JP2013168648A - Method of manufacturing dust core, and dust core manufactured by that method - Google Patents
Method of manufacturing dust core, and dust core manufactured by that method Download PDFInfo
- Publication number
- JP2013168648A JP2013168648A JP2013007594A JP2013007594A JP2013168648A JP 2013168648 A JP2013168648 A JP 2013168648A JP 2013007594 A JP2013007594 A JP 2013007594A JP 2013007594 A JP2013007594 A JP 2013007594A JP 2013168648 A JP2013168648 A JP 2013168648A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- iron
- dust core
- treatment step
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B23/00—Uppers; Boot legs; Stiffeners; Other single parts of footwear
- A43B23/24—Ornamental buckles; Other ornaments for shoes without fastening function
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B23/00—Uppers; Boot legs; Stiffeners; Other single parts of footwear
- A43B23/02—Uppers; Boot legs
- A43B23/0205—Uppers; Boot legs characterised by the material
- A43B23/0225—Composite materials, e.g. material with a matrix
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
本発明は、圧粉磁心の製造方法、および該製造方法を用いて得られる圧粉磁心に関するものである。 The present invention relates to a method for manufacturing a dust core and a dust core obtained by using the method.
電磁気部品用圧粉磁心は、製造工程においてハンドリング性が良好なことや、コイルにするための巻き線の際に破損しない十分な機械的強度を有することが重要である。これらの点を考慮して、圧粉磁心分野では、鉄粉粒子を電気絶縁物で被覆する技術が知られている。電気絶縁物で鉄粉粒子を被覆することで鉄粉粒子間が電気絶縁物を介して接着されるため、これを用いて得られる圧粉磁心は機械的強度が向上する。 It is important that the powder magnetic core for electromagnetic parts has good handling properties in the manufacturing process and has sufficient mechanical strength that does not break during winding to form a coil. In consideration of these points, in the dust core field, a technique for coating iron powder particles with an electrical insulator is known. By covering the iron powder particles with the electric insulator, the iron powder particles are bonded to each other through the electric insulator, so that the mechanical strength of the dust core obtained by using this is improved.
これまで、かかる電気絶縁物の形成材料として、耐熱性の高いシリコーン樹脂や、りん酸等から得られるガラス状化合物を利用する技術が開示されている(特許文献1)。 Until now, as a material for forming such an electrical insulator, there has been disclosed a technique using a highly heat-resistant silicone resin or a glassy compound obtained from phosphoric acid or the like (Patent Document 1).
また、本出願人は、鉄基軟磁性粉末表面に、特定の元素を含むりん酸系化成皮膜と、シリコーン樹脂皮膜とをこの順で形成することで、高磁束密度、低鉄損、高機械的強度の圧粉磁心を提供することに成功し、既に特許を受けている(特許文献2)。 In addition, the present applicant forms a phosphoric acid-based chemical conversion film containing a specific element and a silicone resin film in this order on the surface of the iron-based soft magnetic powder, thereby achieving a high magnetic flux density, a low iron loss, and a high machine. Has successfully provided a powder magnetic core with sufficient strength and has already received a patent (Patent Document 2).
しかし、圧粉磁心の高性能化の要求は特許文献2の出願時に比べてさらに高まっており、従来にも増して、高機械的強度の圧粉磁心が求められるようになっている。 However, the demand for higher performance of the powder magnetic core is further increased compared with the time of filing of Patent Document 2, and a powder magnetic core with high mechanical strength is required more than ever.
本発明は上記の様な事情に着目してなされたものであって、その目的は、密度を大きく低下させることなく、強度を向上させることのできる圧粉磁心の製造方法、及び圧粉磁心を提供することである。 The present invention has been made paying attention to the above-described circumstances, and the object thereof is to provide a method for manufacturing a dust core capable of improving strength without greatly reducing the density, and a dust core. Is to provide.
