JP2021005927A - 車両の冷却装置 - Google Patents

車両の冷却装置 Download PDF

Info

Publication number
JP2021005927A
JP2021005927A JP2019117849A JP2019117849A JP2021005927A JP 2021005927 A JP2021005927 A JP 2021005927A JP 2019117849 A JP2019117849 A JP 2019117849A JP 2019117849 A JP2019117849 A JP 2019117849A JP 2021005927 A JP2021005927 A JP 2021005927A
Authority
JP
Japan
Prior art keywords
circuit
battery
coolant
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019117849A
Other languages
English (en)
Other versions
JP7222321B2 (ja
Inventor
大輔 床桜
Daisuke Tokozakura
大輔 床桜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019117849A priority Critical patent/JP7222321B2/ja
Priority to US16/907,311 priority patent/US11518273B2/en
Priority to CN202010592348.XA priority patent/CN112124150B/zh
Publication of JP2021005927A publication Critical patent/JP2021005927A/ja
Application granted granted Critical
Publication of JP7222321B2 publication Critical patent/JP7222321B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

【課題】簡素な構造であるとともに、車両状態に応じてバッテリとパワーコントロールユニットとのそれぞれを効率的に冷却すること。【解決手段】外部電源からの電力を充電可能なバッテリ4を備える車両Veの冷却装置1であって、冷却回路100は、冷却液がパワーコントロールユニット3を経由して循環する第1回路110と、第1回路110に並列に接続され、冷却液がパワーコントロールユニット3を経由せずにバッテリ4を経由して循環する第2回路120と、第1回路110と第2回路120との分岐点に配置された切替弁102と、を有し、制御装置5は、外部電源からの充電中である場合、電動ポンプ101および切替弁102を制御して、第2回路120を流通する冷却液の流量を、第1回路110を流通する冷却液の流量よりも多くする。【選択図】図1

