に、再度550℃に加熱した後、第2のインジェクターにより、酸化ケイ素層の原料となるシランガスと酸素ガスとキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の酸化チタン層の表面に酸化ケイ素層を形成した。酸化ケイ素層の膜厚は30nmであった。 Next, after the glass substrate having the titanium oxide layer formed on the surface is heated again to 550 ° C., a silane gas, an oxygen gas, and a nitrogen gas as a carrier gas, which are raw materials for the silicon oxide layer, are added by a second injector. A silicon oxide layer was formed on the surface of the titanium oxide layer of the glass substrate being sprayed and conveyed. The film thickness of the silicon oxide layer was 30 nm.
 更に、表面に酸化ケイ素層が形成されたガラス基板に、再度540℃に加熱した後、第3のインジェクターにより、第1の酸化スズ層の原料となる四塩化スズと水とキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の酸化ケイ素層の表面にフッ素がドープされていない第1の酸化スズ層を形成した。なお、四塩化スズは、55℃程度に保温したバブラータンクに入れ、窒素ガスによりバブリングして気化させ、ステンレス配管によりインジェクターに輸送した。また、水は、加熱により沸騰して得た水蒸気を別のステンレス配管によりインジェクターに輸送した。 Further, after heating again to 540 ° C. on a glass substrate having a silicon oxide layer formed on the surface, tin tetrachloride as a raw material for the first tin oxide layer, water, and nitrogen as a carrier gas by a third injector A first tin oxide layer not doped with fluorine was formed on the surface of the silicon oxide layer of the glass substrate being sprayed with gas. Tin tetrachloride was put in a bubbler tank kept at about 55 ° C., bubbled with nitrogen gas, vaporized, and transported to an injector through a stainless steel pipe. Moreover, water transported the water vapor | steam obtained by boiling to another injector by another stainless steel piping.
 更に、表面に第1の酸化スズ層が形成されたガラス基板に、再度540℃に加熱した後、第4及び第5のインジェクターにより、第2の酸化スズ層の原料となる四塩化スズと水とフッ化水素とキャリアーガスとしての窒素ガスとを吹き付け、搬送されている状態のガラス基板の第1の酸化スズ層の表面にフッ素がドープされている第2の酸化スズ層を形成した。なお、四塩化スズおよび水は、第1の酸化スズ層の場合と同様の方法により、インジェクターに輸送した。また、フッ化水素は、気化させたフッ化水素をステンレス配管でインジェクターに輸送し、四塩化スズと混合された状態で第1の酸化スズ層の上に供給した。 Further, after heating again to 540 ° C. on the glass substrate having the first tin oxide layer formed on the surface, tin tetrachloride and water as raw materials for the second tin oxide layer are formed by the fourth and fifth injectors. Then, hydrogen fluoride and nitrogen gas as a carrier gas were sprayed to form a second tin oxide layer doped with fluorine on the surface of the first tin oxide layer of the glass substrate being conveyed. In addition, tin tetrachloride and water were transported to the injector by the same method as in the case of the first tin oxide layer. Moreover, hydrogen fluoride transported the vaporized hydrogen fluoride to the injector with the stainless steel pipe, and was supplied on the 1st tin oxide layer in the state mixed with the tin tetrachloride.
 四塩化スズと水との混合比は、第1の酸化スズ層及び第2の酸化スズ層のいずれにおいても、モル比で、HO/SnCl=80とした。また、厚さは、第1の酸化スズ層及び第2の酸化スズ層のいずれも同じとした。 The mixing ratio of tin tetrachloride and water was H 2 O / SnCl 4 = 80 in terms of molar ratio in both the first tin oxide layer and the second tin oxide layer. The thickness was the same for both the first tin oxide layer and the second tin oxide layer.
2.物性評価
 上記で得られた太陽電池用透明導電性基板について、以下のようにして物性を評価した。
2. Physical property evaluation About the transparent conductive substrate for solar cells obtained above, the physical property was evaluated as follows.
(1)キャリア電子の移動度、キャリア濃度、比抵抗
 キャリア電子の移動度、キャリア濃度、比抵抗の測定に際し、オンラインCVDにおいては、第2の酸化スズ層を形成するに際し、インジェクターより吹き付ける原料となる四塩化錫とフッ化水素ガスのモル比で、HF/SnCl=1.0~2.6まで変化させてさまざまなサンプルを作成した。また、オフラインCVDにおいては、HF/SnCl=0~2.25まで変化させてさまざまなサンプルを作成した。
(1) Carrier electron mobility, carrier concentration, specific resistance When measuring carrier electron mobility, carrier concentration, specific resistance, in online CVD, when forming the second tin oxide layer, the raw material sprayed from the injector Various samples were prepared by changing the molar ratio of tin tetrachloride and hydrogen fluoride gas to HF / SnCl 4 = 1.0 to 2.6. In off-line CVD, various samples were prepared by changing HF / SnCl 4 = 0 to 2.25.
(a)キャリア電子の移動度、キャリア濃度、比抵抗の測定方法
 フッ素ドープ酸化スズ層におけるキャリア電子の移動度、キャリア濃度及び比抵抗は、サンプルを1cm×1cmに切断し、BioRad社製 HL5500を用いて、Van der Pauw法を用いた測定を行うことで求めた。
(b)膜厚測定方法
 移動度の算出に必要な膜厚は、Veeco社製 触針式表面形状測定器 DEKTAK150にて測定した。
(A) Carrier electron mobility, carrier concentration, specific resistance measurement method The carrier electron mobility, carrier concentration, and specific resistance in the fluorine-doped tin oxide layer were cut into 1 cm × 1 cm, and HL5500 manufactured by BioRad was used. It was determined by performing measurement using the Van der Pauw method.
(B) Method for measuring film thickness The film thickness necessary for calculating the mobility was measured with a stylus type surface shape measuring device DEKTAK150 manufactured by Veeco.
 キャリア電子の移動度、キャリア濃度及び比抵抗についてそれぞれ、図5~7にグラフで示した。
 図5~7より、オフラインCVD法で製造されたサンプルにおけるフッ素ドープ酸化スズ層は、フッ化水素(HF)の添加量を増やしていくと、移動度が低下すると共にキャリア濃度が増大する。このため、HF/SnCl=1.00~2.00付近に極小値を持ち、比抵抗を4.7×10-4Ω・cm以下にすることはできなかった。オフラインCVDにおける比抵抗の最小値は、HF/SnCl=1.00のときの4.89×10-4Ω・cmであった。
The mobility of carrier electrons, the carrier concentration, and the specific resistance are shown in graphs in FIGS.
5 to 7, in the fluorine-doped tin oxide layer in the sample manufactured by the off-line CVD method, as the amount of hydrogen fluoride (HF) is increased, the mobility is lowered and the carrier concentration is increased. For this reason, it has a minimum value in the vicinity of HF / SnCl 4 = 1.00 to 2.00, and the specific resistance cannot be reduced to 4.7 × 10 −4 Ω · cm or less. The minimum value of the specific resistance in off-line CVD was 4.89 × 10 −4 Ω · cm when HF / SnCl 4 = 1.00.
 一方、オンラインCVDにより製造されたサンプルにおけるフッ素ドープ酸化スズ層は、フッ化水素(HF)の添加量を増やしても、移動度が低下せず、キャリア濃度が増大する。このため、比抵抗を4.7×10-4Ω・cm以下にすることができた。 On the other hand, the fluorine-doped tin oxide layer in the sample manufactured by online CVD does not decrease the mobility and increases the carrier concentration even when the amount of hydrogen fluoride (HF) added is increased. For this reason, the specific resistance could be reduced to 4.7 × 10 −4 Ω · cm or less.
 図5~7において、オンラインCVDにより製造されたサンプルのうち、比抵抗が4.7×10-4Ω・cm以下であり、且つ、キャリア濃度が2.5×1020cm-3以上のものが本発明の実施例であり、それ以外のもの及びオフラインCVDにより製造されたサンプルが比較例である。 5 to 7, among samples manufactured by online CVD, those having a specific resistance of 4.7 × 10 −4 Ω · cm or less and a carrier concentration of 2.5 × 10 20 cm −3 or more Are examples of the present invention, and other samples and samples produced by off-line CVD are comparative examples.
 このように本発明の実施例によれば、所定の条件でオンラインCVDによりフッ素ドープ酸化スズ層を形成することにより、フッ素ドープ酸化スズ層の比抵抗を低く押さえることができ、比抵抗が4.7×10-4Ω・cm以下である低抵抗のフッ素ドープ酸化スズ層を得ることができる。これは、本実施例のようにガラスリボンの降下温度K1を所望の範囲内に制御しながら薄膜を積層することにより、形成される薄膜の結晶性が向上し移動度が上昇したこと、また、ドープされたフッ素のキャリアとしての寄与率(ドーピング効率)が向上しキャリア濃度が向上したためと考えることができる。 Thus, according to the embodiment of the present invention, the specific resistance of the fluorine-doped tin oxide layer can be kept low by forming the fluorine-doped tin oxide layer by online CVD under predetermined conditions. A low-resistance fluorine-doped tin oxide layer of 7 × 10 −4 Ω · cm or less can be obtained. This is because, as in this example, by laminating the thin film while controlling the temperature drop K1 of the glass ribbon within a desired range, the crystallinity of the formed thin film was improved and the mobility was increased, It can be considered that the contribution rate (doping efficiency) of doped fluorine as a carrier is improved and the carrier concentration is improved.
(2)C光源ヘイズ率
 C光源ヘイズ率の測定に際し、オンラインCVDにおいては、第2の酸化スズ層を形成するに際し、HO/SnCl=40、及び、HF/SnCl=1を固定したまま、SnCl濃度をさまざまに変化させてさまざまな膜厚の酸化スズ層を作成した。また、オフラインCVDにおいては、HO/SnCl=80、HF/SnCl=0.4を固定したまま、SnCl濃度を変化させてさまざまな膜厚の酸化スズ層を作成した。
 その中から第1の酸化スズ層と第2の酸化スズ層を足し合わせた膜厚が560nm、600nm、730nmにおけるC光ヘイズ率を測定した。
(2) C light source haze ratio When measuring the C light source haze ratio, in the on-line CVD, H 2 O / SnCl 4 = 40 and HF / SnCl 4 = 1 are fixed when forming the second tin oxide layer. As it is, tin oxide layers having various film thicknesses were prepared by variously changing the SnCl 4 concentration. Further, in the off-line CVD, tin oxide layers having various thicknesses were formed by changing the SnCl 4 concentration while fixing H 2 O / SnCl 4 = 80 and HF / SnCl 4 = 0.4.
Among them, the C light haze ratio was measured at a film thickness of 560 nm, 600 nm, and 730 nm obtained by adding the first tin oxide layer and the second tin oxide layer.