上記課題を解決し得た本発明に係る圧粉磁心の製造方法は、鉄基軟磁性粉末表面にりん酸系化成皮膜を有する圧粉成形体用鉄基軟磁性粉末と潤滑剤とを混合した混合物を、圧縮成形して、圧粉成形体を得る成形工程と、前記圧粉成形体を、300℃以上500℃以下で加熱する熱処理工程1と、次いで、酸化性雰囲気中、500℃超700℃以下で加熱する熱処理工程2と、次いで、300℃以上450℃以下で、30分以上120分以下加熱する熱処理工程3と、を含むことに要旨を有する。 The method for producing a powder magnetic core according to the present invention, which has solved the above problems, comprises mixing an iron-based soft magnetic powder for a powder compact having a phosphoric acid-based chemical film on the surface of the iron-based soft magnetic powder and a lubricant. A molding step of compression-molding the mixture to obtain a green compact, a heat treatment step 1 in which the green compact is heated at 300 ° C. to 500 ° C., and then in an oxidizing atmosphere, over 500 ° C. 700 The present invention includes a heat treatment step 2 for heating at a temperature of not higher than ° C. and a heat treatment step 3 for heating at a temperature of 300 to 450 ° C. for 30 to 120 minutes.
本発明において、前記混合物が、さらに糖アルコール、金属水酸化物、金属過酸化物、過炭酸塩、および酸化剤よりなる群から選択される少なくとも1種の酸素源放出化合物を含むことも好ましい実施態様である。 In the present invention, it is also preferable that the mixture further contains at least one oxygen source releasing compound selected from the group consisting of sugar alcohol, metal hydroxide, metal peroxide, percarbonate, and oxidizing agent. It is an aspect.
また前記圧粉成形体用鉄基軟磁性粉末が、前記りん酸系化成皮膜の上にシリコーン樹脂皮膜を有することも好ましい実施態様である。 In another preferred embodiment, the iron-based soft magnetic powder for a green compact has a silicone resin film on the phosphoric acid-based chemical conversion film.
更に前記潤滑剤がポリヒドロキシカルボン酸アミドであることも好ましい実施態様である。
本発明には、上記製造方法により得られる圧粉磁心も含まれる。
It is also a preferred embodiment that the lubricant is a polyhydroxycarboxylic acid amide.
The present invention also includes a dust core obtained by the above manufacturing method.
また本発明には鉄基軟磁性粉末を圧縮成形して得られる圧粉磁心も含まれ、圧粉磁心は、マグネタイトが5.0〜15体積%、ウスタイトが3.0体積%以下(0体積%含む)である。また該圧粉磁心は、さらにヘマタイトを含み、マグネタイトに対するヘマタイトの体積割合が、0.05〜0.25であることも好ましい実施態様である。 The present invention also includes a powder magnetic core obtained by compression-molding iron-based soft magnetic powder. The powder magnetic core is composed of 5.0 to 15% by volume of magnetite and 3.0% or less (0 volume) of wustite. %). Moreover, it is also a preferable embodiment that the dust core further contains hematite and the volume ratio of hematite to magnetite is 0.05 to 0.25.
本発明の製造方法によれば、密度を大きく低下させることなく、機械的強度が高い圧粉磁心を提供できる。 According to the production method of the present invention, it is possible to provide a dust core having high mechanical strength without greatly reducing the density.
上記したように鉄粉を電気絶縁物で被覆した混合物を、熱処理することによって圧粉磁心の機械的強度を向上させる製造方法が知られているが、本発明者らは、更に圧粉磁心の機械的強度を向上させるために鋭意研究を重ねた。その結果、熱処理によって生成する鉄酸化物のうち、マグネタイトやヘマタイトは高強度化に寄与するものの、ウスタイトは強度を低減させる要因となっていることが分かった。そして熱処理条件を適切に制御することによって、ウスタイトをマグネタイトに変換させることができ、より一層機械的強度を向上できることを見出し、本発明に至った。 As described above, a manufacturing method for improving the mechanical strength of a dust core by heat-treating a mixture obtained by coating iron powder with an electrical insulator is known. In order to improve the mechanical strength, earnest research was repeated. As a result, it was found that among the iron oxides produced by heat treatment, magnetite and hematite contribute to increasing the strength, but wustite is a factor for reducing the strength. Then, by appropriately controlling the heat treatment conditions, it was found that wustite can be converted to magnetite and the mechanical strength can be further improved, and the present invention has been achieved.