Description

本発明は、車両の冷却装置に関する。
特許文献1には、モータを動力源とする車両に搭載される冷却装置において、インバータおよびバッテリを経由して冷却液が循環する冷却回路を備え、この冷却回路内を流れる冷却液からラジエータで放熱させる際、電動ファンを作動してラジエータに冷却風を送ることが開示されている。
特開2015−116872号公報
電動車両(EV)やプラグインハイブリッド車両(PHV)では、車載のバッテリに、外部電源から供給された電力を充電することが可能である。この場合、外部電源からの充電中、車両は走行しないため、インバータの冷却は不要となる。これに対し、充電中、バッテリでの発熱は大きくなるので、バッテリを効率的に冷却する必要がある。また、車両が走行している時、バッテリの発熱は充電中よりも小さくなるのに対し、インバータでの発熱は大きくなるので、インバータを効率的に冷却する必要がある。このように、車両状態に応じて冷却対象での発熱状態が変化する。この発熱状態は、インバータを含むパワーコントロールユニットを冷却対象とする構成でも同様である。そこで、簡素な冷却回路によって、バッテリとパワーコントロールユニットとのそれぞれを効率的に冷却することが望まれる。
特許文献1に記載の構成では、一つ電動ポンプによってインバータとバッテリとの両方に冷却液を供給できる簡素な構造の冷却回路である。しかしながら、インバータとバッテリとが直列に配置されているため、外部電源からの充電中、バッテリを冷却するために冷却液を流通させると、冷却が不要なインバータにもバッテリと同じ流量の冷却液が供給されることになり、改善の余地がある。
本発明は、上記事情に鑑みてなされたものであって、簡素な構造であるとともに、車両状態に応じてバッテリとパワーコントロールユニットとのそれぞれを効率的に冷却することができる車両の冷却装置を提供することを目的とする。
本発明は、外部電源から供給された電力を充電可能なバッテリと、前記バッテリからの電力により走行用の動力を出力するモータと、前記バッテリの直流電力を交流電力に変換して前記モータに供給するパワーコントロールユニットと、前記バッテリおよび前記パワーコントロールユニットを冷却するための冷却液が循環する冷却回路と、前記冷却回路に設けられ、冷却液を循環させる電動ポンプと、前記冷却回路に設けられ、冷却回路を循環する前記冷却液から放熱させる放熱器と、前記冷却回路を循環する冷却液の流量を制御する制御部と、を備える車両の冷却装置であって、前記冷却回路は、前記電動ポンプから吐出された冷却液が前記パワーコントロールユニットを経由して循環する第1回路と、前記第1回路に並列に接続され、前記電動ポンプから吐出された冷却液が前記パワーコントロールユニットを経由せずに前記バッテリを経由して循環する第2回路と、前記第1回路を流れる冷却液の流量と前記第2回路を流れる冷却液の流量との割合を制御する流量制御手段と、を有し、前記制御部は、前記外部電源の電力を前記バッテリに充電している充電中である場合、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くすることを特徴とする。
また、前記バッテリは、複数の電池セルからなるバッテリモジュールと、前記バッテリモジュールを収容するモジュールケースと、を複数備え、各モジュールケースの内部では、前記バッテリモジュールが前記冷却液に液没し、かつ前記冷却液が前記電池セルとの間で直接熱交換を行い、前記モジュールケースは、該モジュールケースを上側から見た場合に、冷却液の流入口および冷却液の流出口が互いに対角位置の近傍に設けられた略直方体状を有してもよい。
この構成によれば、モジュールケース内の冷却液を対角に向けて流すことができるので、冷却液の強制対流によって電池セルを冷却する際、モジュールケース内の冷却を均一に近づけることができる。
また、前記制御部は、前記モータが出力した動力により走行する走行時に、前記電動ポンプおよび前記流量制御手段を制御して、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量を、前記バッテリ側の前記第2回路を流通する冷却液の流量よりも多くしてもよい。
この構成によれば、バッテリモジュールが液没しているので、走行時にバッテリで生じる熱は冷却液の自然対流により放熱可能である。そのため、走行時には、パワーコントロールユニット側の第1回路を流通する冷却液の流量を、第2回路を流通する冷却液の流量よりも多くすることができるので、パワーコントロールユニットを効率的に冷却することができる。
前記制御部は、前記外部電源から前記バッテリへの充電準備状態であることを検出した場合、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くしてもよい。
この構成によれば、充電準備状態である場合には、バッテリ側の第2回路を流通する冷却液の流量を、第1回路を流通する冷却液の流量よりも多くすることができるので、バッテリを効率的に冷却することができる。
また、前記制御部は、前記充電準備状態であることを検出した場合、かつ前記バッテリの温度が所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くしてもよい。
この構成によれば、充電準備状態においてバッテリの温度を所定値まで下げることができるので、充電中にバッテリが熱くなりすぎることを抑制できる。これにより、バッテリの性能低下を抑制することができる。
また、前記第1回路には、前記モータを冷却するためのオイルと前記冷却液との間で熱交換を行うオイルクーラが設けられてもよい。
この構成によれば、走行時に第1回路を流通する冷却液によって、モータのオイルを冷却することができる。これにより、走行時にモータを効率的に冷却することができる。
また、前記放熱器に冷却風を送る電動ファン、をさらに備え、前記制御部は、前記充電中である場合に、前記電動ファンを作動させ、前記電動ファンによる冷却風で前記放熱器を冷却してもよい。
この構成によれば、停車中に電動ファンを作動させることにより、放熱器での放熱量を多くすることができる。
また、前記第2回路は、前記流量制御手段と前記バッテリとの間に配置され、冷凍サイクルの冷媒と前記冷却液との間で熱交換を行う熱交換器、を有し、前記制御部は、前記充電中である場合に、前記冷凍サイクルを作動させ、前記熱交換器で前記冷却液と前記冷媒とを熱交換させることにより前記冷却液を冷却させてもよい。
この構成によれば、第2回路においてバッテリの上流側に熱交換器が配置されているので、充電中には熱交換器で冷却した冷却液をバッテリに供給することが可能となる。
また、前記制御部は、前記充電準備状態であることを検出した場合に、前記バッテリの温度が所定値を超える場合、かつ外気の温度が第2所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記冷凍サイクルを作動させ、前記熱交換器で前記冷却液と前記冷媒とを熱交換させることにより前記冷却液を冷却させてもよい。
この構成によれば、外気温が高い場合に、冷凍サイクルを作動させて熱交換器で冷媒と冷却液との間で熱交換を行うことにより、冷却液が第2所定値まで低下する時間を短縮することができる。
また、前記流量制御手段は、冷却液が流通可能な経路を前記第1回路または前記第2回路に切り替える切替弁であり、前記制御部は、前記充電中である場合に、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記バッテリ側の前記第2回路のみに冷却液が流通するように経路を切り替えてもよい。
この構成によれば、充電中に冷却液をバッテリ側の第2回路のみに流すことができるので、バッテリを効率的に冷却することができる。
また、前記制御部は、前記モータが出力した動力により走行する走行時に、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記パワーコントロールユニット側の前記第1回路のみに冷却液が流通するように経路を切り替えてもよい。
この構成によれば、走行時には、冷却液をパワーコントロールユニット側の第1回路のみに流すことができるため、パワーコントロールユニットを効率的に冷却することができる。
また、前記制御部は、前記外部電源から前記バッテリへの充電準備状態であることを検出した場合、かつ前記バッテリの温度が所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記バッテリ側の前記第2回路のみに冷却液を流通させてもよい。
この構成によれば、充電準備状態においてバッテリの温度を所定値まで下げることができるので、充電中にバッテリが熱くなりすぎることを抑制できる。これにより、バッテリの性能低下を抑制することができる。
本発明では、冷却液がパワーコントロールユニットを経由する第1回路と、冷却液がバッテリを経由する第2回路とを並列に接続した冷却回路を備え、車両状態に応じて流量制御手段によって冷却液の流量の割合を制御する。これにより、簡素な構造で、バッテリとパワーコントロールユニットとを効率的に冷却することができる。
図1は、第1実施形態における車両の冷却装置の概略構成を示す模式図である。 図2は、バッテリの液没構造を模式的に示す図である。 図3は、走行状態における冷却回路の流通可能経路を示す模式図である。 図4は、車両状態に応じて冷却制御を実施した場合の変化を示すタイムチャート図である。 図5は、充電状態における冷却回路の流通可能経路を示す模式図である。 図6は、第1実施形態の冷却制御フローを示すフローチャート図である。 図7は、バッテリの液没構造の変形例を模式的に示す図である。 図8は、第2実施形態における車両の冷却装置の概略構成を示す模式図である。 図9は、走行状態における冷却回路の流通可能経路を示す模式図である。 図10は、充電状態における冷却回路の流通可能経路を示す模式図である。 図11は、第2実施形態の冷却制御フローを示すフローチャート図である。
