WO2017119279A1 - Glass member - Google Patents

Glass member Download PDF

Info

Publication number
WO2017119279A1
WO2017119279A1 PCT/JP2016/087892 JP2016087892W WO2017119279A1 WO 2017119279 A1 WO2017119279 A1 WO 2017119279A1 JP 2016087892 W JP2016087892 W JP 2016087892W WO 2017119279 A1 WO2017119279 A1 WO 2017119279A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass
glass member
glass substrate
heat
Prior art date
Application number
PCT/JP2016/087892
Other languages
French (fr)
Japanese (ja)
Inventor
林 英明
啓明 岩岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017119279A1 publication Critical patent/WO2017119279A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Definitions

  • the present invention relates to a glass member, and more particularly to a glass member including a glass substrate having a thermal barrier coating.
  • Patent Document 1 described above describes that a heat insulating multilayer film is formed on a transmissive substrate (glass substrate) and used as a glass member for a glass house.
  • the characteristic required for glass members for glass houses is not limited to heat insulation.
  • a shade may be formed in the glass house by a frame material for a skeleton that supports the glass member. Since such shade can adversely affect the growth of plants and the like, it is preferable to suppress it as much as possible.
  • the glass member described in Patent Document 1 it is difficult to deal with such a “shade” problem.
  • This invention is made
  • a glass member having a glass substrate The glass substrate has a first surface and a second surface; A coating is placed on the first surface of the glass substrate, The coating is from the side close to the glass substrate, An undercoat layer containing silicon oxide; A thermal barrier layer containing tin oxide; Have When the sample cut into a 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate is within 20%.
  • a glass member applied to a glass house is subjected to a tempering process or a semi-strengthening process in order to prevent a strong wind caused by a typhoon or the like and a crack caused by a fall of a kite or a pebble.
  • Tempering is achieved by applying compressive stress to the surface of the glass.
  • air cooling strengthening for rapidly cooling the surface of the glass heated to the vicinity of the softening point, and dipping the glass in a molten salt containing the first alkali metal ions, the second alkali metal contained in the glass Examples include chemical strengthening that exchanges ions with the surface of the glass.
  • Air-cooling strengthening is excellent in that a large-area glass plate can be tempered efficiently at a relatively low cost, and post-strengthening treatment can be carried out on coated glass.
  • the coating needs to have heat resistance that does not change even when the glass member is reheated to near the softening point of the glass.
  • the glass member in the present invention has relatively good heat resistance. More specifically, the glass member in the present invention has a feature that the sheet resistance increase rate is within 20% when a sample cut into 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere.
  • the glass member in the present invention it is possible to significantly suppress the problem that the coating changes in quality during the reheating accompanying the air cooling strengthening and the heat shielding property of the coating is lowered.
  • the sheet resistance increase rate (%) is represented by (sheet resistance of the sample after heat treatment ⁇ sheet resistance of the sample before heat treatment) / (sheet resistance of the sample before heat treatment) ⁇ 100.
  • the glass member according to the present invention ISO9050: measured according to 2003 the visible light transmittance T v is 78% or more.
  • the visible light transmittance is preferably 79% or more, more preferably 80% or more, and further preferably 81% or more.
  • the glass member in the present invention has a shielding coefficient SC of 0.90 or less when measured from the glass substrate side. Therefore, when such a glass member is applied to a glass house, the invasion of heat from the sun can be significantly avoided. In particular, in the summer, it is possible to suppress solar heat from entering the glass house, thereby reducing the cooling cost and the like, and significantly reducing the running cost of the glass house.
  • the shielding coefficient SC is preferably 0.85 or less, more preferably 0.80 or less, and further preferably 0.76 or less.
  • the glass member in the present invention has a haze ratio of 10% or more and high light diffusibility.
  • a glass member having high light diffusibility is applied to a glass house, it is possible to significantly suppress the shadow of the frame material constituting the framework of the glass house from being projected onto the plants in the glass house. . As a result, it becomes possible to promote favorable growth of the plant.
  • the haze ratio is preferably 15% or more, more preferably 18% or more, and further preferably 25% or more. Further, the haze ratio is preferably 90% or less, more preferably 80% or less, and still more preferably 60% or less.
  • the present invention can provide a glass member more suitable for application to a glass house than in the prior art.
  • FIG. 1 schematically shows a cross section of a glass member (hereinafter referred to as “first glass member”) according to an embodiment of the present invention.
  • the first glass member 100 includes a glass substrate 110 and layers disposed on both sides of the glass substrate 110.
  • the glass substrate 110 has a first surface 112 and a second surface 114, and the undercoat layer 120 and the heat shielding layer 130 are formed on the first surface 112 in the order closer to the glass substrate 110. Is arranged.
  • an antifouling layer 180 is disposed on the second surface 114 of the glass substrate 110.
  • the first glass member 100 has a first side 102 and a second side 104, the first side 102 corresponds to the side of the thermal barrier layer 130, and the second side 104 is an antifouling layer. This corresponds to the 180 side.
  • the glass substrate 110 is made of, for example, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, or the like.
  • the glass substrate 110 is made of a highly transmissive glass (for example, soda lime silicate glass) in which the content of the iron component is suppressed.
  • a highly transmissive glass for example, soda lime silicate glass
  • the thickness of the glass substrate 110 is, for example, in the range of 1.5 mm to 6 mm, and preferably in the range of 2 mm to 5 mm.
  • the undercoat layer 120 has a role as an alkali barrier layer that suppresses a decrease in heat shielding performance due to diffusion of sodium in the glass substrate into the heat shielding layer while increasing the haze ratio of the heat shielding layer.
  • the undercoat layer 120 is composed of a layer containing silicon oxide.
  • the amount of silicon oxide contained in the undercoat layer 120 is preferably 50% by mass or more.
  • the undercoat layer 120 may be composed of a silicon oxide layer (SiO 2 ), a silicon oxycarbide layer (SiOC), or the like.
  • the surface of the undercoat layer 120 preferably has an arithmetic average roughness Ra in the range of 1 nm to 150 nm.
  • the arithmetic average roughness Ra is more preferably 10 nm to 100 nm, 20 nm to 90 nm, and 40 to 80 nm. In this case, the haze ratio of the first glass member 100 can be significantly increased.
  • an alkali barrier layer made of silica containing substantially no carbon may be added between the undercoat layer 120 and the heat shield layer 130. Thereby, the problem of such deterioration of the heat shield layer 130 can be suppressed.
  • the undercoat layer 120 has a thickness of 15 nm to 150 nm, for example.
  • the thickness is more preferably 20 nm to 120 nm and 25 nm to 100 nm.
  • the heat shield layer 130 has a role of suppressing heat input by the light 108 incident on the first glass member 100 from the second side 104.
  • the heat shield layer 130 is composed of a layer containing tin oxide.
  • the amount of tin oxide contained in the heat shield layer 130 is preferably 50% by mass or more.
  • the thermal barrier layer 130 may be made of tin oxide doped with fluorine and / or antimony.
  • the dopant content is preferably in the range of 0.0001 to 0.09 in terms of a dopant atom / tin atom molar ratio.
  • the heat shield layer 130 has a thickness of 100 nm to 1000 nm, for example. More preferably, the thickness is 120 nm to 800 nm, 140 nm to 700 nm, 150 nm to 500 nm.
  • the antifouling layer 180 has a role of preventing the transparency of the first glass member 100 from being deteriorated due to dust or dust adhering to the second side 104 of the first glass member 100.
  • the antifouling layer 180 has a thickness of 10 nm to 150 nm. Further, the antifouling layer 180 may have a surface roughness (arithmetic average roughness Ra) of 1 nm to 13 nm.
  • the antifouling layer may be composed of, for example, a tin oxide layer or a silica layer.
  • the antifouling layer 180 is not an essential layer and may be omitted.
  • the first side 102 and / or the second side 104 do not necessarily have to be flat surfaces, and these may be curved surfaces.
  • the first glass member 100 When the first glass member 100 is applied to a glass house, the first glass member 100 is arranged so that the first side 102 is inside the glass house and the second side 104 is outside the glass house. The Accordingly, the sunlight 108 is incident from the second side 104 of the first glass member 100 toward the glass house.
  • the first glass member 100 has a feature that when the sample cut into a 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate is within 20%.
  • the sheet resistance increase rate is preferably 15% or less, and more preferably 10% or less. Thereby, the heat-shielding fall by the high temperature of the 1st glass member 100 can be suppressed significantly.
  • the first glass member 100 ISO 9050: measured according to 2003 the visible light transmittance T v has the feature that is 78% or more. For this reason, in the 1st glass member 100, sufficient sunlight can be taken in in a glass house. As a result, in the glass house including the first glass member 100, it is possible to significantly promote the growth of plants.
  • the first glass member 100 has a haze ratio measured from the second side 104 toward the first side 102 of 15% or more. For this reason, the glass house provided with the 1st glass member 100 is excellent in light diffusibility, and can suppress the above-mentioned "shade" problem significantly.
  • the shielding coefficient SC measured from the second side 104 toward the first side 102 is 0.90 or less. Therefore, in the glass house provided with the 1st glass member 100, favorable heat-shielding property is acquired and the running cost of a glass house can be suppressed significantly.
  • FIG. 2 the cross section of another glass member by one Embodiment of this invention is shown typically.
  • another glass member 200 (hereinafter referred to as a “second glass member”) 200 according to an embodiment of the present invention includes a glass substrate 210 and layers disposed on both sides of the glass substrate 210. And have.
  • the glass substrate 210 has a first surface 212 and a second surface 214, and the undercoat layer 220 and the first shielding layer are formed on the first surface 212 in the order closer to the glass substrate 210.
  • a thermal layer 230 and a second thermal barrier layer 240 are disposed.
  • an antifouling layer 280 is disposed on the second surface 214 of the glass substrate 210.
  • the second glass member 200 has a first side 202 and a second side 204, the first side 202 corresponds to the second thermal barrier layer 240 side, and the second side 204 is It corresponds to the antifouling layer 280 side.
  • the glass substrate 210 may have the same configuration as the glass substrate 110 in the first glass member 100 described above.
  • the undercoat layer 220 may be made of the same material as the undercoat layer 120 in the first glass member 100 described above. However, unlike the undercoat layer 120 in the first glass member 100, the undercoat layer 220 has a substantially flat surface. This is because the second glass member 200 can obtain a suitable haze ratio even if the surface of the undercoat layer 220 is not particularly roughened.
  • the undercoat layer 220 has a thickness of 10 nm to 60 nm, for example.
  • the thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
  • the first heat shield layer 230 is composed of a layer containing tin oxide.
  • the amount of tin oxide contained in the first heat shield layer 230 is preferably 50% by mass or more.
  • the first heat shield layer 230 may be made of tin oxide (undoped).
  • the first heat shield layer 230 has a thickness of 100 nm to 500 nm, for example.
  • the thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
  • the second heat shield layer 240 may have the same configuration as the heat shield layer 230 in the first glass member 100 described above.
  • the second heat shielding layer 240 may be made of tin oxide or the like doped with fluorine and / or antimony.
  • the second heat shield layer 240 has a thickness of 100 nm to 500 nm, for example.
  • the thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
  • the antifouling layer 280 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 280 may be omitted.
  • the second glass member 200 has the same characteristics as the first glass member 100 described above. That is, the second glass member 200 is When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%, Visible light transmittance Tv is 78% or more, The haze rate is 15% or more, The shielding coefficient SC is 0.90 or less.
  • the same effect as that of the first glass member 100 described above can be obtained. That is, when the 2nd glass member 200 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
  • FIG. 3 (Third configuration) In FIG. 3, the cross section of another glass member by one Embodiment of this invention is typically shown.
  • still another glass member (hereinafter referred to as “third glass member”) 300 is disposed on a glass substrate 310 and on both sides of the glass substrate 310. Each layer.
  • the glass substrate 310 has a first surface 312 and a second surface 314, and the first undercoat layer 350, the first surface 312, and the first surface 312 are arranged in the order closer to the glass substrate 310.
  • Two undercoat layers 320, a first heat shield layer 330, and a second heat shield layer 340 are disposed.
  • an antifouling layer 380 is disposed on the second surface 314 of the glass substrate 310.
  • first undercoat layer 350 and the antifouling layer 380 may be omitted.
  • the third glass member 300 has a first side 302 and a second side 304, the first side 302 corresponds to the second thermal barrier layer 340 side, and the second side 304 is It corresponds to the antifouling layer 380 side.
  • the glass substrate 310 may have the same configuration as the glass substrate 110 in the first glass member 100 described above.
  • the first undercoat layer 350 is composed of, for example, a layer containing titanium oxide.
  • the amount of titanium oxide contained in the first undercoat layer 350 is preferably 50% by mass or more.
  • the first undercoat layer 350 may be composed of a titanium oxide layer (TiO 2 ) or the like.
  • the first undercoat layer 350 has a thickness of 3 nm to 20 nm, for example.
  • the thickness is preferably in the range of 5 nm to 15 nm.
  • the second undercoat layer 320 is composed of a layer containing silicon oxide.
  • the amount of silicon oxide contained in the second undercoat layer 320 is preferably 50% by mass or more.
  • the second undercoat layer 320 may be composed of a silicon oxide layer (SiO 2 ) or the like.
  • the second undercoat layer 320 has a substantially flat surface, and has a thickness of 10 nm to 60 nm, for example.
  • the thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
  • the first heat shield layer 330 is composed of a layer containing tin oxide.
  • the amount of tin oxide contained in the first heat shield layer 330 is preferably 50% by mass or more.
  • the first heat shield layer 330 may be made of tin oxide or the like doped with fluorine and / or antimony.
  • the first heat shield layer 330 has a thickness of 100 nm to 500 nm, for example.
  • the thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
  • the second heat shield layer 340 is also composed of a layer containing tin oxide.
  • the amount of tin oxide contained in the second heat shield layer 340 is preferably 50% by mass or more.
  • the second heat shielding layer 340 may be made of tin oxide or the like doped with fluorine and / or antimony.
  • the second heat shield layer 340 has a feature that the carrier concentration is higher than that of the first heat shield layer 330.
  • the first thermal barrier layer 330 has a carrier concentration in the range of 1 ⁇ 10 20 cm ⁇ 3 to 4 ⁇ 10 20 cm ⁇ 3 .
  • the second thermal barrier layer 340 has a carrier concentration in the range of 3 ⁇ 10 20 cm ⁇ 3 to 6 ⁇ 10 20 cm ⁇ 3 .
  • the second heat shielding layer 340 has a thickness of 100 nm to 500 nm, for example.
  • the thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
  • the antifouling layer 380 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 380 may be omitted.
  • the third glass member 300 also has the same characteristics as the first glass member 100 and the second glass member 200 described above. That is, the third glass member 300 is When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%, Visible light transmittance Tv is 78% or more, The haze rate is 15% or more, The shielding coefficient SC is 0.90 or less.
  • the third glass member 300 can obtain the same effects as those of the first glass member 100 and the second glass member 200 described above. That is, when the 3rd glass member 300 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
  • FIG. 4 the cross section of another glass member by one Embodiment of this invention is shown typically.
  • still another glass member 400 (hereinafter referred to as “fourth glass member”) 400 according to an embodiment of the present invention is disposed on a glass substrate 410 and on both sides of the glass substrate 410. Each layer.
  • the glass substrate 410 has a first surface 412 and a second surface 414.
  • the first surface 412 has a first undercoat layer 450 and a first surface in the order closer to the glass substrate 410.
  • Two undercoat layers 420 and a heat shielding layer 430 are disposed.
  • an antifouling layer 480 is disposed on the second surface 414 of the glass substrate 410.
  • the fourth glass member 400 has a first side 402 and a second side 404, the first side 402 corresponds to the side of the thermal barrier layer 430, and the second side 404 is an antifouling layer. This corresponds to the 480 side.
  • the first surface 412 of the glass substrate 410 has a relatively rough surface.
  • the first surface 412 may have an arithmetic average roughness Ra in the range of 50 ⁇ m to 1500 ⁇ m.
  • the glass substrate 410 may be made of template glass.
  • the glass substrate 110 is made of, for example, highly transmissive glass in which the content of iron components is suppressed.
  • the thickness of the glass substrate 110 is, for example, in the range of 1.5 mm to 6 mm.
  • the thickness is preferably in the range of 2 mm to 5 mm.
  • first undercoat layer 450 may have the same configuration as the first undercoat layer 350 in the third glass member 300 described above.
  • second undercoat layer 420 may have the same configuration as the second undercoat layer 320 in the third glass member 300 described above.
  • the first undercoat layer 450 has a thickness of 3 nm to 20 nm, for example.
  • the thickness is preferably in the range of 5 nm to 15 nm.
  • the second undercoat layer 420 has a thickness of 10 nm to 60 nm, for example.
  • the thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
  • the heat shield layer 430 may have the same configuration as the heat shield layer 130 in the first glass member 100 described above.
  • the heat shield layer 430 has a thickness of 100 nm to 1000 nm, for example.
  • the thickness is preferably in the range of 120 nm to 800 nm, more preferably in the range of 140 nm to 700 nm, and still more preferably in the range of 150 nm to 500 nm.
  • the antifouling layer 480 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 480 may be omitted.
  • the fourth glass member 400 also has the same characteristics as the first glass member 100 to the third glass member 300 described above. That is, the fourth glass member 400 is When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%, Visible light transmittance Tv is 78% or more, The haze rate is 10% or more, The shielding coefficient SC is 0.90 or less.
  • the same effect as that of the first glass member 100 described above can be obtained. That is, when the 4th glass member 400 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
  • FIG. 5 schematically shows an example of a flow of a method for manufacturing the second glass member 200 (hereinafter referred to as “first manufacturing method”).
  • the first manufacturing method is: (A) installing an undercoat layer on the first surface of the glass substrate (step S110); (B) On the undercoat layer, a step of installing a first heat shield layer and a second heat shield layer in order (step S120); (C) installing an antifouling layer on the second surface of the glass substrate (step S130);
  • Step S110 First, the glass substrate 210 is prepared.
  • the type of glass substrate 210 is not particularly limited, a glass substrate 210, using a high transmittance glass Fe component is suppressed, it is possible to increase the visible light transmittance T v.
  • the glass substrate 210 is a soda lime silicate high transmission glass.
  • the undercoat layer 220 is disposed on the first surface 212 of the glass substrate.
  • the undercoat layer 220 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
  • CVD chemical vapor deposition
  • electron beam vapor deposition method vapor deposition
  • vacuum deposition method vacuum deposition
  • sputtering method a spray method.
  • the undercoat layer 220 when the undercoat layer 220 is composed of a silicon oxide layer (SiO 2 ), the undercoat layer 220 may be formed by an atmospheric pressure CVD method.
  • gaseous raw materials such as monosilane, tetraethoxysilane, oxygen, carbon dioxide, and nitrogen can be used as the raw material.
  • the source gas may be mixed on the substrate before being conveyed onto the first surface 212 of the glass substrate 210.
  • the source gas may be mixed on the first surface 212 of the glass substrate 210.
  • the undercoat layer 220 is composed of a silicon oxycarbide layer (SiOC)
  • SiOC silicon oxycarbide layer
  • methane, ethylene, and / or acetylene is used as a source gas.
  • the carbon-containing gas may be contained. When such a carbon-containing gas is used, it becomes easy to form a particulate silicon compound together with the film-like silicon compound, and the haze ratio can be increased.
  • the temperature of the glass substrate 210 when forming the undercoat layer 220 is preferably 700 ° C. to 1100 ° C. When the temperature of the glass substrate 210 is lower than 700 ° C. or higher than 1100 ° C., the film formation rate tends to decrease.
  • Step S120 Next, the first heat shield layer 230 and the second heat shield layer 240 are sequentially formed on the undercoat layer 220.
  • the thermal barrier layer 230 can be formed by using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
  • CVD chemical vapor deposition
  • electron beam vapor deposition method vapor deposition
  • vacuum deposition method vacuum deposition
  • sputtering method vapor deposition
  • spray method a spray method.
  • the first heat shield layer 230 when the first heat shield layer 230 is formed of a tin oxide layer (SnO 2 ), the first heat shield layer 230 may be formed by an atmospheric pressure CVD method.
  • an inorganic tin compound such as tin tetrachloride or an organic tin compound can be used as a raw material.
  • the organic tin compound means a tin compound containing an organic group, in which the organic group and a tin atom are bonded by a bond between a carbon atom and a tin atom.
  • the organic group is preferably a hydrocarbon group such as an alkyl group and an alkenyl group.
  • the organic tin compound is preferably a tetravalent tin compound, that is, a tin (IV) compound.
  • the organic tin compound include monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, tetramethyltin, tetrabutyltin, and dibutyltin dichloride. Among these, monobutyltin trichloride (hereinafter referred to as MBTC) is preferable because it is easily available, inexpensive, and easy to handle.
  • the second heat shield layer 240 is formed.
  • the second thermal barrier layer 240 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method. it can.
  • CVD chemical vapor deposition
  • electron beam vapor deposition method vapor deposition
  • vacuum deposition method vacuum deposition
  • sputtering method vapor deposition
  • spray method a spray method.
  • the second heat shield layer 240 when the second heat shield layer 240 is formed of a fluorine-doped tin oxide layer (SnO 2 ), the second heat shield layer 240 may be formed by an atmospheric pressure CVD method.
  • a mixture of an inorganic or organic tin compound used in the film formation of the first heat shield layer 230 and a fluorine compound is used as a raw material.
  • Fluorine compounds include hydrogen fluoride and trifluoroacetic acid.
  • hydrogen fluoride is particularly preferable.
  • the source gas may be transported after being mixed in advance.
  • the source gas may be mixed on the surface of the film formation target.
  • the raw material is a liquid
  • the raw material may be vaporized using a bubbling method or a vaporizer.
  • the amount of water relative to 1 mol of tin compound in the raw material gas is preferably 10 to 30 mol. If the amount of water is less than 10 mol, the resistance value of the film to be formed tends to increase, and as a result, the shielding coefficient SC tends to increase. Further, light absorption tends to increase.
  • the amount of water is more than 30 mol, as the amount of water increases, the raw material gas capacity increases and the flow rate of the raw material gas increases, so that the film deposition efficiency may be reduced.
  • the amount of water relative to 1 mol of the tin compound is more preferably 15 to 25 mol, and further preferably 18 to 22 mol.
  • the amount of oxygen with respect to 1 mol of the tin compound in the source gas is preferably more than 0 to 20 mol, and more preferably 4 to 20 mol. If the amount of oxygen is less than 4 mol, the resistance value and light absorption of the film to be produced may increase. On the other hand, when the amount of oxygen exceeds 20 mol, the raw material gas capacity increases, and the flow rate of the raw material gas increases, so that the film deposition efficiency may be lowered.
  • the amount of oxygen relative to 1 mol of the tin compound is more preferably 6 to 15 mol, and further preferably 8 to 10 mol.
  • the amount of the fluorine compound relative to 1 mol of the tin compound in the raw material gas is preferably 0.2 to 1.2 mol.
  • the amount of the fluorine compound is less than 0.2 mol or more than 1.2 mol, the resistance value of the formed film tends to increase.
  • the amount of the fluorine compound relative to 1 mol of the tin compound is more preferably 0.4 to 1.0 mol, and further preferably 0.5 to 0.7 mol.
  • the temperature of the glass substrate 210 when forming the first heat shield layer 230 and the second heat shield layer 240 is preferably 500 ° C. to 650 ° C.
  • the temperature of the glass is lower than 500 ° C.
  • the formation rate of the first and second heat shielding layers 230 and 240 is lowered, and the crystallinity is lowered.
  • a decrease in haze rate and a decrease in mobility occur (a decrease in mobility corresponds to an increase in sheet resistance, and an increase in sheet resistance corresponds to a decrease in heat shielding properties).
  • the temperature of the glass substrate 210 is higher than 650 ° C., film formation is performed with the glass having a low viscosity, and thus there is a risk of warping in the process of lowering the glass to room temperature.
  • the temperature of the glass substrate 210 is preferably 520 ° C. to 750 ° C., more preferably 540 ° C. to 700 ° C.
  • step S110 and step S120 may be performed by an on-line method in the process of producing the glass with the float facility, or the glass obtained by the float method is reheated.
  • An off-line method for carrying out the film may be used.
  • Step S130 the antifouling layer 280 is provided on the second surface 214 of the glass substrate 210.
  • the antifouling layer 280 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
  • CVD chemical vapor deposition
  • electron beam vapor deposition method vapor deposition
  • vacuum deposition method vacuum deposition
  • sputtering method a spray method.
  • the manufacturing method described is merely an example, and the second glass member 200 may be manufactured by other manufacturing methods.
  • the antifouling layer 280 is formed after each layer on the first surface 212 of the glass substrate 210 is formed in step S130. However, first, the antifouling layer 280 may be formed on the second surface 214 of the glass substrate 210 and then the layers 220 to 240 may be installed on the first surface 212 of the glass substrate 210.
  • the first manufacturing method may further include a step (strengthening step) of strengthening the glass substrate 210 by air cooling or chemical strengthening.
  • This strengthening process may be performed in any order, for example, before step S110 or after step S130.
  • the strength of the glass substrate 210 and further the second glass member 200 is improved by performing the strengthening step.
  • chemical tempering may cause warping of the glass member as a result of different ion exchange methods on the front and back surfaces, and thus treatment by air cooling tempering is preferred.
  • step S130 may be performed by an on-line method in the process of producing the glass with the float facility, or the film obtained by the float method is reheated to form the film. It may be by offline method.
  • the 1st glass member 100, the 3rd glass member 300, and the 4th glass member 400 can be manufactured by changing a part of above-mentioned 1st manufacturing method. Can be estimated.
  • Example 1 to 6 Example 8 and Example 10 are examples, and Examples 7 and 9 are comparative examples.
  • Example 1 A glass member having the configuration as shown in FIG. 1 was configured.
  • the glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
  • An SiOC film was formed as an undercoat layer on one surface (first surface) of this glass substrate.
  • the SiOC layer was formed by the CVD method (target film thickness 85 nm).
  • the surface of the undercoat layer was adjusted to have a surface roughness (arithmetic average roughness Ra) of 10 nm to 100 nm.
  • a fluorine-doped SnO 2 layer was formed as a heat shield layer on the SiOC layer.
  • the fluorine-doped SnO 2 layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 340 nm).
  • the fluorine doping amount was 0.5 to 0.7 as the molar ratio of the tin compound to the fluorine compound.
  • the antifouling layer was not installed on the second surface of the glass substrate.
  • the obtained glass member is referred to as “glass member according to Example 1”.
  • Example 2 A glass member was constructed in the same manner as in Example 1.
  • Example 2 soda lime glass having a thickness of 3 mm was used as the glass substrate.
  • the surface of the undercoat layer was made to have a surface roughness (arithmetic average roughness Ra) in the range of 10 nm to 100 nm.
  • the obtained glass member is referred to as “glass member according to Example 2”.
  • Example 3 A glass member was constructed in the same manner as in Example 2.
  • Example 3 soda lime glass having a thickness of 4 mm was used as the glass substrate.
  • the thickness of the first heat shield layer was set to 190 nm.
  • the obtained glass member is referred to as “glass member according to Example 3”.
  • Example 4 A glass member having the structure as shown in FIG.
  • the glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
  • SiOC film was formed as an undercoat layer on one surface (first surface) of this glass substrate.
  • the SiOC layer was formed by the CVD method (target film thickness 85 nm).
  • an undoped SnO 2 film was formed on the SiOC layer as a first heat shield layer.
  • the SnO 2 layer was formed by a CVD method using MBTC as a raw material (target film thickness 170 nm).
  • a fluorine-doped SnO 2 layer was formed as a second heat shield layer on the first heat shield layer.
  • the fluorine-doped SnO 2 layer was formed by CVD using MBTC and hydrogen fluoride as raw materials (target film thickness 170 nm).
  • the fluorine doping amount was 0.5 to 0.7.
  • the antifouling layer was not installed on the second surface of the glass substrate.
  • the obtained glass member is referred to as “glass member according to Example 4”.
  • Example 5 A glass member having the structure as shown in FIG. 3 was constructed.
  • the glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
  • a TiO 2 layer was formed as a first undercoat layer on one surface (first surface) of the glass substrate.
  • the TiO 2 layer was formed by the CVD method (target film thickness 10 nm).
  • a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer.
  • the SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
  • a fluorine-doped SnO 2 layer was formed as a first heat shielding layer on the SiO 2 layer.
  • the first thermal barrier layer was formed by CVD using hydrogen fluoride and SnCl 4 as raw materials (target film thickness 170 nm).
  • the fluorine doping amount was 0.5 to 0.7.
  • a fluorine-doped SnO 2 layer was formed as a second heat shield layer on the first heat shield layer.
  • the second thermal barrier layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 170 nm).
  • the fluorine doping amount was 0.5 to 0.7.
  • the antifouling layer was not installed on the second surface of the glass substrate.
  • the obtained glass member is referred to as “glass member according to Example 5”.
  • Example 6 A glass member having the structure as shown in FIG. 4 was constructed.
  • a template glass silicate glass having a thickness of 4 mm was used.
  • One surface of the glass substrate has a surface roughness with an arithmetic average roughness Ra in the range of 50 ⁇ m to 1500 ⁇ m.
  • a TiO 2 layer was formed as a first undercoat layer on the first surface of the glass substrate.
  • the TiO 2 layer was formed by the CVD method (target film thickness 10 nm).
  • a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer.
  • the SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
  • a fluorine-doped SnO 2 layer was formed as a heat shield layer on the SiO 2 layer.
  • the thermal barrier layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 350 nm).
  • the fluorine doping amount was 0.5 to 0.7.
  • the antifouling layer was not installed on the second surface of the glass substrate.
  • the obtained glass member is referred to as “glass member according to Example 6”.
  • Example 7 A glass member was formed by the same method as in Example 2 described above.
  • Example 7 soda lime glass having a thickness of 4 mm was used as the glass substrate.
  • the thickness of the heat shield layer was 490 nm.
  • the obtained glass member is referred to as “glass member according to Example 7.”
  • Example 8 A glass member was formed by the same method as in Example 2 described above.
  • Example 8 soda lime glass having a thickness of 5 mm was used as the glass substrate.
  • the thickness of the heat shield layer was 340 nm.
  • the obtained glass member is referred to as “glass member according to Example 8”.
  • Example 9 The soda lime glass substrate having a thickness of 4 mm used in Example 3 was used as the glass member according to Example 9. That is, the glass member according to Example 9 is composed only of a glass substrate and does not have any coating.
  • Example 10 The glass member was manufactured by the following method.
  • the glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
  • a TiO 2 layer was formed as a first undercoat layer on one surface (first surface) of the glass substrate.
  • the TiO 2 layer was formed by the CVD method (target film thickness 10 nm).
  • a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer.
  • the SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
  • a fluorine-doped SnO 2 layer was formed as a first heat shielding layer on the SiO 2 layer.
  • the first thermal barrier layer was formed by CVD using hydrogen fluoride and SnCl 4 as raw materials (target film thickness 350 nm).
  • the fluorine doping amount was 0.5 to 0.7.
  • the antifouling layer was not installed on the second surface of the glass substrate.
  • the obtained glass member is referred to as “glass member according to Example 10”.
  • sheet resistance increase rate As described above, the sheet resistance increase rate is expressed by (sheet resistance of the sample after heat treatment ⁇ sheet resistance of the sample before heat treatment) / (sheet resistance of the sample before heat treatment) ⁇ 100.
  • the heat treatment was performed using a sample cut into a 10 mm square from each glass member.
  • the heat treatment was carried out by holding each sample at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere.
  • Table 2 summarizes the evaluation results obtained for each glass member.
  • the glass members according to Examples 1 to 6 and Example 8 each had an SC value of 0.9 or less, and had good heat shielding properties. Further, in the glass members according to Examples 1 to 6 and Example 8, the visible light transmittance Tv was 78% or more, and it was found that the glass members had good transmittance. In addition, the glass members according to Examples 1 to 6 and Example 8 all had a haze ratio of 10% or more, and were found to have good light diffusibility. Furthermore, in the glass members according to Examples 1 to 6, Example 8, and Example 10, the sheet resistance increase rate was 20% or less, and it was found that the glass members had good heat resistance.
  • the glass members according to Examples 7 and 9 have less applicability to the glass house than the glass members according to Examples 1 to 6 and Example 8.

Abstract

A glass member having a glass substrate, wherein: the glass substrate has a first surface and a second surface; a coating is provided to the first surface of the glass substrate; the coating comprises, from the side close to the glass substrate, an undercoat layer that includes a silicon oxide and a heat shielding layer that includes a tin oxide; when a 10 mm sample square cut from the glass member is heat treated for 7 minutes and 30 seconds at 670°C in air atmosphere, the sheet resistance increase is within 20%; and in the glass member, the visible light transmittance Tv measured according to ISO 9050:2003 is 78% or higher, the haze level is 10% or higher, and the shading coefficient SC is 0.90 or lower.

Description

ガラス部材Glass member
 本発明は、ガラス部材に関し、特に遮熱性のコーティングを有するガラス基板を含むガラス部材に関する。 The present invention relates to a glass member, and more particularly to a glass member including a glass substrate having a thermal barrier coating.
 近年、各国において、農作物の栽培などに使用される中規模~大規模の園芸施設として、ガラスハウスが注目されている。ガラスハウスは、ビニールハウスよりも耐久性および密閉性に優れ、内部に様々な設備を導入できるため、生産性の高い栽培環境を実現することができる(例えば、特許文献1)。 In recent years, glass houses have attracted attention as a medium- to large-scale horticultural facility used for growing crops in various countries. A glass house is more durable and airtight than a greenhouse, and various facilities can be introduced inside, so that a highly productive cultivation environment can be realized (for example, Patent Document 1).
WO2006/098285号WO2006 / 098285
 前述の特許文献1には、透過性基板(ガラス基板)の上に断熱性の多層膜を形成し、これをガラスハウス用のガラス部材として利用することが記載されている。 Patent Document 1 described above describes that a heat insulating multilayer film is formed on a transmissive substrate (glass substrate) and used as a glass member for a glass house.
 しかしながら、ガラスハウス用のガラス部材に必要な特性は、断熱性に限られない。 However, the characteristic required for glass members for glass houses is not limited to heat insulation.
 例えば、ガラスハウスにおいて、ガラス部材を支持する骨格用のフレーム材によって、ガラスハウス内に陰が形成される場合がある。このような陰は、植物などの成長に悪影響を及し得るため、できるだけ抑制することが好ましい。しかしながら、特許文献1に記載のガラス部材では、このような「陰」の問題に対処することは難しい。 For example, in a glass house, a shade may be formed in the glass house by a frame material for a skeleton that supports the glass member. Since such shade can adversely affect the growth of plants and the like, it is preferable to suppress it as much as possible. However, with the glass member described in Patent Document 1, it is difficult to deal with such a “shade” problem.
 このように、実際のガラスハウスへの適用により適したガラス部材が、現在もなお要望されている。 Thus, a glass member more suitable for application to an actual glass house is still demanded.
 本発明は、このような背景に鑑みなされたものであり、本発明では、従来に比べて、ガラスハウスへの適用に適したガラス部材を提供することを目的とする。 This invention is made | formed in view of such a background, and it aims at providing the glass member suitable for application to a glass house compared with the past in this invention.
 本発明では、ガラス基板を有するガラス部材であって、
 前記ガラス基板は、第1の表面および第2の表面を有し、
 前記ガラス基板の前記第1の表面には、コーティングが設置され、
 該コーティングは、前記ガラス基板に近い側から、
  酸化ケイ素を含むアンダーコート層と、
  酸化スズを含む遮熱層と、
 を有し、
 当該ガラス部材は、10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であり、
 当該ガラス部材は、前記ガラス基板の側から測定した場合、
  ISO9050:2003に準拠して測定された可視光透過率Tが78%以上であり、
  ヘイズ率が10%以上であり、
  ISO9050:2003に準拠して測定された日射熱取得率をg値(%)とし、以下の(1)式で表される値を遮蔽係数SCとしたとき、
 
   SC=g値/0.88   (1)式
 
前記SCが0.90以下である、ガラス部材が提供される。
In the present invention, a glass member having a glass substrate,
The glass substrate has a first surface and a second surface;
A coating is placed on the first surface of the glass substrate,
The coating is from the side close to the glass substrate,
An undercoat layer containing silicon oxide;
A thermal barrier layer containing tin oxide;
Have
When the sample cut into a 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate is within 20%.
When the glass member is measured from the glass substrate side,
ISO9050: measured according to 2003 the visible light transmittance T v is not less 78% or more,
The haze rate is 10% or more,
When the solar heat acquisition rate measured according to ISO 9050: 2003 is g value (%), and the value represented by the following formula (1) is the shielding coefficient SC,

SC = g value / 0.88 (1) Formula
A glass member having the SC of 0.90 or less is provided.
 本発明では、従来に比べて、ガラスハウスへの適用に適したガラス部材を提供することができる。 In the present invention, it is possible to provide a glass member suitable for application to a glass house as compared with the conventional case.
本発明の一実施形態によるガラス部材の構成例を概略的に示した断面図である。It is sectional drawing which showed schematically the structural example of the glass member by one Embodiment of this invention. 本発明の一実施形態による別のガラス部材の構成例を概略的に示した断面図である。It is sectional drawing which showed schematically the structural example of another glass member by one Embodiment of this invention. 本発明の一実施形態によるさらに別のガラス部材の構成例を概略的に示した断面図である。It is sectional drawing which showed roughly the structural example of the another glass member by one Embodiment of this invention. 本発明の一実施形態によるさらに別のガラス部材の構成例を概略的に示した断面図である。It is sectional drawing which showed roughly the structural example of the another glass member by one Embodiment of this invention. 本発明の一実施形態によるガラス部材の製造方法の一例を概略的に示したフロー図である。It is the flowchart which showed roughly an example of the manufacturing method of the glass member by one Embodiment of this invention.
 一般に、ガラスハウスに適用されるガラス部材には、台風などに伴う強風や、雹や小石の落下などによって発生する割れを防止するため、強化処理、あるいは半強化処理が施される。強化は、ガラスの表面に圧縮応力を付与することによって達成される。強化処理の例として、軟化点付近まで加熱したガラスの表面を急冷する風冷強化と、ガラスを第一のアルカリ金属イオンが含まれる溶融塩中に浸漬し、ガラスに含まれる第二のアルカリ金属イオンとガラス表面でイオン交換する化学強化が挙げられる。大面積のガラス板を比較的低コストで効率的に強化し、コーティング付きのガラスに対しても後強化処理を実施できる点で風冷強化が優れている。コーティング付きのガラスを風冷強化する際には、コーティングにはガラス部材をガラスの軟化点付近まで再加熱しても変質しない耐熱性が必要となる。 Generally, a glass member applied to a glass house is subjected to a tempering process or a semi-strengthening process in order to prevent a strong wind caused by a typhoon or the like and a crack caused by a fall of a kite or a pebble. Tempering is achieved by applying compressive stress to the surface of the glass. As an example of the strengthening treatment, air cooling strengthening for rapidly cooling the surface of the glass heated to the vicinity of the softening point, and dipping the glass in a molten salt containing the first alkali metal ions, the second alkali metal contained in the glass Examples include chemical strengthening that exchanges ions with the surface of the glass. Air-cooling strengthening is excellent in that a large-area glass plate can be tempered efficiently at a relatively low cost, and post-strengthening treatment can be carried out on coated glass. When glass with a coating is tempered by air cooling, the coating needs to have heat resistance that does not change even when the glass member is reheated to near the softening point of the glass.
 本発明におけるガラス部材は、比較的良好な耐熱性を有する。より具体的には、本発明におけるガラス部材は、10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であるという特徴を有する。 The glass member in the present invention has relatively good heat resistance. More specifically, the glass member in the present invention has a feature that the sheet resistance increase rate is within 20% when a sample cut into 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere.
 このため、本発明におけるガラス部材では、風冷強化に伴う再加熱の際にコーティングが変質し、コーティングの遮熱性が低下するという問題を有意に抑制することができる。 For this reason, in the glass member in the present invention, it is possible to significantly suppress the problem that the coating changes in quality during the reheating accompanying the air cooling strengthening and the heat shielding property of the coating is lowered.
 なお、本願において、シート抵抗上昇率(%)は、(熱処理後のサンプルのシート抵抗-熱処理前のサンプルのシート抵抗)/(熱処理前のサンプルのシート抵抗)×100で表される。 In the present application, the sheet resistance increase rate (%) is represented by (sheet resistance of the sample after heat treatment−sheet resistance of the sample before heat treatment) / (sheet resistance of the sample before heat treatment) × 100.
 また、本発明におけるガラス部材は、ISO9050:2003に準拠して測定された可視光透過率Tが78%以上である。可視光透過率は、79%以上であることが好ましく、80%以上であることがより好ましく、81%以上であることがさらに好ましい。 The glass member according to the present invention, ISO9050: measured according to 2003 the visible light transmittance T v is 78% or more. The visible light transmittance is preferably 79% or more, more preferably 80% or more, and further preferably 81% or more.
 この場合、ガラスハウス内に、十分な太陽光を取り入れることができる。従って、このようなガラス部材をガラスハウスに適用した場合、植物の成長を有意に促進することが可能になる。 In this case, sufficient sunlight can be taken into the glass house. Therefore, when such a glass member is applied to a glass house, it becomes possible to significantly promote plant growth.
 また、本発明におけるガラス部材は、ガラス基板の側から測定した場合、遮蔽係数SCが0.90以下である。従って、このようなガラス部材をガラスハウスに適用した場合、太陽からの熱の侵入を有意に回避することができる。特に、夏期において、太陽熱がガラスハウス内に侵入することが抑制され、これにより、冷房代等を削減することができ、ガラスハウスのランニングコストを有意に抑制することが可能になる。 The glass member in the present invention has a shielding coefficient SC of 0.90 or less when measured from the glass substrate side. Therefore, when such a glass member is applied to a glass house, the invasion of heat from the sun can be significantly avoided. In particular, in the summer, it is possible to suppress solar heat from entering the glass house, thereby reducing the cooling cost and the like, and significantly reducing the running cost of the glass house.
 なお、遮蔽係数SCは、0.85以下であることが好ましく、0.80以下であることがより好ましく、0.76以下であることがさらに好ましい。 The shielding coefficient SC is preferably 0.85 or less, more preferably 0.80 or less, and further preferably 0.76 or less.
 さらに、本発明におけるガラス部材は、ガラス基板の側から測定した場合、ヘイズ率が10%以上であり、高い光拡散性を有する。このような高い光拡散性を有するガラス部材をガラスハウスに適用した場合、ガラスハウスの骨組みを構成するフレーム材の陰が、ガラスハウス内の植物に投影されることを有意に抑制することができる。その結果、植物の好ましい成長を促進させることが可能になる。 Furthermore, when measured from the glass substrate side, the glass member in the present invention has a haze ratio of 10% or more and high light diffusibility. When such a glass member having high light diffusibility is applied to a glass house, it is possible to significantly suppress the shadow of the frame material constituting the framework of the glass house from being projected onto the plants in the glass house. . As a result, it becomes possible to promote favorable growth of the plant.
 なお、ヘイズ率は、15%以上であることが好ましく、18%以上であることがより好ましく、25%以上であることがさらに好ましい。また、ヘイズ率は、90%以下であることが好ましく、80%以下であることがより好ましく、60%以下であることがさらに好ましい。 Note that the haze ratio is preferably 15% or more, more preferably 18% or more, and further preferably 25% or more. Further, the haze ratio is preferably 90% or less, more preferably 80% or less, and still more preferably 60% or less.
 以上のような特徴により、本発明では、従来に比べて、ガラスハウスへの適用に、より適したガラス部材を提供することが可能になる。 Due to the above characteristics, the present invention can provide a glass member more suitable for application to a glass house than in the prior art.
 (第1の構成)
 以下、図面を参照して、本発明の一実施形態について説明する。
(First configuration)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1には、本発明の一実施形態によるガラス部材(以下、「第1のガラス部材」と称する)の断面を模式的に示す。 FIG. 1 schematically shows a cross section of a glass member (hereinafter referred to as “first glass member”) according to an embodiment of the present invention.
 図1に示すように、第1のガラス部材100は、ガラス基板110と、該ガラス基板110の両側に配置された各層とを有する。 As shown in FIG. 1, the first glass member 100 includes a glass substrate 110 and layers disposed on both sides of the glass substrate 110.
 より具体的には、ガラス基板110は、第1の表面112および第2の表面114を有し、第1の表面112には、ガラス基板110に近い順に、アンダーコート層120および遮熱層130が配置されている。一方、ガラス基板110の第2の表面114には、防汚層180が配置されている。 More specifically, the glass substrate 110 has a first surface 112 and a second surface 114, and the undercoat layer 120 and the heat shielding layer 130 are formed on the first surface 112 in the order closer to the glass substrate 110. Is arranged. On the other hand, an antifouling layer 180 is disposed on the second surface 114 of the glass substrate 110.
 第1のガラス部材100は、第1の側102および第2の側104を有し、第1の側102は、遮熱層130の側に対応し、第2の側104は、防汚層180の側に対応する。 The first glass member 100 has a first side 102 and a second side 104, the first side 102 corresponds to the side of the thermal barrier layer 130, and the second side 104 is an antifouling layer. This corresponds to the 180 side.
 ガラス基板110は、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、ボレートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、および無アルカリガラス等で構成される。 The glass substrate 110 is made of, for example, soda lime silicate glass, aluminosilicate glass, borate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, alkali-free glass, or the like.
 特に、可視光透過率を高めたい場合、ガラス基板110は、鉄成分の含有量が抑制された高透過ガラス(例えばソーダライムシリケートガラス)で構成される。 In particular, when it is desired to increase the visible light transmittance, the glass substrate 110 is made of a highly transmissive glass (for example, soda lime silicate glass) in which the content of the iron component is suppressed.
 ガラス基板110の厚さは、例えば1.5mm~6mmの範囲であり、2mm~5mmの範囲であることが好ましい。 The thickness of the glass substrate 110 is, for example, in the range of 1.5 mm to 6 mm, and preferably in the range of 2 mm to 5 mm.
 アンダーコート層120は、遮熱層のヘイズ率を高めつつ、ガラス基板中のナトリウムが遮熱層に拡散し、遮熱性能が低下することを抑制するアルカリバリア層としての役割を有する。 The undercoat layer 120 has a role as an alkali barrier layer that suppresses a decrease in heat shielding performance due to diffusion of sodium in the glass substrate into the heat shielding layer while increasing the haze ratio of the heat shielding layer.
 アンダーコート層120は、酸化ケイ素を含む層で構成される。アンダーコート層120に含まれる酸化ケイ素の量は、50質量%以上であることが好ましい。例えば、アンダーコート層120は、酸化ケイ素層(SiO)、または酸炭化ケイ素層(SiOC)等で構成されても良い。 The undercoat layer 120 is composed of a layer containing silicon oxide. The amount of silicon oxide contained in the undercoat layer 120 is preferably 50% by mass or more. For example, the undercoat layer 120 may be composed of a silicon oxide layer (SiO 2 ), a silicon oxycarbide layer (SiOC), or the like.
 ここで、アンダーコート層120の表面は、1nm~150nmの範囲の算術平均粗さRaを有することが好ましい。算術平均粗さRaは、より好ましくは10nm~100nm、20nm~90nm、40~80nmである。この場合、第1のガラス部材100のヘイズ率を有意に高めることが可能になる。 Here, the surface of the undercoat layer 120 preferably has an arithmetic average roughness Ra in the range of 1 nm to 150 nm. The arithmetic average roughness Ra is more preferably 10 nm to 100 nm, 20 nm to 90 nm, and 40 to 80 nm. In this case, the haze ratio of the first glass member 100 can be significantly increased.
 ただし、アンダーコート層120の表面が大きな凹凸を有する場合、ガラス基板110から遮熱層130に向かってアルカリ成分が拡散しやすくなり、遮熱層130の特性が低下する場合がある。これを防ぐため、アンダーコート層120と遮熱層130の間に、例えば、膜中に実質的に炭素を含まないシリカで構成されたアルカリバリア層を追加しても良い。これにより、そのような遮熱層130の劣化の問題を抑制することができる。 However, when the surface of the undercoat layer 120 has large unevenness, the alkali component tends to diffuse from the glass substrate 110 toward the heat shield layer 130, and the characteristics of the heat shield layer 130 may be deteriorated. In order to prevent this, for example, an alkali barrier layer made of silica containing substantially no carbon may be added between the undercoat layer 120 and the heat shield layer 130. Thereby, the problem of such deterioration of the heat shield layer 130 can be suppressed.
 アンダーコート層120は、例えば、15nm~150nmの厚さを有する。厚さは、より好ましくは20nm~120nm、25nm~100nmである。 The undercoat layer 120 has a thickness of 15 nm to 150 nm, for example. The thickness is more preferably 20 nm to 120 nm and 25 nm to 100 nm.
 遮熱層130は、第1のガラス部材100に、第2の側104から入射される光108による入熱を抑制する役割を有する。 The heat shield layer 130 has a role of suppressing heat input by the light 108 incident on the first glass member 100 from the second side 104.
 遮熱層130は、酸化スズを含む層で構成される。遮熱層130に含まれる酸化スズの量は、50質量%以上であることが好ましい。例えば、遮熱層130は、フッ素および/またはアンチモンがドープされた酸化スズ等で構成されても良い。この場合、ドーパントの含有量は、ドーパント原子/スズ原子のモル比で、0.0001~0.09の範囲であることが好ましい。 The heat shield layer 130 is composed of a layer containing tin oxide. The amount of tin oxide contained in the heat shield layer 130 is preferably 50% by mass or more. For example, the thermal barrier layer 130 may be made of tin oxide doped with fluorine and / or antimony. In this case, the dopant content is preferably in the range of 0.0001 to 0.09 in terms of a dopant atom / tin atom molar ratio.
 遮熱層130は、例えば、100nm~1000nmの厚さを有する。厚さは、より好ましくは、120nm~800nm、140nm~700nm、150nm~500nmである。 The heat shield layer 130 has a thickness of 100 nm to 1000 nm, for example. More preferably, the thickness is 120 nm to 800 nm, 140 nm to 700 nm, 150 nm to 500 nm.
 防汚層180は、第1のガラス部材100の第2の側104に埃や塵などが付着して、第1のガラス部材100の透明性が低下することを抑制する役割を有する。 The antifouling layer 180 has a role of preventing the transparency of the first glass member 100 from being deteriorated due to dust or dust adhering to the second side 104 of the first glass member 100.
 防汚層180は、10nm~150nmの厚さを有する。また、防汚層180は、1nm~13nmの表面粗さ(算術平均粗さRa)を有しても良い。 The antifouling layer 180 has a thickness of 10 nm to 150 nm. Further, the antifouling layer 180 may have a surface roughness (arithmetic average roughness Ra) of 1 nm to 13 nm.
 防汚層は、例えば、酸化スズ層またはシリカ層で構成されてもよい。なお、防汚層180は、必須の層ではなく、省略されても良い。 The antifouling layer may be composed of, for example, a tin oxide layer or a silica layer. The antifouling layer 180 is not an essential layer and may be omitted.
 なお、第1のガラス部材100において、第1の側102および/または第2の側104は、必ずしも平面である必要はなく、これらは曲面であってもよい。 In the first glass member 100, the first side 102 and / or the second side 104 do not necessarily have to be flat surfaces, and these may be curved surfaces.
 第1のガラス部材100をガラスハウスに適用する場合、第1のガラス部材100は、第1の側102がガラスハウスの内部となり、第2の側104がガラスハウスの外部となるように配置される。従って、太陽の光108は、第1のガラス部材100の第2の側104からガラスハウスに向かって入射される。 When the first glass member 100 is applied to a glass house, the first glass member 100 is arranged so that the first side 102 is inside the glass house and the second side 104 is outside the glass house. The Accordingly, the sunlight 108 is incident from the second side 104 of the first glass member 100 toward the glass house.
 ここで、第1のガラス部材100は、10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であるという特徴を有する。シート抵抗上昇率は、15%以下であることが好ましく、10%以下であることがより好ましい。これにより、第1のガラス部材100の高温化による遮熱性の低下を、有意に抑制することができる。 Here, the first glass member 100 has a feature that when the sample cut into a 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate is within 20%. The sheet resistance increase rate is preferably 15% or less, and more preferably 10% or less. Thereby, the heat-shielding fall by the high temperature of the 1st glass member 100 can be suppressed significantly.
 また、第1のガラス部材100は、ISO9050:2003に準拠して測定された可視光透過率Tが78%以上であるという特徴を有する。このため、第1のガラス部材100では、ガラスハウス内に十分な太陽光を取り入れることができる。その結果、第1のガラス部材100を備えるガラスハウスでは、植物の成長を有意に促進することが可能になる。 The first glass member 100, ISO 9050: measured according to 2003 the visible light transmittance T v has the feature that is 78% or more. For this reason, in the 1st glass member 100, sufficient sunlight can be taken in in a glass house. As a result, in the glass house including the first glass member 100, it is possible to significantly promote the growth of plants.
 また、第1のガラス部材100は、第2の側104から第1の側102に向かって測定されたヘイズ率が15%以上である。このため、第1のガラス部材100を備えるガラスハウスは、光拡散性に優れ、前述の「陰」の問題を有意に抑制することができる。 Further, the first glass member 100 has a haze ratio measured from the second side 104 toward the first side 102 of 15% or more. For this reason, the glass house provided with the 1st glass member 100 is excellent in light diffusibility, and can suppress the above-mentioned "shade" problem significantly.
 また、第1のガラス部材100において、第2の側104から第1の側102に向かって測定された遮蔽係数SCは0.90以下である。従って、第1のガラス部材100を備えるガラスハウスでは、良好な遮熱性が得られ、ガラスハウスのランニングコストを有意に抑制することができる。 Further, in the first glass member 100, the shielding coefficient SC measured from the second side 104 toward the first side 102 is 0.90 or less. Therefore, in the glass house provided with the 1st glass member 100, favorable heat-shielding property is acquired and the running cost of a glass house can be suppressed significantly.
 (第2の構成)
 図2には、本発明の一実施形態による別のガラス部材の断面を模式的に示す。
(Second configuration)
In FIG. 2, the cross section of another glass member by one Embodiment of this invention is shown typically.
 図2に示すように、本発明の一実施形態による別のガラス部材(以下、「第2のガラス部材」と称する)200は、ガラス基板210と、該ガラス基板210の両側に配置された各層とを有する。 As shown in FIG. 2, another glass member (hereinafter referred to as a “second glass member”) 200 according to an embodiment of the present invention includes a glass substrate 210 and layers disposed on both sides of the glass substrate 210. And have.
 より具体的には、ガラス基板210は、第1の表面212および第2の表面214を有し、第1の表面212には、ガラス基板210に近い順に、アンダーコート層220、第1の遮熱層230、および第2の遮熱層240が配置されている。一方、ガラス基板210の第2の表面214には、防汚層280が配置されている。 More specifically, the glass substrate 210 has a first surface 212 and a second surface 214, and the undercoat layer 220 and the first shielding layer are formed on the first surface 212 in the order closer to the glass substrate 210. A thermal layer 230 and a second thermal barrier layer 240 are disposed. On the other hand, an antifouling layer 280 is disposed on the second surface 214 of the glass substrate 210.
 第2のガラス部材200は、第1の側202および第2の側204を有し、第1の側202は、第2の遮熱層240の側に対応し、第2の側204は、防汚層280の側に対応する。 The second glass member 200 has a first side 202 and a second side 204, the first side 202 corresponds to the second thermal barrier layer 240 side, and the second side 204 is It corresponds to the antifouling layer 280 side.
 ここで、ガラス基板210は、前述の第1のガラス部材100におけるガラス基板110と同様の構成を有しても良い。 Here, the glass substrate 210 may have the same configuration as the glass substrate 110 in the first glass member 100 described above.
 また、アンダーコート層220は、前述の第1のガラス部材100におけるアンダーコート層120と同様の材料で構成されても良い。ただし、アンダーコート層220は、第1のガラス部材100におけるアンダーコート層120とは異なり、実質的に平坦な表面を有する。これは、第2のガラス部材200では、アンダーコート層220の表面を特に荒らさなくても、好適なヘイズ率を得ることができるためである。 Further, the undercoat layer 220 may be made of the same material as the undercoat layer 120 in the first glass member 100 described above. However, unlike the undercoat layer 120 in the first glass member 100, the undercoat layer 220 has a substantially flat surface. This is because the second glass member 200 can obtain a suitable haze ratio even if the surface of the undercoat layer 220 is not particularly roughened.
 アンダーコート層220は、例えば、10nm~60nmの厚さを有する。厚さは、15nm~50nmの範囲であることが好ましく、20nm~45nmの範囲であることがより好ましい。 The undercoat layer 220 has a thickness of 10 nm to 60 nm, for example. The thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
 第1の遮熱層230は、酸化スズを含む層で構成される。第1の遮熱層230に含まれる酸化スズの量は、50質量%以上であることが好ましい。例えば、第1の遮熱層230は、酸化スズ(未ドープ)で構成されても良い。 The first heat shield layer 230 is composed of a layer containing tin oxide. The amount of tin oxide contained in the first heat shield layer 230 is preferably 50% by mass or more. For example, the first heat shield layer 230 may be made of tin oxide (undoped).
 第1の遮熱層230は、例えば、100nm~500nmの厚さを有する。厚さは、120nm~400nmの範囲であることが好ましく、140~350nmの範囲であることがより好ましい。 The first heat shield layer 230 has a thickness of 100 nm to 500 nm, for example. The thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
 一方、第2の遮熱層240は、前述の第1のガラス部材100における遮熱層230と同様の構成を有しても良い。例えば、第2の遮熱層240は、フッ素および/またはアンチモンがドープされた酸化スズ等で構成されても良い。 On the other hand, the second heat shield layer 240 may have the same configuration as the heat shield layer 230 in the first glass member 100 described above. For example, the second heat shielding layer 240 may be made of tin oxide or the like doped with fluorine and / or antimony.
 第2の遮熱層240は、例えば、100nm~500nmの厚さを有する。厚さは、120nm~400nmの範囲であることが好ましく、140~350nmの範囲であることがより好ましい。 The second heat shield layer 240 has a thickness of 100 nm to 500 nm, for example. The thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
 防汚層280は、第1のガラス部材100の防汚層180と同様の構成を有してもよい。また、防汚層280は、省略されても良い。 The antifouling layer 280 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 280 may be omitted.
 第2のガラス部材200も、前述の第1のガラス部材100と同様の特徴を有する。すなわち、第2のガラス部材200は、
 10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であり、
 可視光透過率Tが78%以上であり、
 ヘイズ率が15%以上であり、
 遮蔽係数SCが0.90以下である
という特徴を有する。
The second glass member 200 has the same characteristics as the first glass member 100 described above. That is, the second glass member 200 is
When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%,
Visible light transmittance Tv is 78% or more,
The haze rate is 15% or more,
The shielding coefficient SC is 0.90 or less.
 従って、第2のガラス部材200においても、前述の第1のガラス部材100と同様の効果を得ることができる。すなわち、第2のガラス部材200をガラスハウスに適用した際に、高温化による遮熱性の低下を有意に抑制することができる。また、ガラスハウス内に十分な太陽光を取り入れることが可能となり、良好な光拡散性により、前述の「陰」の問題が有意に抑制されるとともに、ガラスハウスのランニングコストが有意に抑制されるという効果を得ることができる。 Therefore, also in the second glass member 200, the same effect as that of the first glass member 100 described above can be obtained. That is, when the 2nd glass member 200 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
 (第3の構成)
 図3には、本発明の一実施形態によるさらに別のガラス部材の断面を模式的に示す。
(Third configuration)
In FIG. 3, the cross section of another glass member by one Embodiment of this invention is typically shown.
 図3に示すように、本発明の一実施形態によるさらに別のガラス部材(以下、「第3のガラス部材」と称する)300は、ガラス基板310と、該ガラス基板310の両側に配置された各層とを有する。 As shown in FIG. 3, still another glass member (hereinafter referred to as “third glass member”) 300 according to an embodiment of the present invention is disposed on a glass substrate 310 and on both sides of the glass substrate 310. Each layer.
 より具体的には、ガラス基板310は、第1の表面312および第2の表面314を有し、第1の表面312には、ガラス基板310に近い順に、第1のアンダーコート層350、第2のアンダーコート層320、第1の遮熱層330、および第2の遮熱層340が配置されている。一方、ガラス基板310の第2の表面314には、防汚層380が配置されている。 More specifically, the glass substrate 310 has a first surface 312 and a second surface 314, and the first undercoat layer 350, the first surface 312, and the first surface 312 are arranged in the order closer to the glass substrate 310. Two undercoat layers 320, a first heat shield layer 330, and a second heat shield layer 340 are disposed. On the other hand, an antifouling layer 380 is disposed on the second surface 314 of the glass substrate 310.
 なお、第1のアンダーコート層350および防汚層380は、省略されても良い。 Note that the first undercoat layer 350 and the antifouling layer 380 may be omitted.
 第3のガラス部材300は、第1の側302および第2の側304を有し、第1の側302は、第2の遮熱層340の側に対応し、第2の側304は、防汚層380の側に対応する。 The third glass member 300 has a first side 302 and a second side 304, the first side 302 corresponds to the second thermal barrier layer 340 side, and the second side 304 is It corresponds to the antifouling layer 380 side.
 ここで、ガラス基板310は、前述の第1のガラス部材100におけるガラス基板110と同様の構成を有しても良い。 Here, the glass substrate 310 may have the same configuration as the glass substrate 110 in the first glass member 100 described above.
 一方、第1のアンダーコート層350は、例えば、酸化チタンを含む層で構成される。第1のアンダーコート層350に含まれる酸化チタンの量は、50質量%以上であることが好ましい。例えば、第1のアンダーコート層350は、酸化チタン層(TiO)等で構成されても良い。 On the other hand, the first undercoat layer 350 is composed of, for example, a layer containing titanium oxide. The amount of titanium oxide contained in the first undercoat layer 350 is preferably 50% by mass or more. For example, the first undercoat layer 350 may be composed of a titanium oxide layer (TiO 2 ) or the like.
 第1のアンダーコート層350は、例えば、3nm~20nmの厚さを有する。厚さは、5nm~15nmの範囲であることが好ましい。 The first undercoat layer 350 has a thickness of 3 nm to 20 nm, for example. The thickness is preferably in the range of 5 nm to 15 nm.
 また、第2のアンダーコート層320は、酸化ケイ素を含む層で構成される。第2のアンダーコート層320に含まれる酸化ケイ素の量は、50質量%以上であることが好ましい。例えば、第2のアンダーコート層320は、酸化ケイ素層(SiO)等で構成されても良い。 The second undercoat layer 320 is composed of a layer containing silicon oxide. The amount of silicon oxide contained in the second undercoat layer 320 is preferably 50% by mass or more. For example, the second undercoat layer 320 may be composed of a silicon oxide layer (SiO 2 ) or the like.
 第2のアンダーコート層320は、実質的に平坦な表面を有し、例えば、10nm~60nmの厚さを有する。厚さは、15nm~50nmの範囲であることが好ましく、20nm~45nmの範囲であることがより好ましい。 The second undercoat layer 320 has a substantially flat surface, and has a thickness of 10 nm to 60 nm, for example. The thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
 第1の遮熱層330は、酸化スズを含む層で構成される。第1の遮熱層330に含まれる酸化スズの量は、50質量%以上であることが好ましい。例えば、第1の遮熱層330は、フッ素および/またはアンチモンがドープされた酸化スズ等で構成されても良い。 The first heat shield layer 330 is composed of a layer containing tin oxide. The amount of tin oxide contained in the first heat shield layer 330 is preferably 50% by mass or more. For example, the first heat shield layer 330 may be made of tin oxide or the like doped with fluorine and / or antimony.
 第1の遮熱層330は、例えば、100nm~500nmの厚さを有する。厚さは、120nm~400nmの範囲であることが好ましく、140~350nmの範囲であることがより好ましい。 The first heat shield layer 330 has a thickness of 100 nm to 500 nm, for example. The thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
 一方、第2の遮熱層340も、酸化スズを含む層で構成される。第2の遮熱層340に含まれる酸化スズの量は、50質量%以上であることが好ましい。例えば、第2の遮熱層340は、フッ素および/またはアンチモンがドープされた酸化スズ等で構成されても良い。 On the other hand, the second heat shield layer 340 is also composed of a layer containing tin oxide. The amount of tin oxide contained in the second heat shield layer 340 is preferably 50% by mass or more. For example, the second heat shielding layer 340 may be made of tin oxide or the like doped with fluorine and / or antimony.
 ここで、第2の遮熱層340は、第1の遮熱層330に比べて、キャリア濃度が高いという特徴を有する。例えば、第1の遮熱層330は、1×1020cm-3~4×1020cm-3の範囲のキャリア濃度を有する。これに対して、第2の遮熱層340は、3×1020cm-3~6×1020cm-3の範囲のキャリア濃度を有する。 Here, the second heat shield layer 340 has a feature that the carrier concentration is higher than that of the first heat shield layer 330. For example, the first thermal barrier layer 330 has a carrier concentration in the range of 1 × 10 20 cm −3 to 4 × 10 20 cm −3 . In contrast, the second thermal barrier layer 340 has a carrier concentration in the range of 3 × 10 20 cm −3 to 6 × 10 20 cm −3 .
 第2の遮熱層340は、例えば、100nm~500nmの厚さを有する。厚さは、120nm~400nmの範囲であることが好ましく、140~350nmの範囲であることがより好ましい。 The second heat shielding layer 340 has a thickness of 100 nm to 500 nm, for example. The thickness is preferably in the range of 120 nm to 400 nm, and more preferably in the range of 140 to 350 nm.
 防汚層380は、第1のガラス部材100の防汚層180と同様の構成を有してもよい。また、防汚層380は、省略されても良い。 The antifouling layer 380 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 380 may be omitted.
 第3のガラス部材300も、前述の第1のガラス部材100および第2のガラス部材200と同様の特徴を有する。すなわち、第3のガラス部材300は、
 10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であり、
 可視光透過率Tが78%以上であり、
 ヘイズ率が15%以上であり、
 遮蔽係数SCが0.90以下である
という特徴を有する。
The third glass member 300 also has the same characteristics as the first glass member 100 and the second glass member 200 described above. That is, the third glass member 300 is
When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%,
Visible light transmittance Tv is 78% or more,
The haze rate is 15% or more,
The shielding coefficient SC is 0.90 or less.
 従って、第3のガラス部材300においても、前述の第1のガラス部材100および第2のガラス部材200と同様の効果を得ることができる。すなわち、第3のガラス部材300をガラスハウスに適用した際に、高温化による遮熱性の低下を有意に抑制することができる。また、ガラスハウス内に十分な太陽光を取り入れることが可能となり、良好な光拡散性により、前述の「陰」の問題が有意に抑制されるとともに、ガラスハウスのランニングコストが有意に抑制されるという効果を得ることができる。 Therefore, the third glass member 300 can obtain the same effects as those of the first glass member 100 and the second glass member 200 described above. That is, when the 3rd glass member 300 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
 (第4の構成)
 図4には、本発明の一実施形態によるさらに別のガラス部材の断面を模式的に示す。
(Fourth configuration)
In FIG. 4, the cross section of another glass member by one Embodiment of this invention is shown typically.
 図4に示すように、本発明の一実施形態によるさらに別のガラス部材(以下、「第4のガラス部材」と称する)400は、ガラス基板410と、該ガラス基板410の両側に配置された各層とを有する。 As shown in FIG. 4, still another glass member (hereinafter referred to as “fourth glass member”) 400 according to an embodiment of the present invention is disposed on a glass substrate 410 and on both sides of the glass substrate 410. Each layer.
 より具体的には、ガラス基板410は、第1の表面412および第2の表面414を有し、第1の表面412には、ガラス基板410に近い順に、第1のアンダーコート層450、第2のアンダーコート層420、および遮熱層430が配置されている。一方、ガラス基板410の第2の表面414には、防汚層480が配置されている。 More specifically, the glass substrate 410 has a first surface 412 and a second surface 414. The first surface 412 has a first undercoat layer 450 and a first surface in the order closer to the glass substrate 410. Two undercoat layers 420 and a heat shielding layer 430 are disposed. On the other hand, an antifouling layer 480 is disposed on the second surface 414 of the glass substrate 410.
 第4のガラス部材400は、第1の側402および第2の側404を有し、第1の側402は、遮熱層430の側に対応し、第2の側404は、防汚層480の側に対応する。 The fourth glass member 400 has a first side 402 and a second side 404, the first side 402 corresponds to the side of the thermal barrier layer 430, and the second side 404 is an antifouling layer. This corresponds to the 480 side.
 ここで、ガラス基板410の第1の表面412は、比較的荒れた表面を有する。例えば、第1の表面412は、算術平均粗さRaが50μm~1500μmの範囲であっても良い。例えば、ガラス基板410は、型板ガラスで構成されても良い。 Here, the first surface 412 of the glass substrate 410 has a relatively rough surface. For example, the first surface 412 may have an arithmetic average roughness Ra in the range of 50 μm to 1500 μm. For example, the glass substrate 410 may be made of template glass.
 また、ガラス基板110は、例えば、鉄成分の含有量が抑制された、高透過ガラスで構成される。ガラス基板110の厚さは、例えば、1.5mm~6mmの範囲である。厚さは、2mm~5mmの範囲であることが好ましい。 Further, the glass substrate 110 is made of, for example, highly transmissive glass in which the content of iron components is suppressed. The thickness of the glass substrate 110 is, for example, in the range of 1.5 mm to 6 mm. The thickness is preferably in the range of 2 mm to 5 mm.
 一方、第1のアンダーコート層450は、前述の第3のガラス部材300における第1のアンダーコート層350と同様の構成を有しても良い。また、第2のアンダーコート層420は、前述の第3のガラス部材300における第2のアンダーコート層320と同様の構成を有しても良い。 On the other hand, the first undercoat layer 450 may have the same configuration as the first undercoat layer 350 in the third glass member 300 described above. Further, the second undercoat layer 420 may have the same configuration as the second undercoat layer 320 in the third glass member 300 described above.
 第1のアンダーコート層450は、例えば、3nm~20nmの厚さを有する。厚さは、5nm~15nmの範囲であることが好ましい。また、第2のアンダーコート層420は、例えば、10nm~60nmの厚さを有する。厚さは、15nm~50nmの範囲であることが好ましく、20nm~45nmの範囲であることがより好ましい。 The first undercoat layer 450 has a thickness of 3 nm to 20 nm, for example. The thickness is preferably in the range of 5 nm to 15 nm. Further, the second undercoat layer 420 has a thickness of 10 nm to 60 nm, for example. The thickness is preferably in the range of 15 nm to 50 nm, and more preferably in the range of 20 nm to 45 nm.
 また、遮熱層430は、前述の第1のガラス部材100における遮熱層130と同様の構成を有しても良い。 Moreover, the heat shield layer 430 may have the same configuration as the heat shield layer 130 in the first glass member 100 described above.
 遮熱層430は、例えば、100nm~1000nmの厚さを有する。厚さは、120nm~800nmの範囲であることが好ましく、140nm~700nmの範囲であることがより好ましく、150nm~500nmの範囲であることがさらに好ましい。 The heat shield layer 430 has a thickness of 100 nm to 1000 nm, for example. The thickness is preferably in the range of 120 nm to 800 nm, more preferably in the range of 140 nm to 700 nm, and still more preferably in the range of 150 nm to 500 nm.
 防汚層480は、第1のガラス部材100の防汚層180と同様の構成を有してもよい。また、防汚層480は、省略されても良い。 The antifouling layer 480 may have the same configuration as the antifouling layer 180 of the first glass member 100. Further, the antifouling layer 480 may be omitted.
 第4のガラス部材400も、前述の第1のガラス部材100~第3のガラス部材300と同様の特徴を有する。すなわち、第4のガラス部材400は、
 10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であり、
 可視光透過率Tが78%以上であり、
 ヘイズ率が10%以上であり、
 遮蔽係数SCが0.90以下である
という特徴を有する。
The fourth glass member 400 also has the same characteristics as the first glass member 100 to the third glass member 300 described above. That is, the fourth glass member 400 is
When the sample cut into 10 mm square was heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate was within 20%,
Visible light transmittance Tv is 78% or more,
The haze rate is 10% or more,
The shielding coefficient SC is 0.90 or less.
 従って、第4のガラス部材400においても、前述の第1のガラス部材100と同様の効果を得ることができる。すなわち、第4のガラス部材400をガラスハウスに適用した際に、高温化による遮熱性の低下を有意に抑制することができる。また、ガラスハウス内に十分な太陽光を取り入れることが可能となり、良好な光拡散性により、前述の「陰」の問題が有意に抑制されるとともに、ガラスハウスのランニングコストが有意に抑制されるという効果を得ることができる。 Therefore, also in the fourth glass member 400, the same effect as that of the first glass member 100 described above can be obtained. That is, when the 4th glass member 400 is applied to a glass house, the heat-shielding fall by high temperature can be suppressed significantly. In addition, it is possible to incorporate enough sunlight into the glass house, and the good light diffusibility significantly suppresses the above-mentioned “shade” problem and significantly reduces the running cost of the glass house. The effect that can be obtained.
 (本発明の一実施形態によるガラス部材の製造方法)
 次に、図5を参照して、前述のような特徴を有する本発明の一実施形態によるガラス部材の製造方法の一例について説明する。なお、ここでは、一例として、前述の図2に示した第2のガラス部材200を例に、その製造方法について説明する。
(Manufacturing method of the glass member by one Embodiment of this invention)
Next, with reference to FIG. 5, an example of the manufacturing method of the glass member by one Embodiment of this invention which has the above characteristics is demonstrated. Here, as an example, the manufacturing method will be described by taking the second glass member 200 shown in FIG. 2 as an example.
 図5には、第2のガラス部材200の製造方法(以下、「第1の製造方法」という)のフローの一例を概略的に示す。 FIG. 5 schematically shows an example of a flow of a method for manufacturing the second glass member 200 (hereinafter referred to as “first manufacturing method”).
 図5に示すように、第1の製造方法は、
 (a)ガラス基板の第1の表面に、アンダーコート層を設置するステップ(ステップS110)と、
 (b)前記アンダーコート層の上に、第1の遮熱層および第2の遮熱層を順番に設置するステップ(ステップS120)と、
 (c)前記ガラス基板の第2の表面に、防汚層を設置するステップ(ステップS130)と、
 を有する。
As shown in FIG. 5, the first manufacturing method is:
(A) installing an undercoat layer on the first surface of the glass substrate (step S110);
(B) On the undercoat layer, a step of installing a first heat shield layer and a second heat shield layer in order (step S120);
(C) installing an antifouling layer on the second surface of the glass substrate (step S130);
Have
 以下、各ステップについて、詳しく説明する。なお、以下の説明では、明確化のため、各部材を表す際に、図2に示した参照符号を使用する。 Hereafter, each step will be described in detail. In the following description, the reference numerals shown in FIG. 2 are used for representing each member for the sake of clarity.
 (ステップS110)
 まず、ガラス基板210が準備される。
(Step S110)
First, the glass substrate 210 is prepared.
 前述のように、ガラス基板210の種類は特に限られないが、ガラス基板210として、Fe成分が抑制された高透過ガラスを使用することで、可視光透過率Tを高めることができる。例えば、ガラス基板210は、ソーダライムシリケート系の高透過ガラスである。 As described above, the type of glass substrate 210 is not particularly limited, a glass substrate 210, using a high transmittance glass Fe component is suppressed, it is possible to increase the visible light transmittance T v. For example, the glass substrate 210 is a soda lime silicate high transmission glass.
 次に、ガラス基板の第1の表面212に、アンダーコート層220が配置される。 Next, the undercoat layer 220 is disposed on the first surface 212 of the glass substrate.
 アンダーコート層220は、化学気相成膜(CVD)法、電子ビーム蒸層法、真空蒸着法、スパッタ法、およびスプレー法等、各種成膜方法を用いて形成することができる。 The undercoat layer 220 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
 例えば、アンダーコート層220が酸化ケイ素層(SiO)で構成される場合、アンダーコート層220は、大気圧CVD法によって成膜されてもよい。この場合、原料としては、モノシラン、テトラエトキシシラン、酸素、二酸化炭素、窒素などのガス状の原料物質を用いることができる。原料ガスは、予め混合してから、ガラス基板210の第1の表面212上に搬送してもよい。あるいは、原料ガスは、ガラス基板210の第1の表面212上で混合してもよい。 For example, when the undercoat layer 220 is composed of a silicon oxide layer (SiO 2 ), the undercoat layer 220 may be formed by an atmospheric pressure CVD method. In this case, gaseous raw materials such as monosilane, tetraethoxysilane, oxygen, carbon dioxide, and nitrogen can be used as the raw material. The source gas may be mixed on the substrate before being conveyed onto the first surface 212 of the glass substrate 210. Alternatively, the source gas may be mixed on the first surface 212 of the glass substrate 210.
 また、例えば、アンダーコート層220が酸炭化ケイ素層(SiOC)で構成される場合、アンダーコート層220を大気圧CVD法によって形成する際に、原料ガスに、メタン、エチレン、および/またはアセチレンなどの炭素含有ガスを含有させてもよい。このような炭素含有ガスを用いた場合、膜状のケイ素化合物とともに、粒子状のケイ素化合物が形成しやすくなり、ヘイズ率を高めることができる。 Further, for example, when the undercoat layer 220 is composed of a silicon oxycarbide layer (SiOC), when the undercoat layer 220 is formed by an atmospheric pressure CVD method, methane, ethylene, and / or acetylene is used as a source gas. The carbon-containing gas may be contained. When such a carbon-containing gas is used, it becomes easy to form a particulate silicon compound together with the film-like silicon compound, and the haze ratio can be increased.
 アンダーコート層220を形成する際のガラス基板210の温度は、700℃~1100℃であることが好ましい。ガラス基板210の温度が700℃未満あるいは1100℃超であると、膜の形成速度が低下しやすくなる。 The temperature of the glass substrate 210 when forming the undercoat layer 220 is preferably 700 ° C. to 1100 ° C. When the temperature of the glass substrate 210 is lower than 700 ° C. or higher than 1100 ° C., the film formation rate tends to decrease.
 (ステップS120)
 次に、アンダーコート層220の上に、第1の遮熱層230および第2の遮熱層240が順次形成される。
(Step S120)
Next, the first heat shield layer 230 and the second heat shield layer 240 are sequentially formed on the undercoat layer 220.
 遮熱層230は、例えば、化学気相成膜(CVD)法、電子ビーム蒸層法、真空蒸着法、スパッタ法、およびスプレー法等、各種成膜方法を用いて形成することができる。 The thermal barrier layer 230 can be formed by using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
 例えば、第1の遮熱層230が酸化スズ層(SnO)で構成される場合、第1の遮熱層230は、大気圧CVD法によって成膜されてもよい。この場合、原料としては、四塩化スズなどの無機系のスズ化合物、あるいは有機系のスズ化合物を用いることができる。 For example, when the first heat shield layer 230 is formed of a tin oxide layer (SnO 2 ), the first heat shield layer 230 may be formed by an atmospheric pressure CVD method. In this case, an inorganic tin compound such as tin tetrachloride or an organic tin compound can be used as a raw material.
 ここで、有機系のスズ化合物とは、有機基を含むスズ化合物であって、有機基とスズ原子が、炭素原子-スズ原子の間の結合によって結合されている化合物を意味する。特に、有機基としては、アルキル基およびアルケニル基などの炭化水素基が好ましい。 Here, the organic tin compound means a tin compound containing an organic group, in which the organic group and a tin atom are bonded by a bond between a carbon atom and a tin atom. In particular, the organic group is preferably a hydrocarbon group such as an alkyl group and an alkenyl group.
 スズ原子に結合する有機基の数は、2個以上であってもよい。有機基としては、炭素数1~10のアルキル基が好ましい。有機基以外のスズ原子に結合した反応基および原子としては、塩素原子が好ましい。また、有機系のスズ化合物は、4価のスズ化合物、すなわちスズ(IV)化合物であることが好ましい。有機系のスズ化合物としては、例えば、モノメチルスズトリクロライド、ジメチルスズジクロライド、モノブチルスズトリクロライド、テトラメチルスズ、テトラブチルスズ、およびジブチルスズジクロライド等があげられる。これらの中でも、モノブチルスズトリクロライド(以下、MBTCという)は、入手が容易で安価であり、取り扱いが容易であるという理由から好ましい。 Two or more organic groups may be bonded to the tin atom. As the organic group, an alkyl group having 1 to 10 carbon atoms is preferable. As the reactive group and atom bonded to the tin atom other than the organic group, a chlorine atom is preferable. The organic tin compound is preferably a tetravalent tin compound, that is, a tin (IV) compound. Examples of the organic tin compound include monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, tetramethyltin, tetrabutyltin, and dibutyltin dichloride. Among these, monobutyltin trichloride (hereinafter referred to as MBTC) is preferable because it is easily available, inexpensive, and easy to handle.
 次に、第2の遮熱層240が形成される。 Next, the second heat shield layer 240 is formed.
 第2の遮熱層240は、例えば、化学気相成膜(CVD)法、電子ビーム蒸層法、真空蒸着法、スパッタ法、およびスプレー法等、各種成膜方法を用いて形成することができる。 The second thermal barrier layer 240 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method. it can.
 例えば、第2の遮熱層240がフッ素ドープされた酸化スズ層(SnO)で構成される場合、第2の遮熱層240は、大気圧CVD法によって成膜されてもよい。この場合、原料として、前述の第1の遮熱層230の成膜において使用される無機系または有機系のスズ化合物と、フッ素化合物との混合物が使用される。 For example, when the second heat shield layer 240 is formed of a fluorine-doped tin oxide layer (SnO 2 ), the second heat shield layer 240 may be formed by an atmospheric pressure CVD method. In this case, as a raw material, a mixture of an inorganic or organic tin compound used in the film formation of the first heat shield layer 230 and a fluorine compound is used.
 フッ素化合物としては、フッ化水素およびトリフルオロ酢酸などが挙げられる。フッ素化合物としては、特にフッ化水素が好ましい。 Fluorine compounds include hydrogen fluoride and trifluoroacetic acid. As the fluorine compound, hydrogen fluoride is particularly preferable.
 第1の遮熱層230および第2の遮熱層240のいずれの成膜においても、原料ガスは、予め混合してから、搬送されてもよい。あるいは、原料ガスは、被成膜対象の表面上で混合してもよい。原料物質が液体の場合は、バブリング法や気化装置などを用いて、原料物質を気化させてガス状としてもよい。 In any film formation of the first heat-insulating layer 230 and the second heat-insulating layer 240, the source gas may be transported after being mixed in advance. Alternatively, the source gas may be mixed on the surface of the film formation target. When the raw material is a liquid, the raw material may be vaporized using a bubbling method or a vaporizer.
 原料ガス中のスズ化合物1モルに対する水の量は、10~30モルとすることが好ましい。水の量が10モル未満であると、形成する膜の抵抗値が増大しやすく、結果として遮蔽係数SCが増大しやすくなる。また、光線吸収が増大しやすくなる。 The amount of water relative to 1 mol of tin compound in the raw material gas is preferably 10 to 30 mol. If the amount of water is less than 10 mol, the resistance value of the film to be formed tends to increase, and as a result, the shielding coefficient SC tends to increase. Further, light absorption tends to increase.
 一方、水の量が30モル超であると、水の量の増加にともない、原料ガス容量が増大し、原料ガスの流速が高まることにより、着膜効率が低下するおそれがある。スズ化合物1モルに対する水の量は、15~25モルであることがより好ましく、18~22モルであることがさらに好ましい。 On the other hand, if the amount of water is more than 30 mol, as the amount of water increases, the raw material gas capacity increases and the flow rate of the raw material gas increases, so that the film deposition efficiency may be reduced. The amount of water relative to 1 mol of the tin compound is more preferably 15 to 25 mol, and further preferably 18 to 22 mol.
 原料ガスが酸素を含有する場合、原料ガス中のスズ化合物1モルに対する酸素の量は、0モル超~20モルとすることが好ましく、4~20モルとすることがより好ましい。酸素の量が4モル未満であると、生成する膜の抵抗値や光線吸収が増大する場合がある。一方、酸素の量が20モル超であると、原料ガス容量が増大し、原料ガスの流速が高まることにより着膜効率が低下するおそれがある。スズ化合物1モルに対する酸素の量は6~15モルであることがより好ましく、8~10モルであることがさらに好ましい。 When the source gas contains oxygen, the amount of oxygen with respect to 1 mol of the tin compound in the source gas is preferably more than 0 to 20 mol, and more preferably 4 to 20 mol. If the amount of oxygen is less than 4 mol, the resistance value and light absorption of the film to be produced may increase. On the other hand, when the amount of oxygen exceeds 20 mol, the raw material gas capacity increases, and the flow rate of the raw material gas increases, so that the film deposition efficiency may be lowered. The amount of oxygen relative to 1 mol of the tin compound is more preferably 6 to 15 mol, and further preferably 8 to 10 mol.
 第2の遮熱層240の成膜において、原料ガス中のスズ化合物1モルに対するフッ素化合物の量は、0.2~1.2モルとすることが好ましい。フッ素化合物の量が0.2モル未満である場合や1.2モル超である場合、形成する膜の抵抗値が増大しやすくなる。スズ化合物1モルに対するフッ素化合物の量は0.4~1.0モルであることがより好ましく、0.5~0.7モルであることがさらに好ましい。 In the formation of the second heat shielding layer 240, the amount of the fluorine compound relative to 1 mol of the tin compound in the raw material gas is preferably 0.2 to 1.2 mol. When the amount of the fluorine compound is less than 0.2 mol or more than 1.2 mol, the resistance value of the formed film tends to increase. The amount of the fluorine compound relative to 1 mol of the tin compound is more preferably 0.4 to 1.0 mol, and further preferably 0.5 to 0.7 mol.
 第1の遮熱層230および第2の遮熱層240を形成する際のガラス基板210の温度は、500℃~650℃であることが好ましい。ガラスの温度が500℃未満であると、第1および第2の遮熱層230、240の形成速度が低下するとともに、結晶性が低下する。その結果、ヘイズ率の低下および移動度の低下が生じる(移動度の低下は、シート抵抗の増大に対応し、シート抵抗の増大は遮熱性の低下に対応する)。一方、ガラス基板210の温度が650℃超であると、ガラスの粘性が低い状態で成膜が実施されるため、ガラスが室温まで降温される過程で、反りが生じるおそれがある。 The temperature of the glass substrate 210 when forming the first heat shield layer 230 and the second heat shield layer 240 is preferably 500 ° C. to 650 ° C. When the temperature of the glass is lower than 500 ° C., the formation rate of the first and second heat shielding layers 230 and 240 is lowered, and the crystallinity is lowered. As a result, a decrease in haze rate and a decrease in mobility occur (a decrease in mobility corresponds to an increase in sheet resistance, and an increase in sheet resistance corresponds to a decrease in heat shielding properties). On the other hand, when the temperature of the glass substrate 210 is higher than 650 ° C., film formation is performed with the glass having a low viscosity, and thus there is a risk of warping in the process of lowering the glass to room temperature.
 ガラス基板210の温度は、520℃~750℃であることが好ましく、540℃~700℃であることがより好ましい。 The temperature of the glass substrate 210 is preferably 520 ° C. to 750 ° C., more preferably 540 ° C. to 700 ° C.
 なお、ステップS110およびステップS120におけるガラス基板上へのコーティングの形成は、フロート設備でガラスを作製する過程でオンライン法によって実施しても良いし、フロート法で得られたガラスを再加熱して成膜を実施するオフライン法によっても良い。 In addition, the formation of the coating on the glass substrate in step S110 and step S120 may be performed by an on-line method in the process of producing the glass with the float facility, or the glass obtained by the float method is reheated. An off-line method for carrying out the film may be used.
 (ステップS130)
 次に、ガラス基板210の第2の表面214に、防汚層280が設置される。
(Step S130)
Next, the antifouling layer 280 is provided on the second surface 214 of the glass substrate 210.
 防汚層280は、例えば、化学気相成膜(CVD)法、電子ビーム蒸層法、真空蒸着法、スパッタ法、およびスプレー法等、各種成膜方法を用いて形成することができる。 The antifouling layer 280 can be formed using various film forming methods such as a chemical vapor deposition (CVD) method, an electron beam vapor deposition method, a vacuum deposition method, a sputtering method, and a spray method.
 以上、第2のガラス部材200を例に、その製造方法の一例について説明した。 The example of the manufacturing method has been described above by taking the second glass member 200 as an example.
 しかしながら、説明された製造方法は、単なる一例であって、第2のガラス部材200は、その他の製造方法で製造されてもよい。 However, the manufacturing method described is merely an example, and the second glass member 200 may be manufactured by other manufacturing methods.
 例えば、前述の例では、防汚層280は、ステップS130において、ガラス基板210の第1の表面212における各層が成膜された後に、形成される。しかしながら、最初に、ガラス基板210の第2の表面214に防汚層280を形成してから、ガラス基板210の第1の表面212に、各層220~240を設置しても良い。 For example, in the above-described example, the antifouling layer 280 is formed after each layer on the first surface 212 of the glass substrate 210 is formed in step S130. However, first, the antifouling layer 280 may be formed on the second surface 214 of the glass substrate 210 and then the layers 220 to 240 may be installed on the first surface 212 of the glass substrate 210.
 また、第1の製造方法には、さらに、ガラス基板210を風冷強化あるいは化学強化する工程(強化工程)が含まれても良い。この強化工程は、例えば、ステップS110の前、またはステップS130の後など、いかなる順番で実施されてもよい。 In addition, the first manufacturing method may further include a step (strengthening step) of strengthening the glass substrate 210 by air cooling or chemical strengthening. This strengthening process may be performed in any order, for example, before step S110 or after step S130.
 強化工程を実施することにより、ガラス基板210、さらには第2のガラス部材200の強度が向上する。成膜後にガラス部材に強化処理を施す場合、化学強化は表裏面のイオン交換のされ方が異なる結果ガラス部材に反りを生じさせるおそれがあるため、風冷強化による処理が好ましい。 The strength of the glass substrate 210 and further the second glass member 200 is improved by performing the strengthening step. When the glass member is subjected to a tempering treatment after film formation, chemical tempering may cause warping of the glass member as a result of different ion exchange methods on the front and back surfaces, and thus treatment by air cooling tempering is preferred.
 なお、ステップS130におけるガラス基板上へのコーティングの形成は、フロート設備でガラスを作製する過程でオンライン法によって実施しても良いし、フロート法で得られたガラスを再加熱して成膜を実施するオフライン法によっても良い。 In addition, the formation of the coating on the glass substrate in step S130 may be performed by an on-line method in the process of producing the glass with the float facility, or the film obtained by the float method is reheated to form the film. It may be by offline method.
 この他にも各種変更が可能であることは、当業者には明らかである。 It will be apparent to those skilled in the art that other various modifications are possible.
 また、前述の第1の製造方法の一部を変更することにより、第1のガラス部材100、第3のガラス部材300,および第4のガラス部材400が製造できることは、当業者には容易に推定できる。 Moreover, it is easy for those skilled in the art that the 1st glass member 100, the 3rd glass member 300, and the 4th glass member 400 can be manufactured by changing a part of above-mentioned 1st manufacturing method. Can be estimated.
 次に、本発明の実施例について説明する。なお、以下の説明において、例1~例6、例8および例10は、実施例であり、例7および例9は、比較例である。 Next, examples of the present invention will be described. In the following description, Examples 1 to 6, Example 8 and Example 10 are examples, and Examples 7 and 9 are comparative examples.
 (例1)
 前述の図1に示したような構成を有するガラス部材を構成した。
(Example 1)
A glass member having the configuration as shown in FIG. 1 was configured.
 ガラス基板には、厚さが4mmの高透過ソーダライムシリケートガラスを使用した。 The glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
 このガラス基板の一方の表面(第1の表面)に、アンダーコート層として、SiOC膜を成膜した。SiOC層は、CVD法により形成した(目標膜厚85nm)。なお、アンダーコート層の表面は、表面粗さ(算術平均粗さRa)が10nm~100nmの範囲となるようにした。 An SiOC film was formed as an undercoat layer on one surface (first surface) of this glass substrate. The SiOC layer was formed by the CVD method (target film thickness 85 nm). The surface of the undercoat layer was adjusted to have a surface roughness (arithmetic average roughness Ra) of 10 nm to 100 nm.
 次に、SiOC層の上に、遮熱層として、フッ素ドープされたSnO層を成膜した。フッ素ドープされたSnO層は、MBTCおよびフッ化水素を原料として、CVD法により形成した(目標膜厚340nm)。フッ素ドープ量は、フッ素化合物に対するスズ化合物のモル比として0.5~0.7とした。 Next, a fluorine-doped SnO 2 layer was formed as a heat shield layer on the SiOC layer. The fluorine-doped SnO 2 layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 340 nm). The fluorine doping amount was 0.5 to 0.7 as the molar ratio of the tin compound to the fluorine compound.
 なお、ガラス基板の第2の表面に、防汚層は設置しなかった。 In addition, the antifouling layer was not installed on the second surface of the glass substrate.
 得られたガラス部材を「例1に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 1”.
 (例2)
 例1と同様の方法により、ガラス部材を構成した。
(Example 2)
A glass member was constructed in the same manner as in Example 1.
 ただし、この例2では、ガラス基板として、厚さが3mmのソーダライムガラスを使用した。また、アンダーコート層の表面は、表面粗さ(算術平均粗さRa)が10nm~100nmの範囲となるようにした。 However, in Example 2, soda lime glass having a thickness of 3 mm was used as the glass substrate. The surface of the undercoat layer was made to have a surface roughness (arithmetic average roughness Ra) in the range of 10 nm to 100 nm.
 その他の条件は、例1の場合と同様である。 Other conditions are the same as in Example 1.
 得られたガラス部材を「例2に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 2”.
 (例3)
 例2と同様の方法により、ガラス部材を構成した。
(Example 3)
A glass member was constructed in the same manner as in Example 2.
 ただし、この例3では、ガラス基板として、厚さが4mmのソーダライムガラスを使用した。また、第1の遮熱層の厚さは、190nmを目標とした。 However, in Example 3, soda lime glass having a thickness of 4 mm was used as the glass substrate. In addition, the thickness of the first heat shield layer was set to 190 nm.
 その他の条件は、例2の場合と同様である。 Other conditions are the same as in Example 2.
 得られたガラス部材を「例3に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 3”.
 (例4)
 前述の図2に示したような構成のガラス部材を構成した。
(Example 4)
A glass member having the structure as shown in FIG.
 ガラス基板には、厚さが4mmの高透過ソーダライムシリケートガラスを使用した。 The glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
 このガラス基板の一方の表面(第1の表面)に、アンダーコート層として、SiOC膜を成膜した。SiOC層は、CVD法により形成した(目標膜厚85nm)。 An SiOC film was formed as an undercoat layer on one surface (first surface) of this glass substrate. The SiOC layer was formed by the CVD method (target film thickness 85 nm).
 次に、SiOC層の上に、第1の遮熱層として、未ドープのSnOを成膜した。SnO層は、MBTCを原料として使用し、CVD法により形成した(目標膜厚170nm)。さらに、第1の遮熱層の上に、第2の遮熱層として、フッ素ドープされたSnO層を成膜した。フッ素ドープされたSnO層は、MBTCおよびフッ化水素を原料として使用し、CVD法により形成した(目標膜厚170nm)。フッ素ドープ量は、0.5~0.7とした。 Next, an undoped SnO 2 film was formed on the SiOC layer as a first heat shield layer. The SnO 2 layer was formed by a CVD method using MBTC as a raw material (target film thickness 170 nm). Further, a fluorine-doped SnO 2 layer was formed as a second heat shield layer on the first heat shield layer. The fluorine-doped SnO 2 layer was formed by CVD using MBTC and hydrogen fluoride as raw materials (target film thickness 170 nm). The fluorine doping amount was 0.5 to 0.7.
 なお、ガラス基板の第2の表面に、防汚層は設置しなかった。 In addition, the antifouling layer was not installed on the second surface of the glass substrate.
 得られたガラス部材を「例4に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 4”.
 (例5)
 前述の図3に示したような構成のガラス部材を構成した。
(Example 5)
A glass member having the structure as shown in FIG. 3 was constructed.
 ガラス基板には、厚さが4mmの高透過ソーダライムシリケートガラスを使用した。 The glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
 このガラス基板の一方の表面(第1の表面)に、第1のアンダーコート層として、TiO層を成膜した。TiO層は、CVD法により形成した(目標膜厚10nm)。次に、第1のアンダーコート層の上に、第2のアンダーコート層として、SiO層を成膜した。SiO層は、CVD法により形成した(目標膜厚35nm)。 A TiO 2 layer was formed as a first undercoat layer on one surface (first surface) of the glass substrate. The TiO 2 layer was formed by the CVD method (target film thickness 10 nm). Next, a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer. The SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
 次に、SiO層の上に、第1の遮熱層として、フッ素ドープされたSnO層を成膜した。第1の遮熱層は、フッ化水素およびSnClを原料として使用し、CVD法により形成した(目標膜厚170nm)。フッ素ドープ量は、0.5~0.7とした。 Next, a fluorine-doped SnO 2 layer was formed as a first heat shielding layer on the SiO 2 layer. The first thermal barrier layer was formed by CVD using hydrogen fluoride and SnCl 4 as raw materials (target film thickness 170 nm). The fluorine doping amount was 0.5 to 0.7.
 さらに、第1の遮熱層の上に、第2の遮熱層として、フッ素ドープされたSnO層を成膜した。第2の遮熱層は、MBTCおよびフッ化水素を原料として使用し、CVD法により形成した(目標膜厚170nm)。フッ素ドープ量は、0.5~0.7とした。 Further, a fluorine-doped SnO 2 layer was formed as a second heat shield layer on the first heat shield layer. The second thermal barrier layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 170 nm). The fluorine doping amount was 0.5 to 0.7.
 なお、ガラス基板の第2の表面に、防汚層は設置しなかった。 In addition, the antifouling layer was not installed on the second surface of the glass substrate.
 得られたガラス部材を「例5に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 5”.
 (例6)
 前述の図4に示したような構成のガラス部材を構成した。
(Example 6)
A glass member having the structure as shown in FIG. 4 was constructed.
 ガラス基板には、厚さが4mmの型板ガラス(ソーダライムシリケートガラス)を使用した。このガラス基板の一方の表面は、算術平均粗さRaが50μm~1500μmの範囲の表面粗さを有する。 For the glass substrate, a template glass (soda lime silicate glass) having a thickness of 4 mm was used. One surface of the glass substrate has a surface roughness with an arithmetic average roughness Ra in the range of 50 μm to 1500 μm.
 このガラス基板の第1の表面に、第1のアンダーコート層として、TiO層を成膜した。TiO層は、CVD法により形成した(目標膜厚10nm)。次に、第1のアンダーコート層の上に、第2のアンダーコート層として、SiO層を成膜した。SiO層は、CVD法により形成した(目標膜厚35nm)。 A TiO 2 layer was formed as a first undercoat layer on the first surface of the glass substrate. The TiO 2 layer was formed by the CVD method (target film thickness 10 nm). Next, a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer. The SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
 次に、SiO層の上に、遮熱層として、フッ素ドープされたSnO層を成膜した。遮熱層は、MBTCおよびフッ化水素を原料として使用し、CVD法により形成した(目標膜厚350nm)。フッ素ドープ量は、0.5~0.7とした。 Next, a fluorine-doped SnO 2 layer was formed as a heat shield layer on the SiO 2 layer. The thermal barrier layer was formed by the CVD method using MBTC and hydrogen fluoride as raw materials (target film thickness 350 nm). The fluorine doping amount was 0.5 to 0.7.
 なお、ガラス基板の第2の表面に、防汚層は設置しなかった。 In addition, the antifouling layer was not installed on the second surface of the glass substrate.
 得られたガラス部材を「例6に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 6”.
 (例7)
 前述の例2と同様の方法により、ガラス部材を構成した。
(Example 7)
A glass member was formed by the same method as in Example 2 described above.
 ただし、この例7では、ガラス基板として、厚さが4mmのソーダライムガラスを使用した。また、遮熱層の厚さは、490nmとした。 However, in Example 7, soda lime glass having a thickness of 4 mm was used as the glass substrate. The thickness of the heat shield layer was 490 nm.
 その他の条件は、例2の場合と同様である。 Other conditions are the same as in Example 2.
 得られたガラス部材を「例7に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 7.”
 (例8)
 前述の例2と同様の方法により、ガラス部材を構成した。
(Example 8)
A glass member was formed by the same method as in Example 2 described above.
 ただし、この例8では、ガラス基板として、厚さが5mmのソーダライムガラスを使用した。また、遮熱層の厚さは、340nmとした。 However, in Example 8, soda lime glass having a thickness of 5 mm was used as the glass substrate. The thickness of the heat shield layer was 340 nm.
 その他の条件は、例2の場合と同様である。 Other conditions are the same as in Example 2.
 得られたガラス部材を「例8に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 8”.
 (例9)
 例3で使用した厚さが4mmのソーダライムガラス基板を、例9に係るガラス部材とした。すなわち、例9に係るガラス部材は、ガラス基板のみから構成され、いかなるコーティングも有しない。
(Example 9)
The soda lime glass substrate having a thickness of 4 mm used in Example 3 was used as the glass member according to Example 9. That is, the glass member according to Example 9 is composed only of a glass substrate and does not have any coating.
 (例10)
 以下の方法で、ガラス部材を製造した。
(Example 10)
The glass member was manufactured by the following method.
 ガラス基板には、厚さが4mmの高透過ソーダライムシリケートガラスを使用した。 The glass substrate used was a highly transparent soda lime silicate glass with a thickness of 4 mm.
 このガラス基板の一方の表面(第1の表面)に、第1のアンダーコート層として、TiO層を成膜した。TiO層は、CVD法により形成した(目標膜厚10nm)。次に、第1のアンダーコート層の上に、第2のアンダーコート層として、SiO層を成膜した。SiO層は、CVD法により形成した(目標膜厚35nm)。 A TiO 2 layer was formed as a first undercoat layer on one surface (first surface) of the glass substrate. The TiO 2 layer was formed by the CVD method (target film thickness 10 nm). Next, a SiO 2 layer was formed as a second undercoat layer on the first undercoat layer. The SiO 2 layer was formed by the CVD method (target film thickness 35 nm).
 次に、SiO層の上に、第1の遮熱層として、フッ素ドープされたSnO層を成膜した。第1の遮熱層は、フッ化水素およびSnClを原料として使用し、CVD法により形成した(目標膜厚350nm)。フッ素ドープ量は、0.5~0.7とした。 Next, a fluorine-doped SnO 2 layer was formed as a first heat shielding layer on the SiO 2 layer. The first thermal barrier layer was formed by CVD using hydrogen fluoride and SnCl 4 as raw materials (target film thickness 350 nm). The fluorine doping amount was 0.5 to 0.7.
 なお、ガラス基板の第2の表面に、防汚層は設置しなかった。 In addition, the antifouling layer was not installed on the second surface of the glass substrate.
 得られたガラス部材を「例10に係るガラス部材」と称する。 The obtained glass member is referred to as “glass member according to Example 10”.
 以下の表1には、各ガラス部材の構成の概略をまとめて示す。 Table 1 below summarizes the configuration of each glass member.
Figure JPOXMLDOC01-appb-T000001
 
 (評価)
 前述の各ガラス部材を用いて、以下の評価を行った。
Figure JPOXMLDOC01-appb-T000001

(Evaluation)
The following evaluation was performed using each glass member described above.
 (遮蔽係数SC)
 前述のように、遮蔽係数SCは、ISO9050:2003に準拠して測定された日射熱取得率をg値(%)としたとき、以下の(1)式で表される:
 
   SC=g値/0.88   (1)式
 
 ここで、g値は、分光光度計(パーキンエルマー製LAMBDA950)による測定から算出した。
(Shielding coefficient SC)
As described above, the shielding coefficient SC is expressed by the following equation (1) when the solar heat gain rate measured in accordance with ISO 9050: 2003 is a g value (%):

SC = g value / 0.88 (1) Formula
Here, the g value was calculated from the measurement with a spectrophotometer (LAMBDA950 manufactured by PerkinElmer).
 (可視光透過率T
 可視光透過率Tは、前述のように、ISO9050:2003に準拠し、分光光度計(パーキンエルマー製LAMBDA950)による測定から算出した。
(Visible light transmittance T v )
Visible light transmittance T v, as described above, ISO9050: conforms to 2003, calculated from the spectrophotometric measurements (Perkin Elmer LAMBDA950).
 (ヘイズ率)
 各ガラス部材のヘイズ率は、ヘイズメータ(スガ試験機製HZ-2)を用いて測定した。
(Haze rate)
The haze ratio of each glass member was measured using a haze meter (HZ-2 manufactured by Suga Test Instruments).
 (シート抵抗上昇率)
 前述のように、シート抵抗上昇率は、(熱処理後のサンプルのシート抵抗-熱処理前のサンプルのシート抵抗)/(熱処理前のサンプルのシート抵抗)×100で表される。
(Sheet resistance increase rate)
As described above, the sheet resistance increase rate is expressed by (sheet resistance of the sample after heat treatment−sheet resistance of the sample before heat treatment) / (sheet resistance of the sample before heat treatment) × 100.
 なお、熱処理は、各ガラス部材から、サンプルを10mm角に切り出し、このサンプルを使用して行った。熱処理は、各サンプルを大気雰囲気下、670℃で7分30秒保持することにより実施した。 The heat treatment was performed using a sample cut into a 10 mm square from each glass member. The heat treatment was carried out by holding each sample at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere.
 シート抵抗の測定には、三菱化学アナリテック製ロレスタMCP-T360を使用した。 For measurement of sheet resistance, Loresta MCP-T360 manufactured by Mitsubishi Chemical Analytech was used.
 各ガラス部材において得られた評価結果を、まとめて表2に示した。 Table 2 summarizes the evaluation results obtained for each glass member.
Figure JPOXMLDOC01-appb-T000002
 
 得られた評価結果から、例1~例6および例8に係るガラス部材では、SC値がいずれも0.9以下となっており、良好な遮熱性を有することがわかった。また、例1~例6および例8に係るガラス部材では、可視光透過率Tがいずれも78%以上となっており、良好な透過性を有することがわかった。また、また、例1~例6および例8に係るガラス部材では、ヘイズ率がいずれも10%以上となっており、良好な光拡散性を有することがわかった。さらに、例1~例6、例8および例10に係るガラス部材では、シート抵抗上昇率がいずれも20%以下となっており、良好な耐熱性を有することがわかった。
Figure JPOXMLDOC01-appb-T000002

From the evaluation results obtained, it was found that the glass members according to Examples 1 to 6 and Example 8 each had an SC value of 0.9 or less, and had good heat shielding properties. Further, in the glass members according to Examples 1 to 6 and Example 8, the visible light transmittance Tv was 78% or more, and it was found that the glass members had good transmittance. In addition, the glass members according to Examples 1 to 6 and Example 8 all had a haze ratio of 10% or more, and were found to have good light diffusibility. Furthermore, in the glass members according to Examples 1 to 6, Example 8, and Example 10, the sheet resistance increase rate was 20% or less, and it was found that the glass members had good heat resistance.
 これに対して、例7および例9に係るガラス部材では、SC値、可視光透過率、ヘイズ率、およびシート抵抗上昇率の少なくとも一つが所定の値を満たしていなかった。このことから、例7および例9に係るガラス部材は、例1~例6および例8に係るガラス部材に比べて、ガラスハウスへの適用性があまり良好ではないと言える。 In contrast, in the glass members according to Examples 7 and 9, at least one of the SC value, visible light transmittance, haze rate, and sheet resistance increase rate did not satisfy the predetermined value. From this, it can be said that the glass members according to Examples 7 and 9 have less applicability to the glass house than the glass members according to Examples 1 to 6 and Example 8.
 本願は、2016年1月4日に出願した日本国特許出願2016-000238号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2016-000238 filed on January 4, 2016, the entire contents of which are incorporated herein by reference.
 100               第1のガラス部材
 102、202、302、402   第1の側
 104、204、304、404   第2の側
 108、208、308、408   光
 110、210、310、410   ガラス基板
 112、212、312、412   第1の表面
 114、214、314、414   第2の表面
 120、220           アンダーコート層
 130               遮熱層
 180、280、380、480   防汚層
 200               第2のガラス部材
 230、330、430       第1の遮熱層
 240、340、440       第2の遮熱層
 300               第3のガラス部材
 320、420           第2のアンダーコート層
 350、450           第1のアンダーコート層
 400               第4のガラス部材
 480               防汚層
100 First glass member 102, 202, 302, 402 First side 104, 204, 304, 404 Second side 108, 208, 308, 408 Light 110, 210, 310, 410 Glass substrate 112, 212, 312 412 First surface 114, 214, 314, 414 Second surface 120, 220 Undercoat layer 130 Thermal barrier layer 180, 280, 380, 480 Antifouling layer 200 Second glass member 230, 330, 430 First Thermal barrier layer 240, 340, 440 Second thermal barrier layer 300 Third glass member 320, 420 Second undercoat layer 350, 450 First undercoat layer 400 Fourth glass member 480 Antifouling layer

Claims (9)

  1.  ガラス基板を有するガラス部材であって、
     前記ガラス基板は、第1の表面および第2の表面を有し、
     前記ガラス基板の前記第1の表面には、コーティングが設置され、
     該コーティングは、前記ガラス基板に近い側から、
      酸化ケイ素を含むアンダーコート層と、
      酸化スズを含む遮熱層と、
     を有し、
     当該ガラス部材は、10mm角に切り出したサンプルを大気雰囲気下において670℃で7分30秒熱処理したとき、シート抵抗上昇率が20%以内であり、
     当該ガラス部材は、前記ガラス基板の側から測定した場合、
      ISO9050:2003に準拠して測定された可視光透過率Tが78%以上であり、
      ヘイズ率が10%以上であり、
      ISO9050:2003に準拠して測定された日射熱取得率をg値(%)とし、以下の(1)式で表される値を遮蔽係数SCとしたとき、
     
       SC=g値/0.88   (1)式
     
    前記SCが0.90以下である、ガラス部材。
    A glass member having a glass substrate,
    The glass substrate has a first surface and a second surface;
    A coating is placed on the first surface of the glass substrate,
    The coating is from the side close to the glass substrate,
    An undercoat layer containing silicon oxide;
    A thermal barrier layer containing tin oxide;
    Have
    When the sample cut into a 10 mm square is heat-treated at 670 ° C. for 7 minutes and 30 seconds in an air atmosphere, the sheet resistance increase rate is within 20%.
    When the glass member is measured from the glass substrate side,
    ISO9050: measured according to 2003 the visible light transmittance T v is not less 78% or more,
    The haze rate is 10% or more,
    When the solar heat acquisition rate measured according to ISO 9050: 2003 is g value (%), and the value represented by the following formula (1) is the shielding coefficient SC,

    SC = g value / 0.88 (1) Formula
    The glass member whose SC is 0.90 or less.
  2.  前記遮熱層は、フッ素および/またはアンチモンがドープされた酸化スズを含む、請求項1に記載のガラス部材。 The glass member according to claim 1, wherein the heat shielding layer includes tin oxide doped with fluorine and / or antimony.
  3.  前記遮熱層は、前記ガラス基板に近い側から、第1の層および第2の層の2層で構成され、
     前記第1の層は、未ドープの酸化スズを含み、前記第2の層は、フッ素および/またはアンチモンがドープされた酸化スズを含む、請求項1または2に記載のガラス部材。
    The thermal barrier layer is composed of two layers, a first layer and a second layer, from the side close to the glass substrate,
    The glass member according to claim 1, wherein the first layer includes undoped tin oxide, and the second layer includes tin oxide doped with fluorine and / or antimony.
  4.  前記遮熱層は、前記ガラス基板に近い側から、第1の層および第2の層の2層で構成され、
     前記第1の層および前記第2の層は、いずれも、フッ素および/またはアンチモンがドープされた酸化スズを含み、
     前記第2の層は、前記第1の層よりも高いキャリア濃度を有する、請求項1または2に記載のガラス部材。
    The thermal barrier layer is composed of two layers, a first layer and a second layer, from the side close to the glass substrate,
    Both the first layer and the second layer include tin oxide doped with fluorine and / or antimony,
    The glass member according to claim 1, wherein the second layer has a higher carrier concentration than the first layer.
  5.  前記アンダーコート層の表面における算術表面粗さRaは、1nm~150nmの範囲である、請求項1または2に記載のガラス部材。 The glass member according to claim 1 or 2, wherein the arithmetic surface roughness Ra on the surface of the undercoat layer is in the range of 1 nm to 150 nm.
  6.  前記ガラス基板の前記第1の表面は、50μm~1500μmの範囲の表面粗さRaを有する、請求項1または2に記載のガラス部材。 The glass member according to claim 1 or 2, wherein the first surface of the glass substrate has a surface roughness Ra in the range of 50 袖 m to 1500 袖 m.
  7.  前記アンダーコート層は、前記ガラス基板に近い側から、底部層と上部層の2層でされ、
     前記底部層は、酸化チタンを含み、前記上部層は、酸化ケイ素を含む、請求項1、2、4または6に記載のガラス部材。
    The undercoat layer is composed of two layers, a bottom layer and an upper layer, from the side close to the glass substrate,
    The glass member according to claim 1, 2, 4, or 6, wherein the bottom layer includes titanium oxide, and the top layer includes silicon oxide.
  8.  前記ガラス基板の前記第2の表面には、防汚層が設置されている、請求項1乃至7のいずれか一つに記載のガラス部材。 The glass member according to any one of claims 1 to 7, wherein an antifouling layer is provided on the second surface of the glass substrate.
  9.  前記ガラス基板は、高透過ガラスで構成される、請求項1乃至8のいずれか一つに記載のガラス部材。 The glass member according to any one of claims 1 to 8, wherein the glass substrate is made of highly transmissive glass.
PCT/JP2016/087892 2016-01-04 2016-12-20 Glass member WO2017119279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016000238A JP2017122012A (en) 2016-01-04 2016-01-04 Glass member
JP2016-000238 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017119279A1 true WO2017119279A1 (en) 2017-07-13

Family

ID=59274187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087892 WO2017119279A1 (en) 2016-01-04 2016-12-20 Glass member

Country Status (2)

Country Link
JP (1) JP2017122012A (en)
WO (1) WO2017119279A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143919B1 (en) * 2021-05-07 2022-09-29 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same
WO2023031152A1 (en) * 2021-08-31 2023-03-09 Agc Glass Europe Greenhouse glazing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109744021A (en) * 2017-11-01 2019-05-14 四季洋圃生物机电股份有限公司 Sunlight and artificial light source mixed plant factory
JP7020458B2 (en) * 2019-07-12 2022-02-16 Agc株式会社 Glass substrate with film and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114534A (en) * 1999-10-20 2001-04-24 Nippon Sheet Glass Co Ltd Glass plate with metal oxide film, method for producing the glass plate and multi-layer glass using the glass plate
US20050106397A1 (en) * 1999-05-18 2005-05-19 Krisko Annette J. Carbon based soil resistant coatings for glass surfaces
WO2006098285A1 (en) * 2005-03-14 2006-09-21 Nippon Sheet Glass Company, Limited Greenhouse, method for growing plant by using greenhouse, and light-transmitting board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106397A1 (en) * 1999-05-18 2005-05-19 Krisko Annette J. Carbon based soil resistant coatings for glass surfaces
JP2001114534A (en) * 1999-10-20 2001-04-24 Nippon Sheet Glass Co Ltd Glass plate with metal oxide film, method for producing the glass plate and multi-layer glass using the glass plate
WO2006098285A1 (en) * 2005-03-14 2006-09-21 Nippon Sheet Glass Company, Limited Greenhouse, method for growing plant by using greenhouse, and light-transmitting board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143919B1 (en) * 2021-05-07 2022-09-29 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same
WO2022234811A1 (en) * 2021-05-07 2022-11-10 Agc株式会社 Transparent conductive film-equipped glass substrate and method for manufacturing same
WO2023031152A1 (en) * 2021-08-31 2023-03-09 Agc Glass Europe Greenhouse glazing

Also Published As

Publication number Publication date
JP2017122012A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP5866356B2 (en) Glazing panel
US9487438B2 (en) Insulating glass unit comprising a sheet of glass with a fluorine doped tin oxide coating made from a gas stream comprising a nitric acid solution as oxidizing agent
WO2017119279A1 (en) Glass member
US6551715B1 (en) Glass sheet with conductive film and glass article using the same
US20080216399A1 (en) Greenhouse, method for growing plants using the same, and light transmissive substrate
US6447921B1 (en) Low emissivity glass and glass articles made of low emissivity glass
RU2447032C2 (en) Glass article having zinc oxide coating and method of making said article
WO2001028949A1 (en) Glass sheet with metal oxide film, method of manufacturing the same, and double-glazing unit using the same
WO2016163199A1 (en) Glass sheet and method for manufacturing same
JP4541462B2 (en) Method for depositing a metal oxide-based layer on a glass substrate and glass substrate coated thereby
US20140338749A1 (en) Photocatalytic material and glazing or photovoltaic cell comprising said material
US11542194B2 (en) Coated glass article, method of making the same, and photovoltaic cell made therewith
WO2022255205A1 (en) Substrate with film
WO2022255199A1 (en) Substrate with laminated film
JP7283529B1 (en) Substrate with laminated film
JP2018076187A (en) Glass article, and method for producing the same
WO2003010104A1 (en) Low emissivity glass and method for production thereof
JP7283530B1 (en) Substrate with laminated film
WO2022114038A1 (en) Heat insulation glass
JP7143919B1 (en) Glass substrate with transparent conductive film and method for manufacturing the same
WO2022255200A1 (en) Substrate with laminated film
JP2014214355A (en) Substrate with laminate film, and manufacturing method for base with laminate film
WO2016132131A1 (en) A chemical vapour deposition process for depositing an iron doped tin oxide coating and a coated glass article formed thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883778

Country of ref document: EP

Kind code of ref document: A1