以下、本発明に係る圧粉磁心の製造方法、および該製造方法によって得られた圧粉磁心について説明する。 Hereinafter, the manufacturing method of the powder magnetic core which concerns on this invention, and the powder magnetic core obtained by this manufacturing method are demonstrated.
[成形工程]
本発明の圧粉磁心は、圧粉成形体を適切に加熱処理することによって製造される。圧粉成形体は、鉄基軟磁性粉末表面にりん酸系化成皮膜を有する圧粉成形体用鉄基軟磁性粉末と、潤滑剤とを混合した混合物を圧縮成形することによって得ることができる。
[鉄基軟磁性粉末]
鉄基軟磁性粉末は、強磁性体の鉄基粉末であり、具体的には、純鉄粉、鉄基合金粉末(Fe−Al合金、Fe−Si合金、センダスト、パーマロイなど)、鉄基アモルファス粉末等が挙げられる。これらの鉄基軟磁性粉末は、例えば、アトマイズ法によって溶融鉄(または溶融鉄合金)を微粒子とした後に還元し、次いで粉砕する等によって製造できる。このような製法では、ふるい分け法で評価される粒度分布で累積粒度分布が50%になる粒径(メジアン径)が20μm〜250μm程度の鉄基軟磁性粉末が得られるが、本発明で用いる鉄基軟磁性粉末は、粒径(メジアン径)が50μm〜150μm程度であることが好ましい。
[Molding process]
The dust core of the present invention is manufactured by appropriately heat-treating the dust compact. The green compact can be obtained by compression molding a mixture of an iron-based soft magnetic powder for a green compact having a phosphoric acid-based chemical conversion film on the surface of the iron-based soft magnetic powder and a lubricant.
[Iron-based soft magnetic powder]
The iron-based soft magnetic powder is a ferromagnetic iron-based powder, specifically, pure iron powder, iron-based alloy powder (Fe-Al alloy, Fe-Si alloy, Sendust, Permalloy, etc.), iron-based amorphous powder. A powder etc. are mentioned. These iron-based soft magnetic powders can be produced, for example, by reducing molten iron (or molten iron alloy) into fine particles by an atomizing method, and then reducing and grinding. In such a production method, an iron-based soft magnetic powder having a particle size (median diameter) of about 20 μm to 250 μm that gives a cumulative particle size distribution of 50% in the particle size distribution evaluated by the sieving method is obtained. The base soft magnetic powder preferably has a particle size (median diameter) of about 50 μm to 150 μm.
[りん酸系化成皮膜]
圧粉成形体用鉄基軟磁性粉末(以下、「圧粉成形体用鉄粉」という場合がある。)は、鉄基軟磁性粉末の表面に、りん酸系化成皮膜を有している。これにより、圧粉成形体用鉄粉に電気絶縁性を付与することができる。
[Phosphate-based chemical conversion coating]
The iron-based soft magnetic powder for compacted compacts (hereinafter sometimes referred to as “iron powder for compacted compacts”) has a phosphate conversion coating on the surface of the iron-based soft magnetic powder. Thereby, electrical insulation can be provided to the iron powder for a compacting body.
りん酸系化成皮膜とは、Pを含む化合物を用いて形成されるガラス状の皮膜である。その組成は特に限定されるものではないが、P以外に、さらにCo、Na、Sを含む化合物や、Csおよび/またはAlを含む化合物を用いて形成されるガラス状の皮膜であることが好ましい。これらの元素は、後記する熱処理工程2の際に、酸素がFeと半導体を形成して、比抵抗を低下させるのを抑制するからである。 The phosphoric acid-based chemical film is a glassy film formed using a compound containing P. The composition is not particularly limited, but it is preferably a glassy film formed using a compound containing Co, Na, S, or a compound containing Cs and / or Al in addition to P. . This is because these elements inhibit oxygen from forming a semiconductor with Fe during the heat treatment step 2 to be described later, thereby reducing the specific resistance.
上記元素のうち、Pは酸素を介して鉄基軟磁性粉末表面と化学結合を形成する。P含有量が少ないと鉄基軟磁性粉末表面とりん酸系化成皮膜との化学結合量が不十分となり、強固な皮膜を形成しないおそれがある。一方、P含有量が多すぎると化学結合に関与しないPが未反応のまま残留し、かえって結合強度を低下させるおそれがある。 Among the above elements, P forms a chemical bond with the iron-based soft magnetic powder surface through oxygen. If the P content is low, the amount of chemical bonding between the surface of the iron-based soft magnetic powder and the phosphoric acid-based chemical film becomes insufficient, and a strong film may not be formed. On the other hand, when there is too much P content, P which does not participate in a chemical bond may remain unreacted, and the bond strength may be lowered.
Co、Na、S、Cs、Alは、熱処理工程2を行う際にFeと酸素が半導体を形成するのを阻害して、比抵抗が低下するのを抑制する作用を有する。Co、NaおよびSは、複合添加することによってその効果を最大化させる。また、CsとAlはいずれか一方でもよい。Co、Na、S、Cs、Alは、過剰に添加すると複合添加時に相対的なバランスを維持できなくなるだけでなく、酸素を介したPと鉄基軟磁性粉末表面との化学結合の生成を阻害することがある。りん酸系化成皮膜には、更にMgやBが含まれていてもよい。 Co, Na, S, Cs, and Al have an effect of inhibiting Fe and oxygen from forming a semiconductor during the heat treatment step 2 and suppressing a decrease in specific resistance. Co, Na, and S maximize the effect of the combined addition. Further, either one of Cs and Al may be used. If excessive addition of Co, Na, S, Cs, and Al not only keeps the relative balance during compound addition, it also inhibits the formation of chemical bonds between P and the iron-based soft magnetic powder surface via oxygen. There are things to do. The phosphoric acid-based chemical conversion film may further contain Mg or B.
[りん酸系化成皮膜の形成方法]
鉄基軟磁性粉末表面にりん酸系化成皮膜を形成する方法は特に限定されない。例えば、水および/または有機溶剤からなる溶媒に、Pを含む化合物を溶解させた溶液と、鉄基軟磁性粉末とを混合した後、必要に応じて前記溶媒を蒸発させて得ることができる。
上記溶媒としては、水や、アルコールやケトン等の親水性有機溶剤、及びこれらの混合物が挙げられる。溶媒中には公知の界面活性剤を添加してもよい。
[Method of forming phosphoric acid-based chemical conversion film]
The method for forming a phosphoric acid-based chemical conversion film on the surface of the iron-based soft magnetic powder is not particularly limited. For example, it can be obtained by mixing a solution in which a compound containing P is dissolved in a solvent composed of water and / or an organic solvent and an iron-based soft magnetic powder, and then evaporating the solvent as necessary.
Examples of the solvent include water, hydrophilic organic solvents such as alcohol and ketone, and mixtures thereof. A known surfactant may be added to the solvent.
上記Pを含む化合物としては、例えばオルトりん酸(H3PO4)が挙げられる。また、りん酸系化成皮膜を上記の組成とするための化合物としては、例えば、Co3(PO4)2(CoおよびP源)、Co3(PO4)2・8H2O(CoおよびP源)、Na2HPO4(PおよびNa源)、NaH2PO4(PおよびNa源)、NaH2PO4・nH2O(PおよびNa源)、Al(H2PO4)3(PおよびAl源)、Cs2SO4(CsおよびS源)、H2SO4(S源)、MgO(Mg源)、H3BO3(B源)等が使用可能である。 Examples of the compound containing P include orthophosphoric acid (H 3 PO 4 ). Examples of the compound for making the phosphoric acid-based chemical conversion film have the above composition include Co 3 (PO 4 ) 2 (Co and P sources), Co 3 (PO 4 ) 2 .8H 2 O (Co and P Source), Na 2 HPO 4 (P and Na sources), NaH 2 PO 4 (P and Na sources), NaH 2 PO 4 .nH 2 O (P and Na sources), Al (H 2 PO 4 ) 3 (P And Al source), Cs 2 SO 4 (Cs and S source), H 2 SO 4 (S source), MgO (Mg source), H 3 BO 3 (B source) and the like can be used.
[シリコーン樹脂皮膜]
本発明の圧粉成形体用鉄粉は、前記りん酸系化成皮膜の上にさらにシリコーン樹脂皮膜を有していてもよい。これにより、シリコーン樹脂の架橋・硬化反応終了時(圧縮時)には、粉末同士が強固に結合する。また、耐熱性に優れたSi−O結合を形成して、絶縁皮膜の熱的安定性を向上できる。シリコーン樹脂としては、上記効果が得られるものであれば、特に限定されない。
[Silicone resin film]
The iron powder for a green compact of the present invention may further have a silicone resin film on the phosphoric acid-based chemical conversion film. Thereby, at the time of completion | finish of the bridge | crosslinking and hardening reaction of a silicone resin (at the time of compression), powders couple | bond together firmly. Moreover, the thermal stability of the insulating film can be improved by forming a Si—O bond having excellent heat resistance. The silicone resin is not particularly limited as long as the above effects can be obtained.
[シリコーン樹脂皮膜の形成方法]
りん酸系化成皮膜の上にシリコーン樹脂皮膜を形成する方法は特に限定されない。例えば、シリコーン樹脂をアルコール類や、トルエン、キシレン等の石油系有機溶剤等に溶解させたシリコーン樹脂溶液と、りん酸系化成皮膜を有する鉄基軟磁性粉末(以下、「りん酸系皮膜形成鉄粉」という場合がある。)とを混合する。次いで必要に応じて前記有機溶剤を蒸発させることによってシリコーン樹脂皮膜を形成できる。
[Method of forming silicone resin film]
The method for forming the silicone resin film on the phosphoric acid-based chemical film is not particularly limited. For example, a silicone resin solution in which a silicone resin is dissolved in an alcohol, a petroleum-based organic solvent such as toluene or xylene, and an iron-based soft magnetic powder having a phosphoric acid-based chemical film (hereinafter referred to as “phosphate-based film-forming iron”). Sometimes called “powder”). Then, if necessary, the silicone solvent film can be formed by evaporating the organic solvent.
[潤滑剤]
本発明では、鉄基軟磁性粉末表面にりん酸系化成皮膜(或いはりん酸系化成皮膜の上にシリコーン樹脂皮膜)を有する圧粉成形体用鉄基軟磁性粉末(圧粉成形体用鉄粉)と、潤滑剤とを混合して混合物を形成する。この潤滑剤の作用により、混合物を圧縮成形する際の鉄粉間、あるいは鉄粉と成形型内壁間の摩擦抵抗を低減でき、成形体の型かじりや成形時の発熱を防止することができる。潤滑剤としてはこのような作用を有するものであれば特に限定されず、従来から公知の潤滑剤を単独、或いは組み合わせて使用できる。
[lubricant]
In the present invention, an iron-based soft magnetic powder for powder compacts (iron powder for powder compacts) having a phosphoric acid-based chemical conversion film (or a silicone resin film on the phosphoric acid-based chemical conversion film) on the surface of the iron-based soft magnetic powder. ) And a lubricant to form a mixture. By this action of the lubricant, the frictional resistance between the iron powders during compression molding of the mixture or between the iron powder and the inner wall of the mold can be reduced, and the mold can be prevented from galling and heat generation during molding. The lubricant is not particularly limited as long as it has such an action, and conventionally known lubricants can be used alone or in combination.
潤滑剤としては、従来から公知のものを使用することができる。具体的には、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム等のステアリン酸の金属塩粉末、ポリヒドロキシカルボン酸アミド、エチレンビスステアリルアミドや(N−オクタデセニル)ヘキサデカン酸アミド等の脂肪酸アミド、パラフィン、ワックス、天然または合成樹脂誘導体等が挙げられる。なかでも、ポリヒドロキシカルボン酸アミドや脂肪酸アミドが好ましい。これらの潤滑剤は単独で用いても、2種以上を組み合わせて用いてもよい。 A conventionally well-known thing can be used as a lubricant. Specifically, metal salt powder of stearic acid such as zinc stearate, lithium stearate, calcium stearate, fatty acid amide such as polyhydroxycarboxylic acid amide, ethylenebisstearylamide and (N-octadecenyl) hexadecanoic acid amide, paraffin, Examples thereof include wax, natural or synthetic resin derivatives, and the like. Of these, polyhydroxycarboxylic acid amides and fatty acid amides are preferred. These lubricants may be used alone or in combination of two or more.
ポリヒドロキシカルボン酸アミドとしては、例えばWO2005/068588号公報に記載のCmHm+1(OH)m−CONH−CnH2n+1(mは2または5、nは6から24の整数)が挙げられる。 Examples of the polyhydroxycarboxylic acid amide include C m H m + 1 (OH) m —CONH—C n H 2n + 1 (m is 2 or 5, n is an integer of 6 to 24 described in WO2005 / 068588. ).
より具体的には、下記のポリヒドロキシカルボン酸アミドが挙げられる。
(1)n−C2H3(OH)2−CONH−n−C6H13
(N−ヘキシル)グリセリン酸アミド
(2)n−C2H3(OH)2−CONH−n−C8H17
(N−オクチル)グリセリン酸アミド
(3)n−C2H3(OH)2−CONH−n−C18H37
(N−オクタデシル)グリセリン酸アミド
(4)n−C2H3(OH)2−CONH−n−C8H35
(N−オクタデセニル)グリセリン酸アミド
(5)n−C2H3(OH)2−CONH−n−C22H45
(N−ドコシル)グリセリン酸アミド
(6)n−C2H3(OH)2−CONH−n−C24H49
(N−テトラコシル)グリセリン酸アミド
(7)n−C5H6(OH)5−CONH−n−C6H13
(N−ヘキシル)グルコン酸アミド
(8)n−C5H6(OH)5−CONH−n−C8H17
(N−オクチル)グルコン酸アミド
(9)n−C5H6(OH)5−CONH−n−C18H37
(N−オクタデシル)グルコン酸アミド
(10)n−C5H6(OH)5−CONH−n−C18H35
(N−オクタデセニル)グルコン酸アミド
(11)n−C5H6(OH)5−CONH−n−C22H45
(N−ドコシル)グルコン酸アミド
(12)n−C5H6(OH)5−CONH−n−C24H49
(N−テトラコシル)グルコン酸アミド
More specifically, the following polyhydroxycarboxylic acid amides may be mentioned.
(1) n-C 2 H 3 (OH) 2 -CONH-n-C 6 H 13
(N-hexyl) glyceric acid amide (2) n-C 2 H 3 (OH) 2 -CONH-n-C 8 H 17
(N-octyl) glyceric acid amide (3) n-C 2 H 3 (OH) 2 -CONH-n-C 18 H 37
(N-octadecyl) glyceric acid amide (4) n-C 2 H 3 (OH) 2 -CONH-n-C 8 H 35
(N- octadecenyl) glyceric acid amide (5) n-C 2 H 3 (OH) 2 -CONH-n-C 22 H 45
(N-docosyl) glyceric acid amide (6) n-C 2 H 3 (OH) 2 -CONH-n-C 24 H 49
(N-tetracosyl) glyceric acid amide (7) n-C 5 H 6 (OH) 5 -CONH-n-C 6 H 13
(N- hexyl) gluconic acid amide (8) n-C 5 H 6 (OH) 5 -CONH-n-C 8 H 17
(N- octyl) gluconic acid amide (9) n-C 5 H 6 (OH) 5 -CONH-n-C 18 H 37
(N- octadecyl) gluconic acid amide (10) n-C 5 H 6 (OH) 5 -CONH-n-C 18 H 35
(N- octadecenyl) gluconic acid amide (11) n-C 5 H 6 (OH) 5 -CONH-n-C 22 H 45
(N- docosyl) gluconic acid amide (12) n-C 5 H 6 (OH) 5 -CONH-n-C 24 H 49
(N-tetracosyl) gluconic acid amide
[酸素源放出化合物]
上記混合物は、更に、酸素源放出化合物を含むことも好ましい。圧粉成形体を加熱した際に、酸素源放出化合物から酸素、水、過酸化水素などの酸素源が放出されて、圧粉成形体用鉄粉表面の酸化がより一層促進される。特に、当該酸素源放出化合物は圧粉成形体の内部にも配されるように混合することによって、熱処理工程の際、圧粉成形体内部においても圧粉成形体用鉄粉表面の酸化が進行する。
[Oxygen source releasing compound]
The mixture preferably further contains an oxygen source releasing compound. When the green compact is heated, oxygen sources such as oxygen, water, and hydrogen peroxide are released from the oxygen source releasing compound, and the oxidation of the iron powder surface for the green compact is further promoted. In particular, by mixing the oxygen source releasing compound so that it is also disposed inside the green compact, oxidation of the iron powder surface for the green compact proceeds in the green compact during the heat treatment step. To do.
その結果、本発明の圧粉磁心は、圧粉成形体用鉄粉表面と絶縁皮膜(例えば、りん酸系化成皮膜)との結合が強固になるとともに、絶縁皮膜同士の結合も強固になるため、機械的強度が向上する。また、圧粉磁心の比抵抗(絶縁性)も向上する。 As a result, in the dust core of the present invention, the bond between the iron powder surface for dust compacts and the insulating film (for example, phosphoric acid-based chemical film) is strengthened, and the bond between the insulating films is also strengthened. , Mechanical strength is improved. Moreover, the specific resistance (insulating property) of the dust core is also improved.
このような効果を有効に発揮させるためには、圧粉成形体用鉄粉(鉄基軟磁性粉末、りん酸系化成皮膜、シリコーン樹脂皮膜)、潤滑剤、及び酸素源放出化合物の混合物全量中、酸素源放出化合物が好ましくは0.01質量%以上、より好ましくは0.05質量%以上含有されていることが好ましい。しかし、酸素源放出化合物が多くなると、圧粉成形体の高密度化に反するため、好ましくは0.8質量%以下、より好ましくは0.6質量%以下である。 In order to effectively exhibit such effects, the total amount of the mixture of iron powder for compacted compacts (iron-based soft magnetic powder, phosphoric acid-based chemical conversion film, silicone resin film), lubricant, and oxygen source releasing compound The oxygen source releasing compound is preferably contained in an amount of 0.01% by mass or more, more preferably 0.05% by mass or more. However, if the amount of the oxygen source releasing compound is increased, it is contrary to the densification of the green compact, so that it is preferably 0.8% by mass or less, more preferably 0.6% by mass or less.
酸素源放出化合物としては、加熱により酸素、水、過酸化水素などの酸素源を放出するものであれば特に限定されないが、例えば、エリトリトール、グリセリン、イソマルト、ラクチトール、マルチトール、マンニトール、ソルビトール、キシリトール等の加熱によって水を放出する糖アルコール;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化マンガン、水酸化鉄、水酸化コバルト、水酸化ニッケル、水酸化銅などの加熱によって水を放出する金属水酸化物;過酸化リチウム、過酸化ナトリウム、過酸化亜鉛等の加熱によって酸素を放出する金属過酸化物;過炭酸ナトリウムなどの加熱によって水と酸素に分解する過酸化水素を放出する過炭酸塩;硝酸アニオン、亜硝酸アニオン、塩素酸アニオン等の酸化剤が挙げられる。酸化剤のアニオンの対イオン(カチオン)としてはリチウムイオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等を例示できる。これらの酸素源放出化合物は単独で用いても、2種以上を組み合わせて用いてもよい。 The oxygen source releasing compound is not particularly limited as long as it releases an oxygen source such as oxygen, water and hydrogen peroxide by heating. For example, erythritol, glycerol, isomalt, lactitol, maltitol, mannitol, sorbitol, xylitol Sugar alcohol that releases water by heating, etc .; water is released by heating magnesium hydroxide, aluminum hydroxide, calcium hydroxide, manganese hydroxide, iron hydroxide, cobalt hydroxide, nickel hydroxide, copper hydroxide, etc. Metal hydroxide; Metal peroxide that releases oxygen by heating lithium peroxide, sodium peroxide, zinc peroxide, etc .; Percarbonate that releases hydrogen peroxide that decomposes into water and oxygen by heating sodium peroxide Salts: Oxidizing agents such as nitrate anion, nitrