JP2022123516A - Glass substrate for solar cells and solar cell - Google Patents

Glass substrate for solar cells and solar cell Download PDF

Info

Publication number
JP2022123516A
JP2022123516A JP2021020874A JP2021020874A JP2022123516A JP 2022123516 A JP2022123516 A JP 2022123516A JP 2021020874 A JP2021020874 A JP 2021020874A JP 2021020874 A JP2021020874 A JP 2021020874A JP 2022123516 A JP2022123516 A JP 2022123516A
Authority
JP
Japan
Prior art keywords
transparent film
film layer
functional transparent
solar cell
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021020874A
Other languages
Japanese (ja)
Other versions
JP2022123516A5 (en
Inventor
至弘 岩田
Yukihiro Iwata
卓 立川
Taku Tachikawa
亮 高橋
Akira Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2021020874A priority Critical patent/JP2022123516A/en
Priority to CN202210134278.2A priority patent/CN114927590A/en
Publication of JP2022123516A publication Critical patent/JP2022123516A/en
Publication of JP2022123516A5 publication Critical patent/JP2022123516A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

To provide a glass substrate that can give a solar cell with reduced color irregularities.SOLUTION: A glass substrate for solar cells has a glass plate, on which an undercoat layer, a first functional transparent film layer and a second functional transparent film layer are arranged in the stated order. The first functional transparent film layer comprises fluorine-doped tin oxide; the second functional transparent film layer comprises tin oxide; and the total thickness of the first functional transparent film layer and the second functional transparent film layer is 550-1000 nm.SELECTED DRAWING: None

Description

本発明は、太陽電池用ガラス基板及び該太陽電池用ガラス基板を用いた太陽電池に関する。 The present invention relates to a solar cell glass substrate and a solar cell using the solar cell glass substrate.

太陽電池は、太陽光のうちの所定の波長帯域の光を吸収することにより、光エネルギーを電気エネルギーに変換するものである。太陽電池では、吸収する波長帯域の違いにより、アモルファスシリコン(a-Si)太陽電池や、カドミウムテルル(CdTe)太陽電池、CIS系太陽電池、CIGS系太陽電池等、様々な種類がある。 A solar cell converts light energy into electrical energy by absorbing light in a predetermined wavelength band of sunlight. There are various types of solar cells, such as amorphous silicon (a-Si) solar cells, cadmium telluride (CdTe) solar cells, CIS solar cells, and CIGS solar cells, depending on the difference in the wavelength band they absorb.

太陽電池は、太陽電池用ガラス基板に光吸収層を積層して構成され、太陽電池の種類に適したガラス基板が用いられる。太陽電池に用いられるガラス基板は、一般に、ガラス板上に、アンダーコート層と、透明導電膜層と表面層とを順に積層して得られる。 A solar cell is configured by laminating a light absorption layer on a solar cell glass substrate, and a glass substrate suitable for the type of solar cell is used. A glass substrate used for a solar cell is generally obtained by sequentially laminating an undercoat layer, a transparent conductive film layer and a surface layer on a glass plate.

太陽電池に用いられるガラス基板は、種々の検討がなされている。例えば、特許文献1には、ガラス板と、前記ガラス板上に形成した珪素、酸素および炭素を含む下地膜と、前記下地膜と接するように前記下地膜上に形成した酸化錫を主成分とする透明導電膜とを含む透明導電膜付きガラス板であって、JIS R3255-1997「ガラスを基板とした薄膜の付着性試験」に基づいて測定した前記透明導電膜の付着力が90mN以上である透明導電膜付きガラス板が提案されている。 Various studies have been made on glass substrates used in solar cells. For example, Patent Document 1 discloses a glass plate, a base film containing silicon, oxygen, and carbon formed on the glass plate, and tin oxide formed on the base film so as to be in contact with the base film. A glass plate with a transparent conductive film, wherein the transparent conductive film has an adhesive force of 90 mN or more as measured according to JIS R3255-1997 “Test of adhesion of thin film using glass as substrate”. A glass plate with a transparent conductive film has been proposed.

また、カドミウムテルル太陽電池に用いられるガラス基板には、透明導電膜層にフッ素ドープ酸化スズ(SnOにFを添加した金属酸化物、FTO)を用いることがなされる。例えば、非特許文献1には、膜厚400nmのFTO膜を備えたガラス基板を用いたカドミウムテルル太陽電池が記載されている。 Fluorine-doped tin oxide (metal oxide in which F is added to SnO 2 , FTO) is used for the transparent conductive film layer of the glass substrate used for the cadmium tellurium solar cell. For example, Non-Patent Document 1 describes a cadmium telluride solar cell using a glass substrate having an FTO film with a thickness of 400 nm.

特開2005-29463号公報JP-A-2005-29463

Amit H. Munshi、他6名、「改善された吸収体の表面安定化処理及び電流収集により18%を超える効率を有する多結晶CdTe太陽電池(Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection)」、「太陽エネルギー材料と太陽電池(Solar Energy Materials and Solar Cells)」、Volume 176、March 2018、Pages 9-18Amit H. Munshi, et al., "Polycrystalline CdTe photovoltaics with efficiency over 18% through improved absorber passivation and current collection." current collection)", "Solar Energy Materials and Solar Cells", Volume 176, March 2018, Pages 9-18

従来のガラス基板は面内に膜厚分布が大きく、例えばカドミウムテルル太陽電池に用いた場合、色斑が大きくなってしまうことがあった。近年では太陽電池に意匠性が求められる応用もあるため、色斑を抑制できるガラス基板が求められていた。 A conventional glass substrate has a large in-plane film thickness distribution, and when used in a cadmium tellurium solar cell, for example, color spots may become large. In recent years, there has been a need for a glass substrate that can suppress color spots, since there are applications that require designability in solar cells.

本発明は上記課題に鑑みてなされたものであり、色斑を抑制した太陽電池を得られるガラス基板を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a glass substrate from which a solar cell in which color spots are suppressed can be obtained.

本発明者らは、上記課題を解決すべく鋭意取り組んだところ、アンダーコート層上に特定2種の機能性透明膜層を配置し、これらの総膜厚を特定範囲とすることにより上記課題を解決できることを見出し、本発明に至った。 The present inventors have worked diligently to solve the above problems, and have found that the above problems can be solved by placing two specific types of functional transparent film layers on the undercoat layer and setting the total film thickness of these layers to a specific range. We found that the problem can be solved, and arrived at the present invention.

本発明は、下記<1>~<10>に関するものである。
<1>ガラス板上に、アンダーコート層と第一の機能性透明膜層と第二の機能性透明膜層とがこの順に配置され、前記第一の機能性透明膜層はフッ素ドープ酸化スズからなり、前記第二の機能性透明膜層は酸化スズからなり、前記第一の機能性透明膜層と前記第二の機能性透明膜層の膜厚の合計が550~1000nmである、太陽電池用ガラス基板。
<2>前記アンダーコート層が、炭化酸化ケイ素、酸化チタン及び酸化ケイ素からなる群から選択される少なくとも1つを含有する、前記<1>に記載の太陽電池用ガラス基板。
<3>前記太陽電池用ガラス基板の色差変動ΔEが8.0以下である、前記<1>又は<2>に記載の太陽電池用ガラス基板。
<4>Haze値が6.0%以下である、前記<1>~<3>のいずれか1つに記載の太陽電池用ガラス基板。
<5>前記第一の機能性透明膜層の膜厚が500~900nmであり、前記第二の機能性透明膜層の膜厚が6~150nmである、前記<1>~<4>のいずれか1つに記載の太陽電池用ガラス基板。
<6>前記第一の機能性透明膜層と前記第二の機能性透明膜層の膜厚の合計が600~1000nmである、前記<1>~<5>のいずれか1つに記載の太陽電池用ガラス基板。
<7>フロートガラス製造プロセスにおいて製膜された、前記<1>~<6>のいずれか1つに記載の太陽電池用ガラス基板。
<8>前記第一の機能性透明膜層と前記第二の機能性透明膜層が互いに接している、前記<1>~<7>のいずれか1つに記載の太陽電池用ガラス基板。
<9>前記<1>~<8>のいずれか1つに記載の太陽電池用ガラス基板を備える、太陽電池。
<10>カドミウムテルル太陽電池である、前記<9>に記載の太陽電池。
The present invention relates to the following <1> to <10>.
<1> An undercoat layer, a first functional transparent film layer, and a second functional transparent film layer are arranged in this order on a glass plate, and the first functional transparent film layer is fluorine-doped tin oxide. The second functional transparent film layer is made of tin oxide, and the total thickness of the first functional transparent film layer and the second functional transparent film layer is 550 to 1000 nm. Glass substrate for batteries.
<2> The glass substrate for a solar cell according to <1> above, wherein the undercoat layer contains at least one selected from the group consisting of silicon carbide oxide, titanium oxide and silicon oxide.
<3> The glass substrate for solar cells according to <1> or <2>, wherein the color difference variation ΔE of the glass substrate for solar cells is 8.0 or less.
<4> The glass substrate for a solar cell according to any one of <1> to <3> above, which has a haze value of 6.0% or less.
<5> The above <1> to <4>, wherein the thickness of the first functional transparent film layer is 500 to 900 nm, and the thickness of the second functional transparent film layer is 6 to 150 nm. Any one glass substrate for solar cells.
<6> Any one of <1> to <5>, wherein the total thickness of the first functional transparent film layer and the second functional transparent film layer is 600 to 1000 nm. Glass substrate for solar cells.
<7> The solar cell glass substrate according to any one of <1> to <6>, which is formed in a float glass manufacturing process.
<8> The glass substrate for a solar cell according to any one of <1> to <7>, wherein the first functional transparent film layer and the second functional transparent film layer are in contact with each other.
<9> A solar cell comprising the glass substrate for a solar cell according to any one of <1> to <8>.
<10> The solar cell according to <9> above, which is a cadmium tellurium solar cell.

本発明の太陽電池用ガラス基板は、得られる太陽電池の面内での反射色のバラツキを抑制できるので、太陽電池の色斑を小さくできる。 The glass substrate for a solar cell of the present invention can suppress the in-plane variation of the reflected color of the obtained solar cell, so that the color spots of the solar cell can be reduced.

本発明の太陽電池用ガラス基板の構成を説明するための一例としての太陽電池用ガラス基板の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of the glass substrate for solar cells as an example for demonstrating the structure of the glass substrate for solar cells of this invention. 太陽電池用ガラス基板の第一の機能性透明膜層と第二の機能性透明膜層の総膜厚と、カドミウムテルル太陽電池の色斑との関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between the total film thickness of the 1st functional transparent film layer of a glass substrate for solar cells, and a 2nd functional transparent film layer, and the color spot of a cadmium telluride solar cell.

以下、本発明について説明するが、以下の説明における例示によって本発明は限定されない。 The present invention will be described below, but the present invention is not limited by the exemplifications in the following description.

図1は、本発明の太陽電池用ガラス基板の構成を説明するための一例としての太陽電池用ガラス基板の断面図である。
図1に示したように、本発明の太陽電池用ガラス基板10は、ガラス板1上に、アンダーコート層3と第一の機能性透明膜層5と第二の機能性透明膜層7がこの順に配置されてなる。第一の機能性透明膜層5はフッ素ドープ酸化スズからなり、第二の機能性透明膜層7は酸化スズからなり、第一の機能性透明膜層5と第二の機能性透明膜層7の膜厚の合計は550~1000nmである。以下、各層について説明する。
FIG. 1 is a cross-sectional view of a solar cell glass substrate as an example for explaining the structure of the solar cell glass substrate of the present invention.
As shown in FIG. 1, the solar cell glass substrate 10 of the present invention comprises an undercoat layer 3, a first functional transparent film layer 5 and a second functional transparent film layer 7 formed on a glass plate 1. They are arranged in this order. The first functional transparent film layer 5 is made of fluorine-doped tin oxide, the second functional transparent film layer 7 is made of tin oxide, and the first functional transparent film layer 5 and the second functional transparent film layer are formed. The total film thickness of 7 is 550 to 1000 nm. Each layer will be described below.

(ガラス板)
ガラス板1は、太陽電池用ガラス基板10の支持基材である。
ガラス板は、従来太陽電池に用いられているものと同様のものを用いることができる。例えば、SiO、Al、B、MgO、CaO、SrO、BaO、ZrO、NaOおよびKOを母組成として含むガラス板が挙げられる。より具体的には、酸化物基準のモル百分率表示で、SiOを60~75%、Alを1~7.5%、Bを0~1%、MgOを8.5~12.5%、CaOを1~6.5%、SrOを0~3%、BaOを0~3%、ZrOを0~3%、NaOを1~8%、KOを2~12%含有するガラス板が挙げられる。ただし、これら組成に限定されるものではない。
(glass plate)
The glass plate 1 is a support base material of the glass substrate 10 for solar cells.
The same glass plate as used in conventional solar cells can be used. Examples thereof include glass plates containing SiO2 , Al2O3 , B2O3 , MgO, CaO, SrO, BaO, ZrO2 , Na2O and K2O as base compositions. More specifically, SiO 2 is 60 to 75%, Al 2 O 3 is 1 to 7.5%, B 2 O 3 is 0 to 1%, and MgO is 8.5 in terms of molar percentages based on oxides. ~12.5% CaO 1-6.5 % SrO 0-3% BaO 0-3% ZrO2 0-3% Na2O 1-8% K2O A glass plate containing 2 to 12% may be mentioned. However, it is not limited to these compositions.

ガラス板は、太陽電池の発電効率を考慮すると、波長500~800nmの光に対する平均透過率が、2mm厚み換算で90.3%以上であることが好ましく、90.4%以上がより好ましく、90.5%以上がさらに好ましい。 Considering the power generation efficiency of a solar cell, the glass plate preferably has an average transmittance of 90.3% or more, more preferably 90.4% or more, and more preferably 90% or more in terms of a thickness of 2 mm for light with a wavelength of 500 to 800 nm. 0.5% or more is more preferable.

また、太陽電池を作製する際に、太陽電池用ガラス基板に対して熱処理を行うことがあることから、ガラス板は良好な耐熱性を有することが好ましい。
具体的には、ガラス転移温度(Tg)は640℃以上であることが好ましく、645℃以上がより好ましく、655℃以上がさらに好ましい。一方、溶解時の粘性を上げすぎないようにするため、ガラス転移温度は750℃以下であることが好ましく、720℃以下がより好ましい。
Moreover, since the glass substrate for solar cells is sometimes subjected to heat treatment when producing the solar cell, the glass plate preferably has good heat resistance.
Specifically, the glass transition temperature (Tg) is preferably 640° C. or higher, more preferably 645° C. or higher, and even more preferably 655° C. or higher. On the other hand, the glass transition temperature is preferably 750° C. or lower, more preferably 720° C. or lower, so as not to increase the viscosity too much during melting.

また、ガラス板の50~350℃における平均熱膨張係数は、モジュール化する際にモジュールが反るのを抑制する点から70×10-7/℃以上が好ましく、80×10-7/℃以上がより好ましい。一方、剥がれ等を抑制する点から、90×10-7/℃以下が好ましく、85×10-7/℃以下がより好ましい。 In addition, the average thermal expansion coefficient of the glass plate at 50 to 350° C. is preferably 70×10 −7 /° C. or more, more preferably 80×10 −7 /° C. or more, from the viewpoint of suppressing warpage of the module when modularized. is more preferred. On the other hand, it is preferably 90×10 −7 /° C. or less, more preferably 85×10 −7 /° C. or less, from the viewpoint of suppressing peeling and the like.

ガラス板の厚みについては特に制限はないが、機械的強度及び光透過性のバランスの観点から、1~5mmの範囲であることが好ましい。ガラス板の厚みは、2mm以上であることがより好ましく、2.5mm以上がさらに好ましく、また4.5mm以下であることがより好ましく、4mm以下がさらに好ましく、3.5mm以下が特に好ましい。 Although the thickness of the glass plate is not particularly limited, it is preferably in the range of 1 to 5 mm from the viewpoint of the balance between mechanical strength and light transmittance. The thickness of the glass plate is more preferably 2 mm or more, still more preferably 2.5 mm or more, more preferably 4.5 mm or less, even more preferably 4 mm or less, and particularly preferably 3.5 mm or less.

ガラス板の形状は特に限定されず、本発明の太陽電池用ガラス基板を用いて製造される太陽電池の形状に応じて適宜選択できる。例えば、断面形状が平らな平板状であってもよく、曲面状であってもよく、また他の異形状であってもよい。 The shape of the glass plate is not particularly limited, and can be appropriately selected according to the shape of the solar cell manufactured using the glass substrate for solar cell of the present invention. For example, the cross-sectional shape may be a flat flat plate shape, a curved surface shape, or other irregular shape.

(アンダーコート層)
アンダーコート層3は、ガラス板1と、第一の機能性透明膜層5と第二の機能性透明膜層7とを含む機能性透明膜層との間の反射を抑制するために設けられる。また、アンダーコート層を有することにより、太陽電池の作製に際し、熱処理を行った場合であっても、ガラス板からのアルカリの拡散を防止し、機能性透明膜層の変質を防ぐことができる。
(undercoat layer)
The undercoat layer 3 is provided to suppress reflection between the glass plate 1 and the functional transparent film layers including the first functional transparent film layer 5 and the second functional transparent film layer 7. . In addition, the presence of the undercoat layer prevents the diffusion of alkali from the glass plate and prevents deterioration of the functional transparent film layer even when heat treatment is performed in the production of the solar cell.

アンダーコート層を構成する材料としては、炭化酸化ケイ素(SiOC)、酸化チタン(TiO)、酸化ケイ素(SiO)、窒化酸化ケイ素(SiON)、酸化スズ(SnO)等が挙げられ、これらの1種以上を含むことが好ましい。中でも、ガラス基板上に平坦に蒸着しやすいという観点から、炭化酸化ケイ素(SiOC)、酸化チタン(TiO)及び酸化ケイ素(SiO)からなる群から選択される少なくとも1つを含有することが好ましい。 Materials constituting the undercoat layer include silicon carbide oxide (SiOC), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), silicon nitride oxide (SiON), tin oxide (SnO 2 ), and the like. It is preferable to include one or more of Among them, from the viewpoint of facilitating flat deposition on a glass substrate, it is possible to contain at least one selected from the group consisting of silicon oxide carbide (SiOC), titanium oxide (TiO 2 ) and silicon oxide (SiO 2 ). preferable.

アンダーコート層は、1層からなるものでもよいし、2層以上が積層された構成でもよい。アンダーコート層の具体的な例としては、例えば、炭化酸化ケイ素(SiOC)の単層からなるものや、酸化チタン(TiO)からなる第1のアンダーコート層と酸化ケイ素(SiO)からなる第2のアンダーコート層とからなる積層構造を有するものなどが挙げられる。 The undercoat layer may consist of one layer, or may have a structure in which two or more layers are laminated. Specific examples of the undercoat layer include a single layer of silicon carbide oxide (SiOC), and a first undercoat layer of titanium oxide (TiO 2 ) and silicon oxide (SiO 2 ). Examples include those having a laminated structure including a second undercoat layer.

アンダーコート層として炭化酸化ケイ素(SiOC)層を用いる場合、SiOC層の膜厚は10~150nmであることが好ましい。SiOC層の膜厚が10nm以上であるとガラス板の表面を均一に被覆でき、150nm以下であると平坦性を確保できる。
SiOC層の膜厚は、20nm以上であることがより好ましく、25nm以上がさらに好ましく、30nm以上が特に好ましく、また、100nm以下であることがより好ましく、90nm以下がさらに好ましく、80nm以下が特に好ましい。
When a silicon carbide oxide (SiOC) layer is used as the undercoat layer, the thickness of the SiOC layer is preferably 10 to 150 nm. When the film thickness of the SiOC layer is 10 nm or more, the surface of the glass plate can be uniformly covered, and when it is 150 nm or less, flatness can be ensured.
The film thickness of the SiOC layer is more preferably 20 nm or more, more preferably 25 nm or more, particularly preferably 30 nm or more, and more preferably 100 nm or less, further preferably 90 nm or less, and particularly preferably 80 nm or less. .

アンダーコート層として酸化チタン(TiO)層を用いる場合、TiO層の膜厚は3~50nmであることが好ましい。TiO層の膜厚が3nm以上であるとガラス板の表面を均一に被覆でき、50nm以下であると十分なアルカリバリア性を担保できる。
TiO層の膜厚は、4nm以上であることがより好ましく、5nm以上がさらに好ましく、6nm以上が特に好ましく、また、30nm以下であることがより好ましく、25nm以下がさらに好ましく、20nm以下が特に好ましい。
When a titanium oxide (TiO 2 ) layer is used as the undercoat layer, the thickness of the TiO 2 layer is preferably 3 to 50 nm. When the thickness of the TiO 2 layer is 3 nm or more, the surface of the glass plate can be uniformly coated, and when it is 50 nm or less, sufficient alkali barrier properties can be ensured.
The thickness of the TiO 2 layer is more preferably 4 nm or more, more preferably 5 nm or more, particularly preferably 6 nm or more, more preferably 30 nm or less, even more preferably 25 nm or less, particularly 20 nm or less. preferable.

アンダーコート層として酸化ケイ素(SiO)層を用いる場合、SiO層の膜厚は10~200nmであることが好ましい。SiO層の膜厚が10nm以上であるとガラス板の表面を均一に被覆でき、200nm以下であると十分なアルカリバリア性を担保できる。
SiO層の膜厚は、12nm以上であることがより好ましく、15nm以上がさらに好ましく、20nm以上が特に好ましく、また、120nm以下であることがより好ましく、100nm以下がさらに好ましく、70nm以下が特に好ましく、60nm以下が最も好ましい。
When a silicon oxide (SiO 2 ) layer is used as the undercoat layer, the thickness of the SiO 2 layer is preferably 10-200 nm. When the thickness of the SiO 2 layer is 10 nm or more, the surface of the glass plate can be uniformly covered, and when it is 200 nm or less, sufficient alkali barrier properties can be ensured.
The thickness of the SiO2 layer is more preferably 12 nm or more, more preferably 15 nm or more, particularly preferably 20 nm or more, more preferably 120 nm or less, even more preferably 100 nm or less, particularly 70 nm or less. Preferably, 60 nm or less is most preferable.

アンダーコート層全体の膜厚としては、10~300nmであることが好ましい。アンダーコート層の総膜厚が10nm以上であると、十分なアルカリバリア性を担保することができ、300nm以下であると、アンダーコート層内で光学干渉による色斑を抑制することができる。
アンダーコート層の総膜厚は、20nm以上であることがより好ましく、25nm以上がさらに好ましく、30nm以上が特に好ましく、また、150nm以下であることがより好ましく、100nm以下がさらに好ましく、80nm以下が特に好ましく、70nm以下が最も好ましい。
The thickness of the entire undercoat layer is preferably 10 to 300 nm. When the total thickness of the undercoat layer is 10 nm or more, sufficient alkali barrier properties can be ensured, and when it is 300 nm or less, color spots due to optical interference can be suppressed in the undercoat layer.
The total thickness of the undercoat layer is more preferably 20 nm or more, further preferably 25 nm or more, particularly preferably 30 nm or more, more preferably 150 nm or less, further preferably 100 nm or less, and 80 nm or less. It is particularly preferred, and 70 nm or less is most preferred.

(第一の機能性透明膜層)
本発明において、第一の機能性透明膜層5は、導電性を持ちながら透明性を有する半導体膜層である。第一の機能性透明膜層は、フッ素ドープ酸化スズ(FTO)からなる。
(First functional transparent film layer)
In the present invention, the first functional transparent film layer 5 is a semiconductor film layer having conductivity and transparency. The first functional transparent film layer consists of fluorine-doped tin oxide (FTO).

第一の機能性透明膜層であるFTO膜中のフッ素(F)の含有量は、太陽電池基板として適切な電気伝導性と透過率の観点から、0.01~10モル%であることが好ましく、0.1~5モル%がより好ましく、0.2~1モル%がさらに好ましい。 The content of fluorine (F) in the FTO film, which is the first functional transparent film layer, is 0.01 to 10 mol% from the viewpoint of appropriate electrical conductivity and transmittance as a solar cell substrate. Preferably, 0.1 to 5 mol % is more preferable, and 0.2 to 1 mol % is even more preferable.

なお、FTO膜の組成はX線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。 The composition of the FTO film can be identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectroscopy (SIMS).

第一の機能性透明膜層の膜厚は500~950nmであることが好ましい。カドミウムテルル太陽電池にFTO膜を用いる場合、FTO膜は500nmよりも薄い膜厚で用いられることが一般的であった。しかし本発明者らの知見により、第一の機能性透明膜層の膜厚を500nm以上とすることで太陽電池の色斑を抑制できることがわかった。また、FTO膜(第一の機能性透明膜層)の膜厚は、950nm以下であると生産性が担保できる。
第一の機能性透明膜層の膜厚は、520nm以上であることが好ましく、530nm以上がより好ましく、550nm以上がさらに好ましく、また、930nm以下であることが好ましく、920nm以下がより好ましく、900nm以下がさらに好ましい。
The film thickness of the first functional transparent film layer is preferably 500 to 950 nm. When using an FTO film in a cadmium telluride solar cell, the FTO film was generally used with a film thickness of less than 500 nm. However, according to the knowledge of the present inventors, it was found that the color mottling of the solar cell can be suppressed by setting the film thickness of the first functional transparent film layer to 500 nm or more. In addition, when the film thickness of the FTO film (first functional transparent film layer) is 950 nm or less, productivity can be secured.
The film thickness of the first functional transparent film layer is preferably 520 nm or more, more preferably 530 nm or more, still more preferably 550 nm or more, and preferably 930 nm or less, more preferably 920 nm or less, and 900 nm. More preferred are:

(第二の機能性透明膜層)
第二の機能性透明膜層7は、太陽電池中で発生した光ホールと、第一の機能性透明膜層中の伝導キャリアの再結合を防ぎ、太陽電池の効率を改善するための層である。第二の機能性透明膜層は、ノンドープの酸化スズ(SnO)からなる。
(Second functional transparent film layer)
The second functional transparent film layer 7 is a layer for preventing recombination of light holes generated in the solar cell and conductive carriers in the first functional transparent film layer to improve the efficiency of the solar cell. be. The second functional transparent film layer consists of non-doped tin oxide (SnO 2 ).

なお、第二の機能性透明膜層の組成も同様に、X線光電子分光法(XPS)や二次イオン質量分析法(SIMS)により同定できる。 The composition of the second functional transparent film layer can be similarly identified by X-ray photoelectron spectroscopy (XPS) or secondary ion mass spectroscopy (SIMS).

第二の機能性透明膜層の膜厚は6~150nmであることが好ましい。第二の機能性透明膜層の膜厚が6nm以上であると、第一の機能性透明膜層を均一に被覆でき、一方、第二の機能性透明膜層が厚くなり過ぎると、太陽電池にとって直接抵抗成分となるため、150nm以下であることが好ましい。
第二の機能性透明膜層の膜厚は、8nm以上であることがより好ましく、9nm以上がさらに好ましく、10nm以上が特に好ましく、12nm以上が殊更に好ましく、15nm以上が最も好ましく、また、100nm以下であることがより好ましく、90nm以下がさらに好ましく、80nm以下が特に好ましい。
The film thickness of the second functional transparent film layer is preferably 6 to 150 nm. When the film thickness of the second functional transparent film layer is 6 nm or more, the first functional transparent film layer can be uniformly coated. It is preferably 150 nm or less because it becomes a direct resistance component for .
The thickness of the second functional transparent film layer is more preferably 8 nm or more, more preferably 9 nm or more, particularly preferably 10 nm or more, particularly preferably 12 nm or more, most preferably 15 nm or more, and 100 nm. It is more preferably 90 nm or less, particularly preferably 80 nm or less.

本発明において、第一の機能性透明膜層と第二の機能性透明膜層の膜厚の合計は550~1000nmである。第一の機能性透明膜層と第二の機能性透明膜層の総膜厚が550nm以上であると、太陽電池に用いたときに太陽電池の色斑の抑制効果が発揮され、1000nm以下であると基板全体の透過率を高くできる。
第一の機能性透明膜層と第二の機能性透明膜層の総膜厚は、600nm以上であることが好ましく、650nm以上がより好ましく、670nm以上がさらに好ましく、また、950nm以下であることが好ましく、930nm以下がより好ましく、900nm以下がさらに好ましい。
In the present invention, the total thickness of the first functional transparent film layer and the second functional transparent film layer is 550-1000 nm. When the total film thickness of the first functional transparent film layer and the second functional transparent film layer is 550 nm or more, the effect of suppressing color spots of the solar cell is exhibited when used in the solar cell, and when the total film thickness is 1000 nm or less. If there is, the transmittance of the entire substrate can be increased.
The total thickness of the first functional transparent film layer and the second functional transparent film layer is preferably 600 nm or more, more preferably 650 nm or more, still more preferably 670 nm or more, and 950 nm or less. is preferred, 930 nm or less is more preferred, and 900 nm or less is even more preferred.

本発明の太陽電池用ガラス基板は、第一の機能性透明膜層と第二の機能性透明膜層の他に、他の機能性透明膜層を備えていてもよい。
他の機能性透明膜層としては、FTO以外の、金属酸化物を主として含んだ透明な半導体膜層や、SnO以外の、酸化物を主として含んだ透明な酸化物層等が挙げられる。なお、主として含むとは、金属酸化物或いは酸化物が50質量%以上であることを意味し、他の機能性透明膜層全体に対して70質量%以上であることが好ましく、85質量%以上であることがより好ましい。また、上限は特に限定されないが、半導体膜層において、主成分にドーパント(不純物金属)がドープされる場合には、99.9重量%以下が好ましい。
The glass substrate for a solar cell of the present invention may have other functional transparent film layers in addition to the first functional transparent film layer and the second functional transparent film layer.
Other functional transparent film layers include transparent semiconductor film layers mainly containing metal oxides other than FTO, and transparent oxide layers mainly containing oxides other than SnO 2 . Note that "mainly containing" means that the metal oxide or oxide is 50% by mass or more, preferably 70% by mass or more, and 85% by mass or more with respect to the entire other functional transparent film layer. is more preferable. The upper limit is not particularly limited, but when the main component of the semiconductor film layer is doped with a dopant (impurity metal), it is preferably 99.9% by weight or less.

このような金属酸化物としては、例えば、ZnO(酸化亜鉛)、In(酸化インジウム)、SnO(酸化スズ)等が挙げられ、これらの金属酸化物には、Al(アルミニウム)、B(ホウ素)、Ga(ガリウム)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、F(フッ素)等の不純物金属が含まれてもよい。
このような不純物金属が含まれた金属酸化物の具体例としては、例えば、ITO(スズドープ酸化インジウム、InにSnを添加した金属酸化物)、AZO(アルミニウムドープ酸化亜鉛、ZnOにAlを添加した金属酸化物)、IZO(インジウムドープ酸化亜鉛、ZnOにInを添加した金属酸化物)、ニオブドープ酸化チタン、タンタルドープ酸化チタン、アンチモンドープ酸化スズ等が挙げられる。
前記酸化物としては、例えば、ZnO(酸化亜鉛)、In(酸化インジウム)、TiO(酸化チタン)、CdO(酸価カドミウム)等が挙げられる。
Examples of such metal oxides include ZnO (zinc oxide), In 2 O 3 (indium oxide), SnO 2 (tin oxide), etc. These metal oxides include Al (aluminum), Impurity metals such as B (boron), Ga (gallium), In (indium), Sn (tin), Sb (antimony), and F (fluorine) may be included.
Specific examples of metal oxides containing such impurity metals include ITO (tin-doped indium oxide, a metal oxide obtained by adding Sn to In 2 O 3 ), AZO (aluminum-doped zinc oxide, ZnO with Al ), IZO (indium-doped zinc oxide, metal oxide in which In is added to ZnO), niobium-doped titanium oxide, tantalum-doped titanium oxide, antimony-doped tin oxide, and the like.
Examples of the oxide include ZnO (zinc oxide), In 2 O 3 (indium oxide), TiO 2 (titanium oxide), CdO (cadmium oxide), and the like.

他の機能性透明膜層は1層であってもよいし、2層以上でもよい。
また、他の機能性透明膜層を設ける位置は特に限定されず、例えば、アンダーコート層と第一の機能性透明膜層との間、第一の機能性透明膜層と第二の機能性透明膜層との間、第二の機能性透明膜層の表面等が挙げられる。
One layer may be sufficient as another functional transparent film layer, and two or more layers may be sufficient as it.
In addition, the position where the other functional transparent film layer is provided is not particularly limited. For example, between the undercoat layer and the first functional transparent film layer, between the first functional transparent film layer and the second functional transparent film layer Between the transparent film layer, the surface of the second functional transparent film layer, and the like.

本発明において、第一の機能性透明膜層と第二の機能性透明膜層は互いが接していることが好ましく、アンダーコート層上に第一の機能性透明膜層と第二の機能性透明膜層がこの順で積層された構造であることがより好ましい。 In the present invention, the first functional transparent film layer and the second functional transparent film layer are preferably in contact with each other, and the first functional transparent film layer and the second functional transparent film layer are formed on the undercoat layer. It is more preferable to have a structure in which the transparent film layers are laminated in this order.

(太陽電池用ガラス基板の製造方法)
本発明の太陽電池用ガラス基板は、例えば、ガラス板の表面にアンダーコート層、第一の機能性透明膜層及び第二の機能性透明膜層を順次製膜することにより製造できる。
(Method for producing glass substrate for solar cell)
The glass substrate for solar cells of the present invention can be produced, for example, by sequentially forming an undercoat layer, a first functional transparent film layer and a second functional transparent film layer on the surface of a glass plate.

ガラス板は、ガラス原料を加熱して溶融ガラスを得る溶解工程、溶融ガラスから泡を除く清澄工程、溶融ガラスを板状にしてガラスリボンを得る成形工程、およびガラスリボンを室温状態まで徐冷する徐冷工程により得ることができる。また、溶融ガラスをブロック状に成形し、徐冷した後に、切断、研磨を経てガラス板を製造してもよい。
上記各工程は、従来公知の各方法を用いることができる。製造方法は、実施形態に限定されず、本発明の目的を達成できる範囲で適宜変形や改良等が可能である。
A glass plate is produced by heating frit to obtain molten glass, fining by removing bubbles from the molten glass, forming the molten glass into a plate to obtain a glass ribbon, and slowly cooling the glass ribbon to room temperature. It can be obtained by a slow cooling process. Alternatively, the molten glass may be formed into a block shape, slowly cooled, and then cut and polished to produce a glass plate.
Conventionally known methods can be used for each of the above steps. The manufacturing method is not limited to the embodiment, and suitable modifications and improvements are possible as long as the object of the present invention can be achieved.

アンダーコート層、第一の機能性透明膜層及び第二の機能性透明膜層はいずれも、CVD(Chemical Vapor Deposition:化学気相蒸着)法やスパッタリング法、化学メッキ法、湿式塗布法等により形成できる。スパッタリング法は製板されたガラス板上に製膜する方法であり、化学メッキ法は鏡を作る方法である。 The undercoat layer, the first functional transparent film layer, and the second functional transparent film layer are all formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, a chemical plating method, a wet coating method, or the like. can be formed. The sputtering method is a method of forming a film on a manufactured glass plate, and the chemical plating method is a method of making a mirror.

CVD法には、オンラインCVD法とオフラインCVD法がある。
オンラインCVD法とはフロートライン上でガラス板の製造過程中に、ガラス板の表面に直接、膜を製膜する方法である。すなわち、ガラス板を得た後に機能性透明膜層等を製膜するのではなく、ガラス板を得る工程の途中で機能性透明膜層等を製膜する。
具体的には、ガラス板の製造の際、ガラスリボンが溶融錫浴の上を移動した後、徐冷されることで、連続的にガラス板が製造されるが、このガラスリボンの移動中に、ガラスリボンの上面に、所望する層の製膜工程を連続的に実施するものである。
CVD methods include an online CVD method and an offline CVD method.
The online CVD method is a method of forming a film directly on the surface of a glass plate during the manufacturing process of the glass plate on a float line. That is, the functional transparent film layer or the like is formed during the process of obtaining the glass plate, rather than forming the functional transparent film layer or the like after obtaining the glass plate.
Specifically, in the production of glass sheets, glass sheets are continuously produced by moving the glass ribbon over a molten tin bath and then slowly cooling it. , the film-forming process of a desired layer is continuously carried out on the upper surface of the glass ribbon.

より具体的には、上記ガラス板の製造方法における徐冷工程の前、すなわち、成形工程でフロートライン上にあるガラスがまだ熱い状態のうちに、気体原料をガラス表面に吹き付けて、反応させながら、所望の層を製膜することで太陽電池用ガラス基板が得られる。
オンラインCVD法はガラス板を製造する一連の工程の中で、アンダーコート層、第一の機能性透明膜層及び第二の機能性透明膜層を形成できることから、製造コストを低く抑えることができるため好ましい。
More specifically, before the slow cooling step in the above glass plate manufacturing method, that is, while the glass on the float line is still hot in the forming step, the gaseous raw material is blown onto the glass surface and reacted. , a glass substrate for a solar cell can be obtained by forming a desired layer.
The online CVD method can form the undercoat layer, the first functional transparent film layer and the second functional transparent film layer in a series of steps for manufacturing the glass plate, so that the manufacturing cost can be kept low. Therefore, it is preferable.

一方で、オフラインCVD法とは、一旦、ガラス製造工程により製造され、適当なサイズに切断されたガラス板を、改めて電気炉に投入して搬送しながら、前記オンラインCVD法と同様に気体原料の反応を利用して、所望の層を製膜する方法である。搬送速度や基板温度を製膜に合わせて設定することができる利点がある反面、製造コストは、オンラインCVD法に比べて高くなる。 On the other hand, in the offline CVD method, a glass plate that has been once manufactured in a glass manufacturing process and cut into an appropriate size is put into an electric furnace and transported while supplying gaseous raw materials in the same manner as in the online CVD method. This is a method of forming a desired layer using a reaction. Although there is an advantage that the transport speed and the substrate temperature can be set according to the film formation, the manufacturing cost is higher than that of the on-line CVD method.

スパッタリング法を用いる場合には、真空にした容器の中に特殊ガスを極微量注入し、電圧をかけることによって、ガラス板上に所望の機能性透明膜層が形成され、太陽電池用ガラス基板が得られる。
スパッタリング法は一度製板されたガラス板上に層を形成することから、製造コストはかかるものの、所望する様々な組成の層を形成できる。
When the sputtering method is used, a very small amount of special gas is injected into an evacuated container and a voltage is applied to form a desired functional transparent film layer on the glass plate, thereby forming a solar cell glass substrate. can get.
Since the sputtering method forms a layer on a glass plate that has been manufactured once, it is possible to form layers with various desired compositions, although the production cost is high.

アンダーコート層、第一の機能性透明膜層と第二の機能性透明膜層の厚さは、CVD法の場合、原料の種類、原料ガス濃度、原料ガスのガラスリボンへの吹き付け流速、基板温度、コーティングビーム構造由来の反応ガス滞留時間等により制御できる。またスパッタリング法の場合には、スパッタ時間や電圧等により厚さを制御できる。 In the case of the CVD method, the thickness of the undercoat layer, the first functional transparent film layer, and the second functional transparent film layer depends on the type of raw material, the concentration of the raw material gas, the flow rate of the raw material gas blown onto the glass ribbon, the substrate It can be controlled by the temperature, the reaction gas residence time derived from the coating beam structure, and the like. In the case of the sputtering method, the thickness can be controlled by the sputtering time, voltage and the like.

以下、オフラインCVD法により太陽電池用ガラス基板を製造する場合の方法を説明する。
以下の製造方法では、ガラス板の表面に、アンダーコート層を形成し、続いて第一の機能性透明膜層としてのFTO膜及び第二の機能性透明膜層としての酸化スズ層を製膜する。
A method for producing a solar cell glass substrate by the off-line CVD method will be described below.
In the following manufacturing method, an undercoat layer is formed on the surface of a glass plate, and then an FTO film as a first functional transparent film layer and a tin oxide layer as a second functional transparent film layer are formed. do.

アンダーコート層として炭化酸化ケイ素層を製膜する場合、原料としては、例えば、モノシラン(SiH)、エチレン及び二酸化炭素を含む混合ガスを用いることが好ましい。
炭化酸化ケイ素層を製膜する際の温度は、700~1000℃であることが好ましく、850~950℃がより好ましい。
When forming a silicon carbide oxide layer as an undercoat layer, it is preferable to use a mixed gas containing, for example, monosilane (SiH 4 ), ethylene and carbon dioxide as the raw material.
The temperature for forming the silicon carbide oxide layer is preferably 700 to 1000°C, more preferably 850 to 950°C.

アンダーコート層として酸化チタン層を製膜する場合、原料としては、例えば、オルトチタン酸テトライソプロピル(TTIP)、四塩化チタン等が挙げられる。中でも、オルトチタン酸テトライソプロピル(TTIP)がより好ましい。
酸化チタン層を製膜する際の温度は、500~800℃であることが好ましく、550~700℃がより好ましい。
When forming a titanium oxide layer as an undercoat layer, examples of raw materials include tetraisopropyl orthotitanate (TTIP) and titanium tetrachloride. Among them, tetraisopropyl orthotitanate (TTIP) is more preferable.
The temperature for forming the titanium oxide layer is preferably 500 to 800.degree. C., more preferably 550 to 700.degree.

アンダーコート層として酸化ケイ素層を製膜する場合、原料としては、例えば、モノシラン(SiH)、エチレン及び二酸化炭素を含む混合ガスを用いることが好ましい。
酸化ケイ素層を製膜する際の温度は、500~800℃であることが好ましく、550~700℃がより好ましい。
When forming a silicon oxide layer as an undercoat layer, it is preferable to use, for example, a mixed gas containing monosilane (SiH 4 ), ethylene and carbon dioxide as the raw material.
The temperature for forming the silicon oxide layer is preferably 500 to 800.degree. C., more preferably 550 to 700.degree.

アンダーコート層を製膜した後、続けて第一の機能性透明膜層を製膜する。 After forming the undercoat layer, the first functional transparent film layer is subsequently formed.

第一の機能性透明膜層であるFTO膜を形成する場合、原料としては、例えば、モノブチル錫トリクロライド、酸素、水、窒素及びトリフロロ酢酸を含有する混合ガスを用いることが好ましい。
FTO膜を製膜する際の温度は、500~800℃であることが好ましく、550~700℃がより好ましい。
When forming the FTO film, which is the first functional transparent film layer, it is preferable to use, for example, a mixed gas containing monobutyltin trichloride, oxygen, water, nitrogen and trifluoroacetic acid as the raw material.
The temperature for forming the FTO film is preferably 500 to 800°C, more preferably 550 to 700°C.

第一の機能性透明膜層を製膜した後、続けて第二の機能性透明膜層を製膜する。 After forming the first functional transparent film layer, the second functional transparent film layer is formed continuously.

第二の機能性透明膜層である酸化スズ(SnO)層を形成する場合、原料としては、例えば、モノブチル錫トリクロライド、ジメチル錫ジクロライド、トリブチル錫、トリメチル錫、四塩化錫のいずれかと、酸素、水及び窒素を含有する混合ガスを用いることが好ましい。
酸化スズを製膜する際の温度は、400~800℃であることが好ましく、500~750℃がより好ましい。
When forming the tin oxide (SnO 2 ) layer, which is the second functional transparent film layer, the raw materials include, for example, monobutyltin trichloride, dimethyltin dichloride, tributyltin, trimethyltin, and tin tetrachloride, A gas mixture containing oxygen, water and nitrogen is preferably used.
The temperature for forming the tin oxide film is preferably 400 to 800.degree. C., more preferably 500 to 750.degree.

第二の機能性透明膜層を製膜した後、徐冷して、ガラス板上にアンダーコート層と第一の機能性透明膜層及び第二の機能性透明膜層が製膜された太陽電池用ガラス基板が得られる。 After forming the second functional transparent film layer, it is slowly cooled, and the undercoat layer, the first functional transparent film layer and the second functional transparent film layer are formed on the glass plate. A battery glass substrate is obtained.

本発明において、製造コストや製造工程数等の観点から、太陽電池用ガラス基板は、ガラス基板の製造に連続してアンダーコート層と機能性透明膜層を製造する、オンラインCVD法によるフロートガラス製造プロセスにおいて製造されることが好ましい。 In the present invention, from the viewpoint of manufacturing cost, the number of manufacturing steps, etc., the glass substrate for solar cells is manufactured by the online CVD method, in which the undercoat layer and the functional transparent film layer are manufactured continuously after the manufacturing of the glass substrate. It is preferably manufactured in a process.

本発明の太陽電池は本発明の太陽電池用ガラス基板に光吸収層を成膜して得られるが、光吸収層を太陽電池用ガラス基板上に成膜する際、まずn型半導体層を成膜する。このn型半導体層は膜厚が25~100nmと薄いため、太陽電池用ガラス基板の表面に凹凸があると均一に製膜することができない。
したがって、効率の高い太陽電池を得るには、太陽電池用ガラス基板の表面平坦性が高いことが望ましい。具体的には、5μm×5μmの表面形状をAFM(Atomic Force Microscope)で評価した時、基板表面の最大高さと最小高さの差(Rz)が、n型半導体層の膜厚よりも小さいことが望ましい。
Rzの値は、50nm以下が好ましく、40nm以下がより好ましく、30nm以下が特に好ましい。
The solar cell of the present invention is obtained by forming a light absorption layer on the glass substrate for solar cells of the present invention. film. Since this n-type semiconductor layer has a thin film thickness of 25 to 100 nm, it cannot be formed uniformly if the surface of the glass substrate for solar cell is uneven.
Therefore, in order to obtain a solar cell with high efficiency, it is desirable that the surface flatness of the glass substrate for solar cells is high. Specifically, when evaluating a surface shape of 5 μm × 5 μm with an AFM (Atomic Force Microscope), the difference (Rz) between the maximum height and the minimum height of the substrate surface is smaller than the thickness of the n-type semiconductor layer. is desirable.
The Rz value is preferably 50 nm or less, more preferably 40 nm or less, and particularly preferably 30 nm or less.

また、太陽電池用ガラス基板の表面の粗さは基板のHaze(ヘイズ)値と比例するため、Hazeは表面粗さの指標として広く用いられている。光吸収層を成膜するときに、均一に光吸収層を成膜するには、太陽電池用ガラス基板のHaze値が6.0%以下であることが好ましい。
Haze値は、5.5%以下であるのがより好ましく、5.0%以下がさらに好ましく、4.5%以下が特に好ましく、また下限は特に限定されないが、1.0%以上であるのが好ましい。
In addition, since the surface roughness of a solar cell glass substrate is proportional to the haze value of the substrate, the haze is widely used as an index of surface roughness. When forming the light absorbing layer, the Haze value of the solar cell glass substrate is preferably 6.0% or less in order to uniformly form the light absorbing layer.
The haze value is more preferably 5.5% or less, more preferably 5.0% or less, and particularly preferably 4.5% or less, and the lower limit is not particularly limited, but it is 1.0% or more. is preferred.

なお、Haze値は、ヘイズメーター(例えば、スガ試験機株式会社製「HZ-V3」)を用い、JIS K 7105(1981)に準拠して測定できる。 The haze value can be measured in accordance with JIS K 7105 (1981) using a haze meter (eg, "HZ-V3" manufactured by Suga Test Instruments Co., Ltd.).

本発明の太陽電池用ガラス基板は、色差変動ΔEが8.0以下であることが好ましい。色差変動ΔEが8.0以下であると、太陽電池構造での色差変動を4.5以下にすることができる。
色差変動ΔEは、7.0以下であることがより好ましく、6.0以下がさらに好ましく、5.0以下が特に好ましい。また、色差変動ΔEは小さければ小さいほど色斑が抑えられるため、下限は特に限定されない。
The glass substrate for solar cell of the present invention preferably has a color difference variation ΔE of 8.0 or less. When the color difference variation ΔE is 8.0 or less, the color difference variation in the solar cell structure can be 4.5 or less.
The color difference variation ΔE is more preferably 7.0 or less, even more preferably 6.0 or less, and particularly preferably 5.0 or less. Further, the lower the color difference variation ΔE, the more the color spots are suppressed, so the lower limit is not particularly limited.

太陽電池用ガラス基板の色差変動ΔEは、太陽電池用ガラス基板のガラス板側から見た反射色(a,b)の分布を測定することにより求められる。具体的に、光源はD65光源とし、入射角、反射角ともに基板に対して8°とし、光は基板のガラス面側から照射する。光源のスポットサイズは、ガラス板表面で約1~4cmになるように調整し、ガラス基板の面内を3cm間隔で反射スペクトルを測定する。得られたスペクトルから各測定点の反射色(a,b)を計算する。得られた反射色のデータから、色座標上でのユークリッド距離ΔE12=((a -a +(b -b 0.5が最大になる(a ,b ),(a ,b )の組み合わせを選び、そのΔE12を太陽電池用ガラス基板の色差変動ΔEとする。 The color difference variation ΔE of the solar cell glass substrate is obtained by measuring the distribution of the reflected colors (a * , b * ) viewed from the glass plate side of the solar cell glass substrate. Specifically, the light source is a D65 light source, both the incident angle and the reflection angle are set at 8° with respect to the substrate, and the light is irradiated from the glass surface side of the substrate. The spot size of the light source is adjusted to about 1 to 4 cm 2 on the surface of the glass plate, and the reflection spectrum is measured at intervals of 3 cm in the plane of the glass substrate. The reflected color (a * , b * ) at each measurement point is calculated from the obtained spectrum. From the obtained reflected color data, Euclidean distance ΔE 12 =((a 1 * -a 2 * ) 2 +(b 1 * -b 2 * ) 2 ) 0.5 on the color coordinates is the maximum ( A combination of a 1 * , b 1 * ) and (a 2 * , b 2 * ) is selected, and its ΔE 12 is defined as the color difference variation ΔE of the solar cell glass substrate.

本発明の太陽電池用ガラス基板は、可視光の透過率が70%以上であることが好ましい。該透過率が70%以上であると、太陽電池にしたときに、光変換効率を向上できる。該透過率は、73%以上であることがより好ましく、76%以上がさらに好ましい。 The glass substrate for a solar cell of the present invention preferably has a visible light transmittance of 70% or more. When the transmittance is 70% or more, the light conversion efficiency can be improved when used as a solar cell. The transmittance is more preferably 73% or higher, and even more preferably 76% or higher.

なお、太陽電池用ガラス基板の可視光の透過率は、紫外可視分光光度計により測定できる。 The visible light transmittance of the solar cell glass substrate can be measured with an ultraviolet-visible spectrophotometer.

本発明の太陽電池用ガラス基板は、その表面層上に光吸収層を製膜することで太陽電池として使用できる。
光吸収層としては、例えば、カドミウムテルル(CdTe)、硫化カドミウム(CdS)、CIGS(Cu/In/Ga/Se)、CIS(Cu/In/Se)、硫化スズ(SnS)等が挙げられる。中でも、本発明の太陽電池用ガラス基板は、カドミウムテルル太陽電池用として有用である。
The glass substrate for solar cell of the present invention can be used as a solar cell by forming a light absorption layer on its surface layer.
Examples of the light absorption layer include cadmium telluride (CdTe), cadmium sulfide (CdS), CIGS (Cu/In/Ga/Se), CIS (Cu/In/Se), tin sulfide (SnS), and the like. Among others, the glass substrate for solar cells of the present invention is useful for cadmium tellurium solar cells.

本発明の太陽電池用ガラス基板を用いた太陽電池は、色差変動ΔEが5.0以下であることが好ましい。色差変動ΔEが5.0以下であると、色斑が小さく、太陽電池の意匠性を向上できる。
色差変動ΔEは、4.7以下であることがより好ましく、4.5以下がさらに好ましく、4.3以下が特に好ましく、また色差変動ΔEは小さければ小さいほど色斑が抑制できるので下限は特に限定されないが、0.5以上であることが好ましい。
A solar cell using the glass substrate for a solar cell of the present invention preferably has a color difference variation ΔE of 5.0 or less. When the color difference variation ΔE is 5.0 or less, color spots are small, and the design of the solar cell can be improved.
The color difference variation ΔE is more preferably 4.7 or less, more preferably 4.5 or less, and particularly preferably 4.3 or less. Although not limited, it is preferably 0.5 or more.

なお、太陽電池の色差変動ΔEは、上記した太陽電池用ガラス基板の色差変動の測定方法と同様にして、太陽電池のガラス基板側から見た反射色(a,b)の分布を測定することにより求められる。具体的に、光源はD65光源とし、入射角、反射角ともに基板に対して8°とし、光は基板のガラス面側から照射する。光源のスポットサイズは、ガラス基板表面で約1~4cmになるように調整し、ガラス基板の面内を3cm間隔で反射スペクトルを測定する。得られたスペクトルから各測定点の反射色(a,b)を計算する。得られた反射色のデータから、色座標上でのユークリッド距離ΔE12=((a -a +(b -b 0.5が最大になる(a ,b ),(a ,b )の組み合わせを選び、そのΔE12を太陽電池の色差変動ΔEとする。 The color difference variation ΔE of the solar cell is obtained by measuring the distribution of the reflected colors (a * , b * ) viewed from the glass substrate side of the solar cell in the same manner as the method for measuring the color difference variation of the glass substrate for a solar cell. is obtained by Specifically, the light source is a D65 light source, both the incident angle and the reflection angle are set at 8° with respect to the substrate, and the light is irradiated from the glass surface side of the substrate. The spot size of the light source is adjusted to about 1 to 4 cm 2 on the surface of the glass substrate, and the reflection spectrum is measured at intervals of 3 cm in the plane of the glass substrate. The reflected color (a * , b * ) at each measurement point is calculated from the obtained spectrum. From the obtained reflected color data, Euclidean distance ΔE 12 =((a 1 * -a 2 * ) 2 +(b 1 * -b 2 * ) 2 ) 0.5 on the color coordinates is the maximum ( A combination of a 1 * , b 1 * ) and (a 2 * , b 2 * ) is selected, and its ΔE 12 is defined as the color difference variation ΔE of the solar cell.

以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。なお、以下で作製した例について、例1~4、9~13、17~23は実施例であり、例5~8、14~16、24~29は比較例である。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. As for the examples produced below, Examples 1 to 4, 9 to 13, and 17 to 23 are examples, and Examples 5 to 8, 14 to 16, and 24 to 29 are comparative examples.

ガラス基板は、酸化物基準のモル百分率表示で、SiOを72%、Alを1.1%、MgOとCaOの和が13.5%、NaOとKOの和が13.5%、FeとFeOの和が0.015%以下の組成で含有するガラス基板を用いた。 The glass substrate, in molar percentage display based on oxides, contains 72% SiO2 , 1.1% Al2O3 , the sum of MgO and CaO is 13.5%, and the sum of Na2O and K2O is A glass substrate containing 13.5% Fe 2 O 3 and FeO with a composition of 0.015% or less was used.

<実験例1>
ガラス板上にCVD法を用いて薄膜を製膜すると、膜厚に面内ばらつきが生じる。このガラス板の上に太陽電池を製膜すると、光学反射スペクトルがガラス板の面内でばらつき、色斑となる。
実験例1では、機能性透明膜層である第一の機能性透明膜層(FTO膜)及び第二の機能性透明膜層(酸化スズ膜)の総膜厚(SnO総膜厚)を変えた様々な基板上に積層した太陽電池の色斑を、光学シミュレーションを用いて評価した。光源はD65光源とし、入射角、反射角ともに基板に対して垂直とした。
色斑の大きさは、SnO総膜厚が、±10%変動した時の、カドミウムテルル型太陽電池の反射色の、ab座標上での変化の大きさとした。カドミウムテルル型太陽電池の構造は、膜の組成と膜厚で、CdTe:3500nm/CdS:50nm/SnO:45nm/FTO(F:SnO):155~1005nm/SiOC:55nm/ガラス板:3.2mmとした。
<Experimental example 1>
When a thin film is formed on a glass plate using the CVD method, in-plane variations occur in the film thickness. When a solar cell is formed on this glass plate, the optical reflection spectrum varies within the surface of the glass plate, resulting in color spots.
In Experimental Example 1, the total film thickness (SnO2 total film thickness) of the first functional transparent film layer (FTO film) and the second functional transparent film layer (tin oxide film), which are functional transparent film layers, was The color mottling of solar cells stacked on different substrates was evaluated using optical simulations. A D65 light source was used as the light source, and both the incident angle and the reflection angle were perpendicular to the substrate.
The size of color mottling was defined as the size of change in ab coordinates of the reflected color of the cadmium telluride solar cell when the SnO 2 total film thickness varied by ±10%. The structure of the cadmium telluride solar cell is the film composition and film thickness: CdTe: 3500 nm/CdS: 50 nm/SnO 2 : 45 nm/FTO (F: SnO 2 ): 155 to 1005 nm/SiOC: 55 nm/glass plate: 3 .2 mm.

図2は、SnO総膜厚を横軸にとった時の、カドミウムテルル型太陽電池の色差変動(ΔE)を示すグラフである。
図2より、機能性透明膜層の総膜厚が400nmを超えると色差変動(ΔE)は小さくなり、総膜厚が500nm以上になるとΔEは6付近を下回るようになり、総膜厚が600nm以上でΔEは4以下になることが示された。
FIG. 2 is a graph showing the color difference variation (ΔE) of cadmium telluride solar cells when the total SnO 2 film thickness is plotted on the horizontal axis.
From FIG. 2, when the total film thickness of the functional transparent film layer exceeds 400 nm, the color difference variation (ΔE) becomes small, and when the total film thickness is 500 nm or more, ΔE becomes less than around 6, and the total film thickness is 600 nm. It was shown above that ΔE is 4 or less.

<実験例2>
実験例2では、例1~16の太陽電池用ガラス基板及び太陽電池を作製した。
<Experimental example 2>
In Experimental Example 2, the solar cell glass substrates and solar cells of Examples 1 to 16 were produced.

(例1)
ソーダライムシリカガラス組成からなる溶融ガラスを1500~1600℃のフロートバス中に流し込み、連続的にガラスリボンを流しながら板状ガラスの成形を行った。
厚み3.2mmのガラスリボン(ガラス板)上に、複数のコーティングビームを有する装置を用いて、アンダーコート層、第一の機能性透明膜層(FTO膜)及び第二の機能性透明膜層(SnO膜)を形成し、太陽電池用ガラス基板を作製した。
ガラスリボンの温度が700℃となる最上流側に位置する第1のコーティングビームから、モノシラン(SiH)、エチレン及びCOからなる混合ガスを供給し、ガラスリボン上に膜厚55nmのSiOC膜であるアンダーコート層を製膜した。
続いて、ガラスリボンが600℃となる下流側に位置する第2のコーティングビームから、モノブチル錫トリクロライド、酸素、水、窒素及びトリフロロ酢酸からなる混合ガスを供給しSiOC膜上に膜厚855nmのF:SnOを成分とするFTO膜(F:0.4モル%)を製膜した。
さらに、そのすぐ下流にある第3のコーティングビームから、モノブチル錫トリクロライド、酸素、水及び窒素からなる混合ガスを供給し、膜厚が45nmの酸化スズ(SnO)膜を製膜することで、太陽電池用ガラス基板を得た。
(Example 1)
Molten glass composed of soda-lime-silica glass was poured into a float bath at 1500 to 1600° C., and sheet glass was formed while continuously flowing the glass ribbon.
An undercoat layer, a first functional transparent film layer (FTO film) and a second functional transparent film layer are formed on a glass ribbon (glass plate) having a thickness of 3.2 mm using an apparatus having a plurality of coating beams. (SnO 2 film) was formed to prepare a solar cell glass substrate.
A mixed gas consisting of monosilane (SiH 4 ), ethylene and CO 2 was supplied from the first coating beam located on the most upstream side where the temperature of the glass ribbon was 700° C., and a SiOC film with a thickness of 55 nm was formed on the glass ribbon. An undercoat layer was formed.
Subsequently, from the second coating beam located downstream where the glass ribbon reaches 600° C., a mixed gas consisting of monobutyltin trichloride, oxygen, water, nitrogen and trifluoroacetic acid is supplied to coat the SiOC film with a film thickness of 855 nm. An FTO film (F: 0.4 mol %) containing F: SnO 2 as a component was formed.
Furthermore, a mixed gas consisting of monobutyltin trichloride, oxygen, water and nitrogen was supplied from a third coating beam located immediately downstream thereof to form a tin oxide (SnO 2 ) film having a thickness of 45 nm. , to obtain a glass substrate for a solar cell.

なお、FTO膜及びSnO膜を製膜する際の混合ガスはいずれも、各物質を液相又は気相状態でミキサーに供給し、そこで加熱気化しながら混合して混合ガスとした。
アンダーコート層を製膜する際の第1のコーティングビームから供給した各原料の量は、モノシラン0.12kg/時間(液相)、エチレン0.36kg/時間、CO30kg/時間であった。
FTO膜を製膜する際の第2のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド20.5L/時間(液相)、酸素35.7Nm/時間、水88.6kg/時間、トリフロロ酢酸4.9L/時間(液相)であった。
SnO膜を製膜する際の第3のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド5.9L/時間(液相)、酸素1.27Nm/時間、水44.6kg/時間であった。
For the mixed gas for forming the FTO film and the SnO 2 film, each substance was supplied in a liquid phase or gas phase state to a mixer, where the substances were mixed while being heated and vaporized to obtain a mixed gas.
The amount of each raw material supplied from the first coating beam when forming the undercoat layer was 0.12 kg/hour (liquid phase) of monosilane, 0.36 kg/hour of ethylene, and 30 kg/hour of CO 2 .
The amount of each raw material supplied from the second coating beam when forming the FTO film was 20.5 L/hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 /hour of oxygen, and 88.6 kg/hour of water. , trifluoroacetic acid was 4.9 L/hour (liquid phase).
The amount of each raw material supplied from the third coating beam when forming the SnO 2 film was 5.9 L/hour (liquid phase) of monobutyltin trichloride, 1.27 Nm 3 /hour of oxygen, and 44.6 kg/hour of water. It was time.

得られた太陽電池用ガラス基板を真空チャンバーに搬送した後、酸化スズ層上に、膜厚50nmの硫化カドミウム層と膜厚3500nmのカドミウムテルル層を、それぞれ440℃、650℃で昇華近接法を用いて製膜した。その後、カドミウムテルルと硫化カドミウムを相互拡散させるために、塩化カドミウムを昇華した後に440℃で加熱することで、CdTe(3500nm)/CdS(50nm)/SnO(45nm)/FTO(855nm)/SiOC(55nm)/ガラス板(3.2mm)の構成の太陽電池を作製した。 After transporting the obtained glass substrate for a solar cell to a vacuum chamber, a cadmium sulfide layer with a thickness of 50 nm and a cadmium tellurium layer with a thickness of 3500 nm were formed on the tin oxide layer by a sublimation proximity method at 440° C. and 650° C., respectively. A film was formed using After that, in order to interdiffuse cadmium tellurium and cadmium sulfide, cadmium chloride is sublimed and then heated at 440° C. to obtain CdTe (3500 nm)/CdS (50 nm)/SnO 2 (45 nm)/FTO (855 nm)/SiOC. A solar cell having a configuration of (55 nm)/glass plate (3.2 mm) was fabricated.

(例2~8)
第一の機能性透明膜層(FTO膜)と第二の機能性透明膜層(SnO膜)の膜厚を表1に記載のとおりに変更した以外は、例1と同様にして太陽電池用ガラス基板を得て、例1と同様の構成の太陽電池を作製した。
(Examples 2-8)
A solar cell was prepared in the same manner as in Example 1, except that the film thicknesses of the first functional transparent film layer (FTO film) and the second functional transparent film layer (SnO2 film) were changed as shown in Table 1. A solar cell having the same structure as in Example 1 was fabricated.

(例9)
厚み3.2mmのガラスリボン(ガラス板)上に、複数のコーティングビームを有する装置を用いて、アンダーコート層、第一の機能性透明膜層(FTO膜)及び第二の機能性透明膜層(SnO膜)を形成し、太陽電池用ガラス基板を作製した。
ガラスリボンの温度が650℃となる最上流側に位置する第1のコーティングビームから、オルトチタン酸テトライソプロピル(TTIP)を供給し、ガラスリボン上に膜厚8nmの酸化チタン膜である第1のアンダーコート層を製膜した。
次に、ガラスリボンが600℃となる下流側に位置する第2のコーティングビームから、モノシラン(SiH)、エチレン、及びCOからなる混合ガスを供給し、酸化チタン膜上に膜厚33nmの酸化ケイ素膜である第2のアンダーコート層を製膜した。
次に、ガラスリボンが600℃となる下流側に位置する第3のコーティングビームから、モノブチル錫トリクロライド、酸素、水、窒素及びトリフロロ酢酸からなる混合ガスを供給し、酸化ケイ素膜上に膜厚855nmのF:SnOを成分とするFTO膜(F:0.4モル%)を製膜した。
さらに、そのすぐ下流にある第4のコーティングビームから、モノブチル錫トリクロライド、酸素、水及び窒素からなる混合ガスを供給し、膜厚が45nmの酸化スズ(SnO)膜を製膜し、太陽電池用ガラス基板を得た。
(Example 9)
An undercoat layer, a first functional transparent film layer (FTO film) and a second functional transparent film layer are formed on a glass ribbon (glass plate) having a thickness of 3.2 mm using an apparatus having a plurality of coating beams. (SnO 2 film) was formed to prepare a solar cell glass substrate.
Tetraisopropyl orthotitanate (TTIP) was supplied from the first coating beam located on the most upstream side where the temperature of the glass ribbon was 650° C., and a first titanium oxide film having a thickness of 8 nm was formed on the glass ribbon. An undercoat layer was formed.
Next, a mixed gas consisting of monosilane (SiH 4 ), ethylene, and CO 2 is supplied from the second coating beam located downstream where the glass ribbon reaches 600° C. to form a 33 nm-thickness coating on the titanium oxide film. A second undercoat layer, which is a silicon oxide film, was deposited.
Next, a mixed gas consisting of monobutyltin trichloride, oxygen, water, nitrogen and trifluoroacetic acid is supplied from the third coating beam located downstream where the glass ribbon reaches 600° C., and a film thickness is formed on the silicon oxide film. An FTO film ( F: 0.4 mol%) composed of 855 nm F:SnO2 was deposited.
Further, a mixed gas consisting of monobutyltin trichloride, oxygen, water and nitrogen was supplied from a fourth coating beam located immediately downstream thereof to form a tin oxide (SnO 2 ) film with a thickness of 45 nm. A battery glass substrate was obtained.

なお、FTO膜及びSnO膜を製膜する際の混合ガスはいずれも、各物質を液相又は気相状態でミキサーに供給し、そこで加熱気化しながら混合して混合ガスとした。
FTO膜を製膜する際の第3のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド20.5L/時間(液相)、酸素35.7Nm/時間、水88.6kg/時間、トリフロロ酢酸4.9L/時間(液相)であった。
SnO膜を製膜する際の第4のコーティングビームから供給した各原料の量は、モノブチル錫トリクロライド5.9L/時間(液相)、酸素1.27Nm/時間、水44.6kg/時間であった。
For the mixed gas for forming the FTO film and the SnO 2 film, each substance was supplied in a liquid phase or gas phase state to a mixer, where the substances were mixed while being heated and vaporized to obtain a mixed gas.
The amount of each raw material supplied from the third coating beam when forming the FTO film was 20.5 L/hour (liquid phase) of monobutyltin trichloride, 35.7 Nm 3 /hour of oxygen, and 88.6 kg/hour of water. , trifluoroacetic acid was 4.9 L/hour (liquid phase).
The amount of each raw material supplied from the fourth coating beam when forming the SnO 2 film was 5.9 L/hour (liquid phase) of monobutyltin trichloride, 1.27 Nm 3 /hour of oxygen, and 44.6 kg/hour of water. It was time.

得られた太陽電池用ガラス基板を真空チャンバーに搬送した後、酸化スズ層上に、膜厚50nmの硫化カドミウム層と膜厚3500nmのカドミウムテルル層を、それぞれ440℃、650℃で昇華近接法を用いて製膜した。その後、カドミウムテルルと硫化カドミウムを相互拡散させるために、塩化カドミウムを昇華した後に440℃で加熱することで、CdTe(3500nm)/CdS(50nm)/SnO(45nm)/FTO(855nm)/SiO(33nm)/TiO(8nm)/ガラス板(3.2mm)の構成の太陽電池を作製した。 After transporting the obtained glass substrate for a solar cell to a vacuum chamber, a cadmium sulfide layer with a thickness of 50 nm and a cadmium tellurium layer with a thickness of 3500 nm were formed on the tin oxide layer by a sublimation proximity method at 440° C. and 650° C., respectively. A film was formed using After that, in order to interdiffuse cadmium telluride and cadmium sulfide, cadmium chloride is sublimated and then heated at 440° C. to form CdTe (3500 nm)/CdS (50 nm)/SnO 2 (45 nm)/FTO (855 nm)/SiO 2 (33 nm)/TiO 2 (8 nm)/glass plate (3.2 mm).

(例10~16)
第一の機能性透明膜層(FTO膜)と第二の機能性透明膜層(SnO膜)の膜厚を表2に記載のとおりに変更した以外は、例9と同様にして太陽電池用ガラス基板を得て、例9と同様の構成の太陽電池を作製した。
(Examples 10-16)
A solar cell was prepared in the same manner as in Example 9, except that the film thicknesses of the first functional transparent film layer (FTO film) and the second functional transparent film layer (SnO2 film) were changed as shown in Table 2. A solar cell having the same structure as in Example 9 was fabricated.

<色差変動(ΔE)の測定>
例1~16で作製した太陽電池用ガラス基板及び太陽電池それぞれについて、色差変動(色斑の大きさ)を測定した。
色斑の大きさを計算するために、太陽電池用ガラス基板についてはガラス板側、太陽電池についてはガラス基板側から見た反射色(a,b)の分布を測定した。光源はD65光源とし、入射角、反射角ともに基板に対して垂直とした。光は基板のガラス面側から照射した。光源のスポットサイズは、ガラス板/ガラス基板表面で約1cmになるように調整した。ガラス基板の面内を3cm間隔で反射スペクトルを測定した。得られたスペクトルから各測定点の反射色(a,b)を計算した。
得られた反射色のデータから、色座標上でのユークリッド距離ΔE12=((a -a +(b -b 0.5が最大になる(a ,b ),(a ,b )の組み合わせを選び、そのΔE12を太陽電池用ガラス基板又は太陽電池の色差変動ΔEとした。
結果を表1又は表2に示す。
<Measurement of color difference variation (ΔE)>
For each of the solar cell glass substrates and solar cells produced in Examples 1 to 16, color difference variation (size of color spots) was measured.
In order to calculate the size of color spots, the distribution of the reflected colors (a * , b * ) was measured for the solar cell glass substrate viewed from the glass plate side, and for the solar cell viewed from the glass substrate side. A D65 light source was used as the light source, and both the incident angle and the reflection angle were perpendicular to the substrate. Light was applied from the glass surface side of the substrate. The spot size of the light source was adjusted to be approximately 1 cm 2 on the surface of the glass plate/glass substrate. Reflection spectra were measured at intervals of 3 cm in the plane of the glass substrate. The reflected color (a * , b * ) at each measurement point was calculated from the obtained spectrum.
From the obtained reflected color data, Euclidean distance ΔE 12 =((a 1 * -a 2 * ) 2 +(b 1 * -b 2 * ) 2 ) 0.5 on the color coordinates is the maximum ( A combination of a 1 * , b 1 * ) and (a 2 * , b 2 * ) was selected, and its ΔE 12 was defined as the color difference variation ΔE of the solar cell glass substrate or solar cell.
The results are shown in Table 1 or Table 2.

Figure 2022123516000001
Figure 2022123516000001

Figure 2022123516000002
Figure 2022123516000002

表1、2の結果より、FTO膜とSnO膜の総膜厚が550nm以上である、例1~4、9~13で作製した太陽電池用ガラス基板はいずれも、色差変動ΔEは8.0以下であった。また、例1~4、9~13で作製した太陽電池は、いずれも色差変動ΔEが5.0以下であり、色斑が抑えられることがわかった。 From the results in Tables 1 and 2, all of the glass substrates for solar cells produced in Examples 1 to 4 and 9 to 13, in which the total film thickness of the FTO film and the SnO 2 film is 550 nm or more, had a color difference variation ΔE of 8.5. was 0 or less. Moreover, the solar cells produced in Examples 1 to 4 and 9 to 13 all had a color difference variation ΔE of 5.0 or less, indicating that color mottling was suppressed.

<実験例3>
実験例3では、例17~29の太陽電池用ガラス基板及び太陽電池を作製した。
<Experimental example 3>
In Experimental Example 3, solar cell glass substrates and solar cells of Examples 17 to 29 were produced.

(例17~29)
第一の機能性透明膜層(FTO膜)と第二の機能性透明膜層(SnO膜)の膜厚を表3に記載のとおりに変更した以外は、実験例2の例1と同様にして太陽電池用ガラス基板を得て、例1と同様の構成の太陽電池を作製した。
(Examples 17-29)
Same as Example 1 of Experimental Example 2, except that the film thicknesses of the first functional transparent film layer (FTO film) and the second functional transparent film layer (SnO2 film) were changed as shown in Table 3. Then, a solar cell glass substrate was obtained, and a solar cell having the same structure as in Example 1 was produced.

<Haze(ヘイズ)の測定>
例17~29で作製した太陽電池用ガラス基板について、スガ試験機株式会社製ヘイズメーター「HZ-V3」を用い、JIS K 7105(1981に準拠してHaze値を測定した。
結果を表3に示す。
<Measurement of Haze>
For the solar cell glass substrates produced in Examples 17 to 29, the haze value was measured according to JIS K 7105 (1981) using a haze meter "HZ-V3" manufactured by Suga Test Instruments Co., Ltd.
Table 3 shows the results.

<色差変動(ΔE)の測定>
例17~29で作製した太陽電池用ガラス基板及び太陽電池について、実験例2で測定したのと同様にして太陽電池用ガラス基板及び太陽電池の色差変動ΔEを測定した。
結果を表3に示す。
<Measurement of color difference variation (ΔE)>
For the solar cell glass substrates and solar cells produced in Examples 17 to 29, the color difference variation ΔE of the solar cell glass substrates and solar cells was measured in the same manner as in Experimental Example 2.
Table 3 shows the results.

Figure 2022123516000003
Figure 2022123516000003

表3の結果より、FTO膜とSnO膜の厚みを変更しても、総膜厚を550nm以上とすることで、太陽電池用ガラス基板の色差変動ΔEは8.0以下となり、また太陽電池の色差変動ΔEは5.0以下となった。これにより、例17~23で作製された太陽電池は色斑が抑えられることがわかった。
また、実施例である例17~23の太陽電池用ガラス基板は、Haze値が6.0%以下であり、光吸収層の製膜性に優れることがわかった。
なお、例17~29はアンダーコート層として炭化酸化ケイ素(SiOC)層を製膜した例であるが、Haze値はFTO膜とSnO膜の厚みの総和で概ね決まるため、ガラス板上にアンダーコート層として酸化チタン(TiO)層と酸化ケイ素(SiO)層を順に積層した積層膜(SiO/TiO)を用いた場合も同程度のHaze値になると想定される。
From the results in Table 3, even if the thicknesses of the FTO film and the SnO film are changed, by setting the total film thickness to 550 nm or more, the color difference variation ΔE of the glass substrate for solar cells is 8.0 or less, and the solar cell was 5.0 or less. As a result, it was found that the solar cells produced in Examples 17 to 23 were free from color mottling.
Further, it was found that the solar cell glass substrates of Examples 17 to 23, which are working examples, had a haze value of 6.0% or less, and were excellent in film formability of the light absorbing layer.
Examples 17 to 29 are examples in which a silicon carbide oxide ( SiOC) layer was formed as an undercoat layer. It is assumed that the haze value is about the same when using a laminated film (SiO 2 /TiO 2 ) in which a titanium oxide (TiO 2 ) layer and a silicon oxide (SiO 2 ) layer are laminated in order as the coat layer.

1 ガラス板
3 アンダーコート層
5 第一の機能性透明膜層
7 第二の機能性透明膜層
10 太陽電池用ガラス基板
1 glass plate 3 undercoat layer 5 first functional transparent film layer 7 second functional transparent film layer 10 glass substrate for solar cell

Claims (10)

ガラス板上に、アンダーコート層と第一の機能性透明膜層と第二の機能性透明膜層とがこの順に配置され、
前記第一の機能性透明膜層はフッ素ドープ酸化スズからなり、前記第二の機能性透明膜層は酸化スズからなり、
前記第一の機能性透明膜層と前記第二の機能性透明膜層の膜厚の合計が550~1000nmである、太陽電池用ガラス基板。
An undercoat layer, a first functional transparent film layer and a second functional transparent film layer are arranged in this order on a glass plate,
The first functional transparent film layer is made of fluorine-doped tin oxide, the second functional transparent film layer is made of tin oxide,
A glass substrate for a solar cell, wherein the total thickness of the first functional transparent film layer and the second functional transparent film layer is 550 to 1000 nm.
前記アンダーコート層が、炭化酸化ケイ素、酸化チタン及び酸化ケイ素からなる群から選択される少なくとも1つを含有する、請求項1に記載の太陽電池用ガラス基板。 The glass substrate for solar cell according to claim 1, wherein the undercoat layer contains at least one selected from the group consisting of silicon carbide oxide, titanium oxide and silicon oxide. 前記太陽電池用ガラス基板の色差変動ΔEが8.0以下である、請求項1又は2に記載の太陽電池用ガラス基板。 3. The glass substrate for solar cells according to claim 1, wherein the glass substrate for solar cells has a color difference variation .DELTA.E of 8.0 or less. Haze値が6.0%以下である、請求項1~3のいずれか1項に記載の太陽電池用ガラス基板。 4. The glass substrate for solar cells according to claim 1, which has a Haze value of 6.0% or less. 前記第一の機能性透明膜層の膜厚が500~900nmであり、前記第二の機能性透明膜層の膜厚が6~150nmである、請求項1~4のいずれか1項に記載の太陽電池用ガラス基板。 5. The film according to any one of claims 1 to 4, wherein the first functional transparent film layer has a thickness of 500 to 900 nm, and the second functional transparent film layer has a thickness of 6 to 150 nm. glass substrates for solar cells. 前記第一の機能性透明膜層と前記第二の機能性透明膜層の膜厚の合計が600~1000nmである、請求項1~5のいずれか1項に記載の太陽電池用ガラス基板。 6. The glass substrate for solar cells according to claim 1, wherein the total thickness of said first functional transparent film layer and said second functional transparent film layer is 600-1000 nm. フロートガラス製造プロセスにおいて製膜された、請求項1~6のいずれか1項に記載の太陽電池用ガラス基板。 7. The glass substrate for solar cells according to claim 1, which is formed in a float glass manufacturing process. 前記第一の機能性透明膜層と前記第二の機能性透明膜層が互いに接している、請求項1~7のいずれか1項に記載の太陽電池用ガラス基板。 8. The glass substrate for solar cell according to claim 1, wherein said first functional transparent film layer and said second functional transparent film layer are in contact with each other. 請求項1~8のいずれか1項に記載の太陽電池用ガラス基板を備える、太陽電池。 A solar cell comprising the glass substrate for a solar cell according to any one of claims 1 to 8. カドミウムテルル太陽電池である、請求項9に記載の太陽電池。 10. The solar cell of claim 9, which is a cadmium tellurium solar cell.
JP2021020874A 2021-02-12 2021-02-12 Glass substrate for solar cells and solar cell Pending JP2022123516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021020874A JP2022123516A (en) 2021-02-12 2021-02-12 Glass substrate for solar cells and solar cell
CN202210134278.2A CN114927590A (en) 2021-02-12 2022-02-14 Glass substrate for solar cell and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021020874A JP2022123516A (en) 2021-02-12 2021-02-12 Glass substrate for solar cells and solar cell

Publications (2)

Publication Number Publication Date
JP2022123516A true JP2022123516A (en) 2022-08-24
JP2022123516A5 JP2022123516A5 (en) 2023-03-07

Family

ID=82805419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021020874A Pending JP2022123516A (en) 2021-02-12 2021-02-12 Glass substrate for solar cells and solar cell

Country Status (2)

Country Link
JP (1) JP2022123516A (en)
CN (1) CN114927590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002988A (en) * 2022-12-12 2023-04-25 玻璃新材料创新中心(安徽)有限公司 Transparent conductive film glass for solar cell and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020458B2 (en) * 2019-07-12 2022-02-16 Agc株式会社 Glass substrate with film and its manufacturing method
CN116669448B (en) * 2023-07-28 2024-02-13 淄博金晶新能源有限公司 TCO conductive film glass for perovskite solar cell and preparation process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012948A (en) * 2019-07-05 2021-02-04 Agc株式会社 Transparent electrode substrate and solar battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
CN104600130A (en) * 2015-01-13 2015-05-06 福建铂阳精工设备有限公司 Silicon-based thin-film solar cell and preparation method thereof
KR102075687B1 (en) * 2019-06-05 2020-02-10 주식회사 이건창호 Architectural glass panel with uniform color
JP2021012949A (en) * 2019-07-05 2021-02-04 Agc株式会社 Transparent electrode substrate and solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012948A (en) * 2019-07-05 2021-02-04 Agc株式会社 Transparent electrode substrate and solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116002988A (en) * 2022-12-12 2023-04-25 玻璃新材料创新中心(安徽)有限公司 Transparent conductive film glass for solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN114927590A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
JP2022123516A (en) Glass substrate for solar cells and solar cell
US6380480B1 (en) Photoelectric conversion device and substrate for photoelectric conversion device
US6362414B1 (en) Transparent layered product and glass article using the same
US6444898B1 (en) Transparent layered product and glass article using the same
US6602606B1 (en) Glass sheet with conductive film, method of manufacturing the same, and photoelectric conversion device using the same
US9181124B2 (en) Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
US7968201B2 (en) Light transmittance optimizing coated glass article for solar cell and method for making
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
CN101477846B (en) Transparent base with transparent conductive film , Method for producing a transparent base with transparent conductive film, Photoelectric element including same
JP2001060702A (en) Substrate for photoelectric transfer device and photoelectric transfer device using substrate
JP7020458B2 (en) Glass substrate with film and its manufacturing method
JP4467707B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP4430193B2 (en) Manufacturing method of glass plate with conductive film
WO2022114028A1 (en) Glass substrate with transparent conductive film and solar cell
JP2004362842A (en) Transparent base substrate with transparent conductive film, its manufacturing method, photoelectric conversion device and substrate therefor
JP3984404B2 (en) Glass plate with conductive film, method for producing the same, and photoelectric conversion device using the same
JP4516657B2 (en) SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
JP2017001924A (en) Coating film-fitted glass plate
JP7306502B2 (en) Film-coated glass substrate and manufacturing method thereof
JP7396416B2 (en) Glass substrate with transparent conductive film and method for manufacturing the same
WO2022114027A1 (en) Film-attached glass substrate, and method for manufacturing same
JP7160232B1 (en) Transparent electrode substrate and solar cell
JP2001035275A (en) Manufacture of transparent substrate with transparent conductive film, and photoelectric converting device using the film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312