JP2021002555A - Powder magnetic core and manufacturing method of powder magnetic core - Google Patents

Powder magnetic core and manufacturing method of powder magnetic core Download PDF

Info

Publication number
JP2021002555A
JP2021002555A JP2019114557A JP2019114557A JP2021002555A JP 2021002555 A JP2021002555 A JP 2021002555A JP 2019114557 A JP2019114557 A JP 2019114557A JP 2019114557 A JP2019114557 A JP 2019114557A JP 2021002555 A JP2021002555 A JP 2021002555A
Authority
JP
Japan
Prior art keywords
powder
magnetic core
heat treatment
alloy powder
fesial alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019114557A
Other languages
Japanese (ja)
Other versions
JP7307603B2 (en
Inventor
泰雄 大島
Yasuo Oshima
泰雄 大島
功太 赤岩
Kota Akaiwa
功太 赤岩
洋 有間
Hiroshi Arima
洋 有間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019114557A priority Critical patent/JP7307603B2/en
Priority to CN202010427679.8A priority patent/CN112117076A/en
Publication of JP2021002555A publication Critical patent/JP2021002555A/en
Application granted granted Critical
Publication of JP7307603B2 publication Critical patent/JP7307603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a powder magnetic core and a manufacturing method of a powder magnetic core that can obtain excellent magnetic properties by reducing iron loss.SOLUTION: A powder magnetic core includes an FeSiAl alloy powder, and an insulating resin that coats the FeSiAl alloy powder, and when the total of the weight of the FeSiAl alloy powder and the weight of Fe2O3 is 100 wt.%, the weight ratio of Fe2O3 is 0.1 wt.% or more.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉磁心及び圧粉磁心の製造方法に関する。 The present invention relates to a dust core and a method for producing a powder core.

リアクトルは、ハイブリッド自動車、電気自動車や燃料電池車の駆動システム等をはじ
め、種々の用途で使用されている。このリアクトルのコアとして、例えば、圧粉磁心が使
用される。圧粉磁心は、軟磁性粉末とこの軟磁性粉末を覆う絶縁被膜とを加圧成形するこ
とにより形成される。
Reactors are used in various applications such as drive systems for hybrid vehicles, electric vehicles and fuel cell vehicles. As the core of this reactor, for example, a dust core is used. The dust core is formed by pressure molding the soft magnetic powder and the insulating film covering the soft magnetic powder.

圧粉磁心は、エネルギー交換効率の向上や低発熱などの要求から、エネルギー損失が小
さいという磁気特性が求められる。エネルギー損失に関する磁気特性とは、具体的には鉄
損(Pcv)である。鉄損(Pcv)は、ヒステリシス損失(Phv)と、渦電流損失(
Pev)の和で表される。
The dust core is required to have a magnetic characteristic of low energy loss in order to improve energy exchange efficiency and generate low heat. Specifically, the magnetic property related to energy loss is iron loss (Pcv). The iron loss (Pcv) is the hysteresis loss (Phv) and the eddy current loss (Phv).
It is represented by the sum of Pev).

特許第5027945号公報Japanese Patent No. 5027945

従来から、軟磁性粉末の粒子内に歪が発生すると、軟磁性粉末の保磁力が高まり、ヒステリシス損失が増加してしまうといわれている。そのため、軟磁性粉末の粒子内の歪みを除去し、保磁力を低下させるため、加圧成形後の成形体に対して、高温で熱処理を行い、歪みの除去によるヒステリシス損失の低減を図っていた。しかし、近年は、リアクトルの用途の多様化により、更なるヒステリシス損失の低減が要求されている。 Conventionally, it has been said that when strain occurs in the particles of the soft magnetic powder, the coercive force of the soft magnetic powder increases and the hysteresis loss increases. Therefore, in order to remove the strain in the particles of the soft magnetic powder and reduce the coercive force, the molded product after pressure molding is heat-treated at a high temperature to reduce the hysteresis loss due to the removal of the strain. .. However, in recent years, due to the diversification of reactor applications, further reduction of hysteresis loss is required.

本発明の目的は、鉄損の低減により、優れた磁気特性が得られる圧粉磁心及び圧粉磁心の製造方法を提供することにある。 An object of the present invention is to provide a powder magnetic core and a method for producing a powder magnetic core, which can obtain excellent magnetic properties by reducing iron loss.

本発明者は、鋭意研究の結果、上記の技術常識とは異なり、成形体における軟磁性粉末の一部を酸化処理することによって、軟磁性粉末に敢えて一定程度の歪みを生じさせることにより、ヒステリシス損失、ひいては鉄損の低減を図ることができるという知見を得た。 As a result of diligent research, the present inventor, unlike the above-mentioned common general technical knowledge, dared to cause a certain degree of strain in the soft magnetic powder by oxidizing a part of the soft magnetic powder in the molded product, thereby causing hysteresis. It was found that the loss and eventually the iron loss can be reduced.

本発明の圧粉磁心は、FeSiAl合金粉末と、前記FeSiAl合金粉末を被覆する絶縁樹脂とを含む圧粉磁心であって、前記FeSiAl合金粉末の重量とFeОの重量との合計を100wt%とした場合、FeОの重量の割合が、0.1wt%以上である。 The powder magnetic core of the present invention is a powder magnetic core containing a FeSiAl alloy powder and an insulating resin coating the FeSiAl alloy powder, and the total of the weight of the FeSiAl alloy powder and the weight of Fe 2 O 3 is 100 wt. When% is taken, the weight ratio of Fe 2 O 3 is 0.1 wt% or more.

また、本発明の圧粉磁心の製造方法は、FeSiAl合金粉末に絶縁樹脂を被覆する絶縁処理工程と、絶縁処理された前記FeSiAl合金粉末を成形する成形工程と、成形された前記FeSiAl合金粉末を酸化雰囲気中で熱処理する熱処理工程と、を含む。 Further, the method for producing a powder metallurgy of the present invention comprises an insulation treatment step of coating a FeSiAl alloy powder with an insulating resin, a molding step of molding the insulated FeSiAl alloy powder, and the molded FeSiAl alloy powder. It includes a heat treatment step of heat treatment in an oxidizing atmosphere.

本発明によれば、鉄損の低減により、優れた磁気特性が得られる圧粉磁心及び圧粉磁心の製造方法を提供することができる。 According to the present invention, it is possible to provide a powder magnetic core and a method for producing a powder magnetic core that can obtain excellent magnetic characteristics by reducing iron loss.

実施形態に係る圧粉磁心の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the dust core which concerns on embodiment. FeО層の割合と鉄損、ヒステリシス損失、渦電流損失の関係を示すグラフである。It is a graph which shows the relationship between the ratio of Fe 2 O 3 layers, iron loss, hysteresis loss, and eddy current loss. 雰囲気下での熱処理後の鉄損、ヒステリシス損失、渦電流損失と、N雰囲気下での熱処理後に大気中での熱処理を行った後の鉄損、ヒステリシス損失、渦電流損失を示すグラフである。Iron loss after the heat treatment under N 2 atmosphere, the hysteresis loss, the graph showing the eddy current loss, iron loss after the heat treatment in the air after heat treatment under N 2 atmosphere, hysteresis loss, eddy current loss Is.