 太陽電池用透明導電性基板から切り出した測定用サンプルについて、C光源ヘイズ率をヘイズメーター(HZ-2型、スガ試験機社製)を用いて測定した。結果を表3に示す。なお、表3に記載の数値は、1~3個の測定サンプルの平均値である。ここで、C光源とは、国際照明委員会(CIE:Comission International de I’Eclairage)が定める標準の光である。これは色温度6774kに近似する昼光で照明される物体色が表示する場合に用いられる。また、ヘイズ率とは、拡散透過率をTd、垂直透過率をTnとしたとき(Td-Tn)/Tdの式で表現する割合をパーセントで表した値である。なお、基板全面のヘイズ率は視覚的にほぼ均一であることから、基板の代表的な場所を選択して切り出し、これを測定用サンプルとした。 For the measurement sample cut out from the transparent conductive substrate for solar cell, the C light source haze ratio was measured using a haze meter (HZ-2 type, manufactured by Suga Test Instruments Co., Ltd.). The results are shown in Table 3. The numerical values shown in Table 3 are average values of 1 to 3 measurement samples. Here, the C light source is standard light determined by the International Commission on Illumination (CIE). This is used when an object color illuminated with daylight that approximates a color temperature of 6774k is displayed. The haze ratio is a value expressed as a percentage expressed by the formula (Td−Tn) / Td, where Td is the diffuse transmittance and Tn is the vertical transmittance. Since the haze ratio of the entire surface of the substrate is almost uniform visually, a representative location on the substrate is selected and cut out to obtain a measurement sample.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、オンラインCVDにより製造されたサンプルにおける酸化スズ層は、オフラインCVD法で製造されたサンプルにおける酸化スズ層に比べて、ヘイズ率が高く、光散乱性に優れることが分かった。特に、オンラインCVDで形成された酸化スズ層は、厚さ600nmにおける波長550nmのヘイズ率が10%以上であり、厚さ730nmにおける波長550nmのヘイズ率が15%以上であった。 From Table 3, it was found that the tin oxide layer in the sample manufactured by online CVD had a higher haze ratio and excellent light scattering properties than the tin oxide layer in the sample manufactured by offline CVD. In particular, the tin oxide layer formed by online CVD had a haze ratio of 10% or more at a wavelength of 550 nm at a thickness of 600 nm and a haze ratio of 550 nm at a thickness of 730 nm was 15% or more.
 以上、説明したように、CVD法で製造された積層膜付きガラス基板のフッ素ドープ酸化スズ層は、従来のオフラインCVD法で製造された積層膜付きガラス基板のフッ素ドープ酸化スズ層に比べて、比抵抗が低く、電気導電性に優れ、且つ、ヘイズ率が高く、光散乱性に優れることが分かった。これらのことから、徐冷炉内で積層膜を形成する、いわゆるオンラインCVD法では、結晶性のよい酸化膜、言い換えると緻密な酸化膜を形成することができることが確認できた。 As described above, the fluorine-doped tin oxide layer of the glass substrate with a laminated film manufactured by the CVD method is compared with the fluorine-doped tin oxide layer of the glass substrate with a laminated film manufactured by the conventional offline CVD method, It was found that the specific resistance was low, the electrical conductivity was excellent, the haze ratio was high, and the light scattering property was excellent. From these facts, it was confirmed that an oxide film with good crystallinity, in other words, a dense oxide film, can be formed by a so-called online CVD method in which a laminated film is formed in a slow cooling furnace.
 なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。
 例えば、太陽電池用透明導電性基板に限らず、他の用途の基板に適用してもよい。
The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.
For example, you may apply to the board | substrate of not only the transparent conductive substrate for solar cells but another use.
 本出願は、2013年1月16日出願の日本特許出願2013-005617に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-005617 filed on January 16, 2013, the contents of which are incorporated herein by reference.
