JP2016146443A - Transparent conductive substrate for solar cell - Google Patents

Transparent conductive substrate for solar cell Download PDF

Info

Publication number
JP2016146443A
JP2016146443A JP2015023501A JP2015023501A JP2016146443A JP 2016146443 A JP2016146443 A JP 2016146443A JP 2015023501 A JP2015023501 A JP 2015023501A JP 2015023501 A JP2015023501 A JP 2015023501A JP 2016146443 A JP2016146443 A JP 2016146443A
Authority
JP
Japan
Prior art keywords
transparent conductive
oxide film
fluorine
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015023501A
Other languages
Japanese (ja)
Inventor
高橋 亮
Akira Takahashi
亮 高橋
中村 茂
Shigeru Nakamura
茂 中村
直樹 種田
Naoki Taneda
直樹 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015023501A priority Critical patent/JP2016146443A/en
Publication of JP2016146443A publication Critical patent/JP2016146443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive substrate for solar cell capable of improving the J(short circuit current) without reducing the FF (fill factor) and increasing the sheet resistance value.SOLUTION: In a transparent conductive substrate for solar cell where a transparent conductive oxide film is formed on a substrate, the transparent conductive oxide film is a fluorine-doped tin oxide film. The transparent conductive oxide film has a thickness of 600-1100 nm, and an average fluorine content of 0.1-1.0 mass%. The average fluorine content in a region down to 150 nm from the film surface in the depth direction is 0.02-0.045 mass%.SELECTED DRAWING: None

Description

本発明は、太陽電池用透明導電性基板に関する。   The present invention relates to a transparent conductive substrate for solar cells.

薄膜系太陽電池には、光電変換層がアモルファスシリコン層よりなるアモルファスシリコン系太陽電池、単結晶シリコン層または微結晶シリコン層よりなる結晶性シリコン系太陽電池などがある。別の分類として、光電変換層を1層のみ有するシングル構造の太陽電池と、より広範囲の太陽光スペクトルを利用するために、バンドギャップ(Eg)の異なる材料からなる複数の光電変換層を、光入射側からEg(top)>Eg(middle)>Eg(bottom)の順番に配置した多接合構造の太陽電池と、がある。このような多接合構造の太陽電池において、光入射側の光電変換層(top層)には、通常はバンドギャップが大きいアモルファスシリコンが使用され、他の光電変換層には単結晶シリコンまたは微結晶シリコンといった結晶性シリコンが使用されている。一方、シングル構造の太陽電池では、光電変換層にアモルファスシリコンが最も多く使用されているが、近年は結晶系シリコンを使用した例もある。   Thin film solar cells include amorphous silicon solar cells in which a photoelectric conversion layer is an amorphous silicon layer, crystalline silicon solar cells in which a single crystal silicon layer or a microcrystalline silicon layer is formed. As another classification, in order to use a single-structure solar cell having only one photoelectric conversion layer and a broader solar spectrum, a plurality of photoelectric conversion layers made of materials having different band gaps (Eg) are There are multi-junction solar cells arranged in the order of Eg (top)> Eg (middle)> Eg (bottom) from the incident side. In such a multi-junction structure solar cell, amorphous silicon having a large band gap is usually used for the photoelectric conversion layer (top layer) on the light incident side, and single crystal silicon or microcrystal is used for the other photoelectric conversion layers. Crystalline silicon such as silicon is used. On the other hand, in a single-structure solar cell, amorphous silicon is most frequently used for the photoelectric conversion layer, but in recent years, there is an example in which crystalline silicon is used.

このような多接合構造の太陽電池は、シングル構造のアモルファスシリコン系太陽電池に比べて光電変換効率に優れている。このため下地をなす透明導電性基板についても、光電変換効率を向上させるものであることが望ましい。太陽電池用透明導電性基板は、一般にガラス等の透光性に優れた基体上に透明導電性酸化物膜を成膜して構成されている。透明導電性酸化物膜としては導電性を発現するためにフッ素をドープした酸化スズ膜(フッ素ドープ酸化スズ膜)が通常使用されている。   Such a multi-junction solar cell is superior in photoelectric conversion efficiency as compared to a single-structure amorphous silicon solar cell. For this reason, it is desirable that the transparent conductive substrate as a base also improves the photoelectric conversion efficiency. A transparent conductive substrate for a solar cell is generally formed by forming a transparent conductive oxide film on a substrate having excellent translucency such as glass. As the transparent conductive oxide film, a fluorine-doped tin oxide film (fluorine-doped tin oxide film) is usually used in order to exhibit conductivity.

透明導電性基板の光電変換効率ηは、下記式により求まる。
光電変換効率η=Jsc(短絡電流)×Voc(開放端電圧)×FF(曲線因子)
光電変換効率に影響する主要な特性であるJsc(短絡電流)は、透明導電性基板の光線透過率(可視光透過率)に比例すると考えられており、透明導電性基板の光線透過率(可視光透過率)を高めること、すなわち、透明導電性酸化物として用いるフッ素ドープ酸化スズ膜の光線透過率(可視光透過率)を高めることが重視されている(特許文献1)。
The photoelectric conversion efficiency η of the transparent conductive substrate is obtained by the following formula.
Photoelectric conversion efficiency η = J sc (short circuit current) × V oc (open-circuit voltage) × FF (curve factor)
J sc (short-circuit current), which is a main characteristic affecting the photoelectric conversion efficiency, is considered to be proportional to the light transmittance (visible light transmittance) of the transparent conductive substrate, and the light transmittance of the transparent conductive substrate ( It is important to increase the visible light transmittance), that is, to increase the light transmittance (visible light transmittance) of the fluorine-doped tin oxide film used as the transparent conductive oxide (Patent Document 1).

フッ素ドープ酸化スズ膜の光線透過率(可視光透過率)を高める方法としては、以下の方法が考えられる。
(1)フッ素のドープ量を低くする。
(2)フッ素ドープ酸化スズ膜の膜厚を小さくする。
しかしながら、(1)の方法には、光源変換効率に影響する主要な特性であるFF(曲線因子)が低下する問題がある。
一方、(2)の方法には、フッ素ドープ酸化スズ膜のシート抵抗値が増加する問題がある。太陽電池用透明導電性基板は、シート抵抗値が低いことが求められるため問題となる。
The following methods can be considered as a method for increasing the light transmittance (visible light transmittance) of the fluorine-doped tin oxide film.
(1) Reduce the fluorine doping amount.
(2) Reduce the film thickness of the fluorine-doped tin oxide film.
However, the method (1) has a problem that FF (curve factor), which is a main characteristic affecting the light source conversion efficiency, decreases.
On the other hand, the method (2) has a problem that the sheet resistance value of the fluorine-doped tin oxide film increases. Since the transparent conductive substrate for solar cells is required to have a low sheet resistance value, it becomes a problem.

特許第446707号明細書Japanese Patent No. 446707

本発明は、上記した従来技術の問題点を解決するため、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)を改善することができる、太陽電池用透明導電性基板を提供することを目的とする。 In order to solve the above-described problems of the prior art, the present invention can improve J sc (short circuit current) without decreasing FF (fill factor) and increasing sheet resistance. It aims at providing the transparent conductive substrate for solar cells.

上記した目的を達成するため、本発明は、基体上に、透明導電性酸化物膜が形成された太陽電池用透明導電性基板であって、
透明導電性酸化物膜は、フッ素がドープされた酸化スズ膜であり、
前記透明導電性酸化物膜は、膜厚が600〜1100nmであり、
前記透明導電性酸化物膜は、平均フッ素含有量が0.1〜1.0質量%であり、
前記透明導電性酸化物膜は、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.02〜0.045質量%であることを特徴とする太陽電池用透明導電性基板を提供する。
In order to achieve the above object, the present invention is a transparent conductive substrate for a solar cell in which a transparent conductive oxide film is formed on a substrate,
The transparent conductive oxide film is a tin oxide film doped with fluorine,
The transparent conductive oxide film has a thickness of 600 to 1100 nm,
The transparent conductive oxide film has an average fluorine content of 0.1 to 1.0% by mass,
The transparent conductive oxide film is a transparent conductive substrate for solar cells, characterized in that the average fluorine content in the region from the film surface to 150 nm in the depth direction is 0.02 to 0.045% by mass. provide.

本発明の太陽電池用透明導電性基板において、前記透明導電性酸化物膜の膜厚は800〜950nmであることが好ましい。   In the transparent conductive substrate for a solar cell of the present invention, the transparent conductive oxide film preferably has a thickness of 800 to 950 nm.

本発明の太陽電池用透明導電性基板において、前記透明導電性酸化物膜のC光源ヘイズ率が8〜35%であることが好ましい。   In the transparent conductive substrate for solar cell of the present invention, the transparent conductive oxide film preferably has a C light source haze ratio of 8 to 35%.

本発明の太陽電池用透明導電性基板において、前記透明導電性酸化物膜のシート抵抗値が10〜12.5Ω/□であることが好ましい。   In the transparent conductive substrate for a solar cell of the present invention, the transparent conductive oxide film preferably has a sheet resistance value of 10 to 12.5Ω / □.

本発明の太陽電池用透明導電性基板では、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)を改善することができる。
本発明の太陽電池用透明導電性基板は、C光源ヘイズ率が8〜35%と高いため、良好な光散乱性能を有する。
In the transparent conductive substrate for solar cells of the present invention, J sc (short circuit current) can be improved without accompanying a decrease in FF (fill factor) and an increase in sheet resistance value.
Since the transparent conductive substrate for solar cell of the present invention has a high C light source haze ratio of 8 to 35%, it has good light scattering performance.

本発明の太陽電池用透明導電性基板について説明する。
本発明の太陽電池用透明導電性基板は、基体上に、透明導電性酸化物膜が形成されたものである。
The transparent conductive substrate for solar cells of the present invention will be described.
The transparent conductive substrate for solar cells of the present invention is obtained by forming a transparent conductive oxide film on a substrate.

(基体)
太陽電池用透明導電性基板における基体の材質は、特に限定されないが、透光性(光透過率)および機械的強度に優れる点で、ガラス、プラスチックが好適に例示される。中でも、透光性、機械的強度および耐熱性に優れ、かつ、コスト面でも優れる点で、ガラスが好ましい。
(Substrate)
Although the material of the base | substrate in the transparent conductive substrate for solar cells is not specifically limited, Glass and a plastic are suitably illustrated by the point which is excellent in translucency (light transmittance) and mechanical strength. Among these, glass is preferable because it is excellent in translucency, mechanical strength, and heat resistance, and is excellent in cost.

ガラスは、特に限定されず、例えば、ソーダライムシリケートガラス、アルミノシリケートガラス、リチウムアルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス、無アルカリガラスが挙げられる。中でも、無色透明であり、安価であり、市場で面積、形状、板厚等の仕様を指定して入手することが容易である点で、ソーダライムシリケートガラスが好ましい。   The glass is not particularly limited, and examples thereof include soda lime silicate glass, aluminosilicate glass, lithium aluminosilicate glass, quartz glass, borosilicate glass, and alkali-free glass. Among them, soda lime silicate glass is preferable because it is colorless and transparent, is inexpensive, and can be easily obtained by specifying specifications such as area, shape, and plate thickness in the market.

なお、ソーダライムシリケートガラスなどのアルカリ成分を含有するガラス基板の場合には、ガラスからその上面に形成される透明導電性酸化物膜へのアルカリ成分の拡散を最小限にするためのアルカリバリア層として、酸化チタン層、酸化ケイ素層、および、SiOC層のうち、少なくとも一層を、ガラス基板と透明導電性酸化物膜との間に形成することが好ましい。また、酸化チタン層および酸化ケイ素層をこの順に基板から形成するか、もしくは、SiOC層を形成して反射防止効果を持たせることがよりよい。   In the case of a glass substrate containing an alkali component such as soda lime silicate glass, an alkali barrier layer for minimizing the diffusion of the alkali component from the glass to the transparent conductive oxide film formed on the upper surface thereof As at least one of the titanium oxide layer, the silicon oxide layer, and the SiOC layer is preferably formed between the glass substrate and the transparent conductive oxide film. In addition, it is better to form a titanium oxide layer and a silicon oxide layer in this order from the substrate, or to form an SiOC layer to have an antireflection effect.

基体がガラス製である場合、厚さは、0.2〜6.0mmであるのが好ましい。上記範囲であると、機械的強度および透光性のバランスに優れる。
基体は、400〜1200nmの波長領域の光透過率に優れているのが好ましい。具体的には400〜1200nmの波長領域の平均光透過率が80%を超えているのが好ましく、85%以上であるのがより好ましい。
また、基体は、絶縁性に優れているのが好ましく、化学的耐久性および物理的耐久性にも優れているのが好ましい。
When the substrate is made of glass, the thickness is preferably 0.2 to 6.0 mm. Within the above range, the balance between mechanical strength and translucency is excellent.
The substrate is preferably excellent in light transmittance in a wavelength region of 400 to 1200 nm. Specifically, the average light transmittance in the wavelength region of 400 to 1200 nm is preferably more than 80%, and more preferably 85% or more.
Further, the substrate is preferably excellent in insulating properties, and is preferably excellent in chemical durability and physical durability.

基体の形状は、平板状が一般的であるが、本発明においては、基体の形状は特に限定されず、太陽電池用透明導電性基板を用いて製造される太陽電池の形状に応じて適宜選択することができる。したがって、曲面状であってもよく、また他の異形状であってもよい。   The shape of the substrate is generally a flat plate shape. However, in the present invention, the shape of the substrate is not particularly limited, and is appropriately selected according to the shape of the solar cell produced using the transparent conductive substrate for solar cell. can do. Therefore, it may have a curved surface shape or other different shape.

(透明導電性酸化物膜)
基体上に形成される透明導電性酸化物膜は、導電性を発現するためにフッ素がドープされた酸化スズ膜(フッ素ドープ酸化スズ膜)である。
本発明における透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、下記(1)〜(3)を満たすことを特徴とする。
(1)膜厚が600〜1100nmである。
(2)平均フッ素含有量が0.1〜1.0質量%である。
(3)膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.02〜0.045質量%である。
(Transparent conductive oxide film)
The transparent conductive oxide film formed on the substrate is a tin oxide film doped with fluorine (fluorine-doped tin oxide film) in order to exhibit conductivity.
The transparent conductive oxide film (fluorine-doped tin oxide film) in the present invention satisfies the following (1) to (3).
(1) The film thickness is 600 to 1100 nm.
(2) The average fluorine content is 0.1 to 1.0% by mass.
(3) The average fluorine content in the region from the film surface to 150 nm in the depth direction is 0.02 to 0.045% by mass.

透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の膜厚が上記範囲である場合、Jsc(短絡電流)が高くなる。透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の膜厚が600nm未満だと、膜表面に穴状欠陥が生じやすくなり、リーク電流の発生やシャント抵抗の低下により、Jsc(短絡電流)の低下やVoc(開放端電圧)の低下が見られるようになる。透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の膜厚が1100nm超だと、透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の光線透過率(可視光透過率)が低下するため、Jsc(短絡電流)が低くなる。
透明導電性酸化物膜の膜厚は、800〜950nmであることが好ましい。
When the film thickness of the transparent conductive oxide film (fluorine-doped tin oxide film) is in the above range, J sc (short circuit current) becomes high. If the film thickness of the transparent conductive oxide film (fluorine-doped tin oxide film) is less than 600 nm, hole-like defects are likely to occur on the film surface, and J sc (short-circuit current) occurs due to the occurrence of leakage current and a decrease in shunt resistance. And a decrease in V oc (open-circuit voltage) are observed. If the thickness of the transparent conductive oxide film (fluorine-doped tin oxide film) exceeds 1100 nm, the light transmittance (visible light transmittance) of the transparent conductive oxide film (fluorine-doped tin oxide film) decreases. J sc (short circuit current) decreases.
The thickness of the transparent conductive oxide film is preferably 800 to 950 nm.

透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の平均フッ素含有量が上記範囲である場合、Jsc(短絡電流)が高くなる。透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の平均フッ素含有量が0.1質量%未満だと、FF(曲線因子)が低下する。透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の平均フッ素含有量が1.0質量%超だと、透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の光線透過率(可視光透過率)が低下するため、Jsc(短絡電流)が低くなる。
透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の平均フッ素含有量は、0.1〜0.7質量%であることが好ましく、0.1〜0.5質量%であることがより好ましい。
When the average fluorine content of the transparent conductive oxide film (fluorine-doped tin oxide film) is within the above range, J sc (short circuit current) becomes high. When the average fluorine content of the transparent conductive oxide film (fluorine-doped tin oxide film) is less than 0.1% by mass, FF (curve factor) decreases. When the average fluorine content of the transparent conductive oxide film (fluorine-doped tin oxide film) exceeds 1.0 mass%, the light transmittance (visible light transmittance) of the transparent conductive oxide film (fluorine-doped tin oxide film) ) Decreases, J sc (short circuit current) decreases.
The average fluorine content of the transparent conductive oxide film (fluorine-doped tin oxide film) is preferably 0.1 to 0.7% by mass, more preferably 0.1 to 0.5% by mass. .

上記(3)から明らかなように、本発明における透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、膜表面付近のフッ素含有量が、膜の残りの部位のフッ素含有量に比べて低い。本発明における透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、このような構成とすることにより、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)が向上することができる。具体的には、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が上記範囲であることにより、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)が向上する。
膜表面付近のフッ素含有量が、膜の残りの部位のフッ素含有量に比べて低い構成とすることにより、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)が向上する理由について、本願出願人は以下のように推測する。
透明導電性酸化物膜(フッ素ドープ酸化スズ膜)の表面近傍のフッ素原子の一部は、薄膜系太陽電池の製造時に実施される光電変換層の成膜工程などにおいて、拡散し、光電変換層に微量混入することがある。拡散して光電変換層に混入したフッ素原子は、薄膜太陽電池の発電時に、光電変換層で発生するキャリアの再結合を促進する不純物として作用して、Jsc(短絡電流)を低下させる原因となると考えられる。
膜表面付近のフッ素含有量が、膜の残りの部位のフッ素含有量に比べて低い構成とすることにより、拡散して光電変換層に混入するフッ素原子を抑制することが可能となり、その結果、Jsc(短絡電流)が向上すると考えられる。
ただし、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.02質量%未満だと、FF(曲線因子)の低下が起きる。膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.045質量%超だと、Jsc(短絡電流)が低下する。
As apparent from the above (3), the transparent conductive oxide film (fluorine-doped tin oxide film) in the present invention has a lower fluorine content near the film surface than the fluorine content in the remaining part of the film. . By adopting such a configuration, the transparent conductive oxide film (fluorine-doped tin oxide film) according to the present invention is capable of reducing the FF (curve factor) and increasing the sheet resistance value without causing J sc (Short circuit current) can be improved. Specifically, when the average fluorine content in the region from the film surface to 150 nm in the depth direction is in the above range, without decreasing the FF (curve factor) and increasing the sheet resistance value, J sc (short circuit current) is improved.
By adopting a structure in which the fluorine content in the vicinity of the film surface is lower than the fluorine content in the remaining part of the film, the FF (curve factor) is reduced and the sheet resistance value is not increased. The reason for the improvement of sc (short circuit current) is estimated by the applicant of the present invention as follows.
A part of fluorine atoms in the vicinity of the surface of the transparent conductive oxide film (fluorine-doped tin oxide film) diffuses in the photoelectric conversion layer film forming step or the like that is performed at the time of manufacturing the thin film solar cell. May be mixed in a trace amount. The fluorine atoms diffused and mixed into the photoelectric conversion layer act as an impurity that promotes the recombination of carriers generated in the photoelectric conversion layer during power generation of the thin film solar cell, thereby causing a decrease in J sc (short circuit current). It is considered to be.
By making the fluorine content in the vicinity of the film surface lower than the fluorine content in the remaining part of the film, it becomes possible to suppress the fluorine atoms that diffuse and enter the photoelectric conversion layer. It is considered that J sc (short circuit current) is improved.
However, when the average fluorine content in the region from the film surface to 150 nm in the depth direction is less than 0.02% by mass, the FF (curve factor) decreases. When the average fluorine content in the region from the film surface to 150 nm in the depth direction exceeds 0.045 mass%, J sc (short circuit current) decreases.

上述したように本発明における透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、上記(1)〜(3)を満たすことにより、FF(曲線因子)の低下、および、シート抵抗値の増加を伴うことなしに、Jsc(短絡電流)が向上する。
本発明における透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、さらに、以下に示す太陽電池用透明導電性基板として好ましい特性を有する。
As described above, the transparent conductive oxide film (fluorine-doped tin oxide film) in the present invention satisfies the above (1) to (3), thereby lowering the FF (curve factor) and increasing the sheet resistance value. J sc (short-circuit current) is improved without accompanying.
The transparent conductive oxide film (fluorine-doped tin oxide film) in the present invention further has preferable characteristics as a transparent conductive substrate for solar cells described below.

太陽電池用透明導電性基板に用いられる透明導電性酸化物膜において、C光源ヘイズ率がある程度高いことが良好な光散乱性能を有するため好ましい。本発明の透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、C光源ヘイズ率が8〜35%であることが好ましく、8〜35%であることが好ましく、10〜25%であることがより好ましく、12〜20%であることがさらに好ましい。   In the transparent conductive oxide film used for the transparent conductive substrate for solar cells, it is preferable that the C light source haze ratio is high to some extent because of good light scattering performance. The transparent conductive oxide film (fluorine-doped tin oxide film) of the present invention preferably has a C light source haze ratio of 8 to 35%, preferably 8 to 35%, and 10 to 25%. Is more preferable, and it is further more preferable that it is 12 to 20%.

太陽電池用透明導電性基板に用いられる透明導電性酸化物膜において、シート抵抗値が低いことが導電性が向上するため好ましい。
本発明の透明導電性酸化物膜(フッ素ドープ酸化スズ膜)は、シート抵抗値が10〜12.5Ω/□であることが好ましい。
In the transparent conductive oxide film used for the transparent conductive substrate for solar cells, it is preferable that the sheet resistance value is low because the conductivity is improved.
The transparent conductive oxide film (fluorine-doped tin oxide film) of the present invention preferably has a sheet resistance value of 10 to 12.5Ω / □.

本発明の太陽電池用透明導電性基板を作製する場合、ガラス基板等の基体上に、透明導電性酸化物膜として、フッ素ドープ酸化スズ膜を形成する。
フッ素ドープ酸化スズ膜の形成には、常圧CVD法の使用が、装置コストが低いこと、成膜速度が速いこと、大面積基板への成膜などに好適である等の理由から好ましい。
常圧CVD法を用いて、フッ素ドープ酸化スズ膜を形成する場合、搬送型常圧CVD装置の使用が、太陽電池用透明導電性基板を量産的に製造するのに適しているため好ましい。
なお、常圧CVD法によるフッ素ドープ酸化スズ膜の形成は、ガラス基板等の基体の製造に引き続いてフッ素ドープ酸化スズ膜の形成を行うオンラインCVDとして実施してもよく、基体の製造とは別個の工程で、フッ素ドープ酸化スズ膜の形成を行うオフラインCVD法として実施してもよい。
When producing the transparent conductive substrate for solar cells of the present invention, a fluorine-doped tin oxide film is formed as a transparent conductive oxide film on a substrate such as a glass substrate.
For the formation of the fluorine-doped tin oxide film, it is preferable to use the atmospheric pressure CVD method because the apparatus cost is low, the film formation speed is high, and the film is suitable for film formation on a large area substrate.
In the case of forming a fluorine-doped tin oxide film using the atmospheric pressure CVD method, the use of a transport type atmospheric pressure CVD apparatus is preferable because it is suitable for mass production of a transparent conductive substrate for solar cells.
The formation of a fluorine-doped tin oxide film by atmospheric pressure CVD may be carried out as on-line CVD in which a fluorine-doped tin oxide film is formed following the production of a substrate such as a glass substrate, and is separate from the production of the substrate. In this step, an off-line CVD method for forming a fluorine-doped tin oxide film may be performed.

搬送型常圧CVD装置を用いて、フッ素ドープ酸化スズ膜を形成する場合、一定方向に搬送される基体を高温(例えば、550℃)に加熱し、スズ原料、および、フッ素原料を含有する原料ガスを基体表面に同時に吹き付ける。スズ原料としては、スズを含有する化合物(例えば四塩化スズ、モノブチルトリクロロスズ、ジメチルジクロロスズ、テトラメチルスズなどの有機または無機化合物)を用いることができる。スズ原料として四塩化スズを用いる場合、四塩化スズともに、水を原料ガスに含有させて同時に吹き付ける。フッ素原料としては、フッ素を含有する化合物(例えばフッ酸、トリフルオロ酢酸、トリフルオロナイトライド、フルオロカーボン類などの無機、有機のフッ素化合物)を用いることができる。   When a fluorine-doped tin oxide film is formed using a transport-type atmospheric pressure CVD apparatus, a substrate transported in a certain direction is heated to a high temperature (for example, 550 ° C.), and a raw material containing a tin raw material and a fluorine raw material Gas is simultaneously blown onto the substrate surface. As the tin raw material, a compound containing tin (for example, an organic or inorganic compound such as tin tetrachloride, monobutyltrichlorotin, dimethyldichlorotin, tetramethyltin) can be used. When using tin tetrachloride as a tin raw material, water is added to the raw material gas and sprayed simultaneously with both tin tetrachloride. As the fluorine raw material, a fluorine-containing compound (for example, inorganic or organic fluorine compounds such as hydrofluoric acid, trifluoroacetic acid, trifluoronitride, and fluorocarbons) can be used.

上述したように、本発明におけるフッ素ドープ酸化スズ膜は、膜表面付近のフッ素含有量が、膜の残りの部位(すなわち、膜表面付近以外の部位)のフッ素含有量に比べて低い。このような構成のフッ素ドープ酸化スズ膜を形成する方法としては、例えば、膜表面付近以外の部位のフッ素含有量のフッ素ドープ酸化スズ膜(下層)を基体上に形成した後、該フッ素ドープ酸化スズ膜上に、膜表面付近のフッ素含有量のフッ素ドープ酸化スズ膜(上層)を形成して、積層構造のフッ素ドープ酸化スズ膜とする方法がある。   As described above, in the fluorine-doped tin oxide film of the present invention, the fluorine content near the film surface is lower than the fluorine content in the remaining part of the film (that is, the part other than the vicinity of the film surface). As a method of forming a fluorine-doped tin oxide film having such a structure, for example, after forming a fluorine-doped tin oxide film (lower layer) having a fluorine content in a portion other than the vicinity of the film surface on a substrate, the fluorine-doped tin oxide film is formed. There is a method of forming a fluorine-doped tin oxide film having a laminated structure by forming a fluorine-doped tin oxide film (upper layer) having a fluorine content near the film surface on the tin film.

以下に示す手順で太陽電池用透明導電性基板を作製した。   A transparent conductive substrate for a solar cell was produced by the following procedure.

(実施例1)
搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ベルトコンべア炉を550℃に加熱し、300mm×300mm×3.9mm厚のソーダライムシリケートガラス基板を基体として、搬送速度3m/分で一定方向に搬送した。
まず、はじめに、アルカリバリア層として、酸化チタン(TiO2)層および酸化ケイ素(SiO2)層をこの順にソーダライムシリケートガラス基板上に形成した。具体的には以下の通り。
チタンテトライソプロポキシド(TTIP)7×10-4mol/min、および、窒素ガス7L/minをソーダライムシリケートガラス基板上に同時に吹き付けてTiO2層10nmを形成した。次にシラン(SiH4)ガス0.004mol/min、窒素ガス16L/min、および、酸素ガス11L/minを同時に吹き付けてSiO2層30nmを製膜する。
次に、このアルカリバリア層付ガラス基板に透明導電性酸化物膜として、フッ素ドープ酸化スズ膜を以下の手順で形成した。
四塩化スズ(SnCl4)、水、フッ化水素(HF)、および、窒素を同時に吹き付け、フッ素ドープ酸化スズ膜を形成した。具体的には、四塩化スズ0.063mol/min、および、窒素ガス10L/分と、100℃に加熱した水68g/min、および、HFガス1.8L/minを、別々に供給して、基体上で混合させて、フッ素ドープ酸化スズ膜(下層)680nmを形成した。更に、その上に、四塩化スズ0.019mol/min、および、窒素ガス10L/minと、水20g/min、および、HFガス0.04L/minとし、上記と同様にフッ素ドープ酸化スズ膜(下層)上に吹き付けて、フッ素ドープ酸化スズ膜(上層)200nmを形成して、太陽電池用透明導電性基板を作製した。
Example 1
A transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). The belt conveyor furnace was heated to 550 ° C., and a soda lime silicate glass substrate having a thickness of 300 mm × 300 mm × 3.9 mm was used as a substrate and conveyed in a fixed direction at a conveyance speed of 3 m / min.
First, as an alkali barrier layer, a titanium oxide (TiO 2 ) layer and a silicon oxide (SiO 2 ) layer were formed on a soda lime silicate glass substrate in this order. Specifically:
Titanium tetraisopropoxide (TTIP) 7 × 10 −4 mol / min and nitrogen gas 7 L / min were simultaneously blown onto a soda lime silicate glass substrate to form a 10 nm TiO 2 layer. Next, silane (SiH 4 ) gas 0.004 mol / min, nitrogen gas 16 L / min, and oxygen gas 11 L / min are simultaneously blown to form a SiO 2 layer of 30 nm.
Next, a fluorine-doped tin oxide film was formed as a transparent conductive oxide film on the glass substrate with an alkali barrier layer by the following procedure.
Tin tetrachloride (SnCl 4 ), water, hydrogen fluoride (HF), and nitrogen were simultaneously sprayed to form a fluorine-doped tin oxide film. Specifically, tin tetrachloride 0.063 mol / min, nitrogen gas 10 L / min, water 68 g / min heated to 100 ° C., and HF gas 1.8 L / min are separately supplied, By mixing on the substrate, a fluorine-doped tin oxide film (lower layer) of 680 nm was formed. Further, 0.019 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 20 g / min of water, and 0.04 L / min of HF gas are formed thereon, and a fluorine-doped tin oxide film ( Sprayed onto the lower layer to form a 200 nm fluorine-doped tin oxide film (upper layer) to produce a transparent conductive substrate for solar cells.

(実施例2)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.060mol/min、窒素ガスを10L/min、水を65g/min、HFガスを2.4L/minとして、膜厚650nmで形成し、フッ素ドープ酸化スズ膜(上層)は、四塩化スズを0.014mol/min、窒素ガスを10L/min、水を15g/min、HFガスを0.04L/minとして、膜厚150nmで形成して、フッ素ドープ酸化スズ膜の総膜厚を800nmとした。
(Example 2)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed at a film thickness of 650 nm with 0.060 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 65 g / min of water, and 2.4 L / min of HF gas. The fluorine-doped tin oxide film (upper layer) is formed at a thickness of 150 nm with 0.014 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 15 g / min of water, and 0.04 L / min of HF gas. Thus, the total film thickness of the fluorine-doped tin oxide film was set to 800 nm.

(実施例3)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.046mol/min、窒素ガスを10L/min、水を50g/min、HFガスを0.50L/minとして、膜厚500nmで形成し、フッ素ドープ酸化スズ膜(上層)は、四塩化スズを0.014mol/min、窒素ガスを10L/min、水を15g/min、HFガスを0.03L/minとして、膜厚150nmで形成して、フッ素ドープ酸化スズ膜の総膜厚を650nmとした。
(Example 3)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 500 nm with 0.046 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 50 g / min of water, and 0.50 L / min of HF gas. The fluorine-doped tin oxide film (upper layer) is formed with a thickness of 150 nm with 0.014 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 15 g / min of water, and 0.03 L / min of HF gas. Thus, the total film thickness of the fluorine-doped tin oxide film was 650 nm.

(比較例1)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.065mol/min、窒素ガスを10L/min、水を70g/min、HFガスを0.28L/minとして、膜厚700nmで形成し、フッ素ドープ酸化スズ膜(上層)は形成しなかった。フッ素ドープ酸化スズ膜の総膜厚は700nmである。
(Comparative Example 1)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 700 nm with tin tetrachloride being 0.065 mol / min, nitrogen gas being 10 L / min, water being 70 g / min, and HF gas being 0.28 L / min. However, no fluorine-doped tin oxide film (upper layer) was formed. The total film thickness of the fluorine-doped tin oxide film is 700 nm.

(比較例2)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.093mol/min、窒素ガスを10L/min、水を100g/min、HFガスを0.10L/minとして、膜厚1000nmで形成し、フッ素ドープ酸化スズ膜(上層)は形成しなかった。フッ素ドープ酸化スズ膜の総膜厚は1000nmである。
(Comparative Example 2)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 1000 nm with 0.093 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 100 g / min of water, and 0.10 L / min of HF gas. However, no fluorine-doped tin oxide film (upper layer) was formed. The total film thickness of the fluorine-doped tin oxide film is 1000 nm.

(比較例3)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.084mol/min、窒素ガスを10L/min、水を90g/min、HFガスを0.60L/minとして、膜厚900nmで形成し、フッ素ドープ酸化スズ膜(上層)は形成しなかった。フッ素ドープ酸化スズ膜の総膜厚は900nmである。
(Comparative Example 3)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 900 nm with 0.084 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 90 g / min of water, and 0.60 L / min of HF gas. However, no fluorine-doped tin oxide film (upper layer) was formed. The total film thickness of the fluorine-doped tin oxide film is 900 nm.

(比較例4)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.065mol/min、窒素ガスを10L/min、水を70g/min、HFガスを2.8L/minとして、膜厚700nmで形成し、フッ素ドープ酸化スズ膜(上層)は、四塩化スズを0.019mol/min、窒素ガスを10L/min、水を18g/min、HFガスを0L/minとして、膜厚200nmで形成して、フッ素ドープ酸化スズ膜の総膜厚を900nmとした。
(Comparative Example 4)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed at a film thickness of 700 nm with 0.065 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 70 g / min of water, and 2.8 L / min of HF gas. The fluorine-doped tin oxide film (upper layer) is formed with a film thickness of 200 nm with tin tetrachloride of 0.019 mol / min, nitrogen gas of 10 L / min, water of 18 g / min, and HF gas of 0 L / min. The total film thickness of the fluorine-doped tin oxide film was 900 nm.

(比較例5)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.084mol/min、窒素ガスを10L/min、水を90g/min、HFガスを2.8L/minとして、膜厚900nmで形成し、フッ素ドープ酸化スズ膜(上層)は形成しなかった。フッ素ドープ酸化スズ膜の総膜厚は900nmである。
(Comparative Example 5)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 900 nm with 0.084 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 90 g / min of water, and 2.8 L / min of HF gas. However, no fluorine-doped tin oxide film (upper layer) was formed. The total film thickness of the fluorine-doped tin oxide film is 900 nm.

(比較例6)
(実施例1)と同様に、搬送型常圧CVD装置(ベルトコンべア炉)を用いて、オフラインCVD法により太陽電池用透明導電性基板を作製した。ただし、フッ素ドープ酸化スズ膜(下層)は、四塩化スズを0.056mol/min、窒素ガスを10L/min、水を60g/min、HFガスを1.9L/minとして、膜厚600nmで形成し、フッ素ドープ酸化スズ膜(上層)は形成しなかった。フッ素ドープ酸化スズ膜の総膜厚は600nmである。
比較例6は、従来、標準的に用いられている構成の太陽電池用透明導電性基板である。
(Comparative Example 6)
Similarly to (Example 1), a transparent conductive substrate for a solar cell was produced by an off-line CVD method using a transfer type atmospheric pressure CVD apparatus (belt conveyor furnace). However, the fluorine-doped tin oxide film (lower layer) is formed with a film thickness of 600 nm with 0.056 mol / min of tin tetrachloride, 10 L / min of nitrogen gas, 60 g / min of water, and 1.9 L / min of HF gas. However, no fluorine-doped tin oxide film (upper layer) was formed. The total film thickness of the fluorine-doped tin oxide film is 600 nm.
Comparative Example 6 is a transparent conductive substrate for solar cells having a configuration that is conventionally used as a standard.

上記の手順で得られた太陽電池用透明導電性基板について、2次イオン質量分析法(アルバック・ファイ社製SIMS−AEPT1010)を用いて、測定条件:一次イオン:Cs+,加速電圧:3[kV],ビーム電流:100[nA]にて、膜厚方向のフッ素/シラン原子比を測定することにより、フッ素ドープ酸化スズ膜の平均フッ素含有量と、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量を測定した。結果を下記表に示した。 About the transparent conductive substrate for solar cells obtained by the above procedure, using secondary ion mass spectrometry (SIMS-APT1010 manufactured by ULVAC-PHI), measurement conditions: primary ion: Cs + , acceleration voltage: 3 [ kV], beam current: 100 [nA], by measuring the fluorine / silane atomic ratio in the film thickness direction, the average fluorine content of the fluorine-doped tin oxide film and the depth from the film surface up to 150 nm The average fluorine content in the region was measured. The results are shown in the table below.

上記の手順で得られた太陽電池用透明導電性基板を4cm×4cmに切断し、株式会社三菱化学アナリテック製抵抗率計ロレスタGP MCP−T610型を用いて、4探針法による測定を行うことにより、フッ素ドープ酸化スズ膜のシート抵抗値を求めた。   The transparent conductive substrate for solar cell obtained by the above procedure is cut into 4 cm × 4 cm, and measured by a 4-probe method using a resistivity meter Loresta GP MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd. Thus, the sheet resistance value of the fluorine-doped tin oxide film was obtained.

上記の手順で得られた太陽電池用透明導電性基板を用いて、以下の手順でa−Siシングルセルを作製して、その太陽電池特性として、Jsc(短絡電流)、Voc(開放端電圧)、FF(曲線因子)を求め、それらを掛け合わせて光電変換効率ηを求めた。 Using the transparent conductive substrate for solar cell obtained by the above procedure, an a-Si single cell was prepared by the following procedure, and its solar cell characteristics were J sc (short circuit current), V oc (open end). Voltage) and FF (fill factor) were obtained and multiplied to obtain the photoelectric conversion efficiency η.

光電変換層の形成
40mm×40mmの大きさに切り出した太陽電池用透明導電性基板の上に、光電変換層として、a−Siのp−i−n層を、プラズマCVD装置(ULVAC製CME200J)を用いて形成した。p−i−n層を構成する各層(p層、i層、n層)の膜厚および形成条件は以下の通り。
[p層]
膜厚 :16nm
基板表面温度:195℃
圧力 :40Pa
RFパワー :0.075W/cm2
ガス流量
SiH4 :20sccm
CH4 :40sccm
2 :115sccm
2/B26:125sccm(B26:1000ppm)
[i層]
膜厚:300nm
基板表面温度:195℃
圧力 :27Pa
RFパワー :0.04W/cm2
ガス流量
SiH4 :20sccm
[n層]
膜厚:40nm
基板表面温度:195℃
圧力 :40Pa
RFパワー :0.075W/cm2
ガス流量
SiH4 :10sccm
2 :75sccm
2/PH3:75sccm(PH3:1000ppm)
Formation of Photoelectric Conversion Layer On the transparent conductive substrate for solar cell cut out to a size of 40 mm × 40 mm, an a-Si pin layer is formed as a photoelectric conversion layer by a plasma CVD apparatus (ULVAC CME200J). Formed using. The film thickness and formation conditions of each layer (p layer, i layer, n layer) constituting the p-i-n layer are as follows.
[P layer]
Film thickness: 16nm
Substrate surface temperature: 195 ° C
Pressure: 40Pa
RF power: 0.075 W / cm 2
Gas flow rate SiH 4 : 20 sccm
CH 4: 40sccm
H 2 : 115 sccm
H 2 / B 2 H 6 : 125 sccm (B 2 H 6 : 1000 ppm)
[I layer]
Film thickness: 300nm
Substrate surface temperature: 195 ° C
Pressure: 27Pa
RF power: 0.04 W / cm 2
Gas flow rate SiH 4 : 20 sccm
[N layers]
Film thickness: 40nm
Substrate surface temperature: 195 ° C
Pressure: 40Pa
RF power: 0.075 W / cm 2
Gas flow rate SiH 4 : 10 sccm
H 2 : 75 sccm
H 2 / PH 3 : 75 sccm (PH 3 : 1000 ppm)

接触改善層、裏面電極層の形成
次いで、光電変換層の上部に、Gaが亜鉛との総和に対し5mol%含有しているGZO(Ga含有酸化亜鉛)ターゲットを基体に対して60°傾け直流スパッタ法によりGZO層を約100nm形成した。スパッタは真空装置をあらかじめ10-4Pa以下に減圧した後、Arガスを100sccm、CO2ガスを1.5sccm導入して行ない、スパッタ中の圧力を3×10-1Pa、スパッタパワーは2.4W/cm2とした。また、GZO膜中のGa含有量はターゲットと同様で亜鉛との総和に対し5mol%、基板温度は100℃とした。GZO単膜の性能は、比抵抗が5×10-3Ω・cm、500〜800nmにおいて吸収係数が1×103cm-1であった。更にGZO膜上に裏面電極層としてAg膜を、Agターゲットを用いてArガス雰囲気でスパッタ法(スパッタ中の圧力:3×10-1Pa、スパッタパワー:1.4W/cm2)により約200nmの膜厚で形成し、その上にAlターゲットを用いてArガス雰囲気でスパッタ法(スパッタ中の圧力:3×10-1Pa、スパッタパワー:2.4W/cm2)により約80nmの膜厚で形成し 最終的に5mm×5mmの大きさのa−Siシングルセルを作製した。
Formation of contact improvement layer and back electrode layer Next, a GZO (Ga-containing zinc oxide) target containing 5 mol% of Ga with respect to the total amount of zinc is tilted by 60 ° with respect to the substrate on the upper part of the photoelectric conversion layer. A GZO layer of about 100 nm was formed by the method. Sputtering is performed by depressurizing the vacuum apparatus to 10 −4 Pa or less in advance, and then introducing Ar gas at 100 sccm and CO 2 gas at 1.5 sccm, the sputtering pressure is 3 × 10 −1 Pa, and the sputtering power is 2. 4 W / cm 2 . The Ga content in the GZO film was the same as that of the target, 5 mol% with respect to the total with zinc, and the substrate temperature was 100 ° C. As for the performance of the GZO single film, the specific resistance was 5 × 10 −3 Ω · cm, and the absorption coefficient was 1 × 10 3 cm −1 at 500 to 800 nm. Further, an Ag film is formed on the GZO film as a back electrode layer, and about 200 nm by sputtering using an Ag target in an Ar gas atmosphere (pressure during sputtering: 3 × 10 −1 Pa, sputtering power: 1.4 W / cm 2 ). A film thickness of about 80 nm is formed thereon by sputtering using an Al target in an Ar gas atmosphere (pressure during sputtering: 3 × 10 −1 Pa, sputtering power: 2.4 W / cm 2 ). Finally, an a-Si single cell having a size of 5 mm × 5 mm was produced.

このようにして得られたa−Siシングルセルに、ソーラーシミュレータでAM(エアマス)1.5の光を照射して太陽電池特性(Jsc,Voc,FF,η)を測定した。結果を下記表に示す。 The a-Si single cell thus obtained was irradiated with AM (air mass) 1.5 light by a solar simulator, and the solar cell characteristics (J sc , V oc , FF, η) were measured. The results are shown in the table below.

フッ素ドープ酸化スズ膜が、膜全体の平均フッ素含有量が0.1〜1.0質量%であり、かつ、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.02〜0.045質量%である実施例1〜3は、FF(曲線因子)の低下を伴うことなしにJsc(短絡電流)が向上した。
一方、膜全体の平均フッ素含有量が0.1質量%未満であり、かつ、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.045質量%超の比較例1は、Jsc(短絡電流)、および、FF(曲線因子)が低かった。膜全体の平均フッ素含有量が0.1質量%未満の比較例2は、Jsc(短絡電流)、および、FF(曲線因子)が低かった。膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.045質量%超の比較例3は、Jsc(短絡電流)、および、FF(曲線因子)が低かった。膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0質量%の比較例4は、FF(曲線因子)が低かった。膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.045質量%超の比較例5、6は、Jsc(短絡電流)が低かった。その結果、比較例1〜6は、いずれも実施例1〜3に比べて光電変換効率ηが低かった。
The fluorine-doped tin oxide film has an average fluorine content of 0.1 to 1.0% by mass in the whole film, and an average fluorine content in the region from the film surface to 150 nm in the depth direction is 0.02 to 0.02%. Examples 1-3 which are 0.045 mass% improved Jsc (short circuit current), without accompanying the fall of FF (fill factor).
On the other hand, Comparative Example 1 in which the average fluorine content in the whole film is less than 0.1% by mass and the average fluorine content in the region from the film surface to 150 nm in the depth direction is more than 0.045% by mass, J sc (short circuit current) and FF (fill factor) were low. In Comparative Example 2 in which the average fluorine content of the entire film was less than 0.1% by mass, J sc (short circuit current) and FF (curve factor) were low. In Comparative Example 3 in which the average fluorine content in the region from the film surface to 150 nm in the depth direction exceeds 0.045 mass%, J sc (short circuit current) and FF (curve factor) were low. In Comparative Example 4 in which the average fluorine content in the region from the film surface to 150 nm in the depth direction was 0% by mass, the FF (curve factor) was low. In Comparative Examples 5 and 6 in which the average fluorine content in the region from the film surface to 150 nm in the depth direction exceeds 0.045% by mass, J sc (short circuit current) was low. As a result, Comparative Examples 1-6 all had lower photoelectric conversion efficiency η than Examples 1-3.

Claims (4)

基体上に、透明導電性酸化物膜が形成された太陽電池用透明導電性基板であって、
透明導電性酸化物膜は、フッ素がドープされた酸化スズ膜であり、
前記透明導電性酸化物膜は、膜厚が600〜1100nmであり、
前記透明導電性酸化物膜は、平均フッ素含有量が0.1〜1.0質量%であり、
前記透明導電性酸化物膜は、膜表面から深さ方向に150nmまでの領域における平均フッ素含有量が0.02〜0.045質量%であることを特徴とする太陽電池用透明導電性基板。
A transparent conductive substrate for solar cells in which a transparent conductive oxide film is formed on a substrate,
The transparent conductive oxide film is a tin oxide film doped with fluorine,
The transparent conductive oxide film has a thickness of 600 to 1100 nm,
The transparent conductive oxide film has an average fluorine content of 0.1 to 1.0% by mass,
The transparent conductive oxide film according to claim 1, wherein the transparent conductive oxide film has an average fluorine content of 0.02 to 0.045% by mass in a region from the film surface to 150 nm in the depth direction.
前記透明導電性酸化物膜の膜厚は800〜950nmである、請求項1に記載の太陽電池用透明導電性基板。   The transparent conductive substrate for solar cells according to claim 1, wherein the transparent conductive oxide film has a thickness of 800 to 950 nm. 前記透明導電性酸化物膜のC光源ヘイズ率が8〜35%である、請求項1または2に記載の太陽電池用透明導電性基板。   The transparent conductive substrate for solar cells of Claim 1 or 2 whose C light source haze rate of the said transparent conductive oxide film is 8-35%. 前記透明導電性酸化物膜のシート抵抗値が10〜12.5Ω/□である、請求項1〜3のいずれかに記載の太陽電池用透明導電性基板。   The transparent conductive substrate for solar cells in any one of Claims 1-3 whose sheet resistance value of the said transparent conductive oxide film is 10-12.5 ohms / square.
JP2015023501A 2015-02-09 2015-02-09 Transparent conductive substrate for solar cell Pending JP2016146443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023501A JP2016146443A (en) 2015-02-09 2015-02-09 Transparent conductive substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023501A JP2016146443A (en) 2015-02-09 2015-02-09 Transparent conductive substrate for solar cell

Publications (1)

Publication Number Publication Date
JP2016146443A true JP2016146443A (en) 2016-08-12

Family

ID=56686472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023501A Pending JP2016146443A (en) 2015-02-09 2015-02-09 Transparent conductive substrate for solar cell

Country Status (1)

Country Link
JP (1) JP2016146443A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396416B2 (en) 2021-05-07 2023-12-12 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396416B2 (en) 2021-05-07 2023-12-12 Agc株式会社 Glass substrate with transparent conductive film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR101567615B1 (en) Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
US6380480B1 (en) Photoelectric conversion device and substrate for photoelectric conversion device
EP1950813A1 (en) Transparent conductive substrate for solar cell and process for producing the same
US20080152868A1 (en) Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US20150311361A1 (en) Transparent conductive glass substrate with surface electrode, method for producing same, thin film solar cell, and method for manufacturing thin film solar cell
US20120118362A1 (en) Transparent conductive substrate for solar cell and solar cell
JP2022123516A (en) Glass substrate for solar cells and solar cell
JP2005347490A (en) Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
WO2005027229A1 (en) Base with transparent conductive film and method for producing same
CN102950829B (en) Conducting glass and preparation method thereof
JP2013211255A (en) Base with transparent conductive oxide films
JP2016146443A (en) Transparent conductive substrate for solar cell
JP4565912B2 (en) Multi-junction semiconductor element and solar cell element using the same
EP2752883B1 (en) Thin film solar cell module and its production process
JP7160232B1 (en) Transparent electrode substrate and solar cell
WO2013051519A1 (en) Thin film solar cell module and method for manufacturing thin film solar cell module
JP4529370B2 (en) Solar cell and method for manufacturing the same
JP2014241308A (en) Thin film solar cell module
WO2022114027A1 (en) Film-attached glass substrate, and method for manufacturing same
JP2012084843A (en) Substrate with transparent conductive oxide film and photoelectric conversion element
WO2012176817A1 (en) Base having transparent conductive oxide film
JP2014038807A (en) Substrate with transparent conductive oxide film and manufacturing method therefor
WO2011158724A1 (en) Thin-film solar cell
JP2014037604A (en) Substrate with transparent conductive oxide film attached thereon and method for manufacturing the same
JP2012114205A (en) Transparent conductive membrane substrate and method of manufacturing the same, and solar cell using the substrate