本実施形態は、軟磁性粉末と、これを被覆する絶縁樹脂とを含む加圧成形体において、軟磁性粉末の一部に、酸化層が形成された圧粉磁心である。圧粉磁心は、例えば、リアクトルの磁性体として使用される。ここで、層とは、粉末の全部を覆う場合も一部を覆う場合も含む。 The present embodiment is a powder magnetic core in which an oxide layer is formed on a part of the soft magnetic powder in a pressure-molded body containing a soft magnetic powder and an insulating resin covering the soft magnetic powder. The dust core is used, for example, as a magnetic material of a reactor. Here, the layer includes the case of covering the entire powder and the case of covering a part of the powder.

[軟磁性粉末]
本実施形態で用いる軟磁性粉末は、鉄、ケイ素、アルミニウムを主成分とするFeSiAl合金粉末、いわゆるセンダスト合金粉末である。軟磁性粉末の平均粒子径(D50)は、例えば10μm以上、50μm以下とすると良く、好ましくは15μm以上、25μm以下である。なお、本明細書において「平均粒子径」とは、特に断りがない限り、D50、すなわちメジアン径を指すものとする。
[Soft magnetic powder]
The soft magnetic powder used in this embodiment is a FeSiAl alloy powder containing iron, silicon, and aluminum as main components, so-called sendust alloy powder. The average particle size (D50) of the soft magnetic powder is, for example, preferably 10 μm or more and 50 μm or less, preferably 15 μm or more and 25 μm or less. In the present specification, the "average particle size" refers to D50, that is, the median diameter, unless otherwise specified.

軟磁性粉末は、表面積が小さいものが好ましい。つまり、球形度が高いことが好ましい。表面積が小さいと、少ない酸素によって均一な酸化層が効率良く形成できるからである。また、表面積が小さくなると、軟磁性粉末同士の隙間が少なくなり、密度及び透磁率の向上を図ることができるからである。球形度が高いことを示す指標として、軟磁性粉末の円形度を用いる場合には、円形度が0.95以上であることが好ましい。さらに、円形度が0.98以上であると、より好ましい。 The soft magnetic powder preferably has a small surface area. That is, it is preferable that the degree of sphericity is high. This is because when the surface area is small, a uniform oxide layer can be efficiently formed with a small amount of oxygen. Further, when the surface area is reduced, the gaps between the soft magnetic powders are reduced, and the density and magnetic permeability can be improved. When the circularity of the soft magnetic powder is used as an index indicating that the sphericity is high, the circularity is preferably 0.95 or more. Further, it is more preferable that the circularity is 0.98 or more.

軟磁性粉末の製造方法は問わない。但し、上記のように球形度が高いことが好ましい。ガスアトマイズ法による軟磁性粉末は、ほぼ球状の粒子となる。したがって、ガスアトマイズ法により形成したガスアトマイズ粉は、加工せずそのまま使用することが可能である。 The method for producing the soft magnetic powder does not matter. However, it is preferable that the sphericity is high as described above. The soft magnetic powder produced by the gas atomization method becomes substantially spherical particles. Therefore, the gas atomizing powder formed by the gas atomizing method can be used as it is without processing.

また、粉砕法により作製された粉砕紛、水アトマイズ法により作製された水アトマイズ粉、水ガスアトマイズ法により作製された水ガスアトマイズ粉は、表面の粒子が不定形状でいびつであり、凹凸が多い。このため、これらの粉末を用いる場合には、粒子の平均円形度を向上させる加工を施すことが好ましい。この場合には、ボールミル、メカニカルアロイング、ジェットミル、アトライター又は表面改質装置を用いて表面の凹凸を均すことで、粒子の平均円形度を上昇させることができる。 Further, the pulverized powder produced by the pulverization method, the water atomizing powder produced by the water atomizing method, and the water gas atomizing powder produced by the water gas atomizing method have irregular surface particles and are distorted and have many irregularities. Therefore, when these powders are used, it is preferable to perform a process for improving the average circularity of the particles. In this case, the average circularity of the particles can be increased by smoothing the surface irregularities using a ball mill, mechanical alloying, jet mill, attritor or surface modifier.

[製造工程]
図1は、本実施形態の圧粉磁心の製造工程を示すフローチャートである。図1に示すように、本実施形態の圧粉磁心の製造工程は、(1)粉末熱処理工程、(2)絶縁処理工程、(3)潤滑剤混合工程、(4)成形工程、(5)熱処理工程を有する。
[Manufacturing process]
FIG. 1 is a flowchart showing a manufacturing process of the dust core of the present embodiment. As shown in FIG. 1, the powder magnetic core manufacturing steps of the present embodiment include (1) powder heat treatment step, (2) insulation treatment step, (3) lubricant mixing step, (4) molding step, and (5). It has a heat treatment process.

(1)粉末熱処理工程(ステップS01)
粉末熱処理工程は、軟磁性粉末を熱処理する工程である。つまり、FeSiAl合金粉末を熱処理することで、FeSiAl合金粉末の結晶構造を変化させる。
(1) Powder heat treatment step (step S01)
The powder heat treatment step is a step of heat-treating the soft magnetic powder. That is, the crystal structure of the FeSiAl alloy powder is changed by heat-treating the FeSiAl alloy powder.

具体的には、粉末熱処理を行う前のFeSiAl合金粉末の結晶構造は、bcc構造(体心立方格子構造)であり、規則的な構造であるDO構造と不規則構造を含む。そして、FeSiAl合金粉末を熱処理することで、不規則構造の割合を所望の値とすることができる。この不規則構造及びDO構造の割合は、リートベルト解析法によるX線回折によって算出することができる。不規則構造とDO構造の区別は、X線回折によって算出された格子定数によって判断することができる。 Specifically, the crystal structure of the FeSiAl alloy powder before the powder heat treatment is a bcc structure (body-centered cubic lattice structure), and includes a DO 3 structure and an irregular structure, which are regular structures. Then, by heat-treating the FeSiAl alloy powder, the ratio of the irregular structure can be set to a desired value. The ratio of the irregular structure and the DO 3 structure can be calculated by X-ray diffraction by the Rietveld analysis method. The distinction between the irregular structure and the DO 3 structure can be judged by the lattice constant calculated by X-ray diffraction.

粉末熱処理工程では、例えば、真空雰囲気や不活性ガス雰囲気である非酸化雰囲気又は大気雰囲気中で1〜6時間加熱する。不活性ガスとしては、HやNが挙げられる。熱処理温度としては、500℃以上、700℃以下が好ましい。熱処理温度をこの範囲にすることで、FeSiAl合金粉末の結晶構造に占める不規則構造の割合を14.6wt%以上、43.7wt%以下にすることができ、鉄損の低減を図ることができる。 In the powder heat treatment step, for example, heating is performed in a vacuum atmosphere, an inert gas atmosphere, a non-oxidizing atmosphere, or an air atmosphere for 1 to 6 hours. Examples of the inert gas include H 2 and N 2 . The heat treatment temperature is preferably 500 ° C. or higher and 700 ° C. or lower. By setting the heat treatment temperature within this range, the ratio of the irregular structure to the crystal structure of the FeSiAl alloy powder can be reduced to 14.6 wt% or more and 43.7 wt% or less, and iron loss can be reduced. ..

なお、FeSiAl合金粉末の保磁力は、0.43A/cm以上、1.81A/cm以下であることが好ましい。保磁力をこの範囲にすると、ヒステリシス損失の低減を図ることができる。 The coercive force of the FeSiAl alloy powder is preferably 0.43 A / cm or more and 1.81 A / cm or less. When the coercive force is set in this range, the hysteresis loss can be reduced.

(2)絶縁処理工程(ステップS02)
絶縁処理工程は、軟磁性粉末の表面に絶縁被膜を形成する工程である。つまり、絶縁処理工程は、軟磁性粉末に絶縁樹脂を混合して、乾燥後、篩通しすることにより行う。絶縁被膜としては、シリコーンオリゴマー、シリコーンレジン、シランカップリング剤などを用いる。これらのうち、シリコーンオリゴマー又はシランカップリング剤により第1層の絶縁層を形成し、シリコーンレジンにより第2層の絶縁層を形成することにより、2層の絶縁被膜を形成してもよい。以下、各材料についての工程を説明する。
(2) Insulation treatment step (step S02)
The insulation treatment step is a step of forming an insulating film on the surface of the soft magnetic powder. That is, the insulating treatment step is performed by mixing an insulating resin with the soft magnetic powder, drying the mixture, and sieving the mixture. As the insulating film, a silicone oligomer, a silicone resin, a silane coupling agent, or the like is used. Of these, a two-layer insulating film may be formed by forming an insulating layer of the first layer with a silicone oligomer or a silane coupling agent and forming an insulating layer of the second layer with a silicone resin. Hereinafter, the process for each material will be described.

(a)シリコーンオリゴマー混合工程
シリコーンオリゴマー混合工程は、シリコーンオリゴマーを混合して、熱処理を行ったFeSiAl合金粉末の表面を被覆する工程である。シリコーンオリゴマーは、アルコキシシリル基を有する。アルコキシシリル基は、メトキシ系、エトキシ系、メトキシ/エトキシ系のものが含まれる。アルコキシシリル基を有するシリコーンオリゴマーであれば、反応性官能基を有さないメチル系、メチルフェニル系のものや、アルコキシシリル基及び反応性官能基を有するエポキシ系、エポキシメチル系、メルカプト系、メルカプトメチル系、アクリルメチル系、メタクリルメチル系、ビニルフェニル系のもの等を用いることができる。特に、メチル系またはメチルフェニル系のシリコーンオリゴマーを用いることで厚く硬い絶縁層を形成することができる。
(A) Silicone oligomer mixing step The silicone oligomer mixing step is a step of mixing silicone oligomers and coating the surface of the heat-treated FeSiAl alloy powder. Silicone oligomers have an alkoxysilyl group. Alkoxysilyl groups include methoxy-based, ethoxy-based, and methoxy / ethoxy-based groups. If it is a silicone oligomer having an alkoxysilyl group, it is a methyl type or a methylphenyl type having no reactive functional group, or an epoxy type, an epoxymethyl type, a mercapto type or a mercapto having an alkoxysilyl group and a reactive functional group. Methyl-based, acrylic-methyl-based, methacryl-methyl-based, vinylphenyl-based, and the like can be used. In particular, a thick and hard insulating layer can be formed by using a methyl-based or methylphenyl-based silicone oligomer.

シリコーンオリゴマーの添加量は、軟磁性粉末に対して、0.1wt%以上、2.0wt%以下であることが好ましい。添加量が0.1wt%より少ないと直流重畳特性が悪化する場合がある。添加量が2.0wt%より多いと密度が低下することにより、初透磁率が低下するとともにヒステリシス損失が増加する場合がある。 The amount of the silicone oligomer added is preferably 0.1 wt% or more and 2.0 wt% or less with respect to the soft magnetic powder. If the amount added is less than 0.1 wt%, the DC superimposition characteristics may deteriorate. If the amount added is more than 2.0 wt%, the density may decrease, so that the initial magnetic permeability may decrease and the hysteresis loss may increase.

シリコーンオリゴマー層の乾燥温度は、25℃以上、200℃以下が好ましい。乾燥温度が25℃未満であると膜の形成が不完全となり、渦電流損失が高くなる場合があるためである。一方、乾燥温度が200℃を超えると、分解が進み被膜として形成され難くなり、成形体密度及び透磁率が低下する場合があるためである。乾燥時間は、数時間程度であり、例えば、1時間〜2時間程度とする。 The drying temperature of the silicone oligomer layer is preferably 25 ° C. or higher and 200 ° C. or lower. This is because if the drying temperature is less than 25 ° C., the film formation is incomplete and the eddy current loss may increase. On the other hand, if the drying temperature exceeds 200 ° C., decomposition proceeds and it becomes difficult to form a film, which may reduce the density and magnetic permeability of the molded product. The drying time is about several hours, for example, about 1 hour to 2 hours.

(b)シランカップリング剤混合工程
シランカップリング剤混合工程は、シランカップリング剤を混合して、熱処理を行ったFeSiAl合金粉末の表面を被覆する工程である。シランカップリング剤は、例えば、アミノシラン系、エポキシシラン系、イソシアヌレート系、エトキシシラン系、エメキシシラン系、メトキシシラン系を使用することができ、特に、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレートが良い。
(B) Silane Coupling Agent Mixing Step The silane coupling agent mixing step is a step of mixing the silane coupling agent and coating the surface of the heat-treated FeSiAl alloy powder. As the silane coupling agent, for example, aminosilane-based, epoxysilane-based, isocyanurate-based, ethoxysilane-based, emexisilane-based, and methoxysilane-based can be used, and in particular, 3-aminopropyltriethoxysilane and 3-glycid. Xipropyltrimethoxysilane and tris- (3-trimethoxysilylpropyl) isocyanurate are preferable.

シランカップリング剤の添加量としては、0.25wt%以上、1.0wt%以下が好ましい。シランカップリング剤の添加量をこの範囲にすることで、成形された圧粉磁心の密度の標準偏差、磁気特性、強度特性を向上させることができる。 The amount of the silane coupling agent added is preferably 0.25 wt% or more and 1.0 wt% or less. By setting the amount of the silane coupling agent added in this range, the standard deviation, magnetic characteristics, and strength characteristics of the density of the molded dust core can be improved.

シランカップリング剤の乾燥温度は、25℃以上、200℃以下とすることが好ましい。乾燥温度が25℃よりも低いと、溶剤が残留し被膜が不完全になる場合があるためである。一方、乾燥温度が200℃を超えると、分解が進み被膜として形成されなくなる場合があるためである。乾燥時間は、2時間程度である。 The drying temperature of the silane coupling agent is preferably 25 ° C. or higher and 200 ° C. or lower. This is because if the drying temperature is lower than 25 ° C., the solvent may remain and the film may be incomplete. On the other hand, if the drying temperature exceeds 200 ° C., decomposition may proceed and the film may not be formed. The drying time is about 2 hours.

(c)シリコーンレジン混合工程
シリコーンレジン混合工程では、シリコーンオリゴマー又はシランカップリング剤によって被覆されたFeSiAl合金粉末に対して、シリコーンレジンを所定量添加し、大気雰囲気中、所定の温度で乾燥させる工程である。シリコーンレジン混合工程により、シランカップリング剤による被膜の外側にシリコーンレジン層が形成される。
(C) Silicone Resin Mixing Step In the silicone resin mixing step, a predetermined amount of silicone resin is added to the FeSiAl alloy powder coated with a silicone oligomer or a silane coupling agent, and the mixture is dried in an air atmosphere at a predetermined temperature. Is. By the silicone resin mixing step, a silicone resin layer is formed on the outside of the coating film made of the silane coupling agent.

シリコーンレジンはシロキサン結合(Si−O−Si)を主骨格に持つ樹脂である。シリコーンレジンを用いることで可撓性に優れた被膜を形成することができる。シリコーンレジンは、メチル系、メチルフェニル系、プロピルフェニル系、エポキシ樹脂変性系、アルキッド樹脂変性系、ポリエステル樹脂変性系、ゴム系等を用いることができる。この中でも特に、メチルフェニル系のシリコーンレジンを用いた場合、加熱減量が少なく、耐熱性に優れたシリコーンレジン層を形成することができる。 Silicone resin is a resin having a siloxane bond (Si—O—Si) in its main skeleton. By using a silicone resin, a film having excellent flexibility can be formed. As the silicone resin, methyl type, methylphenyl type, propylphenyl type, epoxy resin modified type, alkyd resin modified type, polyester resin modified type, rubber type and the like can be used. Among these, in particular, when a methylphenyl-based silicone resin is used, it is possible to form a silicone resin layer having less heat loss and excellent heat resistance.

シリコーンレジンの添加量は、軟磁性粉末に対して、1.0wt%以上、3.0wt%以下であることが好ましい。添加量が1.0wt%より少ないと絶縁被膜として機能せず、渦電流損失が増加することにより磁気特性が低下する場合があるためである。添加量が3.0wt%より多いとコアが膨張することにより成形体の密度が低下し、透磁率が低下する場合があるためである。 The amount of the silicone resin added is preferably 1.0 wt% or more and 3.0 wt% or less with respect to the soft magnetic powder. This is because if the amount added is less than 1.0 wt%, it does not function as an insulating film, and the magnetic characteristics may deteriorate due to an increase in eddy current loss. This is because if the amount added is more than 3.0 wt%, the core expands and the density of the molded product decreases, which may reduce the magnetic permeability.

シリコーンレジンの乾燥温度は、100℃以上、200℃以下が好ましい。乾燥温度が100℃より低いと膜の形成が不完全となり、渦電流損失が高くなる場合があるためである。一方、乾燥温度200℃より高いと無機物となりバインダとしての役割を果たさず、保形成が悪くなり、成形体の密度及び透磁率が低下する場合があるためである。乾燥時間は、2時間程度である。 The drying temperature of the silicone resin is preferably 100 ° C. or higher and 200 ° C. or lower. This is because if the drying temperature is lower than 100 ° C., the film formation is incomplete and the eddy current loss may increase. On the other hand, if the drying temperature is higher than 200 ° C., it becomes an inorganic substance and does not play a role as a binder, the retention is deteriorated, and the density and magnetic permeability of the molded product may decrease. The drying time is about 2 hours.

(3)潤滑剤混合工程(ステップS03)
潤滑剤混合工程は、絶縁処理されたFeSiAl合金粉末に対して、潤滑剤を添加し、混合する工程である。本工程を経ることで、シリコーンレジン層の表面に潤滑剤が被覆される。軟磁性粉末に対して潤滑剤を添加することにより、軟磁性粉末同士の滑りを良くすることができるので、混合時の密度を向上させ成形密度を高くすることができる。さらに、成形時の上パンチの抜き圧低減、金型と粉末の接触によるコア壁面の縦筋の発生を防止することが可能となる。
(3) Lubricant mixing step (step S03)
The lubricant mixing step is a step of adding a lubricant to the insulated FeSiAl alloy powder and mixing the mixture. By going through this step, the surface of the silicone resin layer is coated with the lubricant. By adding a lubricant to the soft magnetic powder, the sliding between the soft magnetic powders can be improved, so that the density at the time of mixing can be improved and the molding density can be increased. Further, it is possible to reduce the withdrawal pressure of the upper punch during molding and prevent the generation of vertical streaks on the core wall surface due to the contact between the mold and the powder.

潤滑剤として、ステアリン酸及びその金属塩ならびにエチレンビスなどのワックスを用いる。例えば、エチレンビスステアルアミド、エチレンビスステアラマイド、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸アルミ、ステアリン酸亜鉛、及びこれらの混合物を用いることができる。潤滑剤の添加量は、軟磁性粉末に対して、0.1wt%以上、0.6wt%以下の程度であることが好ましい。 As the lubricant, stearic acid and its metal salt and wax such as ethylene bis are used. For example, ethylene bisstealamide, ethylene bisstealamide, calcium stearate, lithium stearate, aluminum stearate, zinc stearate, and mixtures thereof can be used. The amount of the lubricant added is preferably about 0.1 wt% or more and 0.6 wt% or less with respect to the soft magnetic powder.

(4)成形工程(ステップS04)
成形工程は、表面に絶縁被膜が形成された軟磁性粉末を加圧成形することにより、成形体を形成する工程である。成形時の圧力は10ton/cm以上、20ton/cm以下であり、平均で15ton/cm程度が好ましい。
(4) Molding step (step S04)
The molding step is a step of forming a molded body by pressure molding a soft magnetic powder having an insulating film formed on its surface. The pressure during molding is 10ton / cm 2 or more and 20ton / cm 2 or less, about 15 ton / cm 2 on average are preferred.

(5)熱処理工程(ステップS05)
熱処理工程は、成形工程を経た成形体に対して、酸化雰囲気中で熱処理を行う工程である。この熱処理は、焼鈍とも呼ばれる。この熱処理工程を経ることによって、圧粉磁心が作製される。酸化雰囲気中とは、酸素を含むガス中であり、大気中も含む。酸化雰囲気中で熱処理を行うことにより、絶縁層が形成された粉末の表面に、Fe(ヘマタイト)層を形成することができる。Fe層が形成されることにより、粉末内部に応力が発生し、わずかに歪みを発生させる。これにより、ヒステリシス損失の低減効果が得られる。これは、粉末の表面に酸化層ができると、粉末に応力がかかり、結晶の中の磁区の幅が狭まって、保磁力が下がっていることによると推測される。
(5) Heat treatment step (step S05)
The heat treatment step is a step of heat-treating a molded product that has undergone the molding step in an oxidizing atmosphere. This heat treatment is also called annealing. By going through this heat treatment step, a dust core is produced. The oxidative atmosphere is a gas containing oxygen, and also includes the atmosphere. By performing the heat treatment in an oxidizing atmosphere, a Fe 2 O 3 (hematite) layer can be formed on the surface of the powder on which the insulating layer is formed. By forming the Fe 2 O 3 layer, stress is generated inside the powder, and a slight strain is generated. As a result, the effect of reducing the hysteresis loss can be obtained. It is presumed that this is because when an oxide layer is formed on the surface of the powder, stress is applied to the powder, the width of the magnetic domain in the crystal is narrowed, and the coercive force is lowered.

圧粉磁心におけるFeSiAl合金粉末の重量とFeОの重量との合計を100wt%とした場合、FeОの重量の割合は、比較的少なくてもよく、過大にならないことが好ましい。例えば、FeОの重量の割合は0.1wt%以上であることが好ましい。また、FeОの重量の割合は0.79wt%以下であることが好ましい。熱処理の温度は600℃以上、900℃以下であることが好ましい。酸化雰囲気中の酸素量は、大気と同等であることが好ましい。 When the total of the weight of the FeSiAl alloy powder and the weight of Fe 2 O 3 in the powder magnetic core is 100 wt%, the ratio of the weight of Fe 2 O 3 may be relatively small and is preferably not excessive. For example, the weight ratio of Fe 2 O 3 is preferably 0.1 wt% or more. Further, the weight ratio of Fe 2 O 3 is preferably 0.79 wt% or less. The heat treatment temperature is preferably 600 ° C. or higher and 900 ° C. or lower. The amount of oxygen in the oxidizing atmosphere is preferably equal to that in the atmosphere.

大気中で熱処理を行うと、シリコーンレジンと酸素が早く反応してしまい、クラックの原因となる可能性がある。そこで、まず、一旦、窒素で大気をパージした窒素雰囲気下で第1の熱処理をして、シリコーンレジンを安定させておく。その後、大気中でさらに第2の熱処理をすることによりFe層をつくることもできる。これにより、クラックの発生を防止できる。 When heat treatment is performed in the air, the silicone resin reacts quickly with oxygen, which may cause cracks. Therefore, first, the silicone resin is stabilized by performing the first heat treatment in a nitrogen atmosphere in which the atmosphere is purged with nitrogen. Then, the Fe 2 O 3 layer can be formed by further performing a second heat treatment in the atmosphere. Thereby, the occurrence of cracks can be prevented.

[実施例]
(第1の実施例)
本実施形態に係る第1の実施例を、以下に説明する。第1の実施例で使用する試料は下記のように作製した。
[Example]
(First Example)
A first embodiment according to the present embodiment will be described below. The sample used in the first example was prepared as follows.

(1)粉末熱処理
ガスアトマイズ法により得られた平均粒子経(D50)が21.0μmのFeSiAl粉末に対して、窒素雰囲気中で、700℃の温度で2時間、粉末熱処理を行った。
(1) Powder Heat Treatment FeSiAl powder having an average particle diameter (D50) of 21.0 μm obtained by the gas atomization method was subjected to powder heat treatment at a temperature of 700 ° C. for 2 hours in a nitrogen atmosphere.

(2)絶縁処理
粉末熱処理後のFeSiAl粉末に対して、シリコーンオリゴマーを0.5wt%混合し、200℃で2時間の加熱乾燥を行い、目開き250μmの篩に通した。その後、シリコーンレジン(メチルフェニル系)を1.5%混合して、150℃で2時間の加熱乾燥を行い、目開き250μmの篩に通した。
(2) Insulation Treatment 0.5 wt% of silicone oligomer was mixed with FeSiAl powder after powder heat treatment, heat-dried at 200 ° C. for 2 hours, and passed through a sieve having a mesh size of 250 μm. Then, 1.5% of silicone resin (methylphenyl type) was mixed, heat-dried at 150 ° C. for 2 hours, and passed through a sieve having a mesh size of 250 μm.

(3)潤滑剤混合処理
絶縁処理後、潤滑剤としてエチレンビス(Acrawax(登録商標))を0.5wt%混合して、150℃で2時間の加熱乾燥を行った。その後、目開き250μmの篩に通した。
(3) Lubricant Mixing Treatment After the insulation treatment, 0.5 wt% of ethylene bis (Acrawax (registered trademark)) was mixed as a lubricant and heat-dried at 150 ° C. for 2 hours. Then, it was passed through a sieve having a mesh size of 250 μm.

(4)成形
表面に絶縁処理、潤滑剤混合処理後のFeSiAl粉末を、金型を用いて、室温状況下において12ton/cmで加圧成形し、EERコア形状の成形体を形成した。
(4) Molding FeSiAl powder after insulation treatment and lubricant mixing treatment on the molding surface was pressure-molded at 12 ton / cm 2 at room temperature using a mold to form an EER core-shaped molded product.

(5)熱処理
成形体に対して、大気中において750℃で2時間の熱処理を行うことにより、試料1の圧粉磁心を作製した(実施例1)。また、Nを流すことにより、大気の量を調整した以外は、同様の条件の試料2、試料3の圧粉磁心を作製した(実施例2、実施例3)。試料2は、Nの流量が0.5L/min、試料3は、Nの流量が1.0L/minである。
(5) Heat Treatment The molded product was heat-treated in the air at 750 ° C. for 2 hours to prepare a dust core of Sample 1 (Example 1). Further, a dust core of Sample 2 and Sample 3 under the same conditions except that the amount of air was adjusted by flowing N 2 was prepared (Examples 2 and 3). Sample 2 has a flow rate of N 2 of 0.5 L / min, and sample 3 has a flow rate of N 2 of 1.0 L / min.

一方、Nの流量を4.0L/minとすることにより、大気がパージされた窒素雰囲気中で熱処理を行った試料4の圧粉磁心を作製した(比較例1)。比較例1は、熱処理を行う雰囲気が相違するのみで、それ以外は実施例1、実施例2、実施例3と同様である。 On the other hand, by setting the flow rate of N 2 to 4.0 L / min, a dust core of Sample 4 which was heat-treated in a nitrogen atmosphere where the atmosphere was purged was prepared (Comparative Example 1). Comparative Example 1 is the same as Example 1, Example 2, and Example 3 except that the atmosphere in which the heat treatment is performed is different.

(測定結果)
以上のように作製した実施例1−3及び比較例1について、圧粉磁心の結晶構造におけるDO構造とFeとの割合、鉄損Pcv(ヒステリシス損失Ph及び渦電流損失Pe)を測定した。ここでいうDO構造は、FeSiAl合金粉末に相当する。
(Measurement result)
For Examples 1-3 and Comparative Example 1 prepared as described above, the ratio of the DO 3 structure to the Fe 2 O 3 in the crystal structure of the dust core and the iron loss Pcv (hysteresis loss Ph and eddy current loss Pe) were determined. It was measured. The DO 3 structure referred to here corresponds to FeSiAl alloy powder.

より具体的には、上記(1)〜(5)の工程を経た後、作製した圧粉磁心において、DO構造の重量及びFeの重量の合計を100wt%とした場合のDO構造の重量及びFeの重量の各割合を、成形体に対するX線回折によって、結晶構造評価を行って算出した。X線回折装置は、ブルカー社製の装置(BRUKER D2 PHASER 2nd Gen、X線:Cu−Kα線)を使用した。 More specifically, the above (1) to (5) after passing through the process, the powder magnetic core was produced, DO 3 in the case where the total weight of DO 3 weight structures and Fe 2 O 3 and 100 wt% Each ratio of the weight of the structure and the weight of Fe 2 O 3 was calculated by performing a crystal structure evaluation by X-ray diffraction on the molded product. As the X-ray diffractometer, an apparatus manufactured by Bruker (BRUKER D2 PHASER 2nd Gen, X-ray: Cu-Kα ray) was used.

一方、上記(1)〜(5)の工程を経た圧粉磁心をコアとするリアクトルを作製し、鉄損Pcvを求めるための測定を行った。つまり、圧粉磁心にφ0.5mmの銅線で1次巻線16ターン、2次巻線8ターンの巻線を巻回し、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY−8219)を用いて測定した。測定条件は、周波数100kHz、最大磁束密度Bm=100mTの条件下で行い、ヒステリシス損失(Ph)と渦電流損失(Pe)を算出した。この算出は、損失の周波数曲線を次の(1)〜(3)式で最小2乗法により、ヒステリシス損失係数(Kh)、渦電流損失係数(Ke)を算出することで行った。 On the other hand, a reactor having a dust core as a core was prepared through the steps (1) to (5) above, and measurement was performed to obtain the iron loss Pcv. That is, a BH analyzer (Iwadori Measurement Co., Ltd .: SY-8219), which is a magnetic measuring device, is wound around a dust core with a copper wire of φ0.5 mm for 16 turns of the primary winding and 8 turns of the secondary winding. ) Was used for measurement. The measurement conditions were a frequency of 100 kHz and a maximum magnetic flux density of Bm = 100 mT, and the hysteresis loss (Ph) and the eddy current loss (Pe) were calculated. This calculation was performed by calculating the hysteresis loss coefficient (Kh) and the eddy current loss coefficient (Ke) by the least squares method using the following equations (1) to (3) for the frequency curve of the loss.

Pcv =Kh×f+Ke×f・・(1)
Ph =Kh×f・・(2)
Pe =Ke×f・・(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f :周波数
Ph :ヒステリシス損失
Pe :渦電流損失
以上の測定結果を、表1及び図2に示す。
Pcv = Kh x f + Ke x f 2 ... (1)
Ph = Kh x f ... (2)
Pe = Ke × f 2 ... (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Ph: Hysteresis loss Pe: Eddy current loss The above measurement results are shown in Table 1 and FIG.

Figure 2021002555
Figure 2021002555

表1は、Feの割合と、鉄損(Pcv)、ヒステリシス損失(Ph)、渦電流損失(Pe)との関係を示す表であり、図2は表1に対応するグラフである。まず、Feの割合が0%の比較例1では、ヒステリシス損失(Ph)は309kw/m、渦電流損失(Pe)は227kw/mであった。これに対して、実施例3、実施例2、実施例1と、Feの割合が増加するにつれて、ヒステリシス損失(Ph)、渦電流損失(Pe)がともに低下している。特に、ヒステリシス損失(Ph)の低下割合が大きくなっている。比較例1とFeが0.79wt%の実施例1とを比較すると、ヒステリシス損失(Ph)は、309kw/mから101kw/mへと約30%に低減している。このため、鉄損も536kw/mから291kw/mへと大幅に低減している。比較例1とFeが0.10wt%の実施例3とを比較しても、ヒステリシス損失(Ph)は、309kw/mから200kw/mへと約65%に低減している。このため、鉄損も536kw/mから409kw/mへと低減している。つまり、Feの割合が0.1wt%以上であれば、ヒステリシス損失(Ph)、渦電流損失(Pe)が明らかに低下する。また、0.79w%以下において、ヒステリシス損失(Ph)、渦電流損失(Pe)が明らかに低下することがわかる。なお、Feが多すぎる場合、FeSiAl合金の量が減るため、特性が悪化する。 Table 1 is a table showing the relationship between the ratio of Fe 2 O 3 and iron loss (Pcv), hysteresis loss (Ph), and eddy current loss (Pe), and FIG. 2 is a graph corresponding to Table 1. .. First, in Comparative Example 1 in which the ratio of Fe 2 O 3 was 0%, the hysteresis loss (Ph) was 309 kW / m 3 and the eddy current loss (Pe) was 227 kW / m 3 . On the other hand, as the proportions of Fe 2 O 3 in Example 3, Example 2, and Example 1 increase, both the hysteresis loss (Ph) and the eddy current loss (Pe) decrease. In particular, the rate of decrease in hysteresis loss (Ph) is large. Comparing Comparative Example 1 with Example 1 in which Fe 2 O 3 is 0.79 wt%, the hysteresis loss (Ph) is reduced to about 30% from 309 kW / m 3 to 101 kW / m 3 . Therefore, the iron loss is also significantly reduced from 536 kW / m 3 to 291 kW / m 3 . Also Comparative Example 1 and Fe 2 O 3 is compared with the third embodiment of the 0.10 wt%, hysteresis loss (Ph) is reduced from 309kw / m 3 and about 65% to 200 kW / m 3 .. Therefore, the iron loss is also reduced from 536 kW / m 3 to 409 kW / m 3 . That is, when the ratio of Fe 2 O 3 is 0.1 wt% or more, the hysteresis loss (Ph) and the eddy current loss (Pe) are clearly reduced. Further, it can be seen that the hysteresis loss (Ph) and the eddy current loss (Pe) clearly decrease at 0.79 w% or less. If the amount of Fe 2 O 3 is too large, the amount of FeSiAl alloy is reduced, so that the characteristics are deteriorated.

(第2の実施例)
次に、本実施形態に係る第2の実施例を、以下に説明する。第2の実施例で使用する試料は下記のように作製した。
(Second Example)
Next, a second embodiment according to the present embodiment will be described below. The sample used in the second example was prepared as follows.

(1)粉末熱処理
ガスアトマイズ法により得られた平均粒子経(D50)が19.8μmのFeSiAl粉末に対して、窒素雰囲気中で、700℃の温度で2時間、粉末熱処理を行った。
(1) Powder Heat Treatment FeSiAl powder having an average particle diameter (D50) of 19.8 μm obtained by the gas atomization method was subjected to powder heat treatment in a nitrogen atmosphere at a temperature of 700 ° C. for 2 hours.

(2)絶縁処理
粉末熱処理後のFeSiAl粉末に対して、シランカップリング剤(テトラエトキシシラン)を1.0wt%混合し、200℃で2時間の加熱乾燥を行い、その後、目開き250μmの篩に通した。その後、シリコーンレジン(メチルフェニル系)を1.5%混合して、150℃で2時間の加熱乾燥を行い、目開き250μmの篩に通した。
(2) Insulation treatment 1.0 wt% of a silane coupling agent (tetraethoxysilane) is mixed with the FeSiAl powder after the powder heat treatment, and the mixture is heat-dried at 200 ° C. for 2 hours, and then a sieve having a mesh size of 250 μm. Passed through. Then, 1.5% of silicone resin (methylphenyl type) was mixed, heat-dried at 150 ° C. for 2 hours, and passed through a sieve having a mesh size of 250 μm.

(3)潤滑剤混合処理
絶縁処理後、潤滑剤としてエチレンビス(Acrawax(登録商標))を0.5wt%混合し、150℃で2時間の加熱乾燥を行った。その後、目開き250μmの篩に通した。
(3) Lubricant Mixing Treatment After the insulation treatment, 0.5 wt% of ethylene bis (Acrawax (registered trademark)) was mixed as a lubricant, and the mixture was heat-dried at 150 ° C. for 2 hours. Then, it was passed through a sieve having a mesh size of 250 μm.

(4)成形
表面に絶縁処理、潤滑剤混合処理後のFeSiAl粉末を、金型を用いて、室温状況下において12ton/cmで加圧成形し、EERコア形状の成形体を形成した。
(4) Molding FeSiAl powder after insulation treatment and lubricant mixing treatment on the molding surface was pressure-molded at 12 ton / cm 2 at room temperature using a mold to form an EER core-shaped molded product.

成形体に対して、窒素雰囲気中で、750℃で2時間の熱処理を行うことにより、試料5の圧粉磁心を作製した(比較例2)。Nの流量は、4L/minである。この試料5に対して、さらに、大気中で、750℃で2時間の熱処理を行うことにより、試料6の圧粉磁心を作製した(実施例4)。 The compact magnetic core of Sample 5 was prepared by heat-treating the molded product at 750 ° C. for 2 hours in a nitrogen atmosphere (Comparative Example 2). The flow rate of N 2 is 4 L / min. The dust core of Sample 6 was prepared by further heat-treating this Sample 5 at 750 ° C. for 2 hours in the air (Example 4).

(測定結果)
以上のように作製した比較例2、実施例4について、結晶構造に占めるDO構造及びFeの割合、鉄損Pcv(ヒステリシス損失Ph及び渦電流損失Pe)を測定した。第2の実施例の測定項目、測定装置及び測定方法は、第1の実施例と同様である。以上の測定結果を、表2及び図3に示す。
(Measurement result)
For Comparative Examples 2 and 4 prepared as described above, the ratio of DO 3 structure and Fe 2 O 3 to the crystal structure and iron loss Pcv (hysteresis loss Ph and eddy current loss Pe) were measured. The measurement items, measuring devices, and measuring methods of the second embodiment are the same as those of the first embodiment. The above measurement results are shown in Table 2 and FIG.

Figure 2021002555
Figure 2021002555

表2は、Feの割合と、鉄損(Pcv)との関係を示す表であり、図3は表2に対応するグラフである。図3では、鉄損(Pcv)に占めるヒステリシス損失(Ph)、渦電流損失(Pe)の値を表示している。まず、Feの割合が0%の比較例2では、ヒステリシス損失(Ph)は230kw/m、渦電流損失(Pe)は147kw/mであった。これに対して、Feが0.51wt%の実施例4は、ヒステリシス損失(Ph)が161kw/m、渦電流損失(Pe)が132kw/mと低下している。特に、ヒステリシス損失(Ph)の低下割合が大きくなっている。このため、鉄損(Pcv)が377kw/mから293kw/mへと大幅に低下している。これは、加圧成形後に、一度熱処理(焼鈍)を行った圧粉磁心であっても、さらに大気中、つまり酸素雰囲気中での熱処理を行うことによって、ヒステリシス損失(Ph)、ひいては鉄損(Pcv)の低減効果が得られることを意味している。 Table 2 is a table showing the relationship between the ratio of Fe 2 O 3 and iron loss (Pcv), and FIG. 3 is a graph corresponding to Table 2. In FIG. 3, the values of the hysteresis loss (Ph) and the eddy current loss (Pe) in the iron loss (Pcv) are displayed. First, in Comparative Example 2 in which the ratio of Fe 2 O 3 was 0%, the hysteresis loss (Ph) was 230 kW / m 3 and the eddy current loss (Pe) was 147 kW / m 3 . On the other hand, in Example 4 in which Fe 2 O 3 is 0.51 wt%, the hysteresis loss (Ph) is reduced to 161 kW / m 3 and the eddy current loss (Pe) is reduced to 132 kW / m 3 . In particular, the rate of decrease in hysteresis loss (Ph) is large. Therefore, the iron loss (Pcv) is significantly reduced from 377 kW / m 3 to 293 kW / m 3 . This is because even if the dust core is heat-treated (annealed) once after pressure molding, it is further heat-treated in the atmosphere, that is, in an oxygen atmosphere, resulting in hysteresis loss (Ph) and iron loss (Ph). It means that the reduction effect of Pcv) can be obtained.

[他の実施形態]
本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[Other Embodiments]
The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied without departing from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

例えば、粉末熱処理工程は行わなくてもよい。つまり、粉末に対する熱処理を行わない場合であっても、本発明の成形体への熱処理によって、鉄損の低減効果が得られる。但し、粉末熱処理によっても鉄損の低減効果が得られるため、本発明の成形体への熱処理によって、鉄損の低減効果がさらに高まるという利点がある。 For example, the powder heat treatment step may not be performed. That is, even when the powder is not heat-treated, the heat treatment of the molded product of the present invention can obtain the effect of reducing iron loss. However, since the effect of reducing iron loss can be obtained by powder heat treatment, there is an advantage that the effect of reducing iron loss is further enhanced by the heat treatment of the molded product of the present invention.

また、例えば、本発明は、上記のような実施例1〜4において作製されたリアクトルの圧粉磁心に限定されるものではなく、この圧粉磁心にコイルを巻回することによりチョークコイルを作製する実施形態も包含する。これにより、上述したような実施例1〜4において得られた効果を当該チョークコイルにおいても同様に奏することが可能となる。 Further, for example, the present invention is not limited to the powder magnetic core of the reactor produced in Examples 1 to 4 as described above, and a choke coil is produced by winding a coil around the powder magnetic core. Also includes embodiments. As a result, the effects obtained in Examples 1 to 4 as described above can be similarly exerted in the choke coil.

Claims (8)

FeSiAl合金粉末と、前記FeSiAl合金粉末を被覆する絶縁樹脂とを含む圧粉磁心であって、
前記FeSiAl合金粉末の重量とFeОの重量との合計を100wt%とした場合、FeОの重量の割合が0.1wt%以上であることを特徴とする圧粉磁心。
A powder magnetic core containing a FeSiAl alloy powder and an insulating resin that coats the FeSiAl alloy powder.
When the total of the weight of the FeSiAl alloy powder and the weight of Fe 2 O 3 is 100 wt%, the powder magnetic core is characterized in that the ratio of the weight of Fe 2 O 3 is 0.1 wt% or more.
前記FeSiAl合金粉末が、アトマイズ紛であることを特徴とする請求項1記載の圧粉磁心。 The dust core according to claim 1, wherein the FeSiAl alloy powder is an atomized powder. 前記FeSiAl合金粉末が、球形化処理された粉末であることを特徴とする請求項1記載の圧粉磁心。 The powder magnetic core according to claim 1, wherein the FeSiAl alloy powder is a spheroidized powder. 前記FeSiAl合金粉末の円形度が0.95以上であることを特徴とする請求項1乃至3のいずれかに記載の圧粉磁心。 The powder magnetic core according to any one of claims 1 to 3, wherein the FeSiAl alloy powder has a circularity of 0.95 or more. 前記FeSiAl合金粉末の重量とFeОの重量との合計を100wt%とした場合、FeОの重量の割合が0.79wt%以下であることを特徴とする請求項1乃至4のいずれかに記載の圧粉磁心。 The proportion of the weight of Fe 2 O 3 is 0.79 wt% or less when the total of the weight of the FeSiAl alloy powder and the weight of Fe 2 O 3 is 100 wt%, according to claims 1 to 4. The powder magnetic core described in either. FeSiAl合金粉末に絶縁樹脂を被覆する絶縁処理工程と、
絶縁処理された前記FeSiAl合金粉末を成形する成形工程と、
成形された前記FeSiAl合金粉末を酸化雰囲気中で熱処理する熱処理工程と、
を含むことを特徴とする圧粉磁心の製造方法。
Insulation treatment process of coating FeSiAl alloy powder with insulating resin,
A molding process for molding the insulated FeSiAl alloy powder, and
A heat treatment step of heat-treating the molded FeSiAl alloy powder in an oxidizing atmosphere, and
A method for producing a dust core, which comprises.
前記熱処理工程は、
窒素雰囲気中で行う第1の熱処理と、
第1の熱処理後、酸化雰囲気中で行う第2の熱処理と、
を含むことを特徴とする請求項6記載の圧粉磁心の製造方法。
The heat treatment step is
The first heat treatment performed in a nitrogen atmosphere and
After the first heat treatment, the second heat treatment performed in an oxidizing atmosphere,
The method for producing a dust core according to claim 6, wherein the powder magnetic core comprises.
前記絶縁処理工程の前に、前記FeSiAl合金粉末に熱処理を行う粉末熱処理工程を含むことを特徴とする請求項6又は請求項7記載の圧粉磁心の製造方法。 The method for producing a powder magnetic core according to claim 6 or 7, wherein a powder heat treatment step of heat-treating the FeSiAl alloy powder is included before the insulation treatment step.
JP2019114557A 2019-06-20 2019-06-20 Powder magnetic core and method for manufacturing powder magnetic core Active JP7307603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019114557A JP7307603B2 (en) 2019-06-20 2019-06-20 Powder magnetic core and method for manufacturing powder magnetic core
CN202010427679.8A CN112117076A (en) 2019-06-20 2020-05-19 Dust core and method for manufacturing dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114557A JP7307603B2 (en) 2019-06-20 2019-06-20 Powder magnetic core and method for manufacturing powder magnetic core

Publications (2)

Publication Number Publication Date
JP2021002555A true JP2021002555A (en) 2021-01-07
JP7307603B2 JP7307603B2 (en) 2023-07-12

Family

ID=73799671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114557A Active JP7307603B2 (en) 2019-06-20 2019-06-20 Powder magnetic core and method for manufacturing powder magnetic core

Country Status (2)

Country Link
JP (1) JP7307603B2 (en)
CN (1) CN112117076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142137A (en) * 2021-03-16 2022-09-30 株式会社タムラ製作所 Powder for powder magnetic core, and powder magnetic core

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135514A (en) * 1999-11-02 2001-05-18 Hitachi Metals Ltd Method of manufacturing duct core
JP2012084803A (en) * 2010-10-14 2012-04-26 Kobe Steel Ltd Manufacturing method for powder magnetic core and powder magnetic core obtained from thereof
JP2013168648A (en) * 2012-01-18 2013-08-29 Kobe Steel Ltd Method of manufacturing dust core, and dust core manufactured by that method
WO2013140762A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Composite magnetic material and method for manufacturing same
JP2015012188A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Method of manufacturing powder magnetic core, and powder magnetic core
JP2015220244A (en) * 2014-05-14 2015-12-07 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder compact core
JP2017011271A (en) * 2015-06-17 2017-01-12 株式会社タムラ製作所 Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for producing dust core
JP6504287B1 (en) * 2018-03-09 2019-04-24 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135514A (en) * 1999-11-02 2001-05-18 Hitachi Metals Ltd Method of manufacturing duct core
JP2012084803A (en) * 2010-10-14 2012-04-26 Kobe Steel Ltd Manufacturing method for powder magnetic core and powder magnetic core obtained from thereof
JP2013168648A (en) * 2012-01-18 2013-08-29 Kobe Steel Ltd Method of manufacturing dust core, and dust core manufactured by that method
WO2013140762A1 (en) * 2012-03-22 2013-09-26 パナソニック株式会社 Composite magnetic material and method for manufacturing same
JP2015012188A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Method of manufacturing powder magnetic core, and powder magnetic core
JP2015220244A (en) * 2014-05-14 2015-12-07 Tdk株式会社 Soft magnetic metal powder and soft magnetic metal powder compact core
JP2017011271A (en) * 2015-06-17 2017-01-12 株式会社タムラ製作所 Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for producing dust core
JP6504287B1 (en) * 2018-03-09 2019-04-24 Tdk株式会社 Soft magnetic metal powder, dust core and magnetic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022142137A (en) * 2021-03-16 2022-09-30 株式会社タムラ製作所 Powder for powder magnetic core, and powder magnetic core

Also Published As

Publication number Publication date
JP7307603B2 (en) 2023-07-12
CN112117076A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
JP4613622B2 (en) Soft magnetic material and dust core
JP5739348B2 (en) Reactor and manufacturing method thereof
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
EP1710815A1 (en) Dust core and method for producing same
JP6471260B2 (en) Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores
JP2009302165A (en) Dust core and manufacturing method thereof
JP7045905B2 (en) Soft magnetic powder and its manufacturing method
JP7009425B2 (en) Manufacturing method of dust core
JP5150535B2 (en) Powder magnetic core and manufacturing method thereof
JP7307603B2 (en) Powder magnetic core and method for manufacturing powder magnetic core
JP2018073996A (en) Soft magnetic material, powder-compact magnetic core arranged by use thereof, and method for manufacturing powder-compact magnetic core
JP6571146B2 (en) Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for manufacturing dust core
JP2020153002A (en) Soft magnetic powder, powder magnetic core constructed with the soft magnetic powder, manufacturing method of soft magnetic powder and manufacturing method of powder magnetic core
JP7418194B2 (en) Manufacturing method of powder magnetic core
JP7377076B2 (en) Manufacturing method of powder magnetic core
JP7202333B2 (en) Powder magnetic core and its manufacturing method
JP2009259979A (en) Dust core, manufacturing method of dust core, choke coil, and its manufacturing method
JP7418483B2 (en) Manufacturing method of powder magnetic core
JP7405817B2 (en) Soft magnetic powder and dust core
JP6713018B2 (en) Soft magnetic material, dust core, and method for manufacturing dust core
JP2023137624A (en) Dust core powder, method for manufacturing dust core powder, dust core, and method for manufacturing dust core
CN111724965A (en) Soft magnetic powder and method for producing same, and dust core and method for producing same
JP2024044442A (en) Method for producing powder for dust core and powder for dust core
JP2024044605A (en) Powder for powder magnetic core, method for producing powder for powder magnetic core, method for producing powder magnetic core and powder magnetic core
JP2021093406A (en) Method of manufacturing dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220315

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220323

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220603

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220607

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221129

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230307

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7307603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150