10 太陽電池用透明導電性基板(積層膜付きガラス基板)
13 積層膜
50 ガラス製造装置
51 溶解炉
52 フロートバス
54 徐冷炉
56 電気ヒーター
60 インジェクター
70 ガラスリボン
10 Transparent conductive substrate for solar cells (Glass substrate with laminated film)
13 Laminated Film 50 Glass Manufacturing Device 51 Melting Furnace 52 Float Bath 54 Slow Cooling Furnace 56 Electric Heater 60 Injector 70 Glass Ribbon

Claims (8)

  1.  ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて製造される積層膜付きガラス基板であって、
     前記積層膜は、CVD法により前記徐冷炉内に設けられた複数のインジェクターによって前記ガラスリボン上に形成され、
     前記積層膜は、ガラス転位温度をTg、ガラス歪温度をTsとした場合に、Tg+50℃以下で形成され、且つ、前記積層膜のうち少なくとも2以上の層がTg+50℃からTsの温度領域で形成され、
     前記積層膜の全ての層を形成する温度領域における前記ガラスリボンの単位長さ当たりの降下温度K1が0℃/m<K1<10℃/mであり、
     前記積層膜は、フッ素ドープ酸化スズ層を含み、
     該フッ素ドープ酸化スズ層は、比抵抗が4.7×10-4Ω・cm以下であり、且つ、キャリア濃度が2.5×1020cm-3以上であることを特徴とする積層膜付きガラス基板。
    Manufactured using a glass manufacturing apparatus comprising a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon. A glass substrate with a laminated film,
    The laminated film is formed on the glass ribbon by a plurality of injectors provided in the slow cooling furnace by a CVD method,
    The laminated film is formed at Tg + 50 ° C. or lower when the glass transition temperature is Tg and the glass strain temperature is Ts, and at least two layers of the laminated film are formed in a temperature range of Tg + 50 ° C. to Ts. And
    The temperature drop K1 per unit length of the glass ribbon in the temperature region for forming all the layers of the laminated film is 0 ° C./m<K1<10° C./m,
    The laminated film includes a fluorine-doped tin oxide layer,
    The fluorine-doped tin oxide layer has a laminated film characterized by having a specific resistance of 4.7 × 10 −4 Ω · cm or less and a carrier concentration of 2.5 × 10 20 cm −3 or more. Glass substrate.
  2.  前記積層膜は、移動度が45cm/V・s以上であることを特徴とする請求項1に記載の積層膜付きガラス基板。 2. The glass substrate with a laminated film according to claim 1, wherein the laminated film has a mobility of 45 cm 2 / V · s or more.
  3.  前記積層膜のうち少なくとも2以上の層がTg+50℃からTgの温度領域で形成されることを特徴とする請求項1又は2に記載の積層膜付きガラス基板。 3. The glass substrate with a laminated film according to claim 1, wherein at least two layers of the laminated film are formed in a temperature range of Tg + 50 ° C. to Tg.
  4.  前記積層膜は、酸化ケイ素層を含むことを特徴とする請求項1~3のいずれか1項に記載の積層膜付きガラス基板。 4. The glass substrate with a laminated film according to claim 1, wherein the laminated film includes a silicon oxide layer.
  5.  前記積層膜は、さらにフッ素ドープされていない酸化スズ層を含むことを特徴とする請求項1~4のいずれか1項に記載の積層膜付きガラス基板。 The glass substrate with a laminated film according to any one of claims 1 to 4, wherein the laminated film further comprises a tin oxide layer not doped with fluorine.
  6.  前記フッ素ドープ酸化スズ層と前記フッ素ドープされていない酸化スズ層からなる酸化スズ層は、厚さ600nmにおける波長550nmのヘイズ率が10%以上であることを特徴とする請求項5に記載の積層膜付きガラス基板。 6. The laminate according to claim 5, wherein the tin oxide layer composed of the fluorine-doped tin oxide layer and the non-fluorine-doped tin oxide layer has a haze ratio of 10% or more at a wavelength of 550 nm at a thickness of 600 nm. Glass substrate with film.
  7.  前記フッ素ドープ酸化スズ層と前記フッ素ドープされていない酸化スズ層からなる酸化スズ層は、厚さ730nmにおける波長550nmのヘイズ率が15%以上であることを特徴とする請求項5に記載の積層膜付きガラス基板。 6. The laminate according to claim 5, wherein the tin oxide layer comprising the fluorine-doped tin oxide layer and the non-fluorine-doped tin oxide layer has a haze ratio of 15% or more at a wavelength of 550 nm at a thickness of 730 nm. Glass substrate with film.
  8.  ガラスの原料を溶解する溶解炉と、溶融ガラスを溶融金属上に浮かせてガラスリボンを成形するフロートバスと、前記ガラスリボンを徐冷する徐冷炉と、を備えたガラス製造装置を用いて、CVD法により前記徐冷炉内に設けられた複数のインジェクターで前記ガラスリボン上に積層膜を形成し、前記ガラスリボンを切断する積層膜付きガラス基板の製造方法であって、
     ガラス転位温度をTg、ガラス歪温度をTsとした場合に、前記積層膜はTg+50℃以下で形成され、且つ、前記積層膜のうち少なくとも2以上の層がTg+50℃からTsの温度領域で形成され、
     前記積層膜の全ての層を形成する温度領域における前記ガラスリボンの単位長さ当たりの降下温度K1が0℃/m<K1<10℃/mであり、
     前記積層膜は、比抵抗が4.7×10-4Ω・cm以下であるフッ素ドープ酸化スズ層を含み、四塩化錫とフッ化水素ガスがモル比で、HF/SnCl=1.0よりも大きくなるように原料ガスを吹き付けることにより該フッ素ドープ酸化スズ層を形成することを特徴とする積層膜付きガラス基板の製造方法。
    A CVD method using a glass manufacturing apparatus comprising a melting furnace for melting glass raw materials, a float bath for floating glass on a molten metal to form a glass ribbon, and a slow cooling furnace for gradually cooling the glass ribbon A method for producing a laminated film-attached glass substrate by forming a laminated film on the glass ribbon with a plurality of injectors provided in the slow cooling furnace, and cutting the glass ribbon,
    When the glass transition temperature is Tg and the glass strain temperature is Ts, the laminated film is formed at Tg + 50 ° C. or lower, and at least two layers of the laminated film are formed at a temperature range of Tg + 50 ° C. to Ts. ,
    The temperature drop K1 per unit length of the glass ribbon in the temperature region for forming all the layers of the laminated film is 0 ° C./m<K1<10° C./m,
    The laminated film includes a fluorine-doped tin oxide layer having a specific resistance of 4.7 × 10 −4 Ω · cm or less, tin tetrachloride and hydrogen fluoride gas are in a molar ratio, and HF / SnCl 4 = 1.0. A method for producing a glass substrate with a laminated film, wherein the fluorine-doped tin oxide layer is formed by spraying a raw material gas so as to be larger than that.
PCT/JP2014/050466 2013-01-16 2014-01-14 Glass substrate with laminated film and manufacturing method therefor WO2014112482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480005022.5A CN104936922A (en) 2013-01-16 2014-01-14 Glass substrate with laminated film and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-005617 2013-01-16
JP2013005617A JP2016047775A (en) 2013-01-16 2013-01-16 Float glass with lamination film, and production method of the same

Publications (1)

Publication Number Publication Date
WO2014112482A1 true WO2014112482A1 (en) 2014-07-24

Family

ID=51209572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050466 WO2014112482A1 (en) 2013-01-16 2014-01-14 Glass substrate with laminated film and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JP2016047775A (en)
CN (1) CN104936922A (en)
WO (1) WO2014112482A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3281922A4 (en) * 2015-04-10 2018-11-21 Asahi Glass Company, Limited Glass sheet and method for manufacturing same
US10669190B2 (en) * 2016-11-08 2020-06-02 Lianhui ZHOU Roller coating device for photovoltaic glass coated with AR coating liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110292B (en) * 2017-12-28 2020-03-10 成都新柯力化工科技有限公司 Fluorinated bismuth oxide electrolyte for fuel cell and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003065386A1 (en) * 2002-01-28 2003-08-07 Nippon Sheet Glass Company, Limited Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
JP2003238205A (en) * 2001-12-03 2003-08-27 Nippon Sheet Glass Co Ltd Thin film deposition method and substrate provided with thin film deposited by the method
JP2004362842A (en) * 2003-06-02 2004-12-24 Nippon Sheet Glass Co Ltd Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP2005060136A (en) * 2003-08-08 2005-03-10 Nippon Sheet Glass Co Ltd Cvd system, and apparatus and method for manufacturing glass
JP2011519813A (en) * 2008-05-08 2011-07-14 ピルキントン グループ リミテッド Manufacture of coated glass
WO2012169552A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Method for producing substrate having transparent conductive film attached thereto, and injector and device used therein
WO2013008894A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate
WO2013008895A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462541B1 (en) * 2001-12-03 2015-03-04 Nippon Sheet Glass Company, Limited Method for forming thin film.
CN101863626A (en) * 2010-06-03 2010-10-20 江西赛维Best太阳能高科技有限公司 New type compound transparent conductive glass and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238205A (en) * 2001-12-03 2003-08-27 Nippon Sheet Glass Co Ltd Thin film deposition method and substrate provided with thin film deposited by the method
WO2003065386A1 (en) * 2002-01-28 2003-08-07 Nippon Sheet Glass Company, Limited Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
JP2004362842A (en) * 2003-06-02 2004-12-24 Nippon Sheet Glass Co Ltd Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP2005060136A (en) * 2003-08-08 2005-03-10 Nippon Sheet Glass Co Ltd Cvd system, and apparatus and method for manufacturing glass
JP2011519813A (en) * 2008-05-08 2011-07-14 ピルキントン グループ リミテッド Manufacture of coated glass
WO2012169552A1 (en) * 2011-06-06 2012-12-13 旭硝子株式会社 Method for producing substrate having transparent conductive film attached thereto, and injector and device used therein
WO2013008894A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate
WO2013008895A1 (en) * 2011-07-12 2013-01-17 旭硝子株式会社 Method for manufacturing layered-film-bearing glass substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN WANG ET AL.: "Large-area Sn02: F thin films by offline APCVD", MATERIALS RESEARCH BULLETIN, vol. 46, 4 May 2011 (2011-05-04), pages 1262 - 1265 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3281922A4 (en) * 2015-04-10 2018-11-21 Asahi Glass Company, Limited Glass sheet and method for manufacturing same
US10618836B2 (en) 2015-04-10 2020-04-14 Agc Glass Europe Glass plate and manufacturing method thereof
US10669190B2 (en) * 2016-11-08 2020-06-02 Lianhui ZHOU Roller coating device for photovoltaic glass coated with AR coating liquid

Also Published As

Publication number Publication date
CN104936922A (en) 2015-09-23
JP2016047775A (en) 2016-04-07

Similar Documents

Publication Publication Date Title
EP2758350B1 (en) Process for forming a silica coating on a glass substrate
WO2016163199A1 (en) Glass sheet and method for manufacturing same
US20170313618A1 (en) Glass treatment
JP6293679B2 (en) Chemical vapor deposition process for depositing a zinc oxide coating, method for forming a conductive glass article, and the coated glass article produced thereby
WO2014112482A1 (en) Glass substrate with laminated film and manufacturing method therefor
WO2014112415A1 (en) Method for manufacturing glass substrate with laminated film
WO2013008894A1 (en) Method for manufacturing layered-film-bearing glass substrate
WO2013008896A1 (en) Method for manufacturing layered-film-bearing glass substrate
JPWO2014081030A1 (en) Thin film formation method
WO2013008895A1 (en) Method for manufacturing layered-film-bearing glass substrate
EP2391743B1 (en) Method of depositing an electrically conductive titanium oxide coating on a substrate
TW201518222A (en) Glass plate
JP5967088B2 (en) Manufacturing method of glass substrate with laminated film
TW201514119A (en) Glass plate
US11542194B2 (en) Coated glass article, method of making the same, and photovoltaic cell made therewith
TW201518223A (en) Glass plate and chemically strengthened glass plate
TW201514104A (en) Float glass manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP