JP2021007397A - Dna結合ドメイン、非フコシル化及び部分的フコシル化タンパク質、並びにその方法 - Google Patents

Dna結合ドメイン、非フコシル化及び部分的フコシル化タンパク質、並びにその方法 Download PDF

Info

Publication number
JP2021007397A
JP2021007397A JP2020162750A JP2020162750A JP2021007397A JP 2021007397 A JP2021007397 A JP 2021007397A JP 2020162750 A JP2020162750 A JP 2020162750A JP 2020162750 A JP2020162750 A JP 2020162750A JP 2021007397 A JP2021007397 A JP 2021007397A
Authority
JP
Japan
Prior art keywords
seq
crispr
cells
gmd
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020162750A
Other languages
English (en)
Other versions
JP7134207B2 (ja
Inventor
プラサド、バーガブ
Prasad Bhargav
ウンニクリシュマン、ディヴィヤ
Unnikrishnan Divya
ハザリカ、ジャーナビ
Hazarika Jahnabi
イヤール ロドリゲス、カヴィサ
Iyer Rodrigues Kavitha
イヤール ロドリゲス、カヴィサ
ゴーシュ、マロイ
Ghosh Maloy
エム.パヴィスラ
M Pavithra
クマール ディー.プラヴィン
Kumar D Pravin
クマール ディー.プラヴィン
バーッタチャルジー、サンガーミトラ
Bhattacharjee Sanghamitra
エム.サティヤバラン
M Sathyabalan
スリニヴァサン、サンカラナラヤナン
Srinivasan Sankaranarayanan
チャッテルジー、ソハング
Chatterjee Sohang
マイティー、スニット
Maity Sunit
ケイ.ヴェーレシャ
K Veeresha
ハラン、ヴィヴェク
Halan Vivek
マンジュナス ビー.エム.ヨゲンドラ
Manjunath B M Yogendra
マンジュナス ビー.エム.ヨゲンドラ
ホラ、アヌラダー
Hora Anuradha
エヌ.バイラヴァバラクマール
N Bairavabalakumar
ナイール、カルシカ
Nair Karthika
サニガイヴェル、アスワニ
Thanigaivel Aswini
マリワラヴェ、アモル
Maliwalave Amol
アール シェノイ、バーラス
R Shenoy Bharath
アール シェノイ、バーラス
ペンドセ、ラジェシュワリ
Pendse Rajeshwari
クマール パタク、プラバート
Kumar Pathak Prabhat
クマール パタク、プラバート
クルプ、アニシャ
Kurup Anisha
ビーマ ラオ、サハナ
Bhima Rao Sahana
ビーマ ラオ、サハナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zumutor Biologics Inc
Original Assignee
Zumutor Biologics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zumutor Biologics Inc filed Critical Zumutor Biologics Inc
Publication of JP2021007397A publication Critical patent/JP2021007397A/ja
Application granted granted Critical
Publication of JP7134207B2 publication Critical patent/JP7134207B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01047GDP-mannose 4,6-dehydratase (4.2.1.47), i.e. GMD
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0016Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the nucleic acid is delivered as a 'naked' nucleic acid, i.e. not combined with an entity such as a cationic lipid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • C12N5/163Animal cells one of the fusion partners being a B or a T lymphocyte
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01068Glycoprotein 6-alpha-L-fucosyltransferase (2.4.1.68), i.e. FUT8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】フコシル化経路が修飾されている細胞を得る方法であって、細胞から部分的にフコシル化された及びフコシル化されていないタンパク質生成物、特に抗体の生成がもたらされる方法の提供。【解決手段】CRISPR技術を用いて、FUT8ゲノム座位又はGMDゲノム座位上の特異的箇所を標的とすることにより、遺伝子及び関連機能を破壊し、0%〜100%の範囲のフコシル化活性を有する細胞を得て、その細胞が発現する0%〜100%フコシル化されたタンパク質を得る方法。【選択図】なし

Description

本開示は、バイオテクノロジー、遺伝子工学、及び免疫学の分野に関する。特に、本開示は、特定の生物学的経路が改変される細胞系の開発に関する。そのような改変は、細胞の酵素、特にタンパク質のグリコシル化に関与する酵素内に存在する。本開示によれば、タンパク質グリカン鎖の特異的改変を実現するタンパク質発現系が開発される。グリカン鎖の特異的改変により、抗体を含め、部分的フコシル化及び非フコシル化タンパク質が生成する。そのような生成物は、治療薬及びバイオマーカーの開発、及び疾患の診断及び予後において用いられる。本開示は、規則的な間隔をもってクラスター化された短鎖反復回文配列(CRISPR)技術を利用する。
本開示の背景及び先行技術
真核生物におけるグリコシル化は、最も一般的な共有結合性の翻訳後タンパク質修飾機構として、数十年にわたり集中的に試験されてきた。ヒトトランスクリプトーム(約250〜500個の糖鎖遺伝子)の約1〜2%が、グリコシル化に関与するタンパク質を翻訳するものと予測されている(Campbell及びYarema、2005年)。細胞タンパク質のグリコシル化は、多くの生物学的機能、例えばタンパク質フォールディング、安定性、細胞内及び細胞間の輸送、細胞−細胞及び細胞マトリックスの相互作用等において重要な役割を演じている。
糖タンパク質には4つの異なる群:N−結合型、O−結合型、グリコサミノグリカン、及びグリコシルフォスファチジルイノシトールアンカー型タンパク質が存在する。N−結合型のグリコシル化は、アスパラギン残基の側鎖アミド窒素を介して生ずる一方、O−結合型のグリコシル化は、セリン又はトレオニン残基の側鎖内の酸素原子を利用する。N−結合型のグリコシル化は、Asn−X−Ser/Thrのアミノ酸配列内で行われるが、この場合、Xは、プロリン及びアスパラギン酸を除く任意のアミノ酸であり得る(Helenius及びAebi、2004年)。
フコース(6−デオキシ−L−ガラクトース)は、脊椎動物、無脊椎動物、植物、及び細菌内に存在する多くの糖タンパク質及び糖脂質中に存在する単糖である。フコシル化は、フコース残基を様々なタンパク質及びオリゴ糖に転移させるプロセスである。フコシル化は、フコシルトランスフェラーゼ、グアノシンジホスファート(GDP)−フコース合成酵素、及びGDP−フコーストランスポーター(複数可)を含むいくつかの分子により制御される。フコシル化糖タンパク質の多数は、細胞表面上の分泌タンパク質又は膜タンパク質である。
2014年には、全世界において、新規癌症例が1410万例、癌死亡例は820万例に登り、また3260万人が癌を抱えながら生きている(診断から5年以内)。癌の高死亡率は、より有効な療法に対するいまだ満たされないニーズを反映する。過去20年における抗腫瘍薬開発の最も顕著な変化は、古典的な細胞傷害性薬から、「モノクローナル抗体」又はmAbとして知られている、癌に関わるシグナリング路に影響を及ぼす薬物への移行であった。10年前は、2つのmAbが市販されていたに過ぎなかったが、現在では多様な治療手段からなる約30ものFDA承認済みmAb、例えばアダリムマブ、インフリキシマブ、リツキシマブ等が存在する。mAbは、製薬業界において最も急速に成長しているセグメントであり、またこの急速な拡大は継続している。100を超えるモノクローナル抗体に基づく生物学的製剤が、臨床トライアル中である。これらの多くは、第II相及び第III相トライアルであり、承認を求めて規制当局に提出されるであろう。本明細書に記載する技術を介してモノクローナル抗体治療を改善すれば、そのような改善は、患者にとってより良好な臨床転帰をもたらす道標となる。
ヒトIgG1抗体は、高度にフコシル化した糖タンパク質である。フコース、ガラクトース、バイセクティングN−アセチルグルコサミン、及びシアル酸が様々に付加したコアヘプタサッカライドからなる2つのN−結合型二分岐オリゴ糖が、IgG1のAsn−297に存在する。抗体のグリコシル化は、「エフェクター機能」−抗体依存性細胞傷害(ADCC)及び補体依存性細胞傷害(CDC)として知られている特有の生物学的機能をもたらす。ADCCは、細胞媒介型の免疫系であり、免疫細胞(ナチュラルキラー細胞等)が、細胞表面抗原に対する抗体を介して識別された標的細胞を溶解する。
IgG分子のエフェクター機能は、抗体Fc領域とFcγRとして知られている白血球受容体との相互作用、又は補体成分との相互作用により定義される。オリゴ糖構造の構成は、FcγR結合を介したエフェクター機能にとってきわめて重要である(Shieldsら、2002年;Shinkawaら、2003年;Niwaら、2004年;Niwa、Shoji−Hosakaら、2004年;Yamane−Ohnukiら、2004年)。ヒトIgG1の結晶構造解析により、オリゴ糖鎖とCH2ドメインとの複雑な相互作用が明らかにされた(Harrisら、1998年;Radaevら、2001年)。
ADCC機構の効率は、抗体のフコシル化レベルに顕著に依存する。フコシル化度が低いほど、ADCCの速度は高まる。従って、フコシル化の喪失は、重大な生物学的結果を引き起こす。喪失は、フコシルトランスフェラーゼ酵素の機能欠如に起因し、その結果、細胞タンパク質の非フコシル化を引き起こす。プライマリーN−アセチルグルコサミン由来のフコースが存在しないと、結果として、FcγRIIIα受容体に対する結合親和力が高まったIgG1抗体が得られ、その結果ADCCの効率が50〜100倍高まる。非フコシル化IgGによるADCCの改善は、FcγRIIIαに対するアフィニティーの上昇と直接比例し、非フコシル化IgGのFcが正常血清中の高濃度のフコシル化IgGとの競合を克服できるようにする。非フコシル化IgGのFcのFcγRIIIaに対するアフィニティー上昇に関する妥当な根拠として、受容体−リガンド界面における立体阻害の低下又は欠如を挙げることができる(Harris、1998年;Radaev、2001年)。
哺乳動物発現系では、タンパク質内で、GDP−フコースからN−グリカン鎖のN−アセチルグルコサミンにフコース部分が転移する際に、Fut8遺伝子によりコードされる酵素α−1,6−フコシルトランスフェラーゼが、その転移に関与している(Miyoshi、1999年)。様々な手段を介してこの遺伝子機能を破壊すると、抗体を含む非フコシル化タンパク質が生成する(Naoko Yamane−Ohnuki、2004年)。
GDP−D−マンノース−4,6−デヒドラターゼ(GMD)は、短鎖デヒドロゲナーゼ/レダクターゼ(SDR)ファミリーの糖ヌクレオチド修飾サブファミリーメンバーである(Webb、Mulichakら、2004年)。
哺乳動物発現系では、フコシル化に必須の基質であるGDP−フコースが、デノボ経路及びサルベージ経路を介して細胞質内で合成される。フコシル化のデノボ経路では、GDP−フコースが、GDP−マンノースからGDP−4−ケト−6−デオキシマンノースへの変換を介して合成されるが、この合成は、酵素GDP−マンノース−4,6−デヒドラターゼ(GMD)により触媒される。このGDP−フコースは、次にゴルジ内部に輸送され、そして酵素α−1,6−フコシルトランスフェラーゼ(FUT8)によりタンパク質をフコシル化するための基質として用いられる。該酵素は、フコース部分を、GDP−フコースからN−グリカン鎖のN−アセチルグルコサミンに転移させる(Miyoshi、1999年)。これらの重要な酵素、GDP−マンノース-4,6−デヒドラターゼ及びα−1,6−フコシルトランスフェラーゼは、GMD遺伝子及びFUT8遺伝子によりそれぞれコードされる。
哺乳動物プラットフォームにおいて開発された治療抗体の非フコシル化形態は、フコースの生合成に障害が生じた場合に生ずるが、標的腫瘍細胞に対するADCCの効率強化に起因して、フコシル化した形態よりも臨床的長所を有し得る。
歴史的には、遺伝子ノックアウトシステムは、相同的組換え(HR)により媒介される標的突然変異である欠損、及び/又は挿入に完全に依存した。HRシステムは非常に特異的であるものの、1つの突然変異したクローンを見つけ出すのに数千ものクローンをスクリーニングする必要があるので非常に非効率的である。更に、対立遺伝子変異を除去するには、一層多くの時間がかかり、より大規模なスクリーニングとなる。いくつかの技術が過去10年間において進化し、DNA配列認識ドメインとヌクレアーゼドメインを併用した標的遺伝子改変を実現した。このようなシステムは、対象とする特定部位の識別、次にDNA鎖切断の導入において非常に効率的である。ゲノム標的座位におけるDNA二本鎖切断(DSB)は、DNA修復を活性化させるが、これは、遺伝子の改変に利用される。DNA損傷応答は、真核細胞において高度に保存される。DSBに基づくゲノムエンジニアリングの概念は、高度に多様な生物の間で容易に移転可能である。二本鎖切断を形成すれば、相同的組換え及び非相同末端結合機構を介して、標的対象座位における遺伝子ノックアウトの頻度が千倍増加する。
ジンクフィンガーヌクレアーゼ(ZFN)は、遺伝子破壊において最も頻繁に用いられる技術の1つである。同酵素は、ジンクフィンガータンデムアレイ毎に、DNAレベルの3つの塩基を必要とする。更に、ジンクフィンガーアレイ内の個々のフィンガー間で標的部位が重なり合い、そして相互応答するので、配列特異的ZFNの生成は顕著に複雑化する。更に、ZFNの主な欠点として、特異的DNA配列認識に関するZFNモチーフを識別するための、労力と時間のかかる実験的選択プロセスが挙げられる。
Fut8及びGMDゲノム座位を破壊する方法が、先行技術に認められる。但し、そのいずれの方法も、CRISPR技術により、FUT8及びGMDゲノム座位上の特定箇所を標的とするものではない。
本開示は、CRISPR技術を用いて、FUT8ゲノム座位又はGMDゲノム座位上の特異的箇所を標的とすることにより、先行技術の方法と関連した欠点又は限界を克服するが、その結果、遺伝子及び関連機能が完全に破壊され、非フコシル化タンパク質を産生する細胞が得られる。
本開示の記載事項
従って、本開示は、配列番号13、配列番号15、配列番号17〜配列番号37、配列番号39、配列番号41、配列番号43、配列番号45、配列番号47〜配列番号93、及びその組合せからなる群より選択される配列を含む、CRISPRシステムのDNA結合ドメイン;上記のようなDNA結合ドメイン及びヌクレアーゼを含むCRISPR−ヌクレアーゼ複合体;上記のようなDNA結合ドメインを含むベクター;上記のようなベクターを含む細胞;フコースノックアウト細胞を得る方法であって、a)CRISPR−ヌクレアーゼ構築物を得るステップ、及びb)ステップ(a)の構築物を細胞にトランスフェクトして、フコースノックアウト細胞を得るステップを含む上記方法;0%〜100%の範囲でフコシル化されたタンパク質を得る方法であって、a)CRISPR−ヌクレアーゼ構築物を得るステップ、b)ステップ(a)の構築物を細胞にトランスフェクトして、0%〜100%の範囲のフコシル化活性を有する細胞を得るステップ、及びc)ステップ(b)の細胞が発現したタンパク質を得るステップを含む上記方法;上記のような方法により得られた、0%〜100%フコシル化されたタンパク質;並びに任意選択的に薬学的に許容される添加剤と共に、上記のようなタンパク質を含む組成物に関する。
Fut8遺伝子コード配列及びタンパク質配列を示す図である。 GMD遺伝子構造を示す図である。 CHOK1 Fut8アミノ酸配列を示す図である。 GMD遺伝子の全アミノ酸配列を示す図である。 CRISPR/Casベクター構築物pD1401gRNAの構築マップを示す図である。 Fut8エクソン7の標的配列を示す図である。 GMD遺伝子のエクソン3を標的とするGMD CRISPR/Cas構築物pD1401(gRNA167〜207)を示す図である。 GMD遺伝子のエクソン4を標的とするGMD CRISPR/Cas構築物pD1301(gRNA404)を示す図である。 GMDエクソン3の標的配列を示す図である。 GMDエクソン4の標的配列を示す図である。 1日目に観察した、Fut8遺伝子を標的とするCRISPR/Cas構築物pD1401(gRNA514〜553)をトランスフェクトしたCHOK1対照細胞及びCHOK1クローン細胞系を示す図である。 4日目に観察した、Fut8遺伝子を標的とするCRISPR/Cas構築物pD1401(gRNA514〜553)をトランスフェクトしたCHOK1対照細胞及びCHOK1細胞系を示す図である。 GMD遺伝子エクソン3を標的とするCRISPR/Cas構築物pD1401(gRNA167〜207)をトランスフェクトしたCHOK1細胞系を示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイを示す図である。 GMDエクソン3及び/又はエクソン4を標的とするpD1401(gRNA167〜207)若しくはpD1301(gRNA404)又はpD1401(gRNA167〜207)+pD1301(gRNA404)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイを示す図である。 GMDエクソン3を標的とするpD1401(gRNA167〜207)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイを示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイにおける蛍光プロファイルを示す図である。 GMDエクソン3及び/又はエクソン4を標的とするpD1401(gRNA167〜207)若しくはpD1301(gRNA404)又はpD1401(gRNA167〜207)+pD1301(gRNA404)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイにおける蛍光プロファイルを示す図である。 GMDエクソン3を標的とするpD1401(gRNA167〜207)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイの蛍光プロファイルを示す図である。 Fut8エクソン7のゲノム座位、それぞれのアミノ酸配列、重要な酵素モチーフ様ベータ2鎖及び3H2ヘリックス及びCRISPR認識配列を示す図である。 GMDエクソン3及びエクソン4のゲノム座位、対応するアミノ酸配列及びCRISPR認識配列を示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイを示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイの蛍光プロファイルを示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリーアッセイを示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞の増殖曲線を示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞の増殖曲線を示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞の増殖曲線を示す図である。 FUT8エクソン7を標的とするpD1401(gRNA514〜553)CRISPR/Cas構築物をトランスフェクトしたクローンCHOK1細胞のLCA−FITCフローサイトメトリー及びStrep−FITCアッセイによる比較を示す図である。 1%アガロースゲルに泳動した場合の、代表的なCRISPR/Cas Fut8クローン(CR1−KO−T1#022)のPCR増幅産物の代表的な図を示す図である。 1%アガロースゲルに泳動した場合の、代表的なCRISPR/Cas GMDクローン(GMD_1.12及びGMD_1.27)のPCR増幅産物の代表的な図を示す図である。 GMDエクソン4座位に特異的なプライマーによるGMD2.30クローン細胞系のゲノムDNAのPCR増幅での代表的な1%アガロースゲル泳動を示す図である。 異なるノックアウト細胞系からインサートの存在を確認する、pTZ57R/TベクターのPCR増幅産物の代表的な制限酵素消化を示す図である。 異なるノックアウト細胞系からインサートの存在を確認する、pTZ57R/TベクターのPCR増幅産物の代表的な制限酵素消化を示す図である。 異なるノックアウト細胞系からインサートの存在を確認する、pTZ57R/TベクターのPCR増幅産物の代表的な制限酵素消化を示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 FUT8遺伝子配列のエクソン7において欠失を示すFUT8ノックアウト細胞系クローンの代表的なゲノムDNA配列のアライメントを示す図である。 GMDノックアウトクローン細胞系とのヌクレオチド配列のアライメントを示す図である。 GMDノックアウトクローン細胞系とのヌクレオチド配列のアライメントを示す図である。 GMDノックアウトクローン細胞系とのヌクレオチド配列のアライメントを示す図である。 GMDノックアウトクローン細胞系とのヌクレオチド配列のアライメントを示す図である。 GMDノックアウトクローン細胞系とのヌクレオチド配列のアライメントを示す図である。 FUT8エクソン7の標的座位において欠失、中途終止コドンをもたらす、FUT8 CRISPR/Cas構築物、pD1401(gRNA514〜553)を示す図である。 FUT8エクソン7の標的座位において欠失、中途終止コドンをもたらす、FUT8 CRISPR/Cas構築物、pD1401(gRNA514〜553)を示す図である。 GMDエクソン3の標的座位において欠失、中途終止コドン及びフレームシフト突然変異をもたらす、GMD CRISPR/Cas構築物、pD1401(gRNA167〜207)を示す図である。 GMDエクソン3の標的座位において挿入、中途終止コドン及びフレームシフト突然変異をもたらす、GMD CRISPR/Cas構築物、pD1401(gRNA167〜207)を示す図である。 GMDエクソン3の標的座位において挿入、中途終止コドンをもたらす、GMD CRISPR/Cas構築物、pD1401(gRNA167〜207)を示す図である。 GMDエクソン4の標的座位において挿入、中途終止コドン及びフレームシフト突然変異をもたらす、GMD CRISPR/Cas構築物、pD1301(gRNA404)を示す図である。 GMD CRISPR/Cas構築物、pD1301(gRNA404)及びpD1401(gRNA167〜207)の両方をトランスフェクトした細胞系から、エクソン4座位におけるアミノ酸の欠失並びにエクソン3座位が変化しないままであったことが明らかであることを示す図である。 いくつかの真核生物におけるFUT8アミノ酸配列比較を示す図である。 異なるプロトコールを使用するCHOK1細胞系のトランスフェクション効率を示す図である。
本開示は、配列番号13、配列番号15、配列番号17〜配列番号37、配列番号39、配列番号41、配列番号43、配列番号45、配列番号47〜配列番号93、及びその組合せからなる群より選択される配列を含む、CRISPRシステムのDNA結合ドメインに関する。
本開示の一実施形態では、配列番号13、配列番号15、配列番号39、及び配列番号17〜配列番号37が、Fut8遺伝子配列に結合し、また配列番号41、配列番号43、配列番号45、及び配列番号47〜配列番号93が、GMD遺伝子配列に結合する。
本開示の別の実施形態では、配列番号13が配列番号14に転写され、配列番号15が配列番号16に転写され、配列番号37が配列番号38に転写され、配列番号39が配列番号40に転写され、配列番号41が配列番号42に転写され、配列番号43が配列番号44に転写され、及び配列番号45が配列番号46に転写される。
本開示は、上記のようなDNA結合ドメイン及びヌクレアーゼを含むCRISPR−ヌクレアーゼ複合体とも関連する。
本開示の一実施形態では、ヌクレアーゼは、Cas9エンドヌクレアーゼである。
本開示の別の実施形態では、ヌクレアーゼは、Cas9nエンドヌクレアーゼである。
本開示は、上記のようなDNA結合ドメインを含むベクターとも関連する。
本開示の一実施形態では、ベクターは、ヌクレアーゼを更に含む。
本開示は、上記のようなベクターを含む細胞とも関連する。
本開示の一実施形態では、細胞は、COS、CHO−S、CHO−K1、CHO−K1 GS(−/−)、CHO−DG44、CHO−DUXB11、CHO−DUKX、CHOK1SV、VERO、MDCK、W138、V79、B14AF28−G3、BHK、HaK、NS0、SP2/0−Ag14、HeLa、HEK293−F、HEK293−H、HEK293−T、YB23HL.P2.G11.16Ag.20、perC6、抗体産生ハイブリドーマ細胞、胚性幹細胞、ナマルバ細胞;スポドプテラ・フルギペルダ(Spodoptera fugiperda)(Sf)、ピキア属、サッカロミセス属、及びシゾサッカロミセス属由来の昆虫細胞系からなる群より選択される。
本開示は、フコースノックアウト細胞を得る方法とも関連し、前記方法は、
a)CRISPR−ヌクレアーゼ構築物を得るステップと、
b)ステップ(a)の構築物を細胞にトランスフェクトして、フコースノックアウト細胞を得るステップと
を含む。
本開示は、0%〜100%の範囲でフコシル化されたタンパク質を得る方法とも関連し、前記方法は、
a)CRISPR−ヌクレアーゼ構築物を得るステップと、
b)ステップ(a)の構築物を細胞にトランスフェクトして、0%〜100%の範囲のフコシル化活性を有する細胞を得るステップと、
c)ステップ(b)の細胞が発現したタンパク質を得るステップと
を含む。
本開示の一実施形態では、CRISPR−ヌクレアーゼ構築物は、上記のような複合体を提供し、そして該複合体は、細胞内の遺伝子配列を切断し、前記遺伝子は、Fut8、GMD、及びその組合せからなる群より選択される。
本開示の別の実施形態では、α−1,6−フコシルトランスフェラーゼ酵素をコードするFut8遺伝子配列は、エクソン7において切断される。
本開示のなおも別の実施形態では、α−GDP−D−マンノース−4,6−デヒドラターゼ酵素をコーディングするGMD遺伝子配列は、エクソン3、エクソン4、及びその組合せからなる群より選択されるエクソンにおいて切断される。
本開示のまた別の実施形態では、細胞は、COS、CHO−S、CHO−K1、CHO−K1 GS(−/−)、CHO−DG44、CHO−DUXB11、CHO−DUKX、CHOK1SV、VERO、MDCK、W138、V79、B14AF28−G3、BHK、HaK、NS0、SP2/0−Ag14、HeLa、HEK293−F、HEK293−H、HEK293−T、YB23HL.P2.G11.16Ag.20、perC6、抗体産生ハイブリドーマ細胞、胚性幹細胞、ナマルバ細胞;スポドプテラ・フルギペルダ(Sf)、ピキア属、サッカロミセス属、及びシゾサッカロミセス属由来の昆虫細胞系からなる群より選択される。
本開示のまた別の実施形態では、タンパク質のフコシル化が0%であり、そしてタンパク質は、細胞内のFut8遺伝子の破壊により得られる。
本開示のまた別の実施形態では、タンパク質は、0%〜100%フコシル化されており、そしてタンパク質は、細胞内のGMD遺伝子の破壊により得られ、そして方法は、増殖培地内にL−フコースを添加するステップを更に含む。
本開示のまた別の実施形態では、タンパク質は、抗体である。
本開示のまた別の実施形態では、抗体は、モノクローナル抗体である。
本開示のまた別の実施形態では、細胞は、内因性タンパク質を産生する。
本開示のまた別の実施形態では、本方法は、タンパク質をコードする遺伝子を細胞に導入して、タンパク質を得るステップを更に含む。
本開示は、上記のような方法により得られた、0%から100%フコシル化されているタンパク質とも関連する。
本開示の一実施形態では、タンパク質は、抗体である。
本開示は、任意選択的に薬学的に許容される添加剤と共に、上記のようなタンパク質を含む組成物とも関連する。
本開示の一実施形態では、タンパク質は、抗体である。
本開示は、非フコシル化抗体を含め、非フコシル化タンパク質を細胞から生成することに関する。
本開示は、部分的フコシル化抗体を含め、部分的フコシル化タンパク質を細胞から生成することに関する。
本開示は、GDP−フコースが関係する重要な生化学ステップの上流及び下流にある遺伝子を標的とし、そして破壊するステップとも関連する。
本開示は、非フコシル化タンパク質を生成するのに、CRISPR技術を利用する。本開示では、フコシル化活性を有さない細胞は、「フコースノックアウト」又は「FKO」細胞とも呼ばれる。
CRISPR(規則的な間隔をもって、クラスター化された、短鎖反復回文配列)システムは、順応性のある天然の免疫機構であり、多くの細菌で、ウイルス又はプラスミド等の外来核酸からその身を守るために用いられている。CRISPRは、塩基配列の短い反復を含有する原核生物DNAのセグメントであり、「スペーサーDNA」の短いセグメントがそれに続く。このスペーサーDNAは、細菌ウイルス又はプラスミドに過去に曝露して得られた外来のDNAである。Cas(CRISPR関連タンパク質)酵素と呼ばれる一連の酵素は、これらのCRISPR配列に関連して見出され、Casは、DNAを正確に剪断できるヌクレアーゼである。
バクテリアは、各スペーサーDNA内の遺伝物質をRNA分子にコピーする。Cas酵素は、次にガイドRNA(gRNA)と呼ばれるRNA分子のうちの1つを取り込む。これらは共に、CRISPR−Casシステムを形成する。システムが、CRISPR RNAと一致するウイルスに由来するDNAに遭遇すると、RNAは、該DNA配列とハイブリダイズし、次にCas酵素はDNAを2つに切断し、ウイルスの複製を阻止する。
CRISPRと連携して働く様々なCas酵素が存在するが、最も周知され、遺伝子工学で頻繁に利用されるのはCas9ヌクレアーゼであり、化膿性連鎖球菌(Streptococcus pyogenes)に由来する。CRISPRとCas酵素は、共にII型CRISPRシステムと呼ばれるCRISPR/Cas9システムを形成する。
Cas9は、特定のCRISPR機構、特に1つのCasタンパク質のみを必要とするII型CRISPRシステムにおいて重要な役割を演じていることが明らかにされている。このシステムでは、エンドヌクレアーゼCas9がcrRNAのプロセシングに関与し、標的DNAの破壊を引き起こす。Cas9の機能は、2つのヌクレアーゼドメイン、すなわちタンパク質のアミノ末端に位置するRuvC様ヌクレアーゼドメイン、及び中間領域内に存在するHNH様ヌクレアーゼドメインの存在に依存する。
部位特異的なDNAの認識及び切断の場合、ヌクレアーゼCas9は、2つのRNA配列、すなわちcrRNA(CRISPR RNA)、及びcrRNAに対して部分的に相補的な、別のトランス活性化crRNA(tracrRNA又はtrRNA)と複合体形成しなければならない。tracrRNAは、複数のプレcrRNAをコードする一次転写物がcrRNAに成熟するのに必要とされる。これは、RNaseIII及びCas9の存在下で生ずる。標的DNAの切断期間中に、Cas9ヌクレアーゼのHNH及びRuvC様のヌクレアーゼドメインが、DNA鎖を両方切断し、二本鎖切断物(DSB)が生成する。認識部位は、関連するcrRNA転写物内の20個のヌクレオチド標的配列により定義される。HNHドメインは、相補鎖を切断する一方、RuvCドメインは、非相補鎖を切断する。Cas9の二本鎖エンドヌクレアーゼ活性は、プロトスペーサー関連モチーフ(PAM)として知られている短い保存性の配列、(2〜5nt)が、標的DNA内のcrRNA相補配列の3’側の直後に続くことも要件とする。PAM配列要件は、CRISPR/Cas機能にとって必須である。
一般的に、2つのベクターシステム、1)Cas9エンドヌクレアーゼ、並びに2)crRNA(CRISPR RNA)及びtracrRNA(トランス活性化crRNA)からなる複合体が、CRISPRが関係する遺伝子編集に用いられる。これら2つの構築物が、哺乳動物細胞内で同時発現すると、複合体を形成し、標的DNA配列に動員される。crRNA及びtracrRNAは、合体してキメラガイドRNA(gRNA)を形成するが、これは、Cas9が遺伝子配列を標的とするようにガイドするという機能と同じ機能を有する。
相同的組換えが関係する遺伝子編集技術は、遺伝子編集で用いられるその種の技術として最初に挙げられる。但し、HRを用いたときの成功事象頻度は非常に稀であり、細胞3×10個につき1回である。
今日では、ジンクフィンガーヌクレアーゼが、より高い標的特異性を可能とし、突然変異体成功事象の頻度もより高いので、一般的となってきた。この方法は、DNAに結合し、部位特異的DSBを形成するヌクレアーゼ活性を備えるDNA結合タンパク質を利用する。有効ではあるが、このような方法は、成功させるために多岐にわたるタンパク質工学ツールを必要とし、これにより複雑なゲノム配列を標的とする際の自由度が制限される。CRISPRを哺乳動物細胞に適合させることにより、ゲノム編集は一新され、正確性は一層高まり、設計も容易となった。ZFNとは異なり、CRISPR/Casは、標的とされる遺伝子毎にタンパク質工学を必要としない。
CRISPRシステムは、gRNA及びCas9をコードするのに、いくつかの単純なDNA構築物を必要とするのみである。更に、複数の遺伝子が同時に標的対象とされる。本実施形態では、CRISPR/Casシステムは、フコース生合成経路内の2つの異なる遺伝子、FUT8及びGMDを標的とするために適用される。FUT8遺伝子及びGMD遺伝子に対する個々のCRISPR/Cas複合体を用いたノックアウトCHOK細胞系の開発について情報が生成されるが、CHOK細胞系及びその他の関連する細胞系において、両方の遺伝子を同時にノックアウトするために、該複合体が共に用いられ得ることは明らかである。20bpのgRNA配列が、ゲノム全体を通じて複数の部位で100%の相同性を有するのは稀であるが、sgRNA−Cas9複合体は、その標的内のいくつかのミスマッチについて寛容である。Cas9は、ゲノム内の複数箇所で非特異的に結合することが報告されているが、但しそのような部位のごく一部においてのみDNA二本鎖切断が形成される。また、実験データより、DNA標的部位にある程度のミスマッチが生じても、DNA二本鎖切断が可能であることも示唆される。従って、CRISPR/Casの特異性を高める戦略が追及される。
1つのそのような観察所見として、RuvC触媒ドメインにおけるアスパラギン酸からアラニン(D10A)への突然変異という点突然変異が挙げられ、二本鎖切断ではなく、一本鎖切断(ニック)を引き起す。Cas9突然変異体は、Cas9nとして公知である。2つの隣接するDNA標的部位でCas9nを用いることにより、近接したDNAニックの形成が可能となり、また、標的部位に適切な間隔が置かれる場合には、Cas9nは二本鎖切断を形成する。
従って、DSB形成の特異性はより高くなるが、該DSBは、NHEJ機構により最終的に修復される。非特異的に結合したCas9nは、ニックのみを形成するが、該ニックは、HRにより媒介される修復を介して一般的に修復され、また稀に突然変異又はオフターゲット効果を引き起こす。本開示では、Cas9n及びCRISPRは、Fut8及びGMDの両遺伝子をノックアウトするのに用いられる。1つのGMD標的座位では、野生型Cas9エンドヌクレアーゼも用いられる。
本開示では、細胞内での発現で得られるCRISPR−Cas構築物は、CRISPR−Cas複合体を提供する。
本開示では、用語CRISPR−Cas複合体とCRISPR−Casシステムとは、交換可能に用いられる。
本開示は、細胞内のフコシル化機構を破壊又は不活性化することにより、非フコシル化タンパク質を得る方法に関する。
本開示は、細胞内のフコシル化機構を破壊又は不活性化することにより、部分的にフコシル化したタンパク質を得る方法に関する。
一実施形態では、タンパク質は、抗体である。
好ましい、但し非限定的な実施形態では、抗体は、モノクローナル抗体である。
本開示では、用語「非フコシル化抗体」、「アフコシル化抗体」、「0%フコシル化抗体」、及び「100%非フコシル化抗体」は交換可能に用いられ、同一の意味と範囲を有する。
本開示は、細胞内のFUT8遺伝子又はGMD遺伝子の破壊又は不活性化と特に関連する。本開示に記載するCRISPR/Cas構築物を用いて、FUT8遺伝子及びGMD遺伝子の両方を、同一細胞系内で同時破壊して、フコースノックアウト細胞系を実現することが可能であることは、当業者の誰にも理解される。
FUT8遺伝子は、酵素α−1,6−フコシルトランスフェラーゼをコードする。GMD遺伝子は、GDP−D−マンノース-4,6−デヒドラターゼをコードする。
本開示の一実施形態では、細胞は、タンパク質を自然に産生する細胞である。
本開示の一実施形態では、細胞は、抗体を自然に産生する細胞である。
本開示の一実施形態では、細胞は、所与のタンパク質を自然に産生しない細胞であり、そのタンパク質をコードする遺伝子が該細胞に導入される。
本開示の一実施形態では、細胞は、抗体を自然に産生しない細胞であり、抗体をコードする遺伝子が該細胞に導入される。
本開示の一実施形態では、細胞は、抗体を自然に産生する細胞であり、また抗体をコードする遺伝子が該細胞に導入される。
一実施形態では、細胞は、真核細胞である。
一実施形態では、細胞は、哺乳動物細胞である。
非限定的な実施形態では、細胞は、チャイニーズハムスター卵巣細胞である。
非限定的な実施形態では、細胞は、チャイニーズハムスター卵巣K1(CHOK1)細胞である。
一実施形態では、CHOK1細胞は、抗体産生細胞である。
一実施形態では、本開示の方法により産生される抗体は、治療抗体である。
別の実施形態では、CHOK1細胞は、抗体産生細胞ではなく、抗体をコードする遺伝子が、細胞に導入される。
本開示の実施形態では、細胞系は、COS、CHO−S、CHO−K1、CHO−DG44、CHO−DUXB11、CHO−DUKX、CHOK1SV、VERO、MDCK、W138、V79、B14AF28−G3、BHK、HaK、NS0、SP2/0−Ag14、HeLa、HEK293−F、HEK293−H、HEK293−T、YB23HL.P2.G11.16Ag.20、perC6、抗体を産生するハイブリドーマ細胞、胚性幹細胞、ナマルバ細胞;スポドプテラ・フルギペルダ(Sf)、ピキア属、サッカロミセス属、及びシゾサッカロミセス属由来の昆虫細胞系からなる群より選択される。
本開示の非限定的な実施形態では、細胞は、グルタミンシンテターゼがノックアウトされた(GS−/−)細胞、好ましくはグルタミンシンテターゼがノックアウトされた(GS−/−)CHOK1細胞である。
一実施形態では、細胞は、「フコースノックアウト」細胞若しくは「FKO」細胞、又は「フコースノックアウト」プラットフォーム若しくは「FKO」プラットフォームと呼ばれる。
一実施形態では、細胞は、組換細胞と呼ばれる。
一実施形態では、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)−Cas複合体が、細胞のフコシル化経路を破壊又は不活性化するのに用いられる。
一実施形態では、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)−Cas複合体が、細胞のフコシル化経路の1つ又は複数の遺伝子を破壊又は不活性化するのに用いられる。
一実施形態では、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)−Cas複合体が、α−1,6−フコシルトランスフェラーゼ(Fut8遺伝子)、GDP−マンノース−4,6−デヒドラターゼ(GMD遺伝子)、GDP−ケト−6−デオキシマンノース−3,5−エピメラーゼ−4−レダクターゼ(FX遺伝子)、GDP−β−L−フコースピロホスホリラーゼ(GEPP遺伝子)、及びフコースキナーゼ遺伝子を含む群より選択される遺伝子を破壊又は不活性化する、又は突然変異させるのに用いられる。
一実施形態では、本開示は、本開示のCRISPR/Cas複合体により、細胞内のFut8遺伝子及びGMD遺伝子を組み合わせて破壊することに関する。
フコシル化のデノボ経路では、GDP−フコースは、GDP−マンノースからGDP−4−ケト−6−デオキシマンノースへの変換を介して合成されるが、この合成は、酵素GDP−マンノース−4、6−デヒドラターゼ(GMD)により触媒される。このGDP−フコースは、次にゴルジ内部に輸送され、そして酵素α−1,6−フコシルトランスフェラーゼによりタンパク質をフコシル化するための基質として用いられる。該酵素は、フコース部分をGDP−フコースからN−グリカン鎖のN−アセチルグルコサミンに転移させる。
一実施形態では、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)−Cas複合体)が、α−1,6−フコシルトランスフェラーゼ酵素をコードするFut8遺伝子を破壊するのに用いられる。
一実施形態では、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)−Cas複合体が、GDP−マンノース−4、6−デヒドラターゼ酵素をコードするGMD遺伝子を破壊するのに用いられる。本開示の一実施形態では、フコシルトランスフェラーゼ酵素のN末端触媒領域が、CRISPR/Cas複合体による標的とされる。
本開示の一実施形態では、GDP−マンノース−4、6−デヒドラターゼ酵素の活性部位が、CRISPR/Cas複合体による標的とされる。
特定の実施形態では、Fut8の遺伝子配列のエクソン7が、CRISPR(規則的な間隔をもってクラスター化された短鎖反復回文配列)Cas複合体による標的とされる。
本開示の一実施形態では、フコシルトランスフェラーゼ酵素が、エクソン7コーディング配列によりコードされるβ2鎖及び3H2ヘリックス領域のアミノ酸配列より選択されるアミノ酸位置において突然変異する。得られたクローンは、翻訳が未成熟終止する場合があり、従って下流配列、例えばArg−365、Arg−366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、Ser−469、及びその組合せ等は存在しない。
特定の実施形態では、GMDの遺伝子配列のエクソン3又はエクソン4が、CRISPR/Cas(規則的な間隔をもってクラスター化された短鎖反復回文配列)構築物による標的とされる。
CRISPR/Cas構築物は、一般的に2つのベクターシステムとして設計される。1つの構築物はCas9エンドヌクレアーゼ発現をコードし、また第2のベクターは、crRNA及びtracrRNAからなるgRNAを発現する。tracrRNA、PAM配列、及びcrRNA−Cas9−tracrRNAの機能的複合体が正しく配置すると、それに応じて標的配列を認識する、長さがヌクレオチド20個の断片として、crRNAは通常設計される。場合によっては、1つの単一ベクターが、より高い活性及び利便性が得られるように、gRNA及びCas9タンパク質の両方を発現する。標的認識特異性は、crRNA設計に由来する。
本開示の実施形態では、DNA結合ドメインは、DNA認識ドメインとも呼ばれる。
本開示の一実施形態では、前記CRISPR/Cas複合体をコードするポリヌクレオチドも、前記ポリヌクレオチドを含む細胞と同様に提供される。
特定の実施形態では、CRISPR/Cas9複合体のDNA結合ドメインをコードするヌクレオチドが提供される。別の実施形態では、CRISPR/Cas9複合体のヌクレアーゼドメインをコードするヌクレオチドが提供される。
一実施形態では、ヌクレアーゼは、Cas9である。
別の実施形態では、ヌクレアーゼは、Cas9n(ニッカーゼ)D10A突然変異体である。
本開示の一実施形態では、CRISPR/Cas複合体は、FUT8遺伝子又はGMD遺伝子内の標的部位を認識する。本開示の一実施形態では、ヌクレアーゼは、ホーミングエンドヌクレアーゼである。別の実施形態では、ヌクレアーゼは、メガヌクレアーゼである。ホーミングエンドヌクレアーゼ及びメガヌクレアーゼの特異性は、非天然の標的部位に結合するように工学的に作出可能であることも公知である。更に、代表的な実施形態では、ホーミングエンドヌクレアーゼとして、I−Scel、I−CeuI、PI−PspI、PI−Sce、I−ScelY、I−CsmI、I−PanI、I−SceII、I−PpoI、I−SceIII、I−CreI、I−TevI、I−TevII、及びI−TevIIIが挙げられる。その認識配列は公知である。
一実施形態では、上記ヌクレアーゼのうちの1つ又は複数の組合せが、CRISPR−Casタンパク質複合体のDNA結合ドメインと共に用いられる。
一実施形態では、CRISPR/Cas複合体を細胞に導入するのに、トランスフェクションが用いられる。リポフェクションプロトコールが、代表的な実施形態として提供されるが、当業者にとって公知の任意のトランスフェクション法が、本開示の方法に同じように適用可能である。
別の実施形態では、本開示は、任意の宿主細胞内で組換えタンパク質を生成する方法を提供し、該宿主細胞は内因性のFUT8遺伝子又はGMD遺伝子を発現しており、これがCRISPR/Cas技術により標的とされ、本明細書に記載するように、内因性のFUT8遺伝子又はGMD遺伝子は破壊される。得られた細胞系は、FUT8遺伝子又はGMD遺伝子の発現につき無効化されており、また対象とする遺伝子を発現させるために更に用いられる。
本開示では、pD1401(gRNA514〜553)CRISPR/Cas複合体でトランスフェクトした後に生成した60例に満たないクローン細胞系のスクリーニングから、17例のFUT8ノックアウトクローン細胞系が生み出される。比較として、先行技術の報告によれば、約120,000個のクローン細胞系から、たった3例のFUT8−/−細胞系が選択可能であった。
本開示では、pD1401(gRNA167〜207)及びpD1301(gRNA404)CRISPR/Cas複合体でトランスフェクトした後に、200例に満たないクローン細胞系のスクリーニングから、30例のGMDノックアウトクローン細胞系が生み出される。
特異性、安全、及びプロトコールの単純性は、本開示のCRISPR/Cas複合体及び方法によりもたらされる、先行技術の方法に勝る長所の一部である。CRISPRにより媒介される遺伝子破壊により、カスタマイズされたCRISPR/Cas複合体が、複雑性の度合いを問わずユーザー定義の標的配列を認識できるようにする、標的座位の特異性という特有の長所が得られる。CRISPR/Cas複合体は、ゲノム編集効率に関してZFNよりも効率的であり、また毒性は有意に低く、これにより特定の座位に対してより高い突然変異体クローン生成効率を可能にする。本開示では、FUT8ゲノム座位及びGMDゲノム座位は、CRISPR gRNAを介して配列特異的改変を行うための標的となる。
本明細書に記載する方法は、CHOK1 FUT8ノックアウト細胞系の生成において成功率28%を超え(60例未満のクローン細胞集団のスクリーニングから、17例のCHOK1ノックアウト細胞系)、またCHOK1 GMDノックアウト細胞系の生成において成功率15%を超える(200例のクローン細胞集団から、30例のCHOK1 GMDノックアウト細胞系)効率を実現した。本開示の方法及び特異的CRISPR構築物に続くこのような予期しない成果により、FUT8及びGMDノックアウト細胞系の開発は大いに改善した。
また、本開示は、CHOK1 FUT8 DNA配列内の非常に特異的な遺伝子位置、及びCHOK1 GMDゲノム座位の2つの異なる部位を標的とする一揃いのCRISPR構築物のみが用いられた。驚くべきことに、CRISPR/Cas複合体は、標的とされたアミノ酸の破壊を引き起こすだけでなく、長い欠損も生成し、そのような欠損によりフレームシフト突然変異及び未成熟終止コドンが導入された。これにより、本開示は、標的座位ではDNA改変が極めて少ない一方、標的とされたFUT8座位及びGMD座位においてはゲノムレベルで大規模に改変された多くのCHOK1 FUT8ノックアウト細胞系、及び複数のGMDノックアウト細胞系を実現した。フコースノックアウト表現型についてスクリーニングされたクローン集団の数が少数であったことを考慮すれば、そのように多数のCHOK1 FUT8及びGMDノックアウト細胞系が生成するとは予想されない。この驚くべき成果により、複数のCHOK1 FUT8ノックアウト細胞系及びGMDノックアウト細胞系をスクリーニングして、モノクローナル抗体の発現に勝る最良のクローン細胞系を確立するステップが提供される。
一実施形態では、対象とされる遺伝子は、対象とするタンパク質をコードするDNA配列を含む発現ベクターを介して得られた細胞系に導入され、これにより組換えタンパク質が生成される。
別の実施形態では、対象となる発現タンパク質として、モノクローナル抗体を含む抗体が挙げられる。
いくつかの実施形態では、FUT8遺伝子を不活性化すると、組換えタンパク質をより高いレベルで生成する細胞系が得られる。
いくつかの実施形態では、GMD遺伝子を不活性化すると、組換えタンパク質をより高いレベルで生成する細胞系が得られる。
特定の実施形態では、FUT8遺伝子を不活性化すると、FUT8遺伝子が不活性化されていない細胞内で産生されたタンパク質と比較して、タンパク質の1つ又は複数の活性(機能)が高まった細胞系が得られる。
特定の実施形態では、GMD遺伝子を不活性化すると、GMD遺伝子が不活性化されていない細胞内で産生されたタンパク質と比較して、タンパク質の1つ又は複数の活性(機能)が高まった細胞系が得られる。
一実施形態では、細胞により産生される非フコシル化タンパク質は、非フコシル化抗体である。
非限定的な実施形態では、非フコシル化タンパク質は、非フコシル化IgG1抗体であり、また好ましくは非フコシル化IgG1モノクローナル抗体である。
一実施形態では、非フコシル化抗体は、対応するフコシル化抗体よりも優れたエフェクター機能を示す。
一実施形態では、非フコシル化抗体は、対応するフコシル化抗体よりも有効な治療特性を示す。
一実施形態では、非フコシル化抗体は、対応するフコシル化抗体よりも高い抗体依存性細胞傷害作用(ADCC)を示す。
本開示において、開示されるタンパク質に関する方法、調製、及び使用では、別途明示しない限り、分子生物学、生化学、計算化学、細胞培養、組換えDNA技術、ポリメラーゼ連鎖反応(PCR)、及び関連分野における従来技術が利用される。このような技術、その原理、及び要件は、文献で説明されており、当業者にとって公知である。核酸及びアミノ酸配列の同一性を判断する技術は当業者にとって公知である。
フコシル化機構が破壊された細胞は、抗体を自然に産生する細胞、又はフコシル化を破壊する前又は後において、抗体をコードする遺伝子が導入された細胞である。
タンパク質、ポリペプチド、又は核酸の「機能的断片」とは、その配列が完全長タンパク質、ポリペプチド、又は核酸とは同一ではないが、完全長タンパク質、ポリペプチド、又は核酸と同一の機能をなおも保持するタンパク質、ポリペプチド、又は核酸である。
本明細書で用いられる用語「抗体」には、ポリクロナール抗体調製物及びモノクローナル抗体調製物の両方が含まれ、またキメラ抗体分子、F(ab’)及びF(ab)断片、Fv分子、一本鎖Fv分子(ScFv)、二量体及び三量体抗体断片、ミニボディ、ヒト化モノクローナル抗体分子、ヒト抗体、抗体のFc領域を含む融合タンパク質、並びにこれらの分子から派生したあらゆる機能的断片も含まれ、この場合、派生分子は、親抗体分子の免疫学的機能性を保持する。
本開示内の用語「モノクローナル抗体」は、均質な抗体母集団を有する抗体組成物を意味する。抗体は、抗体の種若しくは起源に、又は抗体の作製方式により制限を受けない。この用語には、免疫グロブリン全体の他、断片、例えばFab、F(ab’)、Fv、及びその他の断片等、並びに親モノクローナル抗体分子の免疫学的結合特性を示すキメラ及びヒト化均質抗体母集団が含まれる。
本開示のクローン/細胞は、CR1KOT1#06、CR1KOT1#23等の用語で呼ばれるが、それは内部の名称であり、また細胞の何らかの具体的特性を表すものではないことに留意されたい。これらの細胞系は、pD1401(gRNA514〜553)CRISPR/Cas複合体を用いて開発される。
本開示のクローン/細胞は、C1GMD1.12、C1GMD1.27等の用語で呼ばれるが、それは内部の名称であり、また細胞の何らかの具体的特性を表すものではないことに留意されたい。これらの細胞系は、pD1401(gRNA167〜207)CRISPR/Cas複合体を用いて開発される。
本開示のクローン/細胞は、CIGMD2.30、CIGMD2.34等の用語で呼ばれるが、それは内部の名称であり、また細胞の何らかの具体的特性を表すものではないことに留意されたい。これらの細胞系は、pD1301(gRNA404)CRISPR/Cas複合体を用いて開発される。
本開示のクローン/細胞は、CIGMD3.36、CIGMD3.43等の用語で呼ばれるが、それは内部の名称であり、また細胞の何らかの具体的特性を表すものではないことに留意されたい。これらの細胞系は、pD1401(gRNA167〜207)CRISPR/Cas複合体とpD1301(gRNA404)CRISPR/Cas複合体とを併用して開発される。
一実施形態では、非フコシル化抗体を含む組成物は、任意選択的に、薬学的に許容される担体、又は添加物、又は添加剤と共に提供される。薬学的に許容される担体、又は添加物、又は添加剤は、投与される組成物により、並びに組成物を投与するのに用いられる具体的方法により決定されるが、また当業者にとって公知である。
本開示に提示するすべての配列は、別途記載しない限り、5’から3’の方向で表記される。
添加剤は、タンパク質の安定化を実現し、また生物学的製剤のその他の品質を改善する上で重要である。様々な添加剤が、タンパク質の安定化、抗菌剤としての作用、剤形の製造支援、薬物送達の制御又は標的化、及び注射時の疼痛を最低限に抑えることを目的として組成物に添加される。
添加剤は、その作用機序に基づき、大きく5つのカテゴリーに分けることができる:
1.タンパク質安定剤:この添加剤は、タンパク質の本来の立体構造を安定化する。例として、ポリオール、糖、アミノ酸、アミン、及び塩析用の塩が挙げられる。スクロース及びトレハロースが、最も頻繁に用いられる糖であり、また大型のポリオールが、小型のポリオールよりも良好な安定剤である。
2.ポリマー及びタンパク質:親水性ポリマー、例えばポリエチレングリコール(PEG)、多糖類、及び不活性タンパク質等が、タンパク質を安定化するのに非限定的に用いられ、またタンパク質の会合を増強する。例として、デキストラン、ヒドロキシルエチルスターチ(HETA)、PEG−4000、及びゼラチンが挙げられる。
3.界面活性剤:非イオン性界面活性剤が、タンパク質の安定化、凝集の抑制、またタンパク質のリフォールディング支援を目的として幅広く用いられる。ポリソルベート80及びポリソルベート20は、それぞれツイーン80及びツイーン20として知られており、mAb治療薬で一般的に用いられる。その他の例として、Brij35、トリトンX−10、プルロニックF127、及びドデシル硫酸ナトリウム(SDS)が挙げられる。
4.アミノ酸:この添加剤は、様々な機構によりタンパク質を安定化させる。例としてヒスチジン、アルギニン、及びグリシンが挙げられる。処方物添加剤として用いられるその他のアミノ酸には、メチオニン、プロリン、リシン、グルタミン酸、及びアルギニン混合物が含まれる。
5.防腐剤:この化合物は、微生物の増殖を防止するために、処方物に含まれる。例として、ベンジルアルコール、m−クレゾール、及びフェノールが挙げられる。
本開示で用いられる生体物質は、インド国外から得られる。
FUT8座位内の特定ゲノム配列を標的とする根拠
FUT8は、3つのドメイン、すなわちN末端コイルドコイルドメイン、触媒ドメイン、及びC末端SH3ドメインを含む。
Fut8タンパク質構造は、酵素のアミノ酸配列の機能的ドメインを理解するために、広範に研究されている。FUT8酵素の3次元結晶構造から、15個の鎖及び16個のへリックスが明らかにされた。少なくとも3つの領域、すなわちN末端(68〜107番残基)、C末端(573〜575)、及び不規則な368〜372番残基が存在する。
FUT8酵素の推定触媒ドメインは、2つのドメイン、すなわちオープンシートα/βドメイン、及びヌクレオチド結合領域として幅広く知られているロスマンフォールドから構成される。α/βドメインは、5つのへリックス及び3つのβ鎖から構成され、それぞれα4、3H1、3H2、3H3、β1、β2、及びβ3鎖である。ドメインは、タンパク質配列のN末端に位置する。N末端触媒ドメインがどのように酵素の機能性に関わるか、その様式について明確なエビデンスは存在しない。
ロスマンフォールドは、359〜492番残基の下流に位置し、いくつかのαヘリックス及びβ鎖を含有する。一連の残基、Arg365、Arg366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、及びSer−469が、FUT8酵素の触媒ドメインにおいて重要な役割を演ずる。
ヒトFUT8酵素タンパク質の10個のアミノ酸残基、Arg365、Arg366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、及びSer−469が、本開示の図19で認められるように、脊椎動物、昆虫、線虫、及びホヤ類を含む様々な種の間で保存される。
α−1,6−フコシルトランスフェラーゼ活性におけるFUT8遺伝子内の特定アミノ酸配列の寄与を理解するために、FUT8アミノ酸配列の領域が、複数の種間で比較される。アライメントにより、酵素配列は、β2鎖及び3H2ヘリックス領域において、高度に保存された諸アミノ酸残基を構成することが明らかである。従って、そのようなアミノ酸の位置は、本開示の方法において、CRISPR/Cas複合体の標的となる。
CHOK1細胞系内のGMD遺伝子及びFUT8遺伝子を標的とする根拠
フコースノックアウトプラットフォームは、非フコシル化モノクローナル抗体の分子開発を実現するのに有用である。多くの事例では、完全に非フコシル化された抗体を開発することが好ましい結果であり、従って、フコース生合成経路遺伝子の完全ノックアウトを生み出す戦略が、本開示において策定される。場合によっては、モノクローナル抗体治療医薬品は、自然には得られない部分的フコシル化を必要とする場合もある。治療を目的としてフコシル化モノクローナル抗体の設計バージョンを作製するには、GMDノックアウトCHOK1細胞系が非常に有用である。
GMD遺伝子は、FUT8遺伝子の上流のフコシル化経路に含まれ、そしてGDP−マンノースからGDP−4−ケト−6−デオキシマンノースへの変換を介してGDP−フコース合成に関係する。このステップは、デノボフコース生合成経路の重要なステップの1つである。GDPフコースも、サルベージ経路を介して細胞内で産生され、また細胞タンパク質のフコシル化に用いられる。サルベージ経路では、細胞は、増殖培地からフコースを摂取する。GMD遺伝子がノックアウトされ、そして完全に機能喪失した場合、フコース生合成におけるデノボ経路は完全に停止する。GDP−フコース生合成は、増殖培地にフコースが補充される場合には、サルベージ経路を介して活性な状態になおも留まる。従って、フコース生合成経路及び細胞タンパク質のフコシル化は、活性な状態になおも留まる。
GMDノックアウトCHOK1細胞系は、特有の長所、すなわちモノクローナル抗体が100%脱フコシル化する必要がある場合、GMD二重ノックアウト細胞プラットフォームが用いられるという長所を提供する。モノクローナル抗体が特異的なレベルのフコシル化を必要とする場合には、増殖培地にL−フコースを補充することによって、GDP−フコースを生成するサルベージ経路を利用する。実質的に、モノクローナル抗体のフコシル化レベルは、増殖培地内のL−フコースレベルを滴定することにより実現する。従って、GMD KO戦略は、CHOK1培地内のL−フコースについて単純な滴定を行うことにより、100%非フコシル化生成物から、様々なレベルでフコシル化された生成物までを実現する。これが、CHOK1細胞内でモノクローナル抗体を産生させる際のフコシル化制御に関する特有の戦略である。
一方、Fut8酵素は、GDP−フコース生合成ステップの下流で機能し、またゴルジ内での細胞タンパク質のフコシル化における最後の酵素ステップである。デノボ経路及びサルベージ経路の両方に由来するフコシル化前駆体は、最終的なフコース部分の転移においてFUT8酵素を利用する。従って、Fut8遺伝子をノックアウトすると、細胞タンパク質のフコシル化におけるデノボ経路及びサルベージ経路の両方が実質的に停止する。このアプローチは、Fut8ノックアウトCHOK1細胞系内で産生されたモノクローナル抗体の100%完全脱フコシル化を引き起こす。
GMDの活性部位の標的化:
酵素GDP−D−マンノース−4,6−デヒドラターゼ(GMD)は、GDP−D−マンノースの、中間体であるGDP−4−ケト−6−デオキシ−D−マンノースへの変換を触媒する。これは、GDP−D−ラムノース、GDP−L−フコース、GDP−6−デオキシ−D−タロース、及びGDPジデオキシアミノ糖であるGDP−D−ペロサミンを含むいくつかの異なるデオキシヘキソースに至る分岐点として機能する。これらの中でも、GDP−L−フコースが、フコース生合成経路における重要な中間体である。GMDは、短鎖デヒドロゲナーゼ/レダクターゼ(SDR)のNDP−糖修飾サブファミリーメンバーである。
このサブファミリーメンバーとして、GMDは、コモングリシンリッチ領域が存在する分子のN末端部分にあるその補助因子NADP(H)に結合する。触媒三残基は、Tyr−XXX−Lys及びSer/Thrとして同定されており、これらはすべて触媒反応にとって重要である。この群の酵素メンバーでは、アミノ酸配列の有意な変化が認められるものの、3次元構造上の類似性が存在する。
大腸菌(E.coli)から得られたGMDの構造解析により、活性な分子は、二量体構成をとることが示唆される。一方、シロイヌナズナ(Arabidopsis thaliana)に由来する同族体は四量体であり、またNADP(H)結合部位が、四量体界面の形成に密接に関係している。真核生物内に存在するGMD酵素の機能的形態は、四量体構成から構成される可能性が最も高い。GMDは、単量体ユニット4個で結晶化し、単量体は互いに相互作用して触媒ドメインを形成する。対向する単量体は、Asn163、Arg147、Glu166、Tyr145、及びArg147の間の水素結合を介して相互作用する。GMDが四量体化すると、その結果、好適な補助因子結合部位(NADPH)が界面に生ずる。Ser85は、活性部位のピロホスファートとの水素結合において重要な役割を演ずる。更に、ニコチンアミドリボースヒドロキシルが、触媒残基Tyr150及びLys154に等しい距離で水素結合内に存在し、その相互作用は、SDR酵素において高度に保存的である。
RRループは、9個の残基(Arg35〜Arg43)からなるセグメントであり、隣接した単量体内まで延在し、タンパク質−タンパク質相互作用を生み出し、また隣接する補助因子と接触する。タンパク質−タンパク質相互作用には、Arg35とSer85及びGlu188との水素結合が含まれる。基質との結合では、GDP−D−マンノース相互作用は、Thr126、Ser127、及びGlu128との潜在的水素結合を形成する能力に依存し得ることが報告されている。また、触媒残基Thr126及びTyr150の両方、並びにSer85は、ヘキソースのO4ヒドロキシルと水素結合し得る。GMDについて提案された触媒機構は、とりわけThr126、Ser127、Glu128、Tyr150等のいくつかの重要な残基と関係する。
これらの残基の重要性を考慮した上で、活性な酵素の四量体構成を乱し、並びに補助因子結合領域及び基質相互作用モチーフに影響を及ぼす可能性のある複数のCRISPR/Cas複合体が標的とされる。1つのCRISPR構築物が、アミノ酸配列ADVDGVGTLRLLの提案された二量体界面において設計される。この領域は、GMD遺伝子のエクソン4の一部分である。CRISPR構築物は、Cas9エンドヌクレアーゼを標的化してエクソン4における二本鎖DNA切断を形成する。モチーフADVDGVGTLRLL内の改変はいずれもGMD酵素の触媒機構に直接影響を及ぼすと想定し、切断部位は、これらのアミノ酸内の重要なアミノ酸残基の前に位置させる。
第2の一揃いのCRISPR/Cas複合体が、GMD遺伝子のエクソン3において設計される。このCRISPRデザインは、特異性が高い点で特有であり、この場合、D10A Cas9ニッカーゼ突然変異体(Cas9n)として知られている突然変異体Cas9が選択され、DNA一本鎖切断を生じさせる。2つの一本鎖DNA切断を実現するように設計された2つのCRISPR/Cas複合体は、高レベルの特異性を可能にする。構築物は、提案された四量体界面のアミノ酸配列モチーフYGDLTDSTCLVKに対して設計される。2つの一本鎖切断は、NHEJ機構によるDNA修復を可能にし、またこの領域内に突然変異を導入する。この突然変異は、四量体構成内の単量体相互作用の維持に関与する重要なSer85残基に影響を及ぼす。
GMD遺伝子のエクソン3及びエクソン4、並びにCRISPR標的箇所内の重要な構造的モチーフの位置を図9Bに示す。
両CRISPR/Casデザインは特有であり、またフコースノックアウトCHOK1細胞系の生成において、より高い能力を実現する。
Fut8の活性部位の標的化:
本開示の最も重要な態様のうちの1つは、Fut8遺伝子によりコードされる酵素α−1,6−フコシルトランスフェラーゼの触媒部位を標的とすることである。Fut8タンパク質構造は、酵素アミノ酸配列の機能的ドメインを理解するために幅広く研究されている。FUT8酵素の3次元結晶構造から、15個の鎖及び16個のへリックスが明らかとなった。少なくとも3つの領域、すなわちN末端(68〜107番残基)、C末端(573〜575)、及び不規則な368〜372番残基が存在する。
FUT8酵素の推定触媒ドメインは、2つのドメイン、すなわちオープンシートα/βドメイン、及びヌクレオチド結合領域として幅広く知られているロスマンフォールドから構成される。α/βドメインは、5つのへリックス及び3つのβ鎖から構成され、それぞれα4、3H1、3H2、3H3、β1、β2、及びβ3鎖である。ドメインは、タンパク質配列のN末端に位置する。N末端触媒ドメインがどのように酵素の機能性に関わるか、その様式について明確なエビデンスは存在しない。CRISPR/Cas標的配列が、この領域において標的化される。Fut8エクソン7ゲノム座位、各アミノ酸配列、及び重要な構造的モチーフの位置、及びCRISPR標的箇所を図9Aに示す。
この標的化は、無作為選択ではなく、本開示では、遺伝子又は酵素上の極めて特異的な箇所を決定する実験法により、トランケートされた又は部分的に機能を有する酵素により引き起こされる部分的フコシル化が回避されることを確実とする、その破壊に達する。
一方、ロスマンフォールドは、359〜492番残基の下流に位置し、いくつかのαヘリックス及びβ鎖を含有する。一連の残基Arg365、Arg366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、及びSer−469が、FUT8酵素の触媒ドメインにおいて重要な役割を演ずる。
従って、酵素活性部位と同等の領域を標的とすればFut8遺伝子の完全破壊が確実となり、Fut8遺伝子上の正確な箇所を標的とすることが不可能な技術、又はFut8遺伝子上の別の箇所を標的とするような技術は、Fut8遺伝子及び酵素活性の部分的破壊を引き起すおそれがあるが、そのような技術と比較して、それよりも効率的な結果が得られる。フコシル化機構が部分的に機能的である細胞は、非フコシル化タンパク質と比較して、それよりも低い治療機能を示す部分的フコシル化タンパク質を生成する。本開示の方法により生み出された細胞は、100%非フコシル化された抗体を含む、完全に又は100%非フコシル化されたタンパク質を産生する。
本開示は、CRISPR/Cas複合体を介して、FUT8コドン配列の触媒部位に存在する重要なアミノ酸位置に突然変異を導入する。CRISPRデザインの狙いは、一本鎖切断を組み込むことにより、N末端触媒ドメイン、特にβ2鎖及び3H2ヘリックス領域を主に標的とすることにある。細胞のDNA修復システムは、一本鎖切断の修復を行う間にヌクレオチド変化を導入し、非機能的FUT8酵素を生ずる。
CRISPRシステムは、局所的に欠損及び挿入を引き起こすことが周知であり、従って標的とされるエクソン7においてフレームシフト突然変異が生じ、また終止コドンが挿入される。終止コドンが挿入されると、未成熟の翻訳終止が確実となり、下流のロスマンフォールドが酵素構造から除去され、その結果、非機能的FUT8酵素が生み出される。
本開示の一実施形態では、改変されたCHOK1細胞系について、後続するゲノムDNA分析を行うことにより、欠損、挿入、終止コドン、並びにフレームシフト突然変異が明らかとなる。従って、本開示は、欠損、挿入、及び/又はフレームシフト突然変異を介して、β2鎖及び3H2ヘリックス内のアミノ酸位置を標的とすることによりFut8遺伝子及びフコシルトランスフェラーゼ酵素が破壊されるものと予想する。
得られたクローンは、未成熟の翻訳終止を引き起こすと考えられ、従って重要な下流配列、例えばArg−365、Arg−366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、Ser−469、及びその組合せ等において大規模な変化を引き起こす。
本開示の図19は、ラット、ヒト、マウス、ウシ、及びチャイニーズハムスターのFUT8アミノ酸配列のアライメントを表す。ロスマンフォールド内のアミノ酸365、366、368、369、及び373を、アスタリスクで明示する。影付き枠内のアミノ酸は、コンセンサス配列と一致しない残基を表す。エクソン7領域内のアミノ酸も明示する。CRISPR認識配列を、太線で明示する。
本開示では、CHOK1ゲノムデータベースから入手したFUT8アミノ酸配列を分析し、これらの重要なアミノ酸は、CHOK1細胞系に由来するFUT8遺伝子内でもやはり保存されていることを確認している。配列特異的なCRISPR/Cas複合体が、これらのアミノ酸モチーフの上流にある遺伝子配列を標的として、ゲノム改変が導入されるように設計される。重要なFUT8酵素触媒ドメインの上流にあるアミノ酸配列を変化させると、酵素機能がどのように破壊されるか分析される。
これらの重要なアミノ酸が突然変異すると、FUT8遺伝子の機能性が完全に破壊されることが記載されている。CRISPR/Cas技術を利用する遺伝子標的化は、フコースノックアウト細胞系プラットフォームを形成するための新規アプローチである。CRISPR/Casがトランスフェクトされた細胞について、FUT8遺伝子の機能性アッセイ法を介してスクリーニングする。選択されたクローンは、突然変異についてゲノムFUT8座位を配列決定することにより確認される。突然変異体フコースノックアウトCHOK1細胞系は、次に非フコシル化治療用モノクローナル抗体又は抗体の一部分を含め、非フコシル化治療用タンパク質を発現するのに用いられる。
遺伝子位置内のアミノ酸コドン配列を特異的に標的とするCRISPR/Cas構築物が設計され、及びCas9遺伝子の種類に応じて、発現ベクター、例えばpD1401又はpD1301にクローン化される。CRISPR/Cas複合体は、CHOK1細胞中に一時的にトランスフェクトされ、該細胞は、単一コロニーを生成させるために96ウェルプレートに播種される。各クローンは、次にレンズマメアグルチニンアッセイ法(LCA)に基づく蛍光を用いて、細胞タンパク質のフコシル化についてスクリーニングされる。FUT8遺伝子又はGMD遺伝子の破壊についてクローン陽性であれば、FUT8遺伝子又はGMD遺伝子に関する突然変異体対立遺伝子の酵素アッセイ法及び反応速度論分析によって更に試験される。最終的に、FUT8座位及びGMD座位におけるゲノム配列が、CRISPR/Casを介して生じたあらゆる突然変異について分析される。この突然変異は、欠損又は挿入を含み、これによりFUT8及びGMDコドン配列のフレームシフト突然変異が導入され、配列は破壊され、酵素は機能を失う。
上記プロセスに由来するフコースノックアウトCHOK1細胞系は、治療を目的とするタンパク質、モノクローナル抗体、ペプチド、融合タンパク質の発現、バイオマーカー開発、診断及び予後における使用のための細胞系プラットフォームとして用いられる。
本開示は、下記の実施例を参照しながら更に記載されるが、実施例は本質的に説明目的に限定され、いかなる場合でも、本開示の範囲に制限を加えるものと解釈されるべきではない。
試薬の調製
Advanced DMEM完全増殖培地−500ml
1.50ml FBS(終濃度10%)を500mlフィルターユニットの上部チャンバーに添加する。
2.10mlの200mMグルタミン(終濃度4mM)を添加する。
3.5mlの100X Pen−strep溶液(終濃度1X)を添加する。
4.容積をadvanced DMEM培地で500mlにする。
5.完全培地を0.22μmフィルターに通し濾過する。
6.上部チャンバーを解体し、リザーバー又は培地ビンを閉める。
7.培地は調製の30日以内に使用できる。
8.培地は2℃〜8℃に保存し、連続的な感光を避ける。
9.LCA選択培地を調製する場合、10mlの10mg/mlストックLCA試薬を500mlの調製したDMEM培地と混合し、DMEM培地中終濃度200μg/ml LCAにする。
材料&道具
1.バイオセイフティーキャビネット
2.Sorvall ST 16R遠心分離機
3.ウォーターバス
4.倒立位相差顕微鏡
5.COインキュベーター
6.Millipore GUAVA 8HT easyCyteベンチトップフローサイトメーター
7.Vi−cell XR生死細胞オートアナライザー
8.血球計算盤
9.冷蔵庫
10.Eppendorf minispin遠心分離機
11.マイクロピペット
12.マイクロチップ
13.96ウェル組織培養プレート
14.12ウェル組織培養プレート
15.6ウェル組織培養プレート
16.Serologicalピペット(10ml、25ml、及び50ml)
17.1000ml濾過ユニット−孔径0.22μm
18.70%エタノール
19.Advanced DMEM
20.Dulbecco’sリン酸緩衝液(DPBS)
21.ウシ胎仔血清(FBS)
22.ペニシリンストレプトマイシン(Penstrep)
23.グルタミン
24.0.05%トリプシンEDTA
25.0.4%トリパンブルー
26.マイクロチューブ(1.5ml及び2ml)
27.ファルコンチューブ(15ml及び50ml)
28.ウシ血清アルブミン画分V
29.フルオレセインレンズマメアグルチニン(LCA−FITC)
30.フルオレセインストレプトアビジン(Strep−FITC)

(例1)
CRISPR/Cas構築物の設計
本実施例の目的は、FUT8及びGMD対立遺伝子の特異的な不活性化のためのCRISPR/Cas複合体を設計することである。
1.1−CRISPR構築物
CRISPRは、化膿性連鎖球菌において見出された微生物の適応免疫系由来のCas9として公知のRNA誘導型エンドヌクレアーゼのクラスに基づく。Cas9ヌクレアーゼはガイドRNA(gRNA)によってゲノム上の特異的部位へと導かれる。Cas9/gRNA複合体は、編集する必要がある特異的遺伝子上の3bpのプロトスペーサー活性化モチーフ(PAM)NGG又はNAGが続く20bpの標的配列に結合する(Jinek、2012年;Mali、2013年)。したがって、この全複合体の結合は二本鎖切断(DSB)を生成する。
改変する必要があるゲノム座位における標的ゲノム編集の重要なステップは、これらのDSBの導入である。いったん、DSBが導入されると、それらは、非相同末端結合(NHEJ)又は組換えDNA修復(HDR)のいずれかによって修復される。
NHEJは、挿入/欠失突然変異(インデル)の効果的な導入が公知であり、続いて、標的コード配列の翻訳の読み枠又はプロモーター若しくはエンハンサーにおけるトランス作用因子の結合部位の破壊を引き起こす。一方、HDR媒介型修復は、標的座位に特定の点突然変異又は配列を挿入し得る。したがって、Cas9ヌクレアーゼを発現するベクター及び特異的遺伝子座位を標的とするgRNAを細胞型にコトランスフェクションすると、標的遺伝子の発現を効果的にノックダウンすることができる。これらの特異的部位における突然変異の予期される頻度は、1%超〜50%の範囲である(Sander 2014年)。
突然変異体の選択は、薬剤耐性マーカー選択を使用せず、配列決定を使用する単純なスクリーニングによって実施する。遺伝子破壊の特異性を増加するため、本開示は、単一遺伝子座位のための2つのガイドRNAによって誘導され、2つの一本鎖切断又はニックを導入する突然変異体Cas9(D10A)を使用する。これはまた、その他のランダムな部位での非特異的な結合の機会も減らす。Cas9−D10A及び2つのgRNAをコードするベクターを使用し、効果的な遺伝子ノックアウトを引き起こす。
GMD及びFut8ゲノム座位は、CRISPR/CAS9技術によって配列特異的欠失の標的とされ、脱フコシル化哺乳動物発現システムを生成する。
1.2−CRISPR構築物を得る全プロセスは以下のステップからなる:
1.CRISPR設計。
2.プライマー設計。
3.オリゴヌクレオチドの合成。
4.LB(Luriaブロス)+アンピシリンプレート上でのCRISPR構築物pD1401(gRNA514〜553)、pD1401(gRNA167〜207)及びpD1301(gRNA404)によるトランスフォーメーション。
5.アンピシリンブロスを含むLBへのトランスフォームした細胞(CRISPR構築物)の接種。
6.DH10B又はDH5アルファ細胞からの、プラスミドpD1401(gRNA514〜553)、pD1401(gRNA167〜207)及びpD1301(gRNA404)の単離。
7.CHOK1細胞へのトランスフェクション;LCAアッセイによるスクリーニング及び選択。
8.QIAGEN DNeasy Blood&Tissueキットを使用する選択したクローンのゲノムDNA単離。
9.分光光度法による定量。
10.PCR条件の最適化。
11.PCRによるゲノムDNA試料のクロスチェック。
12.アガロースゲルでの電気泳動。
13.Phusionポリメラーゼを使用するPCR増幅及びTaqポリメラーゼを使用するテーリング。
14.QIAGENキットを使用するPCR産物のゲル溶出。
15.pTZ57R/Tベクターを使用するTAクローニング。
16.DH10B又はDH5アルファ細胞のライゲートした試料pTZ57R/T+CRISPR(PCR)によるトランスフォーメーション。
17.アンピシリンブロスを含むLBへのトランスフォームした細胞(pTZ57R/T+CRISPR(PCR))の接種。
18.QIAGENプラスミドDNA単離キットを使用するDH5アルファ及びDH10B細胞からのプラスミドDNA(pTZ57R/T+CRISPR(PCR))の単離。
19.制限消化(部位)によるインサートの存在のクロスチェック。
20.配列決定プライマー;及び
21.配列決定によるINDELの確認。
本開示の図1Aは、Fut8コード配列及びタンパク質配列を示す。FUT8ゲノム配列はデータベース配列、配列ID NW_003613860から分析する。FUT8ゲノム配列は570171〜731804塩基にわたり、図中、E1〜E11として示す11個のエクソンを含有する。各エクソンの塩基対位置も示す。E1、E2、及びE3の一部は上流配列における非翻訳領域を構成し、E11の一部も非翻訳領域の一部である。翻訳領域はCDS1〜CDS9として記載される。各CDSの長さは、CDS番号の下に示す。アミノ酸配列をコードするCDS1〜CDS9は、38個のアミノ酸〜105個のアミノ酸と様々である。
チャイニーズハムスター(Cricetulus griseus)又はチャイニーズハムスターフコシルトランスフェラーゼ8(Fut8)mRNA(3126bp)は、NCBI参照配列:XM_003501375.1に由来し、本開示の配列番号1によっても表す。
選択的エクソンは大文字及び小文字で表す。
Fut8タンパク質構造は、酵素の機能ドメインを理解するために広く研究されている。FUT8酵素の三次元結晶構造は15個の鎖及び16個のヘリックスを明らかにした。
FUT8遺伝子のアミノ酸配列を図2Aに示す。
CRISPR/Cas結合領域は、部位認識の特異性が高く、同時にCRISPR/Cas複合体が意図したDNA一本鎖切断を実行するように設計される。
一実施形態では、Cas9n(Cas9エンドヌクレアーゼのD10A突然変異体)がCRISPR/Cas複合体に使用される。Cas9nエンドヌクレアーゼは、一本鎖DNA切断を引き起こす。2つのCRISPR認識部位(5’認識部位と3’認識部位は5塩基対距離で間隔を取り、近接した2つの一本鎖切断を可能にする)。生じる切断によりDNA切断修復のNHEJプロセスが可能になり、この領域に突然変異を導入する。
CRISPR構築物は、gRNA配列の効果的な発現のためのU6プロモーターエレメントと縦列にgRNA足場を両側に配置する、2つの特有の20塩基対のCRISPR認識配列を有する。特有の設計は、1つの単一のベクターが、ゲノムDNA上の2つの別々のgRNA足場及び2つの特有のCRISPR認識配列を発現することを可能にする。
野生型Cas9遺伝子のヌクレオチド及びアミノ酸配列は、それぞれ配列番号3及び4で示す。
Cas9nエンドヌクレアーゼのヌクレオチド及びアミノ酸配列は、それぞれ配列番号5及び6で示す。
CRISPR/Cas設計は、一本鎖切断を組み入れることにより、標的ベータ2鎖及び3H2ヘリックス領域に特有に配置される。この設計は、近接した2つの一本鎖切断に対応し、それにより、これらの標的化ゲノム位置においてのみ起こるNHEJ修復メカニズムとして、標的認識のより高い特異性を与える。非特異的一本鎖切断は、生成された場合、正確であり、ほとんど任意の突然変異を生成しない相同組換えによって通常修復される。
本開示の主な標的は、N末端触媒ドメイン、ベータ2鎖、及び3H2ヘリックスに突然変異を生成することである。この位置でのCRISPR/Casによる挿入及び欠失は、FUT8酵素を非機能的にする。さらに、フレームシフト突然変異も中途翻訳終止コドンを引き起こし、そうなると、この領域の下流にあるロスマンフォールドが発現しない。Arg365、Arg366、Asp−368、Lys−369、Glu−373、Tyr−382、Asp−409、Asp−410、Asp−453、及びSer−469など、ロスマンフォールドのアミノ酸残基は、FUT8の機能性に非常に重要である。トランケートされた酵素は非機能的であり、フコースノックアウト細胞系をもたらす。
本開示の図2Aは、CHOK1 Fut8アミノ酸配列を示す。FUT8遺伝子の全アミノ酸配列を示す。各CDSからのアミノ酸配列は、大きな矢印で示す。小さな矢印は、CRISPR構築物によってFut8遺伝子において標的とされるエクソン7(CDS5)に存在する重要なアミノ酸を示す。
Fut8遺伝子の受入番号NW_003613860を有するCHO全細胞ゲノムのショットガン配列決定データは全部で161634bpに対応する。Fut8遺伝子のコード領域又はmRNAのPubmed受入番号はXM_003501735.1である。図1Aに示すように、mRNA配列は、α−1,6フコシルトランスフェラーゼである、FUT8遺伝子産物の発現のための全コード配列を包含する。
Spideyアライメントツール(http://www.ncbi.nlm.nih.gov/spidey/spideyweb.cgi)を使用して、mRNA配列をゲノムDNA配列とアラインすることによってゲノムDNAにおけるエクソンを同定する。表3に示すように、境界を有する全部で11個のエクソンが同定される。
触媒ドメインの非常に重要なアミノ酸残基の部位特異的突然変異誘発研究により、FUT8酵素の機能性が確かめられた。
ゲノムDNAとmRNA配列の間に100%同一性が観察された。11個のエクソン全て及びエクソン7を標的とするgRNAの位置を示すFut88遺伝子の構造は、本開示の図1Aに示す。突然変異体Cas9ヌクレアーゼ(Cas9n)を有する構築物を設計し、標的部位に一本鎖切断(ニック)を生成する。2つの別々のgRNAが近接した形でエクソン7中において設計され、最終的なDNA修復のための2つのニックを生成する。
本開示において、CRISPR/Cas9技術の標的部位は、Fut8遺伝子の最初のいくつかのエクソンに局在する。これは、トランケートされた又は部分的に機能を有する酵素によって引き起こされ得る部分的なフコシル化を回避するために行われる。
Fut8のエクソン−7(CDS−5)ヌクレオチド配列は、本開示の配列番号7によって表す。
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGGAATCTCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CHO細胞のFut8のエクソン−7(CDS−5)のアミノ酸配列は、本開示の配列番号8によって表される。タンパク質/ペプチド配列における標的アミノ酸位置は下線を引く。
Fut8遺伝子に関して上記に概説した戦略と同様に、Spideyアライメントツール(http://www.ncbi.nlm.nih.gov/spidey/spideyweb.cgi)を使用して、GMD mRNA配列をゲノムDNA配列とアラインすることによってゲノムDNAにおけるGMD遺伝子エクソンを同定する。5’非翻訳領域及びポリAテールを有する全部で10個のエクソンが同定され、表4に作表した。
10個のエクソン全てを示すGMD遺伝子の構造は、本開示の表4に示す。標的化が考えられる、GMD遺伝子上のその他のCRISPR/Cas標的も、表6に示す。
GMDエクソン−3ヌクレオチド配列は、本開示の配列番号9で表す。
ACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMDエクソン−4ヌクレオチド配列は、本開示の配列番号10で表す。
ATTTCCTTTGACTTAGCAGAGTACACTGCAGATGTTGATGGAGTTGGCACCTTGCGGCTTCTGGATGCAATTAAGACTTGTGGCCTTATAAATTCTGTGAAGTTCTACCAGGCCTCAACTAGTGAACTGTATGGAAAAGTGCAAGAAATACCCCAGAAAGAGACCACCCCTTTCTATCCAAGGTCGCCCTATG
タンパク質/ペプチド配列における標的アミノ酸位置は、太字で示す(図2B)。GMDエクソン−3のアミノ酸配列は、本開示の配列番号11によって表す。MKLHYGDLTDSTCLVKIINEVKPTEIYNLGAQSHVK
GMDエクソン−4のアミノ酸配列は、本開示の配列番号12によって表す。
ISFDLAEYTADVDGVGTLRLLDAIKTCGLINSVKFYQASTSELYGKVQEIPQKETTPFYPRSPY
CRSPRを使用して標的とされる、1.3−Fut8遺伝子中の対象とする配列
Fut8遺伝子のエクソン7において、以下に示す配列は標的DNAへの結合に使用される。
CRISPR認識配列1は、配列番号13によって表す。
AATTGGCGCTATGCTACTGGAGG
gRNA1は、配列番号14によって表す。
AAUUGGCGCUAUGCUACUGGAGG
CRISPR認識配列2は、配列番号15によって表す。
CCAGCGAACACTCATCTTGGAAT
gRNA2は、配列番号16によって表す。
CCAGCGAACACUCAUCUUGGAAU
FUT8及びGMDゲノム配列全体にわたる複数のCRISPR/Cas候補部位を設計する。以下の表はFUT8ゲノム配列の重要な部位を示す。

これらの部位全てが特有であり、CHO及びその他の細胞系における候補遺伝子ノックアウト戦略を作成するために使用される。上記の表における全ての配列は、5’から3’方向で表す。対応する20塩基対の標的特異的crRNA配列は、上記表5に記載の各設計で示したCRISPR認識配列に由来する。
本開示の表5は、CRISPRノックアウト標的化が考えられる異なるFut8標的配列を列挙する。全部で20個の異なる配列を最初に考える。gRNAのいずれも、gRNAを不活性にし得るようにエクソン−イントロン境界上に及ばないことを確認する。このアプローチに基づいて、エクソン7の57bp長が、CRISPR/Cas媒介型ノックアウト標的の標的として選択される。これは、2つのgRNAを含み、2つの単一鎖切断を引き起こす各鎖上のものである。
本方法の実施形態で使用されるFut8遺伝子における標的配列は、gRNA1120〜1176として本開示の以下の図3Bに示す。切断の部位は矢印で示す。2つのgRNA間の距離は5塩基である。gRNA1120〜1176認識配列は、図3Bにおいて下線を引く。対応する合成断片をpD1401ベクターに組み入れ、pD1401gRNA514〜553と名付け、その特徴は本開示に続いて記載する。
本開示の方法は、CRISPR/CasシステムによるFut8ゲノム配列、エクソン7の標的化においてCas9n(ニッカーゼ突然変異体)を使用する。Cas9nエンドヌクレアーゼは、DNAの逆鎖において一本鎖切断(SSB)を生成する。上鎖及び下鎖のCRISPR/Cas認識配列は下線を引く。対応する一本鎖切断部位は黒い矢印で示す。3つのヌクレオチドPAM配列は太字で示す。
本実施形態において、設計の1つがエクソン7 gRNA1120〜1176を標的化するために使用される。この設計のためのCRISPR/Casベクター構築物は、pD1401gRNA(514〜553)と呼ばれる。
5’及び3’CRISPR認識配列は小文字のイタリック体で示し、この認識配列に相補的な2つの別々の部位はFUT8ゲノム配列で認識される。太字で表した配列は、CRISPR/Cas複合体が結合するgRNA足場配列を示す。
DNA2.0からの合成DNAにおける5’CRISPR認識配列−配列番号37
ATTCCAAGATGAGTGTTCGC
標的特異的crRNA配列(5’から3’方向):配列番号38
AUUCCAAGAUGAGUGUUCGC
DNA2.0からの合成DNAにおける3’CRISPR認識配列−配列番号39
AATTGGCGCTATGCTACTGG
標的特異的crRNA配列(5’から3’方向):配列番号40
AAUUGGCGCUAUGCUACUGG
構築マップを図3Aに示し、重要な配列領域をマークする。
1.4−GMD CRISPR構築物の設計
本開示の図9Bは、GMDゲノム座位及びCRISPR認識配列を示す。
442215bpからなるGMD遺伝子座位の受入番号NW_003613635.1のCHO全細胞ゲノムのショットガン配列決定データは、Pubmedから得る。GMD遺伝子のコード領域又はmRNAのPubmed受入番号は、NM_001246696.1である。
GMDは、短鎖デヒドロゲナーゼ/レダクターゼ(SDR)のNDP−糖修飾サブファミリーのメンバーである。このサブファミリーのメンバーとして、GMDは、コモングリシンリッチ領域が存在する分子のN末端部分にあるその補助因子NADP(H)に結合する。触媒三残基はTyr−XXX−Lys及びSer/Thrとして同定されており、それらは全て触媒作用に重要である。大腸菌から得られたGMDの構造分析により、活性な分子は、二量体構成をとることが示唆される。一方、シロイヌナズナ(Arabidopsis thaliana)由来の相同体は四量体であり、NADP(H)結合部位が四量体界面の生成に密接に関与する。真核生物のGMD酵素の機能形態が四量体構成からなる可能性が最も高い。
CRISPR/Cas結合領域は、部位認識の特異性が高く、同時にCRISPR/Cas複合体が意図したDNA一本鎖切断を実行するように設計される。
一実施形態では、Cas9n(Cas9エンドヌクレアーゼのD10A突然変異体)をCRISPR/Cas複合体に使用する。Cas9nエンドヌクレアーゼは一本鎖DNA切断を引き起こす。2つのCRISPR認識部位(5’認識部位及び3’認識部位は5塩基対距離で間隔を取り、近接した2つの一本鎖切断を可能にする)。生じた切断は、DNA切断修復のNHEJプロセスを可能にし、この領域に突然変異を導入する。
CRISPR構築物は、gRNA配列の効果的な発現のためのU6プロモーターエレメントと縦列にgRNA足場を両側に配置する、2つの特有の20塩基対CRISPR認識配列を有する。特有の設計は、1つの単一のベクターが、ゲノムDNAにおいて2つの別々のgRNA足場及び2つの特有のCRISPR認識配列を発現することを可能にする。
CRISPR/Cas設計は特有に配置され、GMD多量体機能タンパク質構造の四量体界面を担うYGDLTDSTCLVKモチーフ及びDLAEYTモチーフを標的化する。この領域にCas9nエンドヌクレアーゼによって導入される2つの一本鎖切断は、NHEJ媒介型DNA修復を可能にする。DNA修復の間に組み入れられる突然変異は、フレームシフト突然変異、欠失、挿入、並びに中途終止コドンをもたらす。そのような突然変異は四量体化の重要なモチーフを変更するだけでなく、四量体構成中の単量体の相互作用の維持に関与するSer85残基の下流にも突然変異を生成する。設計は、近接した2つの一本鎖切断に対応し、それにより、これらの標的化ゲノム位置においてのみ起こるNHEJ修復メカニズムとして、標的認識のより高い特異性を与える。非特異的一本鎖切断は、生成された場合、正確でほとんど任意の突然変異を生成しない相同組換えによって通常修復される。
本開示の図1Bは、CHOK1 GMDゲノム構造を示す。
GMD遺伝子の全アミノ酸配列を図2Bに示す。各CDSからのアミノ酸配列は大きな矢印で示す。2つのCRISPR標的領域は、GMD遺伝子において標的とするエクソン3及びエクソン4に下線を引く。各エクソンは矢印マークで表す。細い下線は、一本鎖切断位置のCRISPR認識部位を示し、太い破線は二本鎖切断位置のCRISPR認識部位を示す。
遺伝子ノックアウトの2つの異なる戦略が使用され、1つは一本鎖切断(SSB)を生成する突然変異体Cas9(Cas9n)の使用であり、2つ目は二本鎖切断(DSB)を生成する野生型Cas9を使用する。
GMDエクソン3座位
本開示の方法は、CRISPR/CasシステムによるGMDゲノム配列、エクソン3の標的化において、Cas9n(ニッカーゼ突然変異体)を使用する。Cas9nエンドヌクレアーゼは、DNAの逆鎖において一本鎖切断(SSB)を生成する。構築物は、pD1401(gRNA167〜207)と名付け、本開示の図4Aに表す。
5’及び3’CRISPR認識配列は小文字のイタリック体で示し、この配列に相補的な2つの別々の部位はGMDゲノム配列で認識される。太字で表した配列は、CRISPR/Cas複合体が結合するgRNA足場配列を示す。
DNA2.0からの合成DNAにおける5’CRISPR認識配列=配列番号41
ACTAGGCAGGTGCTGTCGGT
標的特異的crRNA配列(5’から3’方向):配列番号42
ACUAGGCAGGUGCUGUCGGU
DNA2.0からの合成DNAにおける3’CRISPR認識配列−配列番号43−
CATCAATGAAGTCAAACCTA
標的特異的crRNA配列(5’から3’方向):配列番号44
CAUCAAUGAAGUCAAACCUA
GMDエクソン4座位
GMD遺伝子のエクソン4は、野生型Cas9エンドヌクレアーゼによって標的とされる。この野生型Cas9は、標的部位に二本鎖切断(DSB)を生成する。構築物は、pD1301(gRNA404)と名付け、本開示の図4Bに表す。
CRISPR認識配列は小文字のイタリック体で示す。二本鎖ゲノムDNA配列はCRISPR/Casシステムによってこの配列に基づいて認識される。太字で表した配列は、CRISPR/Cas複合体が結合するgRNA足場配列を示す。
DNA2.0からの合成DNAにおけるCRISPR認識配列−配列番号45−
AGTTGGCACCTTGCGGCTTC
標的特異的crRNA配列(5’から3’方向):配列番号46
AGUUGGCACCUUGCGGCUUC
GMD遺伝子のCRISPR認識配列
以下の表は、一本鎖切断部位の候補となる、GMDコード配列全体にわたるCRISPR/Cas認識配列を表す。任意のこれらの認識配列が、Cas9nエンドヌクレアーゼ媒介型一本鎖切断及びCRISPR/Casシステムの修復戦略に使用され、GMD遺伝子をノックアウトする。

この場合に、GMD遺伝子配列における全部で19個の標的配列を、CRISPR認識部位のために設計する。全ての配列は5’から3’方向で表し;対応する20塩基対の標的特異的crRNA配列は、上記表6に記載の各設計において示したCRISPR認識配列に由来する。
これらの上記設計の1つ、gRNA394〜434は、CHOK1細胞のトランスフェクションのためのCRISPR/Cas複合体pD1401(gRNA167〜207)を生成するために使用する。CRISPR/Cas複合体は、GMD遺伝子の認識されたコード配列の相補鎖に2つの一本鎖DNA切断を生成する。標的部位でのDNA修復の成功は非機能的GMD遺伝子を生成し、それによりフコースノックアウトCHOK1細胞系が開発される。pD1401(gRNA167〜207)の特徴は、本開示において続いて記載する。
本実施形態は設計の1つを使用するが、上記のCRISPR認識部位のいずれか1つは、非機能的GMD遺伝子を生成する。したがって、これらの候補部位のいずれかのみ、又は組合せは、フコースノックアウトCHOK1細胞系の開発に使用される。
本方法の実施形態において使用するGMDエクソン3の標的配列は、gRNA394〜434として表6に述べる。図4Cは、CRISPR認識配列を記載する。切断の部位は矢印で示す。2つのgRNA間の距離は、6塩基である。gRNA394〜434配列は図4Cにおいて下線を引く。対応する合成断片をpD1401ベクターに組み入れ、pD1401gRNA167〜207と名付け、その特徴は本開示に続いて記載する。本開示の方法は、CRISPR/CasシステムによるGMDゲノム配列、エクソン3の標的化においてCas9n(ニッカーゼ突然変異体)を使用する。Cas9nエンドヌクレアーゼは、DNAの逆鎖において一本鎖切断(SSB)を生成する。
以下の表は、二本鎖切断部位の候補となる、GMDコード配列全体にわたるCRISPR/Cas認識配列を表す。任意のこれらの認識配列を、野生型Cas9エンドヌクレアーゼ媒介型二本鎖切断及びCRISPR/Casシステムの修復戦略に使用し、GMD遺伝子をノックアウトする。

23個の特有のCRISPR認識配列(gRNA)をGMD遺伝子配列全体にわたって設計する。全ての配列は5’から3’方向で表し;対応する20塩基対の標的特異的crRNA配列は、上記表7に記載の各設計において示したCRISPR認識配列に由来する。
これらの上記設計の1つ、gRNA306は、CHOK1細胞のトランスフェクションのためのCRISPR/Cas複合体pD1301(gRNA404)を生成するために使用する。CRISPR/Cas複合体は、GMD遺伝子の認識されたコード配列に1つの二本鎖DNA切断を生成する。標的部位でのDNA修復の成功は非機能的GMD遺伝子を生成し、それによりフコースノックアウトCHOK1細胞系が開発される。
本実施形態において設計の1つを使用するが、上記のCRISPR認識部位のいずれか1つは、非機能的GMD遺伝子を生成する。したがって、これらの候補部位のいずれかのみ、又は組合せは、フコースノックアウトCHOK1細胞系の開発に使用される。
本方法の実施形態において使用するGMDエクソン4の標的配列は、gRNA306として上記表7に示す。図4Dは、CRISPR認識配列を記載する。切断の部位は矢印で示す。対応する合成断片をpD1301ベクターに組み入れ、pD1301gRNA404と名付け、その特徴は本開示に続いて記載する。本開示の方法は、CRISPR/CasシステムによるGMDゲノム配列、エクソン4の標的化において野生型Cas9エンドヌクレアーゼを使用する。野生型Cas9エンドヌクレアーゼは、DNAの両鎖において二本鎖切断(DSB)を生成する。
1.5−CRISPR/Cas複合体合成
CRISPR技術は、化膿性連鎖球菌において見出された微生物の適応免疫系由来のCas9として公知のRNA誘導型エンドヌクレアーゼのクラスに基づく。Cas9ヌクレアーゼはガイドRNA(gRNA)によってゲノム上の特異的部位へと導かれる。2つの成分が細胞又は生物に導入及び/又は発現して、CRISPRに基づくゲノム編集を実行しなければならない:Cas9ヌクレアーゼ;及び「ガイドRNA」(gRNA)。
gRNAの5’端における20個のヌクレオチド認識配列は、標準的なRNA−DNA相補性塩基対合則を使用して、Cas9を特異的標的DNA部位に導く。これらの標的部位は、限界構造5−NGGにマッチするPAM配列のすぐ5’側にあるべきである。
本開示は、以下に記載するように本開示の2つの異なる種類のCas9エンドヌクレアーゼを使用する。両方の場合において、gRNA及びヌクレアーゼをコードする単一のトランスフェクションベクターを使用し、それによりCHOK1細胞のトランスフェクション効率を上げる。
a)CAs9野生型ヌクレアーゼを、エクソン4でのGMD遺伝子標的化に使用する。構築物は、標的部位において二本鎖切断(DSB)を可能にする。
b)Cas9nとして公知の突然変異体Cas9ヌクレアーゼ(D10A)を、GMDエクソン3座位及びFut8エクソン7座位の標的化に使用し、構築物は二本鎖DNA切断の代わりに一本鎖切断を生成する。この設計は、CRISPR/Cas構築物の特異性を改善することを目的とする。
一本鎖切断の場合、2つのDNA標的部位は近接した形で標的とされ、一本鎖切断又はニックは逆DNA鎖で生じる。それにより、DNA修復機構(NHEJ)を導入し、DNA損傷を修復する。DNA修復を開始する特定の間隔で2つのgRNA/Cas9n複合体を導入することは、標的部位への特異性を改善する。gRNA/Cas9n複合体が1つだけ無関係な部位に非特異的に結合する場合、突然変異の頻度が非常に低い相同組換えに基づく修復によって通常修復されるニックを引き起こす。したがって、このアプローチは、Fut8及びGMD遺伝子を標的とする特異性を上げる。
両遺伝子の特有の領域は、酵素の触媒機能を廃止するように酵素の構造情報に基づき、又は高次構造を破壊することにより標的とされる。
ベクターの重要な特徴は、
a)Cas9−化膿性連鎖球菌のCRISPRシステムの成分として最初に発見され、哺乳動物細胞での利用に適用されてきたヌクレアーゼである。RNA誘導型Cas9は、高い効率で哺乳動物細胞の内因性ゲノム座位に正確な二本鎖切断を効果的に導入することができる。
Cas9−D10A−Cas9ヌクレアーゼのD10A突然変異体(Cas9n)は一本鎖にニックを入れ、標的ゲノム座位の逆鎖に相補的な一対のオフセットガイドRNAと組み合わせる。これは、野生型Cas9に見られる非特異的な活性を減らすのに役立つ。
b)キメラgRNA足場−キメラガイドRNA(gRNA)足場は、20個のヌクレオチドの標的特異的な相補性領域、42個のヌクレオチドのCas9結合RNA構造、及びゲノム改変のための標的部位へCas9ヌクレアーゼを導く、化膿性連鎖球菌(S. pyogenes)由来の40個のヌクレオチドの転写ターミネーターからなる。この場合、2つのgRNA足場があり、それぞれ各gRNA用である。
c)カナマイシン−r−それによりミスコードを引き起こすリボソーム転位を阻害する有効な抗細菌剤である。カナマイシン耐性をコードする遺伝子はネオマイシンリン酸転移酵素II(NPT II/Neo)である。カナマイシン耐性遺伝子を含有するプラスミドでトランスフォームした大腸菌は、25μg/mlのカナマイシンを含有する培地で増殖することができる。
d)P_CMV−CMVプロモーターは、構成的な哺乳動物プロモーターであり、様々な細胞システムで強い発現を媒介する。
e)P_hU6.1−RNA発現のためのヒトAタイプ3コアプロモーター
1.6−CRISPR構築物を得る全プロセスは以下のステップからなる:
22.CRISPR標的の設計。
23.2つの別々のベクター骨格を有するベクター構築物、すなわちgRNAインサートを有するpD1401及びpD1301ベクター。
24.CRISPR構築物pD1401(gRNA514〜553)、pD1401(gRNA167〜207)、及びpD1301(gRNA404)による、大腸菌コンピテントセル(DH10B又はDH5アルファ)のトランスフォーメーション、及びカナマイシンを補足したLB(Luria Bertani)−アガーへのプレーティング。
25.カナマイシンを含むLBブロス中へのトランスフォームした細胞(CRISPR構築物)の接種。
26.DH10B又はDH5アルファ細胞からのプラスミドDNA pD1401(gRNA514〜553)、pD1401(gRNA167〜207)、及びpD1301(gRNA404)の単離。
27.CHOK1細胞のトランスフェクション;LCAアッセイによるスクリーニング及び選択。
28.QIAGEN DNeasy Blood&Tissue Kitを使用する選択したクローンのゲノムDNA単離。
29.分光光度法による定量。
30.PCR条件の最適化。
31.PCRによるゲノムDNA試料のクロスチェック。
32.アガロースゲルでの電気泳動。
33.Phusionポリメラーゼを使用するPCR増幅及びTaqポリメラーゼを使用するテーリング。
34.QIAGENキットを使用するPCR産物のゲル溶出。
35.pTZ57R/Tベクターを使用するTAクローニング。
36.DH10B又はDH5アルファ細胞のライゲートした試料pTZ57R/T+CRISPR(PCR)によるトランスフォーメーション。
37.アンピシリンブロスを含むLBへのトランスフォームした細胞(pTZ57R/T+CRISPR(PCR))の接種。
38.QIAGENプラスミドDNA単離キットを使用するDH5アルファ及びDH10B細胞からのプラスミドDNA(pTZ57R/T+CRISPR(PCR))の単離。
39.制限酵素消化によるインサートの存在のクロスチェック。
40.配列決定プライマー;及び
41.配列決定によるINDELの確認。
(例2)
TALEN構築物による細胞のトランスフェクション
本実施例は、CRISPR構築物によるCHOK1細胞のトランスフェクションの手順を含む。CRISPR技術、及びフローサイトメトリーに基づく機能アッセイによる陽性クローンの選択を使用するFUT8ノックアウトCHOK1細胞系を開発するための単一細胞の安定発現株の選択及び確認も提供する。
トランスフェクションプロトコール
トランスフェクションは、接着型及び浮遊型両方のCHOK1細胞を使用して最適化する。リポソーム及び修飾リポソーム媒介型トランスフェクション試薬は、例えばLipofectamine2000、Lipofectamine3000、PlusTM試薬とLipofectamineLTX、MIRUS TransIT X2、MIRUS TransIT 2020、MIRUS TransIT 293、MIRUS TransIT CHOトランスフェクションキットについて試験する。0.5μg〜5μgの範囲のDNA濃度を、様々なインキュベーション時間、例えば4時間、24時間、及び48時間について試験する。複数のDNA対トランスフェクション試薬の比(μg:μl)も試験する。最適なトランスフェクション効率は、1:3のDNA対トランスフェクション試薬の比、24時間のインキュベーション、及びPlusTM試薬とLipofectamineLTXを使用して達成される。最適化実験は、GFP発現プラスミドDNAで実施した。
図20は、本開示に記載したプロトコールを使用してCHOK1細胞系のトランスフェクション効率を示す。トランスフェクション効率は緑色蛍光タンパク質発現プラスミド構築物を使用して決定する。トランスフェクション後に観察された緑色細胞の数を全生存細胞数と比較し、確立されたプロトコールのトランスフェクション効率を決定する。パネルAは明視野像を表し、パネルBは赤色チャネル蛍光の同じ顕微鏡視野を表す。
トランスフェクション効率は以下の式によって計算する:
トランスフェクション効率=(GFP発現細胞の数/全細胞数)100
最適化した一過性のトランスフェクション効率は、CHOK1細胞において40〜50%である。
トランスフェクション:
CHOK1細胞は、90%より高い生存率、6ウェル組織培養プレート中0.25×10個の細胞/ウェルの密度で播種し、24時間接着させる。CRISPR構築物pD1401(gRNA514〜553)、pD1401(gRNA167〜207)、pD1301(gRNA404)、pD1401(gRNA167〜207)+pD1301(gRNA404)の組合せを、PlusTM試薬とLipofectamineLTXを使用するトランスフェクションに使用する。2.5μgの構築物を1:3のDNA対トランスフェクション試薬の比で使用する。細胞を、トランスフェクション後20〜24時間インキュベートする。トランスフェクションの前に、DNAの量及び質を紫外分光光度法によって概算する。A260/280値DNAは、質及びタンパク質の夾雑を表す。260nm及び280nmでの吸光度の比を使用して、DNAの純度を評価する。A260/280>1.8は通常「純粋」又は質の良いDNAとして許容される。3〜4μlのDNA試料をマイクロキュベット上に置き、DNA濃度をEppendorf Biophotometer D30を使用して、好適なブランクに対して概算する。
トランスフェクションの1時間前、無血清培地で細胞の培地交換をする。CRISPR構築物及びLipofectamineLTX溶液を希釈し、優しく混合し、20〜25℃で5〜10分間インキュベートする。DNA及びトランスフェクション試薬の希釈物(3ml)を混合し、複合体形成のため、室温で20〜30分間インキュベートする。培地をウェルから吸引する。1.5mlのDNA及びトランスフェクション試薬複合体をプレートした細胞に滴下添加する。
細胞は5%COインキュベーター中、37℃で4時間インキュベートする。完全培地を1.5ml/ウェルで添加し、5%COインキュベーター中、37℃で20〜24時間インキュベートする。トランスフェクションの20〜24時間後、細胞をトリプシン処理し、単一細胞希釈を調製する。
単一細胞希釈は、0.5個の細胞/100μlの濃度まで細胞の段階希釈によって得る。細胞数は血球計算盤を使用して数えた。細胞は、5%COインキュベーター中、37℃で数日間増殖させる。プレートスキャンを行い、倒立位相差顕微鏡下で単一細胞コロニーを同定する。はっきりとした小さい単一コロニーへと増殖する細胞は、さらなる増幅のためにマークする。2〜3週間後、単一細胞クローンをトリプシン処理により、96ウェルプレートの1ウェルから6ウェルプレートの1ウェルへと増幅する。細胞は、COインキュベーター中5%COで、37℃で2〜3日間増殖させる。細胞は、さらなるスクリーニングのため、24ウェルプレートの1ウェルから2ウェルにさらに増幅する(レプリカ平板法)。
LCA−FITC(レンズマメアグルチン−フルオレセインイソチオシアネート)結合アッセイ
フルオレセインイソチオシアネート(FITC)はLCAにコンジュゲートする蛍光色素である。したがって、対照のCHOK1細胞の細胞膜上のフコシル化タンパク質の存在は、フルオレセインコンジュゲートLCAによって認識される。これらの細胞は、特定のフローサイトメーターチャネルでより明るい蛍光を発する。観察される蛍光は、蛍光単位として表す。フコース経路が破壊された細胞、ノックアウト系は、フコシル化細胞タンパク質を産生することができず、したがって細胞膜タンパク質はフコシル化されていない。これらの細胞をフルオレセイン−LCAコンジュゲートで試験すると、バックグラウンドと同等の蛍光をもたらす。したがって、フコースノックアウト細胞は、対照のCHOK1細胞系と比較してより低いレベル(100RFUより小さい)の蛍光を発する。
細胞をトリプシン処理し、マイクロチューブに移し、Eppendorf minispin遠心分離機を使用して5分間1500rpm(毎分回転数)でスピンする。培地を除去し、新鮮な培地をチューブに添加する。トランスフェクトした、及びトランスフェクトしていないCHOK1細胞両方を同時に処理する。細胞は、「Millipore GUAVA 8 easyCyte HT」ベンチトップフローサイトメーター使用してLCA−FITCフローサイトメトリーに基づく分析を試験する。
pD1401(gRNA514〜553)のトランスフェクションからの54個のクローンを、フコースノックアウトプロファイルに関してスクリーニングする。同様に、pD1401(gRNA167〜207)若しくはpD1301(gRNA404)又はpD1401(gRNA167〜207)+pD1301(gRNA404)の組合せのトランスフェクションからの200個のクローンを、フコースノックアウトプロファイルに関してスクリーニングする。
フルオレセインレンズマメアグルチニン(LCA−FITC)ストック5mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。細胞は、Eppendorf minispin遠心分離機を使用して5分間1500rpmでスピンする。培地を吸引し、ペレットを2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液中で再懸濁する。CHOK1対照細胞は、0.25〜1mlのアッセイ緩衝液のみ(未染色対照)及び2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液(染色対照)中で再懸濁する。全ての試料を希釈し、最終アッセイ緩衝液中0.1〜0.2×10個の細胞/mlを得る。次いで、試料は30分間氷上、暗所でインキュベートする。
次いで、200μlの各試料を96ウェルプレートに分取する。次いで、データ取得及び分析のためにプレートをMillipore GUAVA easyCyte 8HTベンチトップフローサイトメーターにロードする。データ分析は、Incyteソフトウェアを使用して行う。いくつかの実験では、データ取得及び分析のためにAccuri C6フローサイトメーターを使用する。
フルオレセイン−ストレプトアビジン(Strep−FITC)陰性染色も実施する。フルオレセインレンズマメアグルチニン(LCA−FITC)ストック5mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。フルオレセインストレプトアビジン(Strep−FITC)ストック1mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。細胞懸濁液を二通り取り、Eppendorf minispin遠心分離機を使用して5分間1500rpmでスピンする。培地を吸引し、1つのチューブ内でペレットを2μg/ml LCA−FITCを含有するアッセイ緩衝液中で再懸濁し、試料は2μg/ml Strep−FITCを含有するアッセイ緩衝液中に二通り分けた。CHOK1対照細胞は、アッセイ緩衝液のみ(未染色対照)、2μg/ml LCA−FITCを含有するアッセイ緩衝液(染色対照)、及び2μg/ml Strep−FITCを含有するアッセイ緩衝液中で再懸濁する。
全ての試料を希釈し、0.25〜1mlのアッセイ緩衝液中0.1〜0.2×10個の細胞/mlを得る。次いで、試料は30分間氷上、暗所でインキュベートする。次いで、200μlの各試料を96ウェルプレートに分取する。データ取得及び分析のためにプレートをMillipore GUAVA easyCyte 8HTベンチトップフローサイトメーターにロードする。データ分析は、Incyteソフトウェアを使用して行う。いくつかの実験では、データ取得及び分析のためにAccuri C6フローサイトメーターを使用する。
CHOK1細胞は、Fut8座位を標的とするpD1401(gRNA514〜553)構築物をトランスフェクトし、結果は以下に示す。

結果−
上記の表に示すグラフィカルな結果及び蛍光プロファイルは、本開示の図7A及び図8Aにも示す。図は、フローサイトメトリーに基づくLCA−FITC結合アッセイにおける、CHOK1細胞系、CR1KOT1#6、CR1KOT1#18、CR1KOT1#22、CR1KOT1#23、CR1KOT1#26、CR1KOT1#31、CR1KOT1#34、CR1KOT1#37に関して観察されたグラフィカルな結果及び蛍光プロファイルを示す。このフローサイトメトリーアッセイは、細胞表面上に存在するフコシル化タンパク質を検出する。したがって、多くのフコシル化タンパク質が対照CHOK1細胞系に存在するので、CHOK1対照細胞は高い蛍光を発する。トランスフェクトした細胞系においてCRISPR/Cas複合体がFUT8遺伝子を破壊することができる場合、LCA FITC蛍光は、これらの細胞系の表面上にフコシル化タンパク質がないので最小化される。図は、CR1KOT1#6、CR1KOT1#18、CR1KOT1#22、CR1KOT1#23、CR1KOT1#26、CR1KOT1#31、CR1KOT1#34、及びCR1KOT1#37をこのアッセイで試験する場合の著しい蛍光の減少を明らかにし、これらの細胞系がCHOK1 FUT8ノックアウト細胞系であることを示す。
CHOK1細胞は、GMD座位を標的とするpD1401(gRNA167〜207)、pD1301(gRNA404)、pD1401(gRNA167〜207)+pD1301(gRNA404)構築物をトランスフェクトし、結果は以下の表に示す。
上記の表に示すグラフィカルな結果及び蛍光プロファイルは、本開示の図7B及び図8Bにも示す。図は、フローサイトメトリーに基づくLCA−FITC結合アッセイにおける、CHOK1、C1GMD1.12、C1GMD1.27、C1GMD2.30、C1GMD2.34、C1GMD3.4、C1GMD3.36、C1GMD3.43、C1GMD3.49、C1GMD3.51に関して観察されたグラフィカルな結果及び蛍光プロファイルを示す。このフローサイトメトリーアッセイは、細胞表面上に存在するフコシル化タンパク質を検出する。したがって、多くのフコシル化タンパク質が対照CHOK1細胞系に存在するので、CHOK1対照細胞は高い蛍光を発する。トランスフェクトした細胞系においてCRISPR/Cas複合体がGMD遺伝子を破壊することができる場合、LCA FITC蛍光は、これらの細胞系の表面上にフコシル化タンパク質がないので最小化される。図は、C1GMD1.12、C1GMD1.27、C1GMD2.30、C1GMD3.4、C1GMD3.36、C1GMD3.43、C1GMD3.49、C1GMD3.51をこのアッセイで試験する場合の著しい蛍光の減少を明らかにし、これらの細胞系は候補CHOK1 GMDノックアウト細胞系であることを示す。
トランスフェクションの別のセットも、LCA FITC蛍光アッセイで試験する。フローサイトメトリーデータは以下の表に示す。
上記の表に示すグラフィカルな結果及び蛍光プロファイルは、本開示の図7C及び図8Cにも示す。図は、フローサイトメトリーに基づくLCA−FITC結合アッセイにおける、CHOK1、C1GMD1.37、C1GMD1.4、C1GMD1.41、C1GMD1.43、及びC1GMD1.44に関して観察されたグラフィカルな結果及び蛍光プロファイルを示す。このフローサイトメトリーアッセイは、細胞表面上に存在するフコシル化タンパク質を検出する。したがって、多くのフコシル化タンパク質が対照CHOK1細胞系に存在するので、CHOK1対照細胞は高い蛍光を発する。トランスフェクトした細胞系においてCRISPR/Cas複合体がGMD遺伝子を破壊することができる場合、LCA FITC蛍光は、これらの細胞系の表面上にフコシル化タンパク質がないので最小化される。図は、C1GMD1.37、C1GMD1.4、C1GMD1.41、C1GMD1.43、C1GMD1.44をこのアッセイで試験する場合の著しい蛍光の減少を明らかにし、これらの細胞系は候補CHOK1 GMDノックアウト細胞系であることを示す。
LCA(レンズマメアグルチニン)選択アッセイ−
複数の単一細胞クローン細胞系集団は、CRISPR/Cas複合体をトランスフェクション後、レプリカプレートに分ける。次いで、これらの細胞系は、培養培地中の200μg LCA試薬により試験する。細胞は毎日観察し、細胞の健康及び形態を確認し、適切な時点で写真を撮る。図5は、LCA選択開始点後の培養の1日後に撮った写真を示し、図6Aは培養の4日後に撮った写真を示す。本明細書に示した細胞系は、LCA試薬の存在下で培養の4日後、大きなコロニーの細胞へと増加及び増殖した1日目の抵抗細胞によって示される、LCAに対する抵抗性を示す。細胞の形態は、顕微鏡によって観察し、観察は1日目及び4日目に記録する。
細胞は、倒立位相差顕微鏡下で定期的に観察し、コロニーの形態をモニターする。200μg/ml LCAによるLCA選択アッセイの異なる時点で撮った写真は、培養の4日目にCHOK1対照細胞が完全に死滅することをはっきりと示すが、選択したクローンは、培養の4日後でさえも連続的な細胞の増殖及び健康な細胞の形態を示す。
以下のクローン−CR1KOT1#44、CR1KOT1#52、CR1KOT1#55、CR1KOT1#61及びCR1KOT1#67は、200μg/ml LCAによる処置後でさえもコロニーの形態を維持することが、これらの図から観察される。したがって、これらのクローンは候補FUT8ノックアウト表現型であると考えられる。
pD1401(gRNA167〜207)をトランスフェクトしたクローンのLCA選択の間に、本開示の図6Bにおいて、1日目、4日目、及び6日目のクローンの生存率を比較する。以下のクローン、C1GMD1.12、C1GMD1.27、C1GMD1.40、C1GMD1.41、C1GMD1.43及びC1GMD1.44は、200μg/ml LCAによる処置後でさえもコロニーの形態を維持することが、これらの図から観察される。したがって、これらのクローンは候補FUT8ノックアウト表現型であると考えられる。
本明細書に示した細胞系は1日目までにLCAに対する抵抗性を示し、LCA試薬の存在下で培養の4日後及び6日後、大きなコロニーの細胞へと増加及び増殖する。細胞の形態は、顕微鏡によって観察し、観察は1日目、4日目、及び6日目に記録する。細胞は、倒立位相差顕微鏡下で定期的に観察し、コロニーの形態をモニターする。200μg/ml LCAによるLCA選択アッセイの異なる時点で撮った写真は、培養の4日目にCHOK1対照細胞が完全に死滅することをはっきりと示すが、選択したクローンは、培養の4日後でさえも連続的な細胞の増殖及び健康な細胞の形態を示す。
LCA−FITC結合アッセイ:
LCA−FITC結合アッセイの2つ目のセットに関して、以下のクローン、CR1KOT1#44、CR1KOT1#46、CR1KOT1#48、CR1KOT1#49、CR1KOT1#51、CR1KOT1#52、CR1KOT1#55、CR1KOT1#59、CR1KOT1#61、CR1KOT1#66、CR1KOT1#67がフコースノックアウトフローサイトメトリープロファイルを示した(図10)。フルオレセインレンズマメアグルチニン(LCA−FITC)ストック5mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。細胞は、Eppendorf minispin遠心分離機を使用して5分間1500rpmでスピンする。培地を吸引し、ペレットを2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液中で再懸濁する。
CHOK1対照細胞は、0.25〜1mlのアッセイ緩衝液のみ(未染色対照)及び2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液(染色対照)中で再懸濁する。全ての試料を希釈し、最終アッセイ緩衝液中0.1〜0.2×10個の細胞/mlを得る。次いで、試料は30分間氷上、暗所でインキュベートする。次いで、200μlの各試料を96ウェルプレートに分取する。次いで、データ取得及び分析のためにプレートをMillipore GUAVA easyCyte 8HTベンチトップフローサイトメーターにロードする。データ分析は、Incyteソフトウェアを使用して行う。

上記の表に示した結果は、本開示の図10のグラフィカルな表示及び図11の蛍光プロファイルにも示す。
図10は、フローサイトメトリーに基づくLCA−FITC結合アッセイにおける、CHOK1細胞系、CR1KOT1#44、CR1KOT1#46、CR1KOT1#48、CR1KOT1#49、CR1KOT1#51、CR1KOT1#52、CR1KOT1#55、CR1KOT1#59、CR1KOT1#61、CR1KOT1#66、CR1KOT1#67に関して観察されたグラフィカルな結果を示す。図11は、細胞系、CR1KOT1#44、CR1KOT1#49、CR1KOT1#51、CR1KOT1#52、CR1KOT1#55、CR1KOT1#59、CR1KOT1#61、CR1KOT1#67で観察される代表的な蛍光プロファイルを示す。全てのクローンは、この実験で分析する前にさらに数日間継代する。このフローサイトメトリーアッセイは、細胞表面上に存在するフコシル化タンパク質を検出する。したがって、多くのフコシル化タンパク質が対照CHOK1細胞系に存在するので、CHOK1対照細胞は高い蛍光を発する。トランスフェクトした細胞系においてCRISPR/CasがFUT8遺伝子を破壊することができる場合、LCA FITC蛍光は、これらの細胞系の表面上にフコシル化タンパク質がないので最小化される。図は、CR1KOT1#44、CR1KOT1#46、CR1KOT1#48、CR1KOT1#49、CR1KOT1#51、CR1KOT1#52、CR1KOT1#55、CR1KOT1#59、CR1KOT1#61、CR1KOT1#66、CR1KOT1#67をこのアッセイで試験する場合の著しい蛍光の減少を明らかにし、これらの細胞系はCHOK1 FUT8ノックアウト細胞系であることを示す。
結論 − fut8ノックアウトCHOK1細胞系の17個の潜在的な候補が同定される。これらの17個のクローンは以下の通りである:
CR1KOT1#006、CR1KOT1#018、CR1KOT1#022、CR1KOT1#023、CR1KOT1#026、CR1KOT1#031、CR1KOT1#034、CR1KOT1#036、CR1KOT1#037、CR1KOT1#044、CR1KOT1#049、CR1KOT1#051、CR1KOT1#052、CR1KOT1#055、CR1KOT1#059、CR1KOT1#061及びCR1KOT1#067。
GMDノックアウトCHOK1細胞系の13個の潜在的な候補を同定する。クローンは以下の通りである:
C1GMD1.12、C1GMD1.27、C1GMD1.37、C1GMD1.4、C1GMD1.41、C1GMD1.43、C1GMD1.44、C1GMD2.30、C1GMD3.4、C1GMD3.36、C1GMD3.43、C1GMD3.49、C1GMD3.51
(例3)
LCA−FITC結合アッセイ
LCA−FITC結合アッセイを使用する独立した反復実験でクローンのフコースノックアウトCHOK1細胞系を試験する。
以下のクローン細胞系はLCA−FITC結合アッセイの再現性を試験する。
CR1KOT1#006、CR1KOT1#018、CR1KOT1#022、CR1KOT1#023、CR1KOT1#026、CR1KOT1#031、CR1KOT1#034、CR1KOT1#036、CR1KOT1#037、CR1KOT1#044、CR1KOT1#049、CR1KOT1#051、CR1KOT1#052、CR1KOT1#055、CR1KOT1#059、CR1KOT1#061及びCR1KOT1#067。
フルオレセインレンズマメアグルチニン(LCA−FITC)ストック5mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。細胞は、Eppendorf minispin遠心分離機を使用して5分間1500rpmでスピンする。培地を吸引し、ペレットを2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液中で再懸濁する。CHOK1対照細胞は、0.25〜1mlのアッセイ緩衝液のみ(未染色対照)及び2μg/ml LCA−FITCを含有する0.25〜1mlのアッセイ緩衝液(染色対照)中で再懸濁する。全ての試料を希釈し、最終アッセイ緩衝液中0.1〜0.2×10個の細胞/mlを得る。次いで、試料は30分間氷上、暗所でインキュベートする。次いで、200μlの各試料を96ウェルプレートに分取する。次いで、データ取得及び分析のためにプレートをMillipore GUAVA easyCyte 8HTベンチトップフローサイトメーターにロードする。データ分析は、Incyteソフトウェアを使用して行う。
結果:
以下の表は、全ての選択したクローンに関してLCA−FITC結合アッセイのデータ再現性を記載する。
LCA FITC結合アッセイの絵での描写を図12に示す。データ分析は、クローンのフコースノックアウトCHOK1細胞系の高度に再現できるLCA−FITC結合パターンを示唆する。これらのフコースノックアウトCHOK1細胞系は増殖特性をさらに試験し、トランスフェクトしていない親のCHOK1細胞系と比較する。
(例4)
ストレプトアビジン−FITCアッセイ
クローンのフコースノックアウトCHOK1細胞系をストレプトアビジン−FITCコンジュゲートにより試験し、LCA−FITC結合の特異的な相互作用を確かめる。
クローンのストレプトアビジンコンジュゲートFITC(Strep−FITC)染色を実行し、FITC色素の非特異的な結合がないことを確かめる。細胞膜タンパク質はストレプトアビジン−FITCコンジュゲートに結合しないが、フコシル化膜タンパク質はLCA−FITCコンジュゲートに特異的に結合する。対照のCHOK1細胞を、別々の反応でLCA−FITC及びStrep−FITCの両方で染色し、この特異性を確認する。全てのクローンを、ストレプトアビジン−FITC及びLCA−FITCコンジュゲートにより同時に染色し、非特異的な結合を決定する。
本開示の図14は、LCAフローサイトメトリーアッセイ、並びにそれぞれLCA−FITC及びStrep−FITCアッセイによるクローンの比較を示す。以下のクローンに関して、フコースノックアウト表現型を観察した:CR1KOT1#006、CR1KOT1#018、CR1KOT1#022、CR1KOT1#023、CR1KOT1#026、CR1KOT1#031、CR1KOT1#034、CR1KOT1#036、CR1KOT1#037、CR1KOT1#044、CR1KOT1#049、CR1KOT1#051、CR1KOT1#052、CR1KOT1#055、CR1KOT1#059、CR1KOT1#061及びCR1KOT1#067。全てのクローンにおいて、対照と比較して蛍光の著しい減少が観察され、それにより、クローンに関して細胞表面上のフコシル化タンパク質の不在を証明する。このデータは、本開示の方法において複合体を使用して実行したFUT8遺伝子破壊により、これらの細胞系がフコシル化タンパク質を欠くことの、機能的な証明を提供する。
フルオレセインストレプトアビジン(ストレプトアビジン−FITC)ストック1mg/mlを希釈し、アッセイ緩衝液(2%BSAを含有するDPBS)中2μg/mlの終濃度を得る。細胞は、Eppendorf minispin遠心分離機を使用して5分間1500rpmでスピンする。培地を吸引し、ペレットを2μg/mlストレプトアビジン−FITCを含有する0.25〜1mlのアッセイ緩衝液中で再懸濁する。CHOK1対照細胞は、0.25〜1mlのアッセイ緩衝液のみ(未染色対照)及び2μg/mlストレプトアビジン−FITCを含有する0.25〜1mlのアッセイ緩衝液(染色対照)中で再懸濁する。全ての試料を希釈し、最終アッセイ緩衝液中0.1〜0.2×10個の細胞/mlを得る。次いで、試料は30分間氷上、暗所でインキュベートする。次いで、200μlの各試料を96ウェルプレートに分取する。次いで、データ取得及び分析のためにプレートをMillipore GUAVA easyCyte 8HTベンチトップフローサイトメーターにロードする。データ分析は、Incyteソフトウェアを使用して行う。
ストレプトアビジン−FITCによる比較を実行し、LCA−FITCコンジュゲートの特異的な相互作用を確かめる。データは、CHOK1対照細胞系及び任意のCRISPR/Casをトランスフェクトした細胞系によって試験する場合、ストレプトアビジン−FITCコンジュゲートによって、バックグラウンド蛍光のみが観察されることを示唆する。
図14は、CHOK1フコースノックアウト細胞系をスクリーニングするために開発されたLCA−FITCフローサイトメトリーアッセイの特異性を示す。フローサイトメトリー実験は、ストレプトアビジン−FITCコンジュゲートによって実行する。ストレプトアビジン−FITCは、CHOK1対照細胞系上の細胞表面タンパク質を認識せず、LCA−FITCコンジュゲートの特異的な相互作用を示している。さらに、ストレプトアビジン−FITCコンジュゲートは、LCA−FITCコンジュゲートによって同定された陽性及び陰性細胞系間の同様のレベルのバックグラウンド蛍光を明らかにする。図14は、ストレプトアビジン−FITCコンジュゲートと比較する場合、本研究において使用するLCA−FITCコンジュゲートの非特異的な相互作用を示さない。
フコースノックアウトCHOK1細胞系の増殖曲線決定:
選択したクローンの増殖曲線決定を実施し、増殖プロファイルが、ノックアウト細胞系開発のプロセス中に野生型CHOK1細胞と比較して著しく変更されないことを確かめる。0.1×10個のCHOK1細胞を6ウェル組織培養プレート中に播種する。各クローンに関して5時点で播種を行う。各時点で、三通りの播種を行う(例えば、5時点で15ウェル)。各時点で、細胞数を三通り数える。生存細胞数は血球計算盤又はVi−cell XR生死細胞オートアナライザーのいずれかを使用して行う。それぞれの増殖曲線はエラーバーとしてSEMで生成する。表14は、FUT8ノックアウト細胞系の1つからの代表的な増殖データを記載する。
結果:各細胞系の生存細胞数を試験し、増殖曲線決定に使用する。以下のクローンのフコースノックアウトCHOK1細胞系を増殖曲線開発に使用する:CR1KOT1#006、CR1KOT1#018、CR1KOT1#022、CR1KOT1#023、CR1KOT1#026、CR1KOT1#031、CR1KOT1#034、CR1KOT1#036、CR1KOT1#037、CR1KOT1#044、CR1KOT1#049、CR1KOT1#051、CR1KOT1#052、CR1KOT1#055、CR1KOT1#061及びCR1KOT1#067。
データを分析し、増殖曲線にプロットする。それぞれの細胞系の増殖曲線は本開示の図13A、13B、及び13Cに示す。
ほとんどのクローン細胞系は、CHOK1親細胞系に匹敵する増殖能を有することが図から観察される。これらのクローン細胞系は治療タンパク質及び/又はモノクローナル抗体の過剰発現に使用する。生存細胞数は、Vi−Cellカウンターを使用して最適な増殖条件下で5日間毎日数える。少しのクローンフコースノックアウトCHOK1細胞系、CR1KOT1#018、CR1KOT1#026、CR1KOT1#034、CR1KOT1#052及びCR1KOT1#055は、その他の細胞系と比較してわずかに低い増殖能を示した。
(例5)
ゲノム配列決定アッセイ
機能アッセイ、主にLCA−FITCフローサイトメトリーアッセイによって選択した、CRISPRをトランスフェクトしたクローンをゲノム配列分析に使用する。チャイニーズハムスターのFUT8ゲノム座位は文献(NW_003613860)に十分に報告されており、各細胞系クローンにおいて遺伝子改変の型を理解するために野生型配列として使用される。同様に、チャイニーズハムスターのGMDゲノム座位は、配列データベース、NW_003613635.1、NP_001233625.1、NM_001246696.1から得られ、各細胞系において遺伝子改変の型を理解するために野生型配列として使用される。本実施例の目的は、CRISPR/CasをトランスフェクトしたCHOK1 FUT8ノックアウト細胞系及びCHOK1 GMDノックアウト細胞系から得られるゲノムDNA配列決定結果を分析することである。本明細書で報告する全ての細胞系は、クローン細胞系であり、LCA媒体選択アッセイ及びLCA−FITCフローサイトメトリーアッセイから選択される。
簡潔に言えば、選択したクローン細胞系は、ゲノムDNA単離に適した増殖条件下で増殖し、精製したゲノムDNAは、FUT8及びGMD標的座位の両側のプライマーを使用するPCR増幅に使用し、次いでPCR増幅産物を精製し、大腸菌コンピテントセルを使用して好適なベクターにクローン化し、生じるアンピシリン耐性大腸菌コロニーを選択及び培養し、各細菌クローンからプラスミドDNAを単離し、およそ5〜10個の個々の細菌コロニーを自動配列決定によってクローン細胞系ごとに試験し、FUT8標的ゲノム座位において改変の型を理解する。
以下の試薬及び溶液を使用し、選択したクローンのゲノム配列決定を実行する。
全ゲノム配列決定プロトコールは以下の4つのプロセスに分けられる。
A.選択したクローンからのゲノムDNA単離
B.各細胞系の特定のゲノム座位を増幅するPCR戦略
C.配列決定ベクターへのPCR産物のクローニング
D.配列データ分析及びINDELの同定
選択したクローンからのゲノムDNA単離
クローンCHOK1細胞系は、T175フラスコで10%ウシ胎仔血清、4mMグルタミン、100ユニット/mlペニシリン及び100μg/mlストレプトマイシンを含むAdvanced DMEM培地中、制御した条件のインキュベーター内で5%CO及び75%相対湿度の存在下、37℃で増殖する。細胞の増殖は、毎日観察し、生存率をモニターする。細胞は、80%の培養密度及び95%より高い生存率で、トリプシン処理により回収する。単離の日、培養培地を除去し、接着細胞はまず10mlのDPBSで洗浄し、続いてトリプシン処理のため4mlの0.05%トリプシンEDTA溶液を添加する。細胞を37℃で2〜3分間インキュベートし、回収する。次いで細胞を10mlのDPBSと混合し、1500rpmで5分間遠心分離する。使用した培地を除去し、細胞ペレットを10ml DPBS中に再懸濁する。細胞は、1500rpmで5分間の遠心分離を使用して再び洗浄する。DPBSを吸引により完全に除去する。最後の細胞ペレットをゲノムDNA単離に使用する。
ゲノムDNAは、CHOK1対照細胞及びLCA耐性を示し、LCAフローサイトメトリーアッセイによって選択されるCHOK1 CRISPR/Casをトランスフェクトしたクローン細胞系から単離する。製造業者のプロトコールに従って、ゲノムDNAを単離するために市販のQIAGEN gDNA抽出キットを使用する。
PCR戦略設計
チャイニーズハムスターのゲノムDNA配列を、一般に利用可能なデータベース配列NW_003613860から分析する。FUT8エクソン7DNA配列及び部分的なイントロン配列を、FUT8標的座位を増幅するPCR戦略を設計するために使用する。
GMDエクソン及びイントロン配列を、NW_003613635.1及びNM_001246696.1から入手し、エクソン3及びエクソン4に関して配列分析を実行する。
プライマーは、プライマー長、PCR産物長、GC含量、融解温度、並びに候補ホモ二重鎖及びヘテロ二重鎖形成に基づいて設計する。以下に示すように、プライマーは、FUT8標的座位の両側に設計する。増幅したPCR産物は、CRISPR媒介型SSB及び続くDNA修復による突然変異分析を意図する。以下のヌクレオチド配列は太字のプライマー配列による対象の領域を表す。
イントロンは、塩基21〜塩基106及び塩基345〜塩基371に小文字で表す。エクソン7は塩基107〜塩基344に大文字で表す。左及び右のプライマー結合部位は下線を引く。
PCRプライマー設計に使用するGMDエクソン3及びエクソン4並びに関連イントロン配列:
以下の配列を使用する。
GMDエクソン3及び周辺イントロン
gatccttcagtgttccaagtactgggtttgcaggggtgggcagtcacacctgggaacaccagtttgaccttcattttcatatgtgaataatacatatttcagttttgatattgaaatgtttctcttgttatctcatatcttgatgatctttttataaatcttaaagACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAGgtaagctcttctcattgccatggcttctttggctgtgcctttgtagtgttctctattcactcacatttgttgtttctcaatacaatagcaaccactagttcttatcaagtttagtcttcagtattagtttgggaattcatcctaataaaaatactcataaatttttaaggtgaggtttctgttactcaacag
イントロンは、塩基23〜塩基166及び塩基277〜塩基447に小文字で表す。エクソン3は塩基167〜塩基276に大文字で表す。左及び右のプライマー結合部位は下線を引く。
GMDエクソン4及び周辺イントロン
gacgtagtcttcagctattctatactggaagtagatgatattctcattggaaattctgttaggaagtaacccttcttgtcttcttacctgcatagaatcccaggatataaaacttgtgcttgtcgcccttgccattgtctctcactggtggcctttattgcatctcatatctgccttctctttccagATTTCCTTTGACTTAGCAGAGTACACTGCAGATGTTGATGGAGTTGGCACCTTGCGGCTTCTGGATGCAATTAAGACTTGTGGCCTTATAAATTCTGTGAAGTTCTACCAGGCCTCAACTAGTGAACTGTATGGAAAAGTGCAAGAAATACCCCAGAAAGAGACCACCCCTTTCTATCCAAGGTCGCCCTATGgtaagaattcctgtgcccagctgtatgtgaggctctctgcaggtgtggggatgtttctgctttctttctgcac
イントロンは、塩基21〜塩基187及び塩基381〜塩基432に小文字で表す。エクソン4は塩基188〜塩基380に大文字で表す。左及び右のプライマー結合部位は下線を引く。
PCRによってINDELを同定するためのプライマー設計
ゲノムPCRは、表15に記載の以下のプライマーを使用するQIAGEN gDNA抽出キットを使用して実施する。
以下の節は、対照細胞系及びLCA選択クローン細胞系由来のCHOK1ゲノムDNAからのPCR産物の生成、大腸菌コンピテントセルへのPCR産物のクローニング、及びクローン化PCR産物の配列決定のための実験の詳細を提供する。
PCR条件の最適化−
実験を設計し、PCR条件を標準化する。試験したパラメーターは、ゲノムDNA濃度(100ng〜1000ng)、プライマー濃度(2nmole〜20nmole)、PCRアニーリング温度(55.8℃〜62.9℃)、及び時間(20秒〜50秒)、PCR産物の伸長時間(30秒〜60秒)を含み、PCRサイクル数を30サイクルに設定する。到達した最適化条件は以下の節に記載する。
PCR反応は、プルーフリーディングポリメラーゼPhusionポリメラーゼを使用して実行し、PCR媒介型突然変異の制限を確実にする。PCR増幅サイクルに続き、Taqポリメラーゼ酵素をテーリングの混合物に添加する。テーリングステップは重要である。PCR産物に追加された余分な塩基が、次の節に記載する配列決定ベクターへの直接クローニングを可能にするからである。TAクローニングベクターへのクローニングのために、PCR産物にdATPオーバーハングを付加するため、Phusionポリメラーゼ増幅産物を、72℃で20分間Taq DNAポリメラーゼとインキュベートする。
PCRによるゲノムDNA試料のクロスチェック−
ゲノムDNA PCR産物をアガロースゲル電気泳動で分析し、産物長は分子量標準を使用して確認する。はっきりとした増幅プロファイルを有するPCR試料を、次の処理ステップに使用する。
QIAGENキットを使用するPCR産物のゲル溶出−
増幅したPCR産物を、新しく調製した1%アガロースゲルにロードし、100Vで1時間電気泳動して、増幅したPCR産物を、未使用のプライマー及び増幅プロセス中に生成された任意のその他の二量体から分離する。増幅した産物をゲルから切り取り、市販のQiagenゲル溶出キットを使用して溶出する。DNAは、高純度の分子生物学等級の水で溶出する。
配列決定ベクターへのPCR産物のクローニング−
アガロースゲルで精製したPCR増幅産物は、次いでDNAライゲーションプロセスによって市販のpTZ57R/Tベクターにクローニングするために使用する。DNAライゲーションの条件は、以前に標準化されている。
DH5アルファ大腸菌コンピテントセルの、ライゲートした試料pTZ57R/T+CRISPR(PCR)によるトランスフォーメーション−
ライゲートしたDNAにより、市販の大腸菌DH5アルファ コンピテントセルをトランスフォームする。製造業者によって記載されるトランスフォーメーションプロトコールに従って、高レベルのトランスフォーメーション効率を達成する。トランスフォーメーション後、大腸菌細胞は、トランスフォームしたコロニーの増殖のため、アンピシリン抗生物質の存在下で増殖する。
トランスフォームした細胞(pTZ57R/T+CRISPR(PCR))のアンピシリンを含むLB培地への接種−
各別々のコロニーを、5ml培養容積のLB+アンピシリンブロス中に接種し、プラスミドDNA単離のため一晩増殖する。
DH5アルファのトランスフォームした細胞からのプラスミドDNA(pTZ57R/T+CRISPR(PCR))の単離−
4.5mlの一晩増殖した培養物を、製造業者のプロトコールに従って、市販のQIAGENプラスミドDNA単離キットを使用するプラスミドDNA単離のために使用する。プラスミドDNAは、高純度の分子生物学等級の水で溶出する。
4.3.5 インサートの存在に関してプラスミドのクロスチェック−
各プラスミド調製物は、好適な制限酵素消化後、続いてアガロースゲル電気泳動を使用して、インサートの存在を試験する。インサートのサイズは、好適な分子量標準と比較する。
配列データ分析及びINDELの同定
配列決定−確認したプラスミドは、次いでpTZ57R/Tベクター骨格に存在する特異的な配列決定プライマーによって配列決定する。配列データは、適切なプロトコールに従って自動DNA配列決定機器で生成する。配列決定は、フォワード及びリバース配列決定プライマー両方で実行し、正確な配列情報を確かめる。
DNA配列分析−全てのプラスミドからのDNA配列決定データを分析する。CHOK1対照細胞系及び様々なCRISPR媒介型FUT8ノックアウトCHOK1クローン細胞系、並びにGMDノックアウトCHOK1細胞系由来のプラスミドDNAからのDNA配列を比較し、DNA配列の違いを同定する。各CHOK1細胞系クローンから、PCR産物を生成し、大腸菌へクローニングする。複数の大腸菌クローンは配列決定し、標的ゲノム座位において、ヌクレオチド配列の改変を確認する。
配列データの合成分析を使用して、FUT8及びGMDゲノム標的座位が欠失及び/又は挿入によって改変される(INDEL)候補FUT8及びGMDノックアウトCHOK1細胞系を同定する。次いでDNA配列をアラインし、明らかな違いを示す。図17A〜17Gは、CHOK1対照細胞系及びFUT8のヌクレオチド配列のアライメントを示し、図(17H〜17L)はGMDノックアウトクローン細胞系及びCHOK1対照細胞系とのヌクレオチド配列のアライメントを示す。DNA配列情報を使用し、FUT8遺伝子(エクソン7)のアミノ酸配列を割り当てる。GMD遺伝子、エクソン3、及びエクソン4領域に関して標準的なコドン使用頻度を使用して分析する。次いで、アミノ酸配列をアラインし、特定の位置での欠失、フレームシフト突然変異、終止コドンの挿入、並びにアミノ酸置換を同定する。図17A〜17Gは、CHOK1 FUT8ノックアウト細胞系において観察されるヌクレオチド改変の範囲を示し、図17H〜17Lは、CHOK1対照細胞系と比較した場合、CHOK1 GMDノックアウト細胞系について示す。データは、複数のCHOK1 FUT8及びGMDノックアウト細胞系中のFUT8及びGMDゲノムDNA構造を提示する。
PCR反応
まず、二本鎖DNA鋳型を94℃の高温で変性する。次いで、表15に記載の配列特異的プライマーを標的配列の両側の部位にアニールする(60.4℃)。熱安定性のDNAポリメラーゼ(Phusionポリメラーゼ)によりアニールしたプライマーを伸長し(72℃)、それにより最初のDNA配列の量を倍にする。次いでこの新しく合成された産物は、増幅の続くサイクルのさらなる鋳型になる。これらの3ステップを30サイクル反復し、標的DNA濃度の10倍の増加をもたらす。TAクローニングベクターへのクローニングのために、PCR産物にdATPオーバーハングを付加するため、PCR Phusionポリメラーゼ増幅産物を72℃で20分間Taqポリメラーゼとインキュベートする。

本開示の図15Aは、1%アガロースゲルに泳動した場合の、代表的なCRISPR/Cas Fut8クローン(CR1−KO−T1#022)のPCR増幅産物の代表的な図を示す。ゲノムDNAを単離し、標準化したPCR条件で、CRP_P1_Fw及びCRP_P01_Rvプライマーにより増幅する。増幅産物は、1%アガロースゲルで電気泳動する。レーン1は、特異的プライマーによって増幅したCR1−KO−T1#022クローンのゲノムDNAを示し、レーン2はDNA分子量標準を示す。
結果は、増幅産物の予期される産物サイズを明らかにする。PCR増幅産物は、ゲル精製及び細菌クローンにクローン化、並びに配列決定し、ゲノムFUT8の状態を確認する。
本開示の図15Bは、1%アガロースゲルに泳動した場合の、代表的なCRISPR/Cas GMDクローン(GMD_1.12及びGMD_1.27)のPCR増幅産物の代表的な図を示す。ゲノムDNAを単離し、それぞれ標準化したPCR条件で、GMD_P01_FwとGMD_P01_Rvのプライマーセット及びGMD_P03_FwとGMD_P03_Rvのプライマーセットにより増幅する。増幅産物は、1%アガロースゲルで電気泳動する。結果は、増幅産物の予期される産物サイズを明らかにする。PCR増幅産物は、ゲル精製及び細菌クローンにクローン化、並びに配列決定し、ゲノムGMDエクソン3及びエクソン4配列の状態を確認する。
図15Bにおいて、レーン1は、特異的プライマーによって増幅したGMD_1.12クローンのゲノムDNAを示し、レーン2は、特異的プライマーによって増幅したGMD_1.27クローンのゲノムDNAを示し、レーン3は、DNA分子量標準1kb DNA Ladderを示し、レーン4は、DNA分子量標準100bp DNA Ladderを示す。
この代表的な図は、表15のプライマー配列及びPhusionポリメラーゼを使用する、標的FUT8及びGMDゲノム座位のPCR増幅を記載する。PCR産物はさらに、テーリングのためのTaq DNAポリメラーゼによって修飾する。最終PCR産物は、次いで、増幅断片の溶出のためにアガロースゲルで電気泳動する。
図15Cは、GMDエクソン4座位に特異的なプライマーによるGMD2.30クローン細胞系のゲノムDNAのPCR増幅での代表的な1%アガロースゲル泳動を示す。レーン1は、DNA分子量標準1kb DNA Ladderを示し、レーン2は、DNA分子量標準100bp DNA Ladderを示し、レーン3は、特異的プライマーで増幅したGMD_2.30クローンのゲノムDNAを示す。
図15A、15B、及び15Cは、ゲル溶出のために電気泳動した適切なサイズの増幅したPCR産物を明らかにする。同じプロセスを適用して、CHOK1対照並びにFUT8ノックアウト及びGMDノックアウトCHOK1クローン細胞系からのPCR増幅産物を増幅し、QIAEX IIゲル抽出キットを使用してゲル抽出する。
ライゲーション
PCR増幅及びゲル溶出産物は市販のpTZ57R/Tベクターにライゲートする。ライゲーションプロトコールを以下に記載する。
上記のライゲーションン混合物を4℃で一晩インキュベートし、ライゲートした混合物の50%はヒートショック法によってDH5アルファ大腸菌コンピテントセルをトランスフォームする。
ヒートショック法によって、ライゲートした試料による細菌細胞のトランスフォーメーション
細菌細胞をトランスフォームする目的は、プラスミドDNAをクローン化し増やすことである。コンピテント大腸菌セル(DH5アルファ)の20μL分取物を−80℃の冷凍庫から取り出し、5分間氷上で溶かす。ライゲートした試料(pTZ57R/T+CRISPR(PCR))の50%をコンピテントセルに添加し、優しく混合し、20分間氷上でインキュベートする。混合物を含有するチューブを50秒間42℃でウォーターバス/ドライバスに置く。チューブを2分間氷上に戻す。0.950mlの37℃に温めたLBブロス(アンピシリン抗生物質なし)を、シェイカー中220rpmで1時間、37℃でインキュベートする。生じた培養物の100μLを温めたLB+アンピシリン培養プレート上に広げる。プレートは37℃のインキュベーターで一晩インキュベートする。
QIAPrep spin miniprepを使用する細菌細胞からのプラスミドDNA単離
本手順の目的は、以下の実験に使用する特異的DNAプラスミドを含有する細菌を増殖/培養することである。5mlのLB+アンピシリンブロスを、オートクレーブ処理したチューブに添加し、単離した細菌コロニーを培養プレートからLBブロス+アンピシリン培養チューブに接種する。チューブは、220rpm、37℃で一晩インキュベートする(細菌の増殖に応じて、およそ16〜18時間)。4.5mlの一晩培養した培養物を13rpmで1分間遠心分離する。プラスミドDNAは、市販のQIAGENプラスミド単離キットを使用して単離する。プラスミドDNAは、高純度の分子生物学等級の水で溶出し、さらなる使用まで、−20℃の冷凍庫に保管する。
EcoRI−HF及びHindIII−HF酵素による制限消化を使用する陽性クローンの選択
したがって、単離したプラスミドDNAはインサート、この場合はPCR増幅断片の存在を試験する。pTZ57R/Tベクターは、クローン化PCR産物の両側に複数の制限酵素部位を含有する。制限部位EcoRI及びHindIIIを以下の表に記載するように制限消化のために選択する。反応は、プラスミドDNAの完全な消化のために37℃で2時間実行する。制限消化に続いて、混合物を1%アガロースゲルで1時間電気泳動する。PCR産物インサートは、存在する場合、pTZ57R/Tベクター骨格から分離され、確認された細菌クローンをDNA配列決定のために使用する。
本開示の図16A、16B及び16Cは、pTZ57R/TベクターにおけるPCR増幅産物の代表的な制限酵素消化を示し、異なるノックアウト細胞系由来のインサートの存在を確認する。別々の細菌クローンからのプラスミドDNA調製物は、ベクターにクローン化したPCR断片の両側のEcoRI及びHindIII制限酵素によって消化し、混合物は1%アガロースゲルで電気泳動する。生じたDNA断片のサイズはDNA分子量標準から推定する。
図16Aは、PCR産物インサートを有するpTZ57R/Tプラスミドの制限消化の代表的な1%アガロースゲルでの泳動を示す。EcoRI及びHindIIIによる制限消化は500bpのインサートを生じる。インサートは、FUT8エクソン7座位に特異的なプライマーによるCR1−KO−T1#022細胞系ゲノムDNAの増幅から得られたPCR産物を表す。
図中、
レーン1 100bp DNA Ladder
レーン2 pTZ57R/T+CR1−KO−T1#022#a[EcoRI−HF&HindIII−HF]
レーン3 pTZ57R/T+CR1−KO−T1#022#b[EcoRI−HF&HindIII−HF]
レーン4 pTZ57R/T+CR1−KO−T1#022#c[EcoRI−HF&HindIII−HF]
レーン5 pTZ57R/T+CR1−KO−T1#022#d[EcoRI−HF&HindIII−HF]
レーン6 pTZ57R/T+CR1−KO−T1#022#d[未切断]
図16Bは、PCR産物インサートを有するpTZ57R/Tプラスミドの制限消化の代表的な1%アガロースゲルでの泳動を示す。EcoRI及びHindIIIによる制限消化は約500bpのインサートを生じる。インサートは、GMDエクソン3座位に特異的なプライマーによるGMD1.27細胞系ゲノムDNAの増幅から得られたPCR産物を表す。
図中、
レーン1 GeneRuler 1kb DNA Ladder(Thermoscientific)
レーン2 pTZ57R/T+(CHO_GMD_1.27)#a[BamHI−HF&XbaI]
レーン3 pTZ57R/T+(CHO_GMD_1.27)#b[BamHI−HF&XbaI]
レーン4 pTZ57R/T+(CHO_GMD_1.27)#c[BamHI−HF&XbaI]
レーン5 pTZ57R/T+(CHO_GMD_1.27)#d[BamHI−HF&XbaI]
レーン6 pTZ57R/T+(CHO_GMD_1.27)#d[未切断]
図16Cは、PCR産物インサートを有するpTZ57R/Tプラスミドの制限消化の代表的な1%アガロースゲルでの泳動を示す。EcoRI及びHindIIIによる制限消化は約500bpのインサートを生じる。インサートは、GMDエクソン4座位に特異的なプライマーによるGMD2.30細胞系ゲノムDNAの増幅から得られたPCR産物を表す。
図中、
レーン1 pTZ57R/T+(GMD_2.30)#a[未切断]
レーン2 pTZ57R/T+(GMD_2.30)#a[BamHI−HF&XbaI]
レーン3 pTZ57R/T+(GMD_2.30)#b[BamHI−HF&XbaI]
レーン4 pTZ57R/T+(GMD_2.30)#c[BamHI−HF&XbaI]
レーン5 pTZ57R/T+(GMD_2.30)#d[BamHI−HF&XbaI]
レーン6 1kb DNA Ladder
結果から、全ての試験したクローンは、予測される長さのPCR産物インサートを持つことが明らかである。pTZ57R/Tベクター骨格は、およそ5.4Kbのバンドの位置で観察される断片によって表される。このデータに基づき、個々のプラスミドDNA試料を選択し、DNA配列決定のために使用する。同じプロセスをpTZ57R/Tベクターにクローニングした全てのPCR産物に適用し、確認したクローンをDNA配列決定のために選択する。結果は、ベクター骨格に存在する配列決定プライマーによって配列決定されるインサートの存在を示す。
(例6)
配列決定によるINDELの確認
選択した細菌のプラスミドDNAのDNA配列決定は、pTZ57R/Tベクター骨格に位置する上流及び下流配列決定プライマーによって実施する。配列決定データは両プライマーを使用して集め、正確なDNA配列情報を分析する。複数の細菌のプラスミドを配列決定し、CRISPR/Cas複合体によって達成された、CHOK1対照細胞系及びクローンCHOK1 FUT8及びGMDノックアウト細胞系のFUT8及びGMD標的ゲノム座位における複合体DNA配列情報を生成する。
以下に示すのは、CHOK1対照細胞系及びCHOK1 FUT8及びGMDノックアウトクローン細胞系由来のゲノムDNA配列であり、本開示の方法につき、それぞれCRISPR構築物によって、Fut8遺伝子及びGMD遺伝子の挿入及び/又は欠失突然変異の存在を確認する。CHOK1対照細胞系を含む各細胞系から増幅した標的ゲノム座位は、複数の別々の細菌クローンにおいてPCR産物としてクローン化する。配列の検証は、複数の別々の細菌クローン(5〜15の範囲)から、フォワード及びリバース配列決定プライマー両方によって実行し、FUT8及びGMD標的座位の対立遺伝子の変異性を理解する。以下のDNA配列データは、様々なFUT8ノックアウト細胞系の標的FUT8座位のゲノム配列の代表例である。
DNA配列分析
CHOK1対照細胞系(野生型)−FUT8遺伝子のエクソン−7の配列は大文字である。イントロン配列は小文字であり、下線を引く。
aagaaataagctgaatcagctctgacttattgtgtgattttcaatacctgtgaccaaaatgagaagttaactccttatatctttatcttatttgtttctctggaagAATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGGAATCTCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAGgtaaggagcatgtgcaccatgaaagatctctggttaggtcagattagcac
CHOK1 FUT8ノックアウトクローン細胞系の配列を以下に示す。エクソン7の配列は細胞系において突然変異されることが観察される。
CR1KOT1#023
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACATTGGATATTGGGAAGAATTAGAGTTGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#018
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#055
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGCACTCATCTTGGAATCTCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#044
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTCTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTCTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#022
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGGAATCTCAGAATTGGCACACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#036
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCACACTCATCTTGGAATCTCAGAATTGGAATCTCATCTTGGAATCTCAGAATTGGAATCTCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#037
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACACTCATTATCCTCGGGGGAGCAGCCACTCAAATTTTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#051
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#052
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGCGAACACTCATCTTGGAATCTCAGAATTGTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAGG
CR1KOT1#059
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGGAATCTCAGAATTGGCGCTTTGGAATCTCAGAATTGGCGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#061
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTTATGGCACCCAGCGAACACTCATCTTGGAATCTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
CR1KOT1#067
AATCCCAAGGACTGCAGCAAAGCCAGAAAGCTGGTATGTAATATCAACAAAGGCTGTGGCTATGGATGTCAACTCCATCATGTGGTTTACTGCTTCATGATTGCTCATCTTGGAATCTCAGAATTGGCGCTATGCTACTGGAGGATGGGAGACTGTGTTTAGACCTGTAAGTGAGACATGCACAGACAGGTCTGGCCTCTCCACTGGACACTGGTCAG
FUT8遺伝子配列における欠失を示すFUT8ノックアウト細胞系クローンにおける代表的なゲノムDNA配列のアライメントを、本開示の図17に示す。図17A〜17Gは、Fut8エクソン7標的座位におけるヌクレオチド配列分析を示す。CRISPR/Casをトランスフェクトした、選択したCHOK1 FUT8ノックアウトクローン及びCHOK1対照細胞系のゲノムDNAを、ゲノムFUT8座位を標的とするPCR増幅に使用する。フォワード及びリバース配列決定プライマー両方によって配列決定した5〜15個の別々の細菌クローンの分析から配列データを収集する。配列決定データは、CHOK1対照細胞系と比較した複数のクローンにおける様々な長さの欠失を示唆する。塩基の最大の欠失は、クローンCR1KOT1#061において観察され、最少の欠失はクローンCR1KOT1#055における2塩基のみである。全ての欠失はCRISPR/Cas標的部位に位置する。
図17Aにおいて、左及び右のCRISPR/Cas DNA結合部位を中抜きの四角で示す。図17B〜17Gは、配列データがCHOK1対照細胞系と比較して新しいDNA配列の挿入が明らかである複数のクローンを示す。図17B及び図17Fは、CHOK1ゲノム配列と比較して配列の挿入及び欠失の両方が明らかなクローン番号CR1KOT1#023及びCR1KOT1#052を表す。クローン番号CR1KOT1#037(図17E)は、CHOK1ゲノム配列と比較して塩基の特有の挿入及び広範なミスマッチが明らかである。塩基の挿入は、図17B〜17Gに示すように、長さも様々である。
データは、CHOK1 FUT8ノックアウト細胞系におけるFUT8ゲノム座位に存在する様々なINDELを示唆する。多くの場合、標的塩基に非常に特異的な改変があることが観察され、その他の場合には変更が幅広く、より長いDNAの領域を含む。
CRISPR/Cas複合体によるゲノム改変のそのような多様性は、近接した内因性DNA一本鎖切断及び非相同末端結合による修復によって可能である。これらの細胞系の全ては、機能スクリーニングアッセイ、主にLCA−FITCフローサイトメトリーアッセイによって選択する。結果は、CHOK1 FUT8ノックアウト細胞系を単離及び同定する高効率の機能アッセイも意味する。
本開示に示すCRISPR/Cas複合体の設計が特有であることも明らかである。Cas9nエンドヌクレアーゼを含むこの一対のCRISPR/Cas複合体が、CHOK1細胞系の標的FUT8座位における非常に配列特異的な遺伝子変化をもたらすからである。
GMD遺伝子のエクソン3を標的とするpD1401(gRNA167〜207)CRISPR/Cas複合体をトランスフェクトしたCHOK1細胞のDNA配列分析
CHOK1対照細胞系(野生型)−GMD遺伝子のエクソン3の配列は大文字である。イントロン配列は小文字であり下線を引く。
gatccttcagtgttccaagtactgggtttgcaggggtgggcagtcacacctgggaacaccagtttgaccttcattttcatatgtgaataatacatatttcagttttgatattgaaatgtttctcttgttatctcatatcttgatgatctttttataaatcttaaagACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAGgtaagctcttctcattgccatggcttctttggctgtgcctttgtagtgttctctattcactcacatttgttgtttctcaatacaatagcaaccactagttcttatcaagtttagtcttcagtattagtttgggaattcatcctaataaaaatactcataaatttttaaggtgaggtttctgttactcaacag
CHOK1 GMDノックアウトクローン細胞系の配列を以下に示す。エクソン3の配列は細胞系において突然変異されることが観察される。
GMD_1.12
ACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTTGACGCAAATGGAGAATCGCGCAGGGGAATGGCCTGCCGCACTTTCTGGCGGGCAGAAACAGCGAGTGGCGCTGGCAAGAGCGTTGATTCATCGACCGGGATTATTGTTGCGTGATGAACCGCTCGGGGCGCTGGACGCCTTAACGCGACTCGAGATGCAGGATTTGATTGTGTCTAGTAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD_1.27
ACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD_1.37
ACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTAAAAATCATCTGACCGCCAGGTCGTAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD_1.41
TAGATCTCTGTAGGTTTGACTTCATTGATGAAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD_1.43
TGGTGACCTCACCGACAGCACCTGCCTAGTAAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD_1.44
ACATGAAGTTGCACTATGGTGACCTCACCGATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
GMD遺伝子のエクソン4を標的とするpD1301(gRNA404)CRISPR/Cas複合体をトランスフェクトしたCHOK1細胞のDNA配列分析
CHOK1対照細胞系(野生型)−GMD遺伝子のエクソン−4の配列は大文字である。イントロン配列は小文字であり、プライマー位置は下線を引く。
gacgtagtcttcagctattctatactggaagtagatgatattctcattggaaattctgttaggaagtaacccttcttgtcttcttacctgcatagaatcccaggatataaaacttgtgcttgtcgcccttgccattgtctctcactggtggcctttattgcatctcatatctgccttctctttccagATTTCCTTTGACTTAGCAGAGTACACTGCAGATGTTGATGGAGTTGGCACCTTGCGGCTTCTGGATGCAATTAAGACTTGTGGCCTTATAAATTCTGTGAAGTTCTACCAGGCCTCAACTAGTGAACTGTATGGAAAAGTGCAAGAAATACCCCAGAAAGAGACCACCCCTTTCTATCCAAGGTCGCCCTATGgtaagaattcctgtgcccagctgtatgtgaggctctctgcaggtgtggggatgtttctgctttctttctgcac
CHOK1 GMDノックアウトクローン細胞系の配列を以下に示す。エクソン4の配列はクローン細胞系において突然変異されることが観察される。
GMD_2.30
ATTTCCTTTGACTTAGCAGAGTACACTGCAGATGTTGATGGAGTTGGCACTTCTGGATGCAATTAAGACTTGTGGCCTTATAAATTCTGTGAAGTTCTACCAGGCCTCAACTAGTGAACTGTATGGAAAAGTGCAAGAAATACCCCAAAAAGAGACCACCCCTTTCTATCCAAGGTCGCCCTATG
GMD遺伝子のエクソン3及びエクソン4を標的とするpD1401(gRNA167〜207)及びpD1301(gRNA404)CRISPR/Cas複合体両方をトランスフェクトしたCHOK1細胞のDNA配列分析
CHOK1GMDノックアウトクローン細胞系の配列を以下に示す。両方のCRISPR/Cas複合体をトランスフェクトしたが、ヌクレオチドの突然変異はエクソン4においてのみ観察されることが観察される。エクソン3の配列の分析は、クローンノックアウト細胞系における野生型エクソン3を明らかにする。
GMD_3.51
エクソン3の配列−
ACATGAAGTTGCACTATGGTGACCTCACCGACAGCACCTGCCTAGTAAAAATCATCAATGAAGTCAAACCTACAGAGATCTACAATCTTGGTGCCCAGAGCCATGTCAAG
エクソン4の配列−
ATTTCCTTTGACTTAGCAGAGTACACTGCAGATGTTGAGACTTGTGGCCTTATAAATTCTGTGAAGTTCTACCAGGCCTCAACTAGTGAACTGTATGGAAAAGTGCAAGAAATACCCCAGAAAGAGACCACCCCTTTCTATCCAAGGTCGCCCTATG
表は、pD1401(gRNA167〜207)CRISPR/Cas複合体のトランスフェクションにより開発したクローンGMDノックアウト細胞系の配列のリストを示す。
表は、pD1301(gRNA404)CRISPR/Cas複合体のトランスフェクションにより開発したクローンGMDノックアウト細胞系の配列のリストを示す。
表は、pD1401(gRNA167〜207)及びpD1301(gRNA404)CRISPR/Cas複合体両方のトランスフェクションにより開発したクローンGMDノックアウト細胞系の配列のリストを示す。
GMD遺伝子配列における欠失を示すGMD CHOK1ノックアウト細胞系クローンにおける代表的なゲノムDNA配列のアライメントを、本開示の図17H〜17Lに示す。図17H〜17Lは、GMD標的座位におけるヌクレオチド配列分析を示す。CRISPR/Casをトランスフェクトした、選択したCHOK1 GMDノックアウトクローン及びCHOK1対照細胞系のゲノムDNAを、ゲノムGMD座位、エクソン3及びエクソン4両方の配列を標的とするPCR増幅に使用する。フォワード及びリバース配列決定プライマー両方によって配列決定した5〜15個の別々の細菌クローンの分析から配列データを収集する。配列決定データは、CHOK1対照細胞系と比較した複数のクローンにおける様々な長さの欠失を示唆する。塩基の最大の欠失は、クローンGMD1.41において観察され、8塩基の最少の欠失は、クローンGMD2.30において観察される。全ての欠失はCRISPR/Cas標的部位に位置する。
図17Hにおいて、左及び右のCRISPR/Cas DNA結合部位を中抜きの四角で示す。図17Kにおいて、CRISPR/Cas結合部位を中抜きの四角で示す。図17I〜17Jは、配列データによりCHOK1対照細胞系と比較して新しいDNA配列の挿入が明らかであるクローンを示す。図17Kは、二本鎖DNA切断の結果であるpD1301(gRNA404)CRISPR/CasインサートによるGMDエクソン4標的部位における小さな欠失を明らかにする。図17Lは、GMDエクソン4の配列のみが36塩基対の欠失によって改変される、2つのCRISPR/Cas構築物、pD1401(gRNA167〜207)及びpD1301(gRNA404)をトランスフェクトしたGMDノックアウトCHOK1細胞系からの配列データを示す。
データは、CHOK1 GMDノックアウト細胞系におけるGMDゲノム座位に存在する様々なINDELを示唆する。多くの場合、標的塩基に非常に特異的な改変があることが観察され、その他の場合には変更が幅広くより長いDNAの領域を含む。
CRISPR/Cas複合体によるゲノム改変のそのような多様性は、内因性DNA一本鎖切断及びDNA二本鎖切断並びに続くDNA修復によって可能である。これらの細胞系の全ては、機能スクリーニングアッセイ、主にLCA−FITCフローサイトメトリーアッセイによって選択する。結果は、CHOK1 GMDノックアウト細胞系を単離及び同定する高効率の機能アッセイも意味する。
本開示に示すCRISPR/Cas複合体の設計が特有であることも明らかである。Cas9nエンドヌクレアーゼを含むこの一対のCRISPR/Cas複合体が、CHOK1細胞系の標的GMD座位における非常に配列特異的な遺伝子変化をもたらすからである。
CHOK1 FUT8ノックアウト細胞系のアミノ酸配列分析
CHOK1対照及びCHOK1 FUT8ノックアウト細胞系のFUT8ゲノムDNA配列をさらに分析し、FUT8タンパク質状態におけるDNA配列INDELの影響を理解する。標的FUT8座位のDNA配列は、脊椎動物のコドンバイアスを使用してアミノ酸配列へと翻訳される。エクソン7領域のアミノ酸配列を厳密に研究し、結果は表23に要約する。CHOK1対照細胞系と比較した場合、FUT8ノックアウト細胞系は、アミノ酸の欠失及び挿入並びに終止コドン及びフレームシフト突然変異の導入を含む改変が明らかである。CHOK1 FUT8タンパク質配列と比較して10個のアミノ酸又はそれより長い領域のアミノ酸配列の欠失が得られることが観察される。
多くの例では、FUT8タンパク質のC末端領域を変更し、それを非機能的な酵素にするフレームシフト突然変異が観察される。さらに、いくつかの例では、終止コドンは、フレームシフト突然変異の影響で導入され、それによりFUT8タンパク質がトランケートされ、これらのクローンにおいて非機能的である。

さらに、FUT8タンパク質配列における標的アミノ酸の選択が非常に有効であることが観察される。1対のみのCRISPR/Cas複合体による野生型FUT8タンパク質の位置に保存されたアミノ酸の標的化は、複数のノックアウト細胞系において標的座位に突然変異を生成する。
FUT8遺伝子配列における欠失を示すCHOK1対照及びCHOK1 CRISPR/Casをトランスフェクトした細胞系おける代表的なアミノ酸配列のアライメントを、本開示の図18A及び図18Bに示す。標準的なコドン使用頻度を使用して、翻訳されたアミノ酸配列を予測する。データは、観察されるヌクレオチド欠失及び/又は挿入による、FUT8アミノ酸配列上の様々な効果を示す。クローンCR1KOT1#018、CR1KOT1#044、CR1KOT1#061、CR1KOT1#055、CR1KOT1#067及びCR1KOT1#051は、特定のアミノ酸位置の標的とした欠失が明らかである。クローン番号CR1KOT1#052、CR1KOT1#022、CR1KOT1#036、CR1KOT1#059、CR1KOT1#023及びCR1KOT1#037において、標的領域におけるアミノ酸の付加が見られる(図18B)。いくつかのクローンは、欠失に続くフレームシフト突然変異が明らかであり、早い終止コドンをもたらす。これらの改変全てが、CRISPR/CasをトランスフェクトしたCHOK1 FUT8ノックアウト細胞系において非機能的FUT8タンパク質を示す。
さらに、CRISPR/Cas複合体は、ロスマンフォールド内に重要なモチーフII及びモチーフIIIを含有するFUT8酵素のC末端領域を破壊する、フレームシフト突然変異に続く終止コドンを生成する。FUT8酵素の触媒ドメインに含まれる特定のアミノ酸位置Tyr−382、Asp−409、Asp−410、Asp−453、及びSer−469は、したがって、FUT8遺伝子のこれらのトランケート版においては発現しない。これらの重要な突然変異の最終結果は、非機能的α−1,6フコシルトランスフェラーゼ酵素、CHOK1 FUT8ノックアウト細胞系におけるFUT8遺伝子のタンパク質産物である。
pD1401(gRNA167〜207)CRISPR/Cas複合体をトランスフェクトしたクローン細胞系におけるGMD遺伝子エクソン3座位の分析
クローンノックアウト細胞系から、標的領域のGMD遺伝子タンパク質配列において、異なる種類の突然変異が明らかである。以下の表は、GMDノックアウトクローン細胞系において観察される全ての突然変異を列挙する。
pD1301(gRNA404)CRISPR/Cas複合体をトランスフェクトしたクローン細胞系におけるGMD遺伝子エクソン4座位の分析:
クローンノックアウト細胞系は、標的領域のGMD遺伝子タンパク質配列において突然変異が明らかである。以下の表は、GMDノックアウトクローン細胞系において観察される全ての突然変異を列挙する。
pD1401(gRNA167〜207)及びpD1301(gRNA404)CRISPR/Cas複合体両方をトランスフェクトしたクローン細胞系におけるGMD遺伝子エクソン3及びエクソン4座位の分析:
クローンノックアウト細胞系は、標的領域中のGMD遺伝子エクソン4タンパク質配列においてのみ突然変異が明らかである。以下の表は、GMDノックアウトクローン細胞系において観察される全ての突然変異を列挙する。
図18Cは、pD1401(gRNA167〜207)を使用して生成したGMDノックアウトCHOK1クローンのアミノ酸分析を表す。標的GMDエクソン3座位における複数の型の突然変異が観察され、アミノ酸残基の欠失、置換、並びに中途終止コドンを含む。そのような改変は、GMD遺伝子を非機能的にし、それにより、フコースノックアウト細胞系を生じる。クローン番号GMD1.12及びGMD1.37から、中途終止コドンを導入するアミノ酸残基及びフレームシフト突然変異の挿入が明らかである(図18D及び18E)。クローンGMD2.30の場合、pD1301(gRNA404)はDNA二本鎖切断を導入するために使用し、標的GMDエクソン4座位において挿入及びフレームシフト突然変異が明らかである(図18F)。同様に、クローンGMD3.51において(図18G)、細胞系はpD1401(gRNA167〜207)及びpD1301(gRNA404)CRISPR/Cas構築物両方をトランスフェクトすることにより生成するが、データは、GMDエクソン4のみでアミノ酸の欠失を明らかにする。
このデータは、GMD遺伝子の2つの特異的なエクソン標的部位を標的とするCRISPR/Cas設計が非常に特異的であり、両構築物が特異的標的化に有効であることを明らかにする。したがって、開発されたGMD CHOK1ノックアウト細胞系は、非フコシル化モノクローナル抗体の開発に使用される。
(例7)
部分的なフコシル化及び非フコシル化抗体を産生するためのフコースノックアウト細胞系の使用
フコースノックアウトCHOK1細胞発現プラットフォームを、非フコシル化抗体、特に非フコシル化モノクローナル抗体の発現に使用する。モノクローナル抗体の重鎖及び軽鎖をコードする抗体遺伝子を好適な遺伝子発現プラスミドにクローン化し、上記の実施例に記載のフコースノックアウトCHOK1細胞プラットフォームにトランスフェクトする。このプラットフォーム/方法を使用して産生したモノクローナル抗体は、非フコシル化抗体として発現する。産物を、確立されたプロトコール及びガイドラインに従って精製し、治療用途のためのバイオベターモノクローナル抗体産物を開発する。このプラットフォームを使用して産生された非フコシル化バイオベター抗体は、高レベルのADCC及びそれによるより良い治療成績をもたらす。
本開示のLCA−FITCフローサイトメトリーデータ及びさらなる配列決定実験により、FKO系が膜タンパク質をフコシル化できないことを確認する。したがって、本開示で得た細胞は、非フコシル化タンパク質、特に非フコシル化抗体を産生する。非フコシル化抗体の特徴的な性質及び治療的な利点、例えばより高いADCCなどは当業者に公知である。
GMDノックアウトCHOK1細胞系は、非フコシル化モノクローナル抗体開発プログラムにおける特有の適用に有用である。GMD遺伝子は、フコース生合成経路における重要なGDP−フコースステップの上流にある。GDPフコースは、GMD遺伝子機能に完全に依存する新生経路によるか、GMD遺伝子機能によらないが、増殖培地中にL−フコースの存在を必要とする再生経路によるかのいずれかで、CHOK1細胞において産生することができる。したがって、GMDノックアウト細胞系において産生したモノクローナル抗体のフコシル化の条件制御を達成することが可能である。
シナリオ1:増殖培地中にいかなるL−フコースも含まない、GMDノックアウトCHOK1細胞におけるモノクローナル抗体遺伝子の発現。産生したモノクローナル抗体は100%脱フコシル化されている。この場合、新生及び再生フコース生合成経路は非機能的である。
シナリオ2:増殖培地中に最適なL−フコースを含む、GMDノックアウトCHOK1細胞におけるモノクローナル抗体遺伝子の発現。産生したモノクローナル抗体は100%フコシル化されている。この場合、新生経路は完全に遮断されるが、再生経路は機能性である。これは、GMDノックアウトCHOK1細胞系において産生されるモノクローナル抗体遺伝子の完全なフコシル化を可能にする。
シナリオ3:増殖培地中に様々なレベルのL−フコースを含む、GMDノックアウトCHOK1細胞におけるモノクローナル抗体遺伝子の発現。この条件下で産生したモノクローナル抗体は部分的にフコシル化されている。増殖培地中のL−フコースの用量がモノクローナル抗体のフコシル化のレベルを決定する。培養条件中にこの用量を滴定し、モノクローナル抗体フコシル化のレベルを確かめ、その後再び滴定し、標的モノクローナル抗体のフコシル化の臨界値を達成するために微調整する。
これは、GMD遺伝子ノックアウトCHOK1細胞系の特有の利点であり、この性質は本開示に一意的に記載する。
開示及び例証は、明確さ及び理解の目的のための例示及び実施例によって提供されるが、本開示の目的又は範囲を逸脱することなく様々な変更及び修飾が実施され得ることが当業者には明らかである。したがって、以前の記載及び実施例は、本開示の範囲を限定するものとして解釈されるべきではない。
本開示の範囲は、この詳細な記載によってではなく、本明細書に添付の特許請求の範囲によって限定されることを意図する。以下の特許請求の範囲が、本明細書に記載の本開示の全ての一般的な又は特異的な性質にわたることを意図することも理解される。
上記の教示に照らして、多くの修飾及び変化が可能である。したがって、請求する主題は、特別に記載する以外の方法でも実施され得ることが理解される。単数形の、例えば文字「1つ(a)」、「1つ(an)」、「その(the)」、又は「前記(said)」を使用する、特許請求の範囲の要素への任意の言及は、本開示を限定するものとして解釈されない。
本開示の実施形態の記載は、現在の知識を適用することによる様々な適用の修飾及び/又は適応に容易に適する実施形態の一般的な性質を明らかにする。本開示のそのような特定の実施形態は、類概念から逸脱することなく、及び、したがって、そのような適応及び修飾は、開示する実施形態に等価の意味及び範囲内であると理解され、考えられると意図されるべきであり、且つ意図される。
本明細書に用いる語句又は用語は、記載の目的のためであり、いかなる限定も意図しないことも理解される。本開示全体にわたって、単語「含む(comprise)」、又は「含む(comprises)」若しくは「含む(comprising)」などの変化形を使用する場合はいつでも、記載した要素、整数若しくはステップ、又は要素、整数、若しくはステップの群の包含を意味するが、任意のその他の要素、整数、若しくはステップ、又は要素、整数、若しくはステップの群の除外を意味しないことが理解される。
数値制限又は範囲が本明細書に記載される場合、終点が含まれる。また、数値制限又は範囲内の値及び部分範囲もはっきりと記されているかのように明確に含む。
本開示の任意の複数及び/又は単数の用語の使用に関して、当業者は、文脈及び/又は適用に適切であると考えられる場合、複数から単数及び/又は単数から複数へと変換することができる。様々な単数/複数の並べ替えが、明確さのために明示的に本明細書において規定され得る。
本明細書に含めた文献、作用、材料、装置、論文などの任意の議論は、単に本開示の文脈を提供する目的のためである。本出願の優先日の前にどこにでもあるように、これらの事柄のいずれか又は全てが、先行技術基準の一部を形成する、又は本開示に該当する技術分野の常識であることを承認として考えるべきではない。
本明細書全体にわたって引用された全ての参照、特許及び公開された特許出願の文脈は、全ての目的のために参照により本明細書に組み込まれる。

Claims (26)

  1. 配列番号13、配列番号15、配列番号17から配列番号37、配列番号39、配列番号41、配列番号43、配列番号45、配列番号47から配列番号93、及びその組み合わせからなる群より選択される配列を含む、CRISPRシステムのDNA結合ドメイン。
  2. 配列番号13、配列番号15、配列番号39、及び配列番号17から配列番号37が、Fut8遺伝子配列に結合し、また配列番号41、配列番号43、配列番号45、及び配列番号47から配列番号93が、GMD遺伝子配列に結合する、請求項1に記載のDNA結合ドメイン。
  3. 配列番号13が配列番号14に転写され、配列番号15が配列番号16に転写され、配列番号37が配列番号38に転写され、配列番号39が配列番号40に転写され、配列番号41が配列番号42に転写され、配列番号43が配列番号44に転写され、及び配列番号45が配列番号46に転写される、請求項1に記載のDNA結合ドメイン。
  4. 請求項1に記載のDNA結合ドメイン、及びヌクレアーゼを含む、CRISPRヌクレアーゼ複合体。
  5. ヌクレアーゼが、Cas9エンドヌクレアーゼである、請求項4に記載の複合体。
  6. ヌクレアーゼが、Cas9nエンドヌクレアーゼである、請求項4に記載の複合体。
  7. 請求項1に記載のDNA結合ドメインを含むベクター。
  8. ヌクレアーゼを更に含む、請求項1に記載のベクター。
  9. 請求項7に記載のベクターを含む細胞。
  10. COS、CHO−S、CHO−K1、CHO−K1 GS(−/−)、CHO−DG44、CHO −DUXB11、CHO−DUKX、CHOK1SV、VERO、MDCK、W138、V79、B14AF28−G3、BHK、HaK、NS0、SP2/0−Ag14、HeLa、HEK293−F、HEK293−H、HEK293−T、YB23HL.P2.G11.16Ag.20、perC6、抗体産生ハイブリドーマ細胞、胚性幹細胞、ナマルバ細胞、スポドプテラ・フルギペルダ(Spodoptera fugiperda)(Sf)、ピキア属、サッカロミセス属、及びシゾサッカロミセス属由来の昆虫細胞系からなる群より選択される、請求項9に記載の細胞。
  11. c)CRISPR−ヌクレアーゼ構築物を得るステップと、
    d)ステップ(a)の構築物を細胞にトランスフェクトして、フコースノックアウト細胞を得るステップと
    を含む、フコースノックアウト細胞を得る方法。
  12. d)CRISPR−ヌクレアーゼ構築物を得るステップと、
    e)ステップ(a)の構築物を細胞にトランスフェクトして、0%から100%の範囲のフコシル化活性を有する細胞を得るステップと、
    f)ステップ(b)の細胞が発現したタンパク質を得るステップと
    を含む、0%から100%の範囲でフコシル化されたタンパク質を得る方法。
  13. CRISPR−ヌクレアーゼ構築物が、請求項4に記載の複合体を提供し、前記複合体が、細胞内の遺伝子配列を切断し、前記遺伝子が、Fut8、GMD、及びその組み合わせからなる群より選択される、請求項11及び12に記載の方法。
  14. α−1,6−フコシルトランスフェラーゼ酵素をコードするFut8遺伝子配列が、エクソン7において切断される、請求項13に記載の方法。
  15. α−GDP−D−マンノース−4,6−デヒドラターゼ酵素をコードするGMD遺伝子配列が、エクソン3、エクソン4、及びその組み合わせからなる群より選択されるエクソンにおいて切断される、請求項13に記載の方法。
  16. 前記細胞が、COS、CHO−S、CHO−K1、CHO−K1 GS(−/−)、CHO−DG44、CHO−DUXB11、CHO−DUKX、CHOK1SV、VERO、MDCK、W138、V79、B14AF28−G3、BHK、HaK、NS0、SP2/0−Ag14、HeLa、HEK293−F、HEK293−H、HEK293−T、YB23HL.P2.G11.16Ag.20、perC6、抗体産生ハイブリドーマ細胞、胚性幹細胞、ナマルバ細胞、スポドプテラ・フルギペルダ(Spodoptera fugiperda)(Sf)、ピキア属、サッカロミセス属、及びシゾサッカロミセス属に由来する昆虫細胞系からなる群より選択される、請求項18に記載の方法。
  17. 前記タンパク質のフコシル化が0%であり、前記タンパク質が、前記細胞内のFut8遺伝子の破壊により得られる、請求項12に記載の方法。
  18. 前記タンパク質が、0%から100%フコシル化されており、前記タンパク質が、前記細胞内のGMD遺伝子の破壊により得られ、前記方法が、増殖培地内にL−フコースを添加するステップを更に含む、請求項12に記載の方法。
  19. 前記タンパク質が、抗体である、請求項12に記載の方法。
  20. 前記抗体が、モノクローナル抗体である、請求項19に記載の方法。
  21. 前記細胞が、内因性タンパク質を産生する、請求項12に記載の方法。
  22. タンパク質をエンコードする遺伝子を前記細胞に導入し、前記タンパク質を得るステップを更に含む、請求項12に記載の方法。
  23. 請求項12に記載の方法により得られた、0%から100%フコシル化されているタンパク質。
  24. 抗体である、請求項23に記載のタンパク質。
  25. 任意選択的に薬学的に許容される添加剤と共に、請求項23に記載のタンパク質を含む組成物。
  26. 前記タンパク質が、抗体である、請求項25に記載の組成物。
JP2020162750A 2014-11-15 2020-09-28 Crisprシステムのdna結合ドメイン、並びにその方法 Active JP7134207B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN5767CH2014 2014-11-15
IN5767/CHE/2014 2014-11-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017545006A Division JP7090421B2 (ja) 2014-11-15 2015-11-13 Dna結合ドメイン、非フコシル化及び部分的フコシル化タンパク質、並びにその方法

Publications (2)

Publication Number Publication Date
JP2021007397A true JP2021007397A (ja) 2021-01-28
JP7134207B2 JP7134207B2 (ja) 2022-09-09

Family

ID=55024178

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017545006A Active JP7090421B2 (ja) 2014-11-15 2015-11-13 Dna結合ドメイン、非フコシル化及び部分的フコシル化タンパク質、並びにその方法
JP2020162750A Active JP7134207B2 (ja) 2014-11-15 2020-09-28 Crisprシステムのdna結合ドメイン、並びにその方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017545006A Active JP7090421B2 (ja) 2014-11-15 2015-11-13 Dna結合ドメイン、非フコシル化及び部分的フコシル化タンパク質、並びにその方法

Country Status (6)

Country Link
US (2) US10752674B2 (ja)
EP (2) EP3218490B1 (ja)
JP (2) JP7090421B2 (ja)
DK (1) DK3218490T3 (ja)
ES (1) ES2712303T3 (ja)
WO (1) WO2016075662A2 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2853829C (en) 2011-07-22 2023-09-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
EP3218490B1 (en) 2014-11-15 2018-10-31 Zumutor Biologics, Inc. Dna-binding domain of crispr system for production of non-fucosylated and partially fucosylated proteins
US11267899B2 (en) * 2015-05-13 2022-03-08 Zumutor Biologics Inc. Afucosylated protein, cell expressing said protein and associated methods
AU2016299271B2 (en) * 2015-07-25 2022-09-22 Habib FROST A system, device and a method for providing a therapy or a cure for cancer and other pathological states
IL294014B2 (en) 2015-10-23 2024-07-01 Harvard College Nucleobase editors and their uses
EP3925970A1 (en) 2015-11-02 2021-12-22 F. Hoffmann-La Roche AG Methods of making fucosylated and afucosylated forms of a protein
IL308426A (en) 2016-08-03 2024-01-01 Harvard College Adenosine nuclear base editors and their uses
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
JP7191388B2 (ja) 2017-03-23 2022-12-19 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸によってプログラム可能なdna結合蛋白質を含む核酸塩基編集因子
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN111801345A (zh) 2017-07-28 2020-10-20 哈佛大学的校长及成员们 使用噬菌体辅助连续进化(pace)的进化碱基编辑器的方法和组合物
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN111757937A (zh) 2017-10-16 2020-10-09 布罗德研究所股份有限公司 腺苷碱基编辑器的用途
WO2019088496A2 (ko) * 2017-10-31 2019-05-09 주식회사 에이치유비바이오텍 내인성 폴리펩타이드 생산을 위한 재조합 세포 및 방법
US20210198330A1 (en) * 2018-05-23 2021-07-01 The Broad Institute, Inc. Base editors and uses thereof
WO2020191243A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz
CN113061605B (zh) * 2020-07-13 2022-11-29 中山大学 一种岩藻糖转移酶8(fut8)功能缺失细胞株的构建方法及其应用
AR126089A1 (es) 2021-06-07 2023-09-13 Amgen Inc Uso de fucosidasa para controlar el nivel de afucosilación de proteínas glucosiladas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035778A1 (ja) * 2003-10-09 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. α1,6-フコシルトランスフェラーゼの機能を抑制するRNAを用いた抗体組成物の製造法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002337935B2 (en) * 2001-10-25 2008-05-01 Genentech, Inc. Glycoprotein compositions
JP4263191B2 (ja) 2003-10-09 2009-05-13 協和発酵キリン株式会社 アンチトロンビンiii組成物の製造方法
US20060223147A1 (en) 2004-08-05 2006-10-05 Kyowa Hakko Kogyo Co., Ltd., Process for producing glycoprotein composition
CN103597073B (zh) * 2011-03-06 2019-06-07 默克雪兰诺有限公司 低岩藻糖细胞系及其应用
WO2013013013A2 (en) * 2011-07-21 2013-01-24 Alnylam Pharmaceuticals, Inc. Compositions and methods for producing modified glycoproteins
CN105392885B (zh) * 2013-07-19 2020-11-03 赖瑞克斯生物科技公司 用于产生双等位基因敲除的方法和组合物
WO2015052231A2 (en) * 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
EP3218490B1 (en) 2014-11-15 2018-10-31 Zumutor Biologics, Inc. Dna-binding domain of crispr system for production of non-fucosylated and partially fucosylated proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035778A1 (ja) * 2003-10-09 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. α1,6-フコシルトランスフェラーゼの機能を抑制するRNAを用いた抗体組成物の製造法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOTECHNOLOGY AND BIOENGINEERING (2010) VOL.106, NO.5, PP.774-783, JPN5017009426, ISSN: 0004628762 *
BIOTECHNOLOGY AND BIOENGINEERING (2014.8) VOL.111, NO.8, PP.1604-1616, JPN5017009425, ISSN: 0004628763 *
CELL (2013) VOL.154, PP.1380-1389, JPN6019034163, ISSN: 0004628765 *
DNA2.0,「CRISPR/CAS9 GENOME ENGINEERING ALL-IN-ONE NICASENINJA(TM) VECTOR」, JPN7019002828, 1 May 2014 (2014-05-01), pages 1 - 8, ISSN: 0004628764 *
JOURNAL OF BIOTECHNOLOGY (2007) VOL.130, PP.300-310, JPN6019034159, ISSN: 0004628766 *

Also Published As

Publication number Publication date
EP3467110A1 (en) 2019-04-10
US20190112358A1 (en) 2019-04-18
JP7134207B2 (ja) 2022-09-09
US11548937B2 (en) 2023-01-10
DK3218490T3 (en) 2019-02-18
US10752674B2 (en) 2020-08-25
JP7090421B2 (ja) 2022-06-24
WO2016075662A3 (en) 2016-07-07
EP3218490B1 (en) 2018-10-31
US20200339666A1 (en) 2020-10-29
JP2018502595A (ja) 2018-02-01
WO2016075662A2 (en) 2016-05-19
ES2712303T3 (es) 2019-05-10
EP3218490A2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP7134207B2 (ja) Crisprシステムのdna結合ドメイン、並びにその方法
US11267899B2 (en) Afucosylated protein, cell expressing said protein and associated methods
EP3022304B1 (en) Methods and compositions for producing double allele knock outs
JP5592258B2 (ja) 製造方法
JP6796773B2 (ja) 非フコシル化タンパク質および方法
WO2006013964A1 (ja) 糖蛋白質組成物の製造法
JP2020072677A (ja) 単純な糖型を有する組換えタンパク質の産生
JP2020174681A (ja) 組み換え型タンパク質の効率的な選択性
US20180334665A1 (en) Methods and compositions for producing double allele knock outs
CN116457468A (zh) 用于治疗性蛋白质生产的高产重组中国仓鼠卵巢细胞系的产生
TW202102669A (zh) 含有新穎選擇標記的細胞株及其用於蛋白製造的用途
JP2020202832A (ja) 非フコシル化タンパク質および方法
WO2024023746A1 (en) Improved production of cd39 variants
WO2023223219A1 (en) IMPROVED PROTEIN PRODUCTION USING miRNA TECHNOLOGY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R150 Certificate of patent or registration of utility model

Ref document number: 7134207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150