JP2021003299A - 血中酸素飽和度の測定方法 - Google Patents

血中酸素飽和度の測定方法 Download PDF

Info

Publication number
JP2021003299A
JP2021003299A JP2019118227A JP2019118227A JP2021003299A JP 2021003299 A JP2021003299 A JP 2021003299A JP 2019118227 A JP2019118227 A JP 2019118227A JP 2019118227 A JP2019118227 A JP 2019118227A JP 2021003299 A JP2021003299 A JP 2021003299A
Authority
JP
Japan
Prior art keywords
oxygen saturation
light
intensity
wavelength
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019118227A
Other languages
English (en)
Inventor
野川 雅道
Masamichi Nogawa
雅道 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Electric Co Ltd
Original Assignee
Phoenix Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Electric Co Ltd filed Critical Phoenix Electric Co Ltd
Priority to JP2019118227A priority Critical patent/JP2021003299A/ja
Priority to EP20180702.1A priority patent/EP3756545B1/en
Priority to US16/908,064 priority patent/US20200405205A1/en
Priority to CN202010580539.4A priority patent/CN112137624A/zh
Priority to AU2020204273A priority patent/AU2020204273A1/en
Publication of JP2021003299A publication Critical patent/JP2021003299A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】予め設定した校正値を用いる必要のない血中酸素飽和度の測定方法を提供する。【解決手段】複数の波長光を含む放射光を人体の所定の部位に放射し、前記部位を透過あるいは反射してきた前記放射光に含まれる前記各波長光の強度を分光器で測定し、前記各波長光における、血管が拡張して光路長が最大のときの強度Id、および、血管が収縮して光路長が最小のときの強度Isに基づいて、基準波長における拍動成分吸光度に対する、他の各波長における同吸光度の測定比を算出するとともに、パラメータに初期値を与えたうえで基準波長における拍動成分吸光度に対する他の各波長における同吸光度の理論比を算出し、理論比と測定比とが一致するように、最適化アルゴリズムを用いて前記パラメータの数値を決定し、前記強度IdおよびIsに基づいて前記血中酸素飽和度を算出する。【選択図】図1

Description

本発明は、非侵襲的に人の血中酸素飽和度を測定する方法に関する。
従前より、人の体を傷つけることなく(非侵襲的に)血中の酸素飽和度を測定する方法が開発されている。例えば、特許文献1には、光入射位置および光検出位置を各一つのみとし、酸素飽和度を精度良く算出することができる酸素飽和度の測定方法が開示されている。
上述した特許文献1に限らず、光を用いた血中の酸素飽和度は、例えば、以下のような方法で測定されている。なお、光を用いて動脈血中の酸素飽和度を測定する器具をパルスオキシメータという。
図2に示すように、酸素と結合した酸素化ヘモグロビン(HbO2)の分光吸収係数と、酸素を放出した脱酸素化ヘモグロビン(Hb)の分光吸収係数とを比較すると、赤色光(可視光)付近においては脱酸素化ヘモグロビンの方が光をよく吸収し、赤外光付近においては酸素化ヘモグロビンの方が光の吸収がよい。
酸素飽和度は、血液中の酸素化ヘモグロビンの濃度と脱酸素化ヘモグロビンの濃度から以下の式を用いて算出される。
酸素飽和度=「酸素化ヘモグロビン濃度」÷「総ヘモグロビン濃度」×100(%)
なお、「総ヘモグロビン濃度」は、酸素化ヘモグロビン濃度と脱酸素化ヘモグロビン濃度との合計にほぼ等しい値である。
なお、パルスオキシメータを用いて測定した酸素飽和度を経皮的動脈血酸素飽和度(SpO2)といい、動脈血を採取して測った酸素飽和度を動脈血酸素飽和度(SaO2)といい、静脈血中の酸素飽和度を静脈血酸素飽和度(SvO2)という。
パルスオキシメータによる血中の酸素飽和度の測定では、特定の波長の光を照射し、反射してくる光の強度を測定する。動脈血は大きく脈動していることから、図3に示すように、測定される光の強度も周期的に増減を繰り返している。血管が拡張することによって光路長が最大となったときの光の強度をId、血管が収縮することによって光路長が最小となったときの光の強度をIsとする。
ここで、吸光度の関係をLambert-Beer則に適用することにより、組織への入射光I0と特定の波長λにおける検出光(測定光)Iとの間で以下の関係式が成り立つ。なお、本明細書全体を通して「吸光度」とは、ある物体を光が通った際に当該光の強度が弱まる程度を示す無次元量である。
ODλ=log(Iλ 0/Iλ)=μλL
OD:吸光度
L:光路長
μ:組織の吸収係数
次に、上述したIdおよびIsを用いることにより、以下の式により、動脈成分のみが関係する吸光度ΔODを求める。これにより、入射光I0の要素をキャンセルできる。
ΔOD=log(Iλ d/Iλ 0)−log(Iλ s/Iλ 0)=log(Iλ d/Iλ s)=μλ aΔL
a:動脈血
d:拡張期(diastole)
s:収縮期(systole)
ΔL:拍動による光路長の変化
そして、2種類の波長の光(λ1およびλ2)についてそれぞれのΔODを算出して比(Ratio)を求める。これにより、拍動による光路長さの変化(ΔL)をキャンセルできる。
Ratio=ΔODλ1/ΔODλ2=log(Iλ1 d/Iλ1 s)/log(Iλ2 d/Iλ2 s
=μλ1 aΔL/μλ2 aΔL=μλ1 a/μλ2 a
最後に、採取した血液を用いて予め測定・計算しておいた校正値AおよびBを含む下記計算式を用いることにより、動脈血酸素飽和度(SaO2)を算出することができる。
SaO2=A+B×Ratio
特開2014−117503号公報
しかしながら、上述した従来の血中酸素飽和度の測定方法では、予め採取しておいた血液を用いて校正値AおよびBを測定・計算しておく必要があり、かつ、個々人によって校正値AおよびBの値が少しずつ異なっていることから、予め測定・計算しておいた別人の校正値AおよびBを使用すると、真の酸素飽和度とは若干ずれた数値が算出されてしまうという問題があった。
本発明は、前述した問題に鑑みてなされたものであり、その目的は、予め測定・計算しておいた校正値を用いる必要のない血中酸素飽和度の測定方法を提供することにある。
本発明の一局面によれば、
複数の波長光を含む放射光を放射する光源からの前記放射光を人体の所定の部位に放射し、前記部位を透過あるいは反射してきた前記放射光に含まれる前記各波長光の強度を分光器で測定し、
前記各波長光における、血管が拡張することによって光路長が最大となったときの強度Id、および、血管が収縮することによって光路長が最小となったときの強度Isに基づいて、基準波長における拍動成分吸光度に対する、他の各波長における拍動成分吸光度の測定比を算出するとともに、
血中酸素飽和度の算出に必要なパラメータに任意の初期値を与えたうえで、基準波長における拍動成分吸光度に対する他の各波長における拍動成分吸光度の理論比を算出し、
前記理論比と前記測定比とが一致するように、最適化アルゴリズムを用いて前記パラメータの数値を決定し、
然る後、前記強度Id、および、前記強度Isに基づいて前記血中酸素飽和度を算出する、
血中酸素飽和度の測定方法が提供される。
好適には、
前記理論比の算出には、光拡散方程式が用いられる。
好適には、
前記パラメータの数値の決定には、Nelder−Mead法が用いられる。
本発明によれば、人体から反射してきた複数の波長光における強度に基づいて算出した測定比が血中酸素飽和度の算出に必要なパラメータに任意の初期値を与えたうえで算出した理論比と一致するように、最適化アルゴリズムを用いて当該パラメータの数値を決定することによって血中酸素飽和度を測定することにより、予め設定しておいた校正値を用いる必要のない血中酸素飽和度の測定方法を提供することができた。
実施形態に係る測定装置10を示す概要図である。 酸素化ヘモグロビン(HbO2)の分光吸収係数と、酸素を放出した脱酸素化ヘモグロビン(Hb)の分光吸収係数を示すグラフである。 透過した脈派信号の時間的推移を示すグラフである。 基準波長λt(例えば、λ=700nm)における拍動成分吸光度に対する、他の各波長における拍動成分吸光度との測定比をプロットしたグラフの例である。 図4に係るグラフ上に、理論比による算出結果をプロットした状態を示すグラフの一例である。 最適化アルゴリズムを用いて理論比を測定比と一致させた状態を示すグラフの一例である。
(測定装置10の構造)
本実施形態に係る血中酸素飽和度の測定装置10は、図1に示すように、大略、光源12と、分光器14と、制御装置16とで構成されている。
光源12は、所定の波長を有する複数の波長光を含む放射光Lを人体の所定の部位(例えば、人体の指先や前額部、頸部、胸部など)に放射するものであり、例えばハロゲン電球が使用される。もちろん、ハロゲン電球に限定されるものではなく、発光ダイオードや有機EL等を使用してもよく、また、必要に応じて互いに異なる波長の波長光を放射する複数の光源12を使用してもよい。
分光器14は、光源12から放射された後、人体の所定の部位で反射してきた放射光Lを受け入れて、当該放射光Lに含まれる各波長光の強度を測定するものである。一般に、分光器14で強度を測定できる波長の範囲は決まっているので、光源12からの放射光Lに含まれる各波長光の波長の範囲に応じた適切なものを選択する必要がある。また、分光器14の分光方法には、プリズムを用いるものや、干渉計を用いるもの等いくつかの種類があるが、測定したい波長光の範囲に適したものであれば、どのような分光方法を用いてもよく、例えば、特開2003−275192に開示されているように「フォトダイオード」と「バンドパスフィルタ」とを組み合わせたものであってもよい。また、分光器14で、人体の所定の部位を透過してきた放射光Lを受け入れるようにしてもよい。
さらに、複数の分光器14を人体の所定の部位からそれぞれ異なる距離に配置してもよい。一般的に、光源12からの距離が短い位置に配置された分光器14では組織表面の情報が取得でき、光源12からの距離が長い位置に配置された分光器14では深部組織の情報が取得できるからである。長い距離から得られたデータから、短い距離から得られたデータを減算する等の処理を行うことにより、組織表面の影響を抑えて深部組織の情報を抽出し得る点で有効である。なお、複数の光源12を人体の所定の部位からそれぞれ異なる距離に配置しても同様の効果を得ることができる。
制御装置16は、分光器14で測定した各波長光の強度の信号を受け取り、各波長光の強度に基づいて血中酸素飽和度を算出する機能を有するものである。本実施形態に係る制御装置16は、例えば、送電部20と、受信部22と、制御部24と、電源部26と、表示部28とを備えている。
送電部20は、光源12に発光用の電力を送る役割を有しており、送られる電力の大きさは、制御部24によって制御されている。
受信部22は、分光器14から各波長光の強度を電気信号として受け取る役割を有しており、受け取った各波長光の強度データは、制御部24に送られる。
制御部24は、測定装置10全体を制御する役割を有しており、上述したように、送電部20から光源12に送る電力の大きさを決めるとともに、受信部22からの各波長光の強度データを受け取る。さらに、制御部24は、受け取った各波長光の強度データに基づいて、後述する手順で測定部位における血中酸素飽和度等を算出する。
電源部26は、制御部24に電力を送る役割を有しており、測定装置10の可搬性を高めるために蓄電池が採用されている。もちろん、電源部26は、外部からの電力を受けて蓄電するために必要な機構を備えている。
表示部28は、制御部24で算出した血中酸素飽和度等や測定装置10の操作に必要な各種情報を表示する役割を有している。表示部28には、液晶画面や有機EL画面等、公知のデバイスが使用される。
次に、制御部24における、血中酸素飽和度等の算出手順を順に説明する。
最初に、光源12から放射される放射光Lに含まれる各波長光における、血管が拡張することによって光路長が最大となったときの強度Id、および、血管が収縮することによって光路長が最小となったときの強度Isに基づいて、各波長における吸光度ΔODλ1,…,λi,…,λNを求める。
そして、いずれかの波長を基準波長λtとして設定し、当該基準波長λt(例えば、λ=700nm)における、動脈血だけでなく組織内の血液量や静脈血酸素飽和度を加味した吸光度である「拍動成分吸光度」に対する、他の各波長における拍動成分吸光度との測定比(Ratio)を算出する(なお、上述したパルスオキシメータでは動脈血のみが関係している)。これらをグラフ上にプロットした一例を図4に示す。
ここまでの計算により、波長ごとに異なる光強度や分光器14固有の分光感度の相違がキャンセルされる。また、血中酸素飽和度等を測定する個々人の脈波振幅変動の差がキャンセルされる。
次に、パラメータ(設計変数)である血液割合βおよび静脈血酸素飽和度SvO2について初期値として以下の数値を使用し、
血液と組織とを含めた全体における血液の比β=5(%)
動脈と静脈とを含めた全体における動脈の比α=30(%)
動脈拍動成分:30(%)
動脈血酸素飽和度SaO2=98(%)
静脈血酸素飽和度SvO2=90(%)
基準波長λtにおける拍動成分吸光度に対する他の各波長における拍動成分吸光度との理論比を、光拡散方程式を用いて算出する。このとき、理論比による算出結果をグラフ上にプロットすると、図5に示すように、先に算出しておいた測定比から乖離した状態になっている可能性が高い。
なお、理論比の算出については、上述した光拡散方程式に代えて、モンテカルロ法(MC)や放射輸送方程式(RTE: Radiative Transfer Equation)等を使用してもよいが、算出に要する時間の短い光拡散方程式を用いるのが好適である。また、光拡散方程式には、透過の解と、反射の解とがあるので、上述したように分光器14の配置位置に応じて使い分けるのが好適である。より厳密な計算結果を求める場合は、モンテカルロ法や放射輸送方程式が選択される。
然る後、この理論比によるプロットが測定比に一致するように(図6を参照)、例えばNelder−Mead法やDifferential evolution法といった最適化アルゴリズムを用いて血中酸素飽和度の算出に必要な上記パラメータの数値を決定する。
ここで、血中酸素飽和度の算出に必要なパラメータとしては、以下のようなものがある。
(1)散乱係数:(μsλ
(2)吸収係数:(μa Hbλ 脱酸素化ヘモグロビンの吸収係数
(μa HbO2λ 酸素化ヘモグロビンの吸収係数
(μa tλ 組織の吸収係数
(3−1)全体の吸収係数:
(μaλ=β(μa tλ+(1−β)(μabλ
(3−2)血液全体(動・静脈血)の吸収係数
(μabλ=α(μaaλ+(1−α)(μavλ
(3−3)動脈血の吸収係数
(μaaλ=SaO2(μa HbO2λ+(1−SaO2)(μa Hbλ
(3−4)静脈血の吸収係数
(μavλ=SvO2(μa HbO2λ+(1−SvO2)(μa Hbλ
(4)屈折率
n=1.4
(5)非等方性散乱パラメータ
g=0.9
(6)MC(モンテカルロ法)光子数(MCを用いる場合)
5000万個
(7)RTE(Radiative Transfer Equation:放射輸送方程式)離散化段階(RTEを用いる場合)
角度:6段階
空間:5段階
また、例えば、波長が650nmから820nmまでにおける約100個の波長光のデータを用いて計算する場合、目的関数fは以下のようになる。もちろん、波長光の数は特に限定されるものではなく、適切に選ぶことによって数個の波長光のみで計算してもよい。
Figure 2021003299
さらに、制約条件は以下の通りである。
0≦SvO2≦SaO2
0≦β
例えばNelder−Mead法を用いて、基準波長λtにおける比(Ratiot)との差(ΔRatio)が最小となるような各パラメータ(具体的には、α、β、SvO2、SaO2)を算出する。
これにより、血中酸素飽和度の測定装置10を使用した個々人の血液割合βが判る。
また、動脈血酸素飽和度SaO2および静脈血酸素飽和度SvO2の両方を算出することができる。
さらに、組織酸素飽和度StO2も算出することができる。
また、血液と組織とを含めた全体における血液の比βを継続的に測定し続けることにより、失血(出血)判定を行うことができる。
また、動脈血酸素飽和度SaO2および静脈血酸素飽和度SvO2の両方が算出できることを応用して、「組織酸素代謝量」や「組織酸素代謝率」を算出することもできるようになる。
組織酸素代謝量(VO2)は、以下の式で算出できる。
VO2 = q・k・[Hb]・(SaO2 - SvO2
q:血流量[ml/min/100g]
k:1.34 [ml/g] (ヘモグロビン1gあたりの酸素結合量)
[Hb]:ヘモグロビン濃度 [g/ml]
組織酸素代謝率(VO2/DO2)は以下の式で算出でき、例えば脳組織や筋組織の活性度評価などに用いることができる
VO2/DO2 = (q・k・[Hb]・(SaO2 - SvO2)) / (q・k・[Hb]・SaO2) = 1 - SaO2/SvO2
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10…測定装置、12…光源、14…分光器、16…制御装置
20…送電部、22…受信部、24…制御部、26…電源部、28…表示部

Claims (3)

  1. 複数の波長光を含む放射光を放射する光源からの前記放射光を人体の所定の部位に放射し、前記部位を透過あるいは反射してきた前記放射光に含まれる前記各波長光の強度を分光器で測定し、
    前記各波長光における、血管が拡張することによって光路長が最大となったときの強度Id、および、血管が収縮することによって光路長が最小となったときの強度Isに基づいて、基準波長における拍動成分吸光度に対する、他の各波長における拍動成分吸光度の測定比を算出するとともに、
    血中酸素飽和度の算出に必要なパラメータに任意の初期値を与えたうえで、基準波長における拍動成分吸光度に対する、他の各波長における拍動成分吸光度の理論比を算出し、
    前記理論比と前記測定比とが一致するように、最適化アルゴリズムを用いて前記パラメータの数値を決定し、
    然る後、前記強度Id、および、前記強度Isに基づいて前記血中酸素飽和度を算出する、
    血中酸素飽和度の測定方法。
  2. 前記理論比の算出には、光拡散方程式が用いられることを特徴とする
    請求項1に記載の測定方法。
  3. 前記パラメータの数値の決定には、Nelder−Mead法が用いられることを特徴とする
    請求項1または2に記載の測定方法。
JP2019118227A 2019-06-26 2019-06-26 血中酸素飽和度の測定方法 Pending JP2021003299A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019118227A JP2021003299A (ja) 2019-06-26 2019-06-26 血中酸素飽和度の測定方法
EP20180702.1A EP3756545B1 (en) 2019-06-26 2020-06-18 Method of measuring blood oxygen saturation
US16/908,064 US20200405205A1 (en) 2019-06-26 2020-06-22 Method for measuring blood oxygen saturation
CN202010580539.4A CN112137624A (zh) 2019-06-26 2020-06-23 血氧饱和度的测定方法
AU2020204273A AU2020204273A1 (en) 2019-06-26 2020-06-26 Method for measuring blood oxygen saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118227A JP2021003299A (ja) 2019-06-26 2019-06-26 血中酸素飽和度の測定方法

Publications (1)

Publication Number Publication Date
JP2021003299A true JP2021003299A (ja) 2021-01-14

Family

ID=71108424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118227A Pending JP2021003299A (ja) 2019-06-26 2019-06-26 血中酸素飽和度の測定方法

Country Status (5)

Country Link
US (1) US20200405205A1 (ja)
EP (1) EP3756545B1 (ja)
JP (1) JP2021003299A (ja)
CN (1) CN112137624A (ja)
AU (1) AU2020204273A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113940671B (zh) * 2021-10-15 2024-04-23 成都云卫康医疗科技有限公司 一种基于近红外光谱的深层组织血氧饱和度计算方法
CN114628029B (zh) * 2022-05-17 2022-08-12 南京海风医疗科技有限公司 基于HbR与SaO2的宫颈吸收系数评估方法及装置
CN116168842B (zh) * 2022-12-05 2023-08-08 之江实验室 一种用于血氧测定模型的训练数据集自动生成方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003275192A (ja) 2002-03-25 2003-09-30 Citizen Watch Co Ltd 血液分析装置
US8374665B2 (en) * 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
JP6125821B2 (ja) 2012-12-18 2017-05-10 浜松ホトニクス株式会社 酸素飽和度測定装置及び酸素飽和度算出方法
US10925525B2 (en) * 2017-08-18 2021-02-23 Canon U.S.A., Inc. Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor

Also Published As

Publication number Publication date
EP3756545B1 (en) 2021-07-21
EP3756545A1 (en) 2020-12-30
CN112137624A (zh) 2020-12-29
US20200405205A1 (en) 2020-12-31
AU2020204273A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
JP4465271B2 (ja) 対象組織内の血液酸素飽和度を非侵襲的に決定する装置
US6456862B2 (en) Method for non-invasive spectrophotometric blood oxygenation monitoring
JP5607358B2 (ja) 組織酸素化の測定
JP2010521266A (ja) 血液成分濃度の非侵襲連続測定法
JP2021003299A (ja) 血中酸素飽和度の測定方法
JP6276195B2 (ja) 血液中のヘモグロビン濃度を非侵襲的に測定するための方法、集成装置、センサ、及びコンピュータ・プログラム製品
JP2013544588A (ja) invivoにおける組織酸素化の判定
JP5527658B2 (ja) 散乱吸収体測定方法及び装置
US10925525B2 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
JP4361822B2 (ja) 目的物の成分濃度測定方法及び装置
US20140073900A1 (en) System and method for measuring cardiac output
JP4856477B2 (ja) 生体光計測装置
US11259721B2 (en) Method and device for detecting concentration of total hemoglobin in blood
EP3315943B1 (en) Scattering absorber measurement device and scattering absorber measurement method
JP6043276B2 (ja) 散乱吸収体測定装置及び散乱吸収体測定方法
JP6487930B2 (ja) 光音響画像化システムを較正する方法及び光音響画像化システム
EP3135198B1 (en) Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
Lychagov et al. Noninvasive Hemoglobin Measurements With Photoplethysmography in Wrist
McEwen et al. Noninvasive monitoring with strongly absorbed light
WO2019208561A1 (ja) 血液成分の血中濃度測定方法、血中濃度測定装置およびプログラム
JP4272024B2 (ja) 光生体計測装置
US20160029894A1 (en) Methods and system for characterizing an object
JP2022013565A (ja) 血中の特定物質濃度の測定方法、およびそれを用いた測定装置
Soyemi et al. Measuring tissue oxygenation
WO2014052040A2 (en) Noninvasive absolute oximetry of brain tissue