以下、図面を参照して、本発明の実施形態における車両の冷却装置について具体的に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
(第1実施形態)
図1は、第1実施形態における車両の冷却装置の概略構成を示す模式図である。第1実施形態における冷却装置1は、モータ2を動力源とする車両Veに搭載されるものであり、冷却液が循環する冷却回路100を備える。
車両Veは、走行用のモータ2と、モータ2を駆動制御するパワーコントロールユニット(以下、PCUという)3と、モータ2に供給するための電力を蓄えるバッテリ4と、を備える。例えば、車両Veは電動車両(EV)やプラグインハイブリッド車両(PHV)である。
モータ2は、バッテリ4の電力により走行用の動力を出力する。車両Veではモータ2から出力された動力が動力伝達装置を介して駆動輪に伝達される。このモータ2はPCU3を介してバッテリ4と電気的に接続されている。
PCU3は、モータ2を駆動するインバータと、昇圧コンバータと、DCDCコンバータとを含んで構成されている。例えば、インバータはバッテリ4の直流電力を交流電力に変換してモータ2に供給する。このPCU3では、PCUケース(図示せず)の内部に高電圧部品が収容された構造を有する。なお、PCU3は、少なくともインバータを含んで構成されている。
バッテリ4は、外部電源から供給された電力を充電可能な蓄電装置である。車両Veには、外部の充電設備と接続する充電口と、充電口を介して外部電源からの電力を受け付ける充電装置とが設けられている(いずれも図示せず)。外部電源からの充電時、充電スタンドなどの充電設備に設けられた充電プラグと、車両Veに設けられた充電口とが接続する。充電プラグと充電口とが接続されたことによって充電準備状態となる。充電準備状態とは、外部電源とバッテリ4との間が通電可能に接続された状態ではあるが、電力の供給はまだ実施されていない状態のことをいう。そして、充電プラグから充電口を介してバッテリ4に電力が供給される際、車両Ve側の充電装置では、PCU3を経由せずにバッテリ4に電流を流すことができる。外部電源からバッテリ4に電流が流れている状態が充電中となる。充電中は、PCU3に電流が流れないため、通電に伴うPCU3での発熱は生じない。一方、バッテリ4には、充電中に大きな電流が流れるため、バッテリ4の発熱は大きくなる。特に、急速充電により大電流を流す場合には、バッテリ4の発熱量がさらに大きくなる。また、バッテリ4に通電される電流は走行時よりも充電中のほうが大きい。つまり、バッテリ4の発熱量は走行時よりも充電中のほうが大きくなる。そして、冷却装置1では、バッテリ4の冷却を、液体を用いて行う。なお、充電時とは、電流が流れる前の充電準備状態と、電流が流れている最中の充電中とを含む。
また、冷却装置1は、冷却回路100における冷却液の循環を制御する制御装置(以下、ECUという)5を備えている。ECU5は、電子制御装置により構成されている。
冷却回路100は、モータ2およびPCU3を冷却するための第1回路110と、バッテリ4を冷却するための第2回路120とを有する。すなわち、冷却回路100は、冷却液をPCU3に供給する経路と、冷却液をバッテリ4に供給する経路とが並列に接続された油路構造を有する。さらに、PCU3に供給される冷却液とバッテリ4に供給される冷却液とは同一の液体である。冷却回路100を循環する冷却液は、電気絶縁性が高い液体である。例えば、冷却液は、鉱物油、合成油、シリコンオイル、フッ素オイルなどにより構成される。
この冷却回路100は、一つの電動ポンプ101によって異なる供給先に向けて冷却液を流通させることができるように構成されている。冷却回路100は、電動ポンプ101と、切替弁102と、オイルクーラ103と、ラジエータ104と、を備える。
電動ポンプ101は、電動モータ(図示せず)によって駆動する。この電動モータは、ECU5によって駆動制御される。つまり、ECU5は電動ポンプ101を駆動制御する。電動ポンプ101はECU5の制御によって作動するものであり、貯留部(リザーブタンク)内に貯留されている冷却液を吸入し、吐出口から冷却液を吐出する。電動ポンプ101の吐出口には、吐出油路105が接続されている。電動ポンプ101から吐出油路105に吐出された冷却液は、電動ポンプ101の吐出圧によって冷却回路100を下流側に向けて圧送される。吐出油路105の下流側に切替弁102が接続されている。
切替弁102は、冷却液が流通する経路を切り替える弁であり、第1回路110を流れる冷却液の流量と第2回路120を流れる冷却液の流量との割合を制御する流量制御弁である。すなわち、切替弁102は流量制御手段である。この切替弁102はECU5によって制御されるものである。ECU5は切替弁102の流量制御を実行することによって、第1回路110内を流通する冷却液の流量を制御するとともに、第2回路120内を流通する冷却液の流量を制御する。例えば、切替弁102は第1回路110と第2回路120との分岐点に配置された三方弁により構成されている。また、ECU5は、車両Veの状態に応じて切替弁102を制御することによって、冷却液が流通可能な経路を第1回路110と第2回路120とに切り替える。
第1回路110は、電動ポンプ101と、吐出油路105と、切替弁102と、第1供給油路111と、PCU3と、第2供給油路112と、オイルクーラ103と、第1接続油路113と、合流油路106と、ラジエータ104と、吸入油路107と、を含んで構成される。第1回路110は、電動ポンプ101から吐出された冷却液が切替弁102からPCU3およびオイルクーラ103に供給され、オイルクーラ103を流通した冷却液がラジエータ104に供給される経路を形成する。第1回路110ではPCU3とオイルクーラ103とが直列に接続され、PCU3の下流側にオイルクーラ103が配置されている。
切替弁102は、第1回路110内では、電動ポンプ101とPCU3との間に設けられている。第1供給油路111は、切替弁102とPCU3との間の油路であり、切替弁102から第1回路110に流入した冷却液をPCU3に供給する油路である。切替弁102の流入口には吐出油路105が接続され、切替弁102の第1流出口には第1供給油路111が接続されている。そのため、切替弁102により第1回路110が流通可能な状態では、電動ポンプ101が吐出した冷却液は切替弁102を通過してPCU3へ供給される。その際、切替弁102は第1供給油路111からPCU3内に流入する冷却液の流量を制御することができる。
PCU3は、パワー半導体などの高電圧部品と、高電圧部品を収容するPCUケースとを備える(いずれも図示せず)。第1回路110内におけるPCU3は、PCUケースの内部に冷却液が流入し、このケース内部で冷却液によって高電圧部品を冷却することができる。PCUケースの流入口には、第1供給油路111が接続されている。冷却液は第1供給油路111からPCUケースの内部に流入し、PCU3の発熱部(高電圧部品)に接触して直接熱交換することによって、PCU3を冷却することができる。PCUケースの流出口には、第2供給油路112が接続されている。第2供給油路112は、PCU3とオイルクーラ103との間の油路であり、オイルクーラ103に冷却液を供給する油路である。
オイルクーラ103は、モータ2のオイルと冷却回路100の冷却液との間で熱交換を行う熱交換器である。オイルクーラ103には、モータ2を冷却するためのオイルが流通するモータ冷却回路130が接続されている。これにより、オイルクーラ103では、冷却液とモータ2のオイルとが熱交換することができる。
オイルクーラ103の流出口には、第1接続油路113が接続されている。第1接続油路113の下流側には、第1回路110と第2回路120とが合流する合流点Pが設けられている。合流点Pの下流側には、第1回路110と第2回路120とで共通の油路である合流油路106が設けられている。合流油路106は、ラジエータ104の流入口に接続されている。これにより、オイルクーラ103を通過した冷却液はラジエータ104に供給される。
ラジエータ104は、冷却回路100を循環する冷却液から放熱させる放熱器であって、車両Veの外気と冷却回路100の冷却液との間で熱交換を行う熱交換器である。冷却回路100を循環する冷却液は、ラジエータ104内を流通する際、外気との間で熱交換することによって放熱する。ラジエータ104の流出口には、吸入油路107が接続されている。吸入油路107の下流側は、電動ポンプ101の吸入口に接続されている。
冷却装置1では、ラジエータ104に冷却風を送る電動ファン108が設けられている。電動ファン108は、ECU5によって駆動制御されるものである。電動ファン108を作動させることにより、ラジエータ104を空冷でき、ラジエータ104の放熱量を多くすることができる。
第2回路120は、電動ポンプ101と、吐出油路105と、切替弁102と、第3供給油路121と、バッテリ4と、第2接続油路122と、合流油路106と、ラジエータ104と、吸入油路107と、を含んで構成される。第2回路120は、電動ポンプ101から吐出された冷却液が切替弁102からバッテリ4に供給され、バッテリ4を流通した冷却液がラジエータ104に供給される経路を形成する。第2回路120を循環する冷却液は、PCU3を経由せずに、バッテリ4に供給される。
この第2回路120は、第1回路110と並列に接続された並列回路である。第1回路110と第2回路120との分岐点に切替弁102が配置されている。第2回路120における切替弁102は、電動ポンプ101とバッテリ4との間に設けられ、第1回路110と第2回路120との分配流量を制御する。切替弁102の第2吐出口には、第3供給油路121が接続されている。
第3供給油路121は、切替弁102とバッテリ4との間の油路であり、切替弁102から第2回路120に流入した冷却液をバッテリ4に供給する油路である。切替弁102により第2回路120が流通可能な状態では、電動ポンプ101が吐出した冷却液は切替弁102を通過してバッテリ4へ供給される。その際、切替弁102は第3供給油路121からバッテリ4内に流入する冷却液の流量を制御することができる。
第2回路120に配置されたバッテリ4は、バッテリケース内部に収容された複数のバッテリモジュール41(図2に示す)が冷却液に液没した状態に保たれている。冷却装置1は、電気絶縁性が高い冷却液を用いて、バッテリ4の電池セル40(図2に示す)を直接冷却する構成であり、冷却液に電池セル40を液没させた冷却構造(液没構造)を有する。バッテリ4の流入口には、第3供給油路121が接続されている。
図2に示すように、バッテリ4は、複数の電池セル40からなるバッテリモジュール41と、バッテリモジュール41を収容するモジュールケース42とを複数備える。モジュールケース42の内部では、バッテリモジュール41が冷却液Fに液没している。これにより、電池セル40と冷却液Fとの間で直接熱交換する。
また、モジュールケース42同士は、冷却液Fが流通可能に接続されている。図2に示すように、一つのモジュールケース42内に一つのバッテリモジュール41が収容された構造において、冷却液Fの流路は、複数のモジュールケース42が直列に接続されて形成されている。モジュールケース42の接続方法は、冷却液Fがモジュールケース42内を対角に流れるように流入口と流出口とを接続する。モジュールケース42は、このモジュールケース42を上側から見た場合に、冷却液Fの流入口および流出口が互いに対角位置の近傍に設けられた略直方体状を有する。すなわち、バッテリ4を上側から見た場合に、各モジュールケース42は、四角形状に形成されており、四角形における対角位置の近傍に流入口と流出口とが設けられている。これにより、流入口から流出口に向けてモジュールケース42の内部を水平面上で対角方向に冷却液が流通する。なお、図2に示す矢印は、強制対流時の冷却液の流れの方向を表す。
図1に戻る。バッテリ4を通過した冷却液はラジエータ104に供給される。バッテリ4の流出口には、第2接続油路122が接続されている。第2接続油路122の下流側には合流点Pが設けられている。バッテリ4から流出した冷却液は、第2接続油路122および合流油路106を流通してラジエータ104に流入する。
第2回路120を冷却液が循環する際に、電動ファン108を作動させて、第2回路120を循環する冷却液をラジエータ104で空冷することができる。
このように構成された冷却装置1では、車両Veの状態に応じて、ECU5が電動ポンプ101および切替弁102を制御して、冷却液が流通する経路を切り替える。ECU5は、冷却回路100の流路を切り替える制御を実施する。
図3は、走行状態における冷却回路の流通可能経路を示す模式図である。図3に示すように、車両Veがモータ2の動力により走行する時、冷却回路100では第1回路110に冷却液が流れるように切替弁102が切り替わり、第1回路110を冷却液が循環する状態に制御される。走行状態では、PCU3およびモータ2の冷却性能を高めるために、電動ポンプ101から吐出された冷却液が第1回路110に多く流れるように、ECU5は切替弁102を制御する。例えば、切替弁102により流路を切り替えて、走行中は第1回路110のみに冷却液を流すことができる。
また、走行状態では、第1回路110のみに冷却液を流す状態であっても、冷却液によってバッテリ4の冷却性を満たすことが可能である。すなわち、バッテリ4では冷却液によって電池セル40を直接冷却でき、かつ電池セル40が冷却液に液没しているため、走行状態におけるバッテリ4の発熱は、冷却液の自然対流のみによって必要量の放熱が可能である。
図4に示すように、電池セル40を液没させたことによる自然対流での冷却によれば、走行状態(高速・高負荷走行)において、電池セル40の温度を閾値温度以下に維持することが可能である。例えば、バッテリ4の冷却性を満足させる状態として、電池セル40の温度が約53℃以下に維持できることが挙げられる。液没構造のバッテリ4では、冷却液の自然対流のみで、走行時におけるバッテリ4の冷却性を満たすことが可能である。そのため、走行状態では、上述した図3に示す流通可能経路に冷却液を循環させる。このように、第2回路120を冷却液が循環しない場合には、モジュールケース42内部の冷却液の自然対流によって電池セル40を冷却することになる。
一方、充電モードにおける電池セル40の発熱に対して、自然対流での冷却だけでは、電池セル40の温度が閾値を超えて昇温してしまう(時刻t1以降の破線で示す)。図4に示すように、バッテリ4への供給電流値は、充電状態における電流値I2のほうが走行状態における電流値I1よりも大きい。そのため、バッテリ4の発熱は充電モードのほうが走行モードよりも大きくなる。その結果、外部電源からの充電中、特に急速充電中においては、液没の自然対流のみではバッテリ4の冷却性を満たせない。また、充電中、PCU3とモータ2とは作動していないため、PCU3およびモータ2で発熱がなく、PCU3およびモータ2を冷却する必要がない。よって、冷却装置1の冷却能力をバッテリ4に集中することが可能になる。つまり、バッテリ4を冷却するための冷却液の強制対流化が可能になる。そこで、充電モード中は、電池セル40の冷却を冷却液の強制対流により行うことによって、電池セル40の温度を閾値以下に維持することができる(図4に破線で示す)。すなわち、外部電源からの急速充電中においては、液没で強制対流にすることによりバッテリ4の冷却性を満たすことができる。
図5は、充電状態における冷却回路の流通可能経路を示す模式図である。図5に示すように、外部電源からの電力をバッテリ4に充電する場合、ECU5は、電動ポンプ101から吐出された冷却液のうち第2回路120に流入する冷却液の配分を多くし、第2回路120の冷却液の流量が増大するように切替弁102を制御する。これにより、バッテリ4の冷却性能が向上する。例えば、切替弁102により流路を切り替えて、充電中は第2回路120のみに冷却液を流すことができる。
また、ECU5は、冷却液の温度をパラメータに用いて、電動ポンプ101と切替弁102とによる流量制御を実施する。この場合、冷却回路100には、冷却液の温度を検出するための温度センサ(図示せず)が設けられている。この温度センサからECU5に信号が入力される。例えば、バッテリ4に設けられた温度センサにより冷却液の温度を検出する。
図6は、第1実施形態の冷却制御フローを示すフローチャートである。なお、図6に示す制御はECU5によって実行される。
ECU5は、外部電源からバッテリ4へ充電するための接続状態である充電接続が完了したか否かを判定する(ステップS1)。ステップS1では、充電スタンドの充電プラグが車両Veの充電口に接続されたか否かが判定される。ECU5は、車両Veが外部の充電設備に接続された充電接続を検出すると、充電モードであると判断する。
外部電源との充電接続が完了している場合(ステップS1:Yes)、ECU5は、冷却回路100の第2回路120が流通可能になるように切替弁102を制御し、かつ電動ファン108および電動ポンプ101を作動させる(ステップS2)。ステップS2では、外部電源からの充電を開始する前に、第2回路120に冷却液を循環させ、かつ電動ファン108を作動させることによって、強制対流の冷却液によってバッテリ4を冷却する。外部電源からの充電時、車両Veは走行していないので、ラジエータ104には走行風が当たらない。そのため、電動ファン108を作動することにより、電動ファン108からの冷却風をラジエータ104に送り、ラジエータ104での放熱性能を確保する。
ステップS2を実施後、ECU5は、バッテリ4のケース内における冷却液の温度が所定値よりも高いか否かを判定する(ステップS3)。ステップS3では、バッテリ4に設けられた温度センサにより、モジュールケース42内の冷却液の温度を検出することができる。バッテリ4には、電池セル40の温度を検出する温度センサが設けられている。この温度センサは電池セル40の表面温度を検出するため、モジュールケース42内が冷却液で満たされている状態(液没状態)では、この温度センサが冷却液の温度を検出することになる。そして、この温度センサが検出した温度に基づいてECU5はステップS3で所定値との比較判定を行う。また、ステップS3で用いる所定値は、電池セル40の温度の閾値(約53℃)よりも低い値に設定されている。例えば、この所定値は、約30〜40℃の範囲に設定することができる。
具体的には、ステップS3の所定値は、ラジエータ104の体格と、電動ポンプ101の吐出流量との関係により設定することができる。例えば、ラジエータ104の体格が大きく、かつ電動ポンプ101の吐出流量が多い場合には、この所定値を約40℃に設定する。また、ラジエータ104の体格が中型、かつ電動ポンプ101の吐出流量が中量の場合には、この所定値を約35℃に設定する。また、ラジエータ104の体格が小さく、かつ電動ポンプ101の吐出流量が少ない場合には、この所定値を30℃に設定する。このように、ラジエータ104の放熱能力に応じて、ステップS3の判定に用いる所定値を設定することができる。
バッテリ4のケース内における冷却液の温度が所定値よりも高い場合(ステップS3:Yes)、この制御ルーチンはステップS2にリターンする。ECU5は、充電準備状態においてバッテリ4内の冷却液の温度が所定値を超えている場合には、ステップS2を実施して、充電開始前に冷却を行うプレクールを実施する。このプレクールは、バッテリ4内の冷却液の温度が所定値以下になるまで継続される。
プレクールの開始前、バッテリ4は自然対流の冷却液によって冷却されている状態であるため、バッテリ4のケース内における冷却液の温度はケース入口側(上流側)とケース出口側(下流側)とでほぼ同じ温度になっている。そして、プレクールを開始すると、冷却液がバッテリ4を通過するため、バッテリ4は強制対流の冷却液によって冷却される状態に移行する。また、プレクールを開始後は、ラジエータ104で冷却された冷却液がバッテリ4に供給されるので、バッテリ4のケース入口付近における冷却液の温度は低く、バッテリ4のケース出口付近における冷却液の温度は高くなり、温度差が生じる。この温度差は電池セル40の冷却に伴い縮まるため、プレクールを継続することにより縮まる。そして、バッテリ4のケース内における冷却液の温度が、ステップS3の所定値以下に低下するまで、プレクールを継続する。このプレクールの実施時間は数分である。例えば、外気温が20℃の環境下でプレクールを実施した場合、バッテリ4のケース出口付近における冷却液の温度が所定値以下になるまでの実施時間は約3分である。また、プレクールの実施時間は外気温に応じて変化する。外気温が高い場合にはプレクールの実施時間は長くなり、外気温が低い場合にはプレクールの実施時間は短くなる。
バッテリ4のケース内における冷却液の温度が所定値以下である場合(ステップS3:No)、ECU5は、外部電源からバッテリ4への充電を開始する(ステップS4)。ステップS4では、車両Ve側で充電口からバッテリ4を経由して充電口に戻るように電流が流れる。この充電は充電規格の種類を問わない。いわゆる普通充電や急速充電などが含まれる。
また、外部電源からの充電中、ECU5は、冷却回路100の第2回路120が流通可能になるよう切替弁102を制御し、かつ電動ファン108および電動ポンプ101を作動させる(ステップS5)。ステップS5では、上述した図5に示すように、バッテリ4側の第2回路120のみに冷却液が流通するように制御される。このステップS5では、ステップS2で開始した冷却制御を継続する。すなわち、ステップS2は充電開始前のプレクールとなり、ステップS5は充電中の本冷却となる。ステップS2のプレクール時はバッテリ4に充電電流は流れていない状態であるが、ステップS5の本冷却時には、バッテリ4に充電電流が流れている状態となる。
ECU5は、外部電源からの充電が完了した否かを判定する(ステップS6)。ステップS6では、充電口から充電プラグが取り外されたか否かが判定される。ECU5は外部電源との接続が解除されたか否かを判断する。また、ステップ6では、充電完了として、外部電源からバッテリ4への通電が終了したか否かを判定してもよい。
外部電源からの充電が完了していない場合(ステップS6:No)、この制御ルーチンはステップS5にリターンする。ECU5は充電が完了するまで、ステップS5による冷却制御を継続する。
外部電源からの充電が完了した場合(ステップS6:Yes)、ECU5は、冷却回路100の第1回路110が流通可能になるよう切替弁102を制御し、かつ電動ファン108および電動ポンプ101を停止させる(ステップS7)。ステップS7では、第1回路110を流通可能にするが、電動ポンプ101が停止するので、冷却液は第1回路110を流れない。ステップS7を実施することにより、バッテリ4の冷却状態が、強制対流での冷却から自然対流での冷却に移行する。ステップS7を実施すると、この制御ルーチンは終了する。
以上説明した通り、第1実施形態の冷却装置1によれば、車両Veの状態に応じて、バッテリ4とPCU3とのそれぞれを効率的に冷却することができる。電気絶縁性が高い冷却液により電池セル40を直接冷却でき、かつ電池セル40を液没化することによって、走行中のバッテリ4の発熱に対しては、冷却液を流さない自然対流での冷却により必要量の放熱が可能になる。つまり、走行中は、バッテリ4に冷却液を流さずに、発熱の大きいPCU3およびモータ2が配置された第1回路110のみに冷却液を流すことができる。そのため、走行中は、PCU3およびモータ2の冷却に、冷却液とラジエータ104での放熱とを集中できるので、PCU3およびモータ2の冷却性が向上する。これにより、PCU3のパワー半導体の損失低減と、モータ2の銅損低減とが見込める。さらに、走行中はバッテリ4のために電動ポンプ101を作動させる必要がないため、走行モードでの電費が向上する。
また、充電中、特に急速充電中はバッテリ4の発熱が大きくなるものの、モジュールケース42内の冷却液を自然対流から強制対流に切り替えることによって、バッテリ4の冷却性を満たすことができる。さらに、充電中はPCU3およびモータ2が作動しないため、PCU3およびモータ2での発熱がない。そのため、充電中はバッテリ4側の第2回路120のみに冷却液を流すことができる。
また、冷却回路100では、ラジエータ104の出口側の配管(経路)を簡素化できるため、配管を削減もしくは短縮することができる。これにより、冷却回路100の構造を簡素化できるとともに、冷却要素の低コスト化を図れる。
また、冷却装置1によれば、冷却に必要な冷却液の流量を低減することができるため、電動ポンプ101の容量を小さくすることが可能になる。さらに、従来構成として、電池冷却のために常に電池用の電動ポンプを作動させていないといけない構成と比較して、電動ポンプの個数を削減することが可能である。これにより、冷却回路100の構造を簡素化できるとともに、冷却要素の低コスト化を図れる。
なお、上述した第1実施形態の変形例を構成することができる。まず、第1実施形態の変形例として、ラジエータ104の代わりに、チラーが設けることができる。チラーの場合、電動ファン108は不要である。このチラーは、合流油路106と吸入油路107との間に配置され、冷凍サイクルの冷媒と冷却回路100の冷却液との間で熱交換を行う熱交換器である。そのため、ECU5は、電動ファン108を作動させる代わりに、冷凍サイクルを作動させる。これにより、チラーに冷凍サイクルの冷媒が流通し、冷凍サイクルの冷媒によって冷却回路100の冷却液を冷却することができる。
また、別の変形例として、バッテリ4での液没構造を変更することが可能である。バッテリ4での冷却液による液没について、熱容量を大きくするためにモジュールケース42を大きく構成することができる。例えば、図7に示すように、別の変形例では、複数のバッテリモジュール41が1つのモジュールケース42に収容された液没構造を有する。図7に示す例では、四つのバッテリモジュール41を収容する第1モジュールケース42Aと、六つのバッテリモジュール41を収容する第2モジュールケース42Bと、を有する。第1モジュールケース42Aは上流側に配置される。第2モジュールケース42Bは下流側に配置される。そして、第1モジュールケース42Aの流出口が第2モジュールケース42Bの流入口に接続される。これにより、冷却液は、第1および第2モジュールケース42A,42B内を対角に流れる。
また、さらに別の変形例として、図6のステップS1では、充電接続が完了したか否かを判定する代わりに、ECU5は、車両Veが外部電源からの充電準備状態であるか否かを判定するように構成されてもよい。充電準備状態には、車両Veの充電口が開いたことを検出した場合や、車両Veの充電口に充電プラグが接続されたことを検出した場合が含まれる。
また、別の変形例として、切替弁102の代わりに、任意の流量に配分することができる流量調整弁を配置した冷却回路100であってもよい。流量調整弁は、第1回路110と第2回路120との分岐点に配置され、第1回路110を流れる冷却液の流量と第2回路120を流れる冷却液の流量とを任意の流量に配分する弁である。つまり、流量調整弁は流量制御手段である。この流量調整弁によれば、第1回路110と第2回路120との両方に冷却液を流通させることができる。さらに、この流量調整弁はECU5によって制御されるものである。ECU5は流量調整弁の流量制御を実行することによって、第1回路110内を流通する冷却液の流量を制御するとともに、第2回路120内を流通する冷却液の流量を制御する。例えば、ECU5は、走行時には、第1回路110および第2回路120に冷却液を流す状態で、第1回路110を流通する冷却液の流量が第2回路120を流通する冷却液の流量よりも多くなるように、電動ポンプ101および流量調整弁を制御することができる。また、ECU5は、外部電源からバッテリ4への充電中には、第1回路110および第2回路120に冷却液を流す状態で、第2回路120を流通する冷却液の流量が第1回路110を流通する冷却液の流量よりも多くなるように、電動ポンプ101および流量調整弁を制御することができる。また、ECU5は、充電準備状態である場合に、第1回路110および第2回路120に冷却液を流す状態で、第2回路120を流通する冷却液の流量が第1回路110を流通する冷却液の流量よりも多くなるように、電動ポンプ101および流量調整弁を制御することができる。
また、さらに別の変形例として、ECU5は、充電準備状態および充電中のうちのいずれか一方の場合のみ、第2回路120を流通する冷却液の流量が第1回路110を流通する冷却液の流量よりも多くなるように、電動ポンプ101および流量調整弁を制御することができる。つまり、上述した第1実施形態では充電準備状態と充電中との両方の場合において第2回路120に冷却液を流していたが、本発明はこれに限定されない。例えば、充電中である場合には電動ポンプ101を駆動して、充電準備状態である場合には電動ポンプ101を停止させることができる。この場合も、流量調整手段は切替弁102と流量調整弁とのどちらであってもよい。
(第2実施形態)
図8は、第2実施形態における車両の冷却装置の概略構成を示す模式図である。なお、第2実施形態の説明では、第1実施形態と同様の構成については説明を省略し、その参照符号を引用する。
図8に示すように、第2実施形態の冷却装置1Aでは、冷却回路100Aの第2回路120Aが、熱交換器109を含んで構成されている。熱交換器109は、第2回路120内で、切替弁102とバッテリ4との間に設けられている。この熱交換器109は、第2回路120Aを流れる冷却液と冷凍サイクルの冷媒との間で熱交換を行うチラーにより構成されている。なお、冷凍サイクルの詳細構成については図示を省略する。
具体的には、第2回路120Aは、電動ポンプ101から吐出された冷却液が、切替弁102から熱交換器109を経由してバッテリ4に流通するように構成されている。切替弁102の第2吐出口には、第3供給油路123が接続されている。
第3供給油路123は、切替弁102と熱交換器109との間の油路であり、切替弁102から第2回路120Aに流入した冷却液を熱交換器109に供給する油路である。切替弁102が第2回路120Aを流通可能に接続する状態では、電動ポンプ101が吐出した冷却液は切替弁102を通過して熱交換器109に供給される。その際、切替弁102は第3供給油路123から熱交換器109内に流入する冷却液の流量を制御することができる。
熱交換器109を構成するチラーは、エアコンの冷凍サイクルと繋がっている。そのため、冷凍サイクルが作動すると、熱交換器109の内部には、冷凍サイクルの冷媒が流通することになる。冷凍サイクルには、コンプレッサが設けられている。このコンプレッサが作動することによって、冷凍サイクルが作動し、冷凍サイクルの冷媒が熱交換器109に供給される。また、第2回路120Aにおいて、熱交換器109の流出口には、第4供給油路124が接続されている。
第4供給油路124は、熱交換器109とバッテリ4との間の油路であり、熱交換器109から流出した冷却液をバッテリ4に供給する油路である。第2回路120Aでは、熱交換器109で冷却された冷却液がバッテリ4に供給される。
図9は、走行状態における冷却回路の流通可能経路を示す模式図である。図9に示すように、走行状態では、第1回路110のみに冷却液が流通するため、第2回路120A側の熱交換器109での熱交換は不要である。ECU5は、走行中、冷凍サイクルのコンプレッサを停止して、熱交換器109での熱交換を停止することができる。これは、バッテリ4を冷却するために冷凍サイクルのコンプレッサを作動させる必要がないことを意味する。つまり、充電中に、運転手からのエアコン操作により、車室の冷房要求があった場合には、車室を冷房するために冷凍サイクルのコンプレッサを作動させることは可能である。
図10は、充電状態における冷却回路の流通可能経路を示す模式図である。図10に示すように、充電状態では、第2回路120Aのみに冷却液が流通するため、熱交換器109において冷却液と冷媒との間で熱交換を行うことが可能である。この場合、必ずしも熱交換器109での熱交換を行う必要はない。つまり、充電中に、所定の条件を満たした場合には、熱交換器109での熱交換を行うように構成されている。
熱交換器109で熱交換を行う場合、ECU5は、充電中に冷凍サイクルのコンプレッサを作動させる。この冷凍サイクルは車室の冷房用に構成されたものであるため、冷凍サイクルの冷媒の温度は第2回路120Aを流通する冷却液の温度よりも低い。そのため、熱交換器109で冷媒と冷却液とが熱交換すると、冷却液の熱が冷媒に移動し、冷却液が冷却される。また、第2回路120Aではバッテリ4の上流側に熱交換器109が配置されているため、充電中に第2回路120Aを冷却液が循環することにより、熱交換器109で冷却された冷却液をバッテリ4に供給でき、バッテリ4の冷却性能が向上する。
図11は、第2実施形態の冷却制御フローを示すフローチャートである。なお、図11に示す制御はECU5によって実行される。
図11に示すステップS11〜S13は、上述した図6のステップS1〜S3と同様の処理である。なお、第2実施形態では、上述したステップS3の所定値は、第1所定値として、ステップS13の判定処理に用いられる。
バッテリ4のケース内における冷却液の温度が第1所定値よりも高い場合(ステップS13:Yes)、ECU5は、外気温が第2所定値よりも高いか否かを判定する(ステップS14)。例えば、第2所定値は、35℃に設定されている。ステップS14で用いる第2所定値は、35℃前後の範囲に設定されてもよい。
外気温が第2所定値以下である場合(ステップS14:No)、この制御ルーチンはステップS12にリターンする。ECU5は、充電準備状態においてバッテリ4内の冷却液の温度が第1所定値を超えている場合、かつ外気温が第2所定値以下である場合には、ステップS12を実施して、充電開始前のプレクールを実施する。このプレクールは、熱交換器109での熱交換を伴わないものであり、バッテリ4内の冷却液の温度が第1所定値以下になるまで継続される。
外気温が第2所定値よりも高い場合(ステップS14:Yes)、ECU5は、冷凍サイクルを作動させる(ステップS15)。ステップS15では、冷凍サイクルを作動させて、熱交換器109に冷凍サイクルの冷媒を流す。第2所定値が35℃に設定されている場合、熱交換器109に流れる冷媒の温度は外気温よりも約20℃以上低く設定できる。
ステップS15を実施すると、この制御ルーチンはステップS12にリターンする。ECU5は、充電準備状態においてバッテリ4内の冷却液の温度が第1所定値を超えている場合、かつ外気温が第2所定値を超えている場合には、ステップS12とステップS15とを実施して、充電開始前のプレクールを実施する。このプレクールは、熱交換器109での熱交換を伴うものであり、バッテリ4内の冷却液の温度が第1所定値以下になるまで継続される。
バッテリ4のケース内における冷却液の温度が第1所定値以下である場合(ステップS13:No)、ECU5は、外部電源からバッテリ4への充電を開始する(ステップS16)。ステップS16は、上述した図6のステップS4と同様の処理である。
また、外部電源からの充電中、ECU5は、冷却回路100Aの第2回路120Aが流通可能になるように切替弁102を制御し、かつ冷凍サイクル、電動ファン108、および電動ポンプ101を作動させる(ステップS17)。ステップS17では、上述した図10に示すように、バッテリ4側の第2回路120Aのみに冷却液が流通するように制御される。ステップS17は本冷却である。プレクールとして、ステップS12のみを継続していた場合、ステップS17では、ECU5が冷凍サイクルを作動させる。一方、プレクールとして、ステップS12およびステップS15を継続していた場合、ステップS17では、ステップS15で開始した冷却制御を継続する。
ECU5は、外部電源からのバッテリ4への充電が完了した否かを判定する(ステップS18)。ステップS18は、上述した図6のステップS6と同様の処理である。
外部電源からの充電が完了した場合(ステップS18:Yes)、ECU5は、冷却回路100Aの第1回路110が流通可能になるよう切替弁102を制御し、かつ冷凍サイクル、電動ファン108、および電動ポンプ101を停止させる(ステップS19)。ステップS19では、第1回路110が流通可能になるが、電動ポンプ101が停止するので、冷却液は第1回路110を流れない。ステップS19を実施することにより、バッテリ4の冷却状態が、強制対流での冷却から自然対流での冷却に移行する。ステップS19を実施すると、この制御ルーチンは終了する。
以上説明した通り、第2実施形態によれば、第2回路120Aにおいてバッテリ4の上流側に熱交換器109を配置したので、熱交換器109に冷凍サイクルの冷媒を流通させることにより、熱交換器109で冷却された冷却液をバッテリ4に供給することができる。これにより、充電中、特に急速充電中のバッテリ4を効率的に冷却することができる。
また、外気温が高い場合でも、バッテリ4のケース内における冷却液の温度を早期に下げることができる。そのため、外気温が高い場合、プレクール時に熱交換器109による冷却液の冷却を行うことにより、バッテリ4内における冷却液の温度が第1所定値以下になるまでの冷却時間(プレクール実施時間)を短縮できる。これにより、外部電源からの充電開始までの時間を短縮することができる。
また、急速充電中は、バッテリ4での発熱に対して、熱交換器109とラジエータ104との両方で放熱することが可能であるため、バッテリ4の急激な温度上昇を抑制することができる。これにより、電池セル40の電解質にかかる熱負荷を低減でき、電池セル40の劣化を抑制することができる。そのため、バッテリ4の機能低下を抑制することができる。
なお、上述した第2実施形態についても、第1実施形態の変形例として上述した各種変形例の構成を適用することができる。
1,1A 冷却装置
2 モータ
3 パワーコントロールユニット(PCU)
4 バッテリ
5 制御装置(ECU)
40 電池セル
41 バッテリモジュール
42 モジュールケース
100,100A 冷却回路
101 電動ポンプ
102 切替弁
103 オイルクーラ
104 ラジエータ
105 吐出油路
106 合流油路
107 吸入油路
108 電動ファン
109 熱交換器
110 第1回路
111 第1供給油路
112 第2供給油路
113 第1接続油路
120,120A 第2回路
121,123 第3供給油路
122 第2接続油路
124 第4供給油路
P 合流点
Ve 車両

Claims (12)

  1. 外部電源から供給された電力を充電可能なバッテリと、
    前記バッテリからの電力により走行用の動力を出力するモータと、
    前記バッテリの直流電力を交流電力に変換して前記モータに供給するパワーコントロールユニットと、
    前記バッテリおよび前記パワーコントロールユニットを冷却するための冷却液が循環する冷却回路と、
    前記冷却回路に設けられ、冷却液を循環させる電動ポンプと、
    前記冷却回路に設けられ、冷却回路を循環する前記冷却液から放熱させる放熱器と、
    前記冷却回路を循環する冷却液の流量を制御する制御部と、
    を備える車両の冷却装置であって、
    前記冷却回路は、
    前記電動ポンプから吐出された冷却液が前記パワーコントロールユニットを経由して循環する第1回路と、
    前記第1回路に並列に接続され、前記電動ポンプから吐出された冷却液が前記パワーコントロールユニットを経由せずに前記バッテリを経由して循環する第2回路と、
    前記第1回路を流れる冷却液の流量と前記第2回路を流れる冷却液の流量との割合を制御する流量制御手段と、
    を有し、
    前記制御部は、前記外部電源の電力を前記バッテリに充電している充電中である場合、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くする
    ことを特徴とする車両の冷却装置。
  2. 前記バッテリは、複数の電池セルからなるバッテリモジュールと、前記バッテリモジュールを収容するモジュールケースと、を複数備え、
    各モジュールケースの内部では、前記バッテリモジュールが前記冷却液に液没し、かつ前記冷却液が前記電池セルとの間で直接熱交換を行い、
    前記モジュールケースは、該モジュールケースを上側から見た場合に、冷却液の流入口および冷却液の流出口が互いに対角位置の近傍に設けられた略直方体状を有する
    ことを特徴とする請求項1に記載の車両の冷却装置。
  3. 前記制御部は、前記モータが出力した動力により走行する走行時に、前記電動ポンプおよび前記流量制御手段を制御して、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量を、前記バッテリ側の前記第2回路を流通する冷却液の流量よりも多くする
    ことを特徴とする請求項1または2に記載の車両の冷却装置。
  4. 前記制御部は、前記外部電源から前記バッテリへの充電準備状態であることを検出した場合、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くする
    ことを特徴とする請求項1から3のうちのいずれか一項に記載の車両の冷却装置。
  5. 前記制御部は、前記充電準備状態であることを検出した場合、かつ前記バッテリの温度が所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記電動ポンプおよび前記流量制御手段を制御して、前記バッテリ側の前記第2回路を流通する冷却液の流量を、前記パワーコントロールユニット側の前記第1回路を流通する冷却液の流量よりも多くする
    ことを特徴とする請求項4に記載の車両の冷却装置。
  6. 前記第1回路には、前記モータを冷却するためのオイルと前記冷却液との間で熱交換を行うオイルクーラが設けられている
    ことを特徴とする請求項1から5のうちのいずれか一項に記載の車両の冷却装置。
  7. 前記放熱器に冷却風を送る電動ファン、をさらに備え、
    前記制御部は、前記充電中である場合に、前記電動ファンを作動させ、前記電動ファンによる冷却風で前記放熱器を冷却する
    ことを特徴とする請求項1から6のうちのいずれか一項に記載の車両の冷却装置。
  8. 前記第2回路は、前記流量制御手段と前記バッテリとの間に配置され、冷凍サイクルの冷媒と前記冷却液との間で熱交換を行う熱交換器、を有し、
    前記制御部は、前記充電中である場合に、前記冷凍サイクルを作動させ、前記熱交換器で前記冷却液と前記冷媒とを熱交換させることにより前記冷却液を冷却させる
    ことを特徴とする請求項1から7のうちのいずれか一項に記載の車両の冷却装置。
  9. 前記制御部は、前記外部電源から前記バッテリへの充電準備状態であることを検出した場合に、前記バッテリの温度が所定値を超える場合、かつ外気の温度が第2所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記冷凍サイクルを作動させ、前記熱交換器で前記冷却液と前記冷媒とを熱交換させることにより前記冷却液を冷却させる
    ことを特徴とする請求項8に記載の車両の冷却装置。
  10. 前記流量制御手段は、冷却液が流通可能な経路を前記第1回路または前記第2回路に切り替える切替弁であり、
    前記制御部は、前記充電中である場合に、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記バッテリ側の前記第2回路のみに冷却液が流通するように経路を切り替える
    ことを特徴とする請求項1から9のうちのいずれか一項に記載の車両の冷却装置。
  11. 前記制御部は、前記モータが出力した動力により走行する走行時に、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記パワーコントロールユニット側の前記第1回路のみに冷却液が流通するように経路を切り替える
    ことを特徴とする請求項10に記載の車両の冷却装置。
  12. 前記制御部は、前記外部電源から前記バッテリへの充電準備状態であることを検出した場合、かつ前記バッテリの温度が所定値を超える場合には、前記バッテリの温度が前記所定値以下になるまで、前記切替弁を制御して、前記第1回路と前記第2回路とのうち、前記バッテリ側の前記第2回路のみに冷却液を流通させる
    ことを特徴とする請求項10または11に記載の車両の冷却装置。
JP2019117849A 2019-06-25 2019-06-25 車両の冷却装置 Active JP7222321B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019117849A JP7222321B2 (ja) 2019-06-25 2019-06-25 車両の冷却装置
US16/907,311 US11518273B2 (en) 2019-06-25 2020-06-22 Cooling device for vehicle
CN202010592348.XA CN112124150B (zh) 2019-06-25 2020-06-24 车辆的冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117849A JP7222321B2 (ja) 2019-06-25 2019-06-25 車両の冷却装置

Publications (2)

Publication Number Publication Date
JP2021005927A true JP2021005927A (ja) 2021-01-14
JP7222321B2 JP7222321B2 (ja) 2023-02-15

Family

ID=73850207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117849A Active JP7222321B2 (ja) 2019-06-25 2019-06-25 車両の冷却装置

Country Status (3)

Country Link
US (1) US11518273B2 (ja)
JP (1) JP7222321B2 (ja)
CN (1) CN112124150B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523487B2 (ja) 2022-03-31 2024-07-26 本田技研工業株式会社 温調装置及び車両
WO2024185538A1 (ja) * 2023-03-03 2024-09-12 株式会社デンソー 冷凍サイクル装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021102541B4 (de) 2021-02-04 2022-08-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Konditionierung eines elektrischen Energiespeichers eines Kraftfahrzeugs
CN113442701A (zh) * 2021-06-29 2021-09-28 东风汽车集团股份有限公司 一种适用于电动汽车的液冷控制方法及系统
CN114267907B (zh) * 2021-12-24 2023-10-13 华北电力大学 一种电池储能的热安全管理系统、控制方法及其应用
WO2023163976A1 (en) * 2022-02-24 2023-08-31 Tesla, Inc. Passive fluid flow controlling device and system
CN115458828A (zh) * 2022-08-10 2022-12-09 北京罗克维尔斯科技有限公司 车辆动力电池的冷却方法、装置、电子设备及车辆
DE102022210733A1 (de) 2022-10-12 2024-04-18 Volkswagen Aktiengesellschaft Thermisch optimiertes Verfahren zum Durchführen eines Ladevorgangs einer fahrzeugseitigen Batterie

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064651A (ja) * 2008-09-11 2010-03-25 Fuji Heavy Ind Ltd 車両用モータ駆動系の温調制御装置
JP2011121551A (ja) * 2009-12-14 2011-06-23 Toyota Motor Corp 車両の熱制御装置
JP2011182585A (ja) * 2010-03-02 2011-09-15 Honda Motor Co Ltd 充電制御装置および充電制御装置が搭載された車両
JP2012093047A (ja) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp 冷却システム
JP2014073802A (ja) * 2012-10-05 2014-04-24 Toyota Motor Corp 電気自動車用の冷却システム
JP2015116872A (ja) * 2013-12-17 2015-06-25 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両の暖機装置
JP2015179609A (ja) * 2014-03-19 2015-10-08 トヨタ自動車株式会社 電池温度調節装置
JP2016137773A (ja) * 2015-01-26 2016-08-04 カルソニックカンセイ株式会社 冷却水循環装置
JP2019029329A (ja) * 2017-10-19 2019-02-21 トヨタ自動車株式会社 電池冷却システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415847A (en) * 1981-08-07 1983-11-15 Energy Development Associates, Inc. Method and apparatus for supplying cooling liquid to a storage battery
ATE239316T1 (de) * 1998-01-26 2003-05-15 Siemens Ag Kühlsystem und verfahren zur kühlung eines generators
JP2002352866A (ja) 2001-05-28 2002-12-06 Honda Motor Co Ltd 電気自動車のバッテリ冷却装置
JP2005129359A (ja) 2003-10-23 2005-05-19 Matsushita Electric Works Ltd 充電装置
JP4715708B2 (ja) * 2006-10-03 2011-07-06 トヨタ自動車株式会社 電動車両および車両充電システム
JP4665911B2 (ja) 2007-02-07 2011-04-06 トヨタ自動車株式会社 冷却システム
US9290101B2 (en) * 2010-11-22 2016-03-22 Honda Motor Co., Ltd. Power control unit for electric vehicle with converters cooled by surfaces of a cooling unit
US20130343105A1 (en) * 2011-03-16 2013-12-26 Toyota Jidosha Kabushiki Kaisha Inverter overheating protection control apparatus and inverter overheating protection control method
JP2015123922A (ja) 2013-12-27 2015-07-06 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両のバッテリ冷却装置
EP3446909B1 (en) * 2017-07-27 2020-08-19 Toyota Jidosha Kabushiki Kaisha Battery cooling system
US20190047429A1 (en) * 2017-08-11 2019-02-14 Valvoline Licensing And Intellectual Property Llc System and Method for Rapid Charge Battery Cooling Station
KR102518184B1 (ko) * 2017-11-21 2023-04-07 현대자동차주식회사 차량용 고전압배터리의 냉난방시스템
JP7027910B2 (ja) * 2018-01-25 2022-03-02 トヨタ自動車株式会社 電動車両
JP7163785B2 (ja) * 2019-01-17 2022-11-01 トヨタ自動車株式会社 車両および車両の制御方法
JP7111082B2 (ja) * 2019-09-30 2022-08-02 トヨタ自動車株式会社 冷却システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064651A (ja) * 2008-09-11 2010-03-25 Fuji Heavy Ind Ltd 車両用モータ駆動系の温調制御装置
JP2011121551A (ja) * 2009-12-14 2011-06-23 Toyota Motor Corp 車両の熱制御装置
JP2011182585A (ja) * 2010-03-02 2011-09-15 Honda Motor Co Ltd 充電制御装置および充電制御装置が搭載された車両
JP2012093047A (ja) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp 冷却システム
JP2014073802A (ja) * 2012-10-05 2014-04-24 Toyota Motor Corp 電気自動車用の冷却システム
JP2015116872A (ja) * 2013-12-17 2015-06-25 ダイムラー・アクチェンゲゼルシャフトDaimler AG ハイブリッド車両の暖機装置
JP2015179609A (ja) * 2014-03-19 2015-10-08 トヨタ自動車株式会社 電池温度調節装置
JP2016137773A (ja) * 2015-01-26 2016-08-04 カルソニックカンセイ株式会社 冷却水循環装置
JP2019029329A (ja) * 2017-10-19 2019-02-21 トヨタ自動車株式会社 電池冷却システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7523487B2 (ja) 2022-03-31 2024-07-26 本田技研工業株式会社 温調装置及び車両
WO2024185538A1 (ja) * 2023-03-03 2024-09-12 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
JP7222321B2 (ja) 2023-02-15
US11518273B2 (en) 2022-12-06
CN112124150B (zh) 2023-10-27
US20200406783A1 (en) 2020-12-31
CN112124150A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP7222321B2 (ja) 車両の冷却装置
US10150383B2 (en) EV adaptive thermal management system optimized to minimize power consumption
CN105522931B (zh) 电动交通工具多模式热管理系统
US9533544B2 (en) EV multi-mode thermal management system
US9758010B2 (en) EV multi mode thermal management system
US9511645B2 (en) EV multi-mode thermal management system
US9758012B2 (en) EV multi-mode thermal management system
US9758011B2 (en) EV multi-mode thermal management system
US9731578B2 (en) EV multi-mode thermal management system
US11075417B2 (en) Battery cooling control system
US9731576B2 (en) EV multi-mode thermal management system
US11342603B2 (en) Thermal management of traction battery based on electric current of traction battery
US20160107504A1 (en) EV Multi-Mode Thermal Management System
US20100300646A1 (en) Vehicle battery cooling device
CN111284365B (zh) 用于环保车辆的冷却系统
JP6997884B2 (ja) 車両
US20190092186A1 (en) Vehicular cooling system
EP3915814A1 (en) Vehicle thermal management system and vehicle
JP2012178930A (ja) バッテリの充電制御装置
US20220085435A1 (en) Vehicle
CN111619337A (zh) 电动车辆的冷却系统
US11888139B2 (en) Temperature adjustment circuit
JP2021035214A (ja) 車両
JP2021013287A (ja) 車両用冷却装置の制御装置
JP2019064381A (ja) 車両用冷却回路の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R151 Written notification of patent or utility model registration

Ref document number: 7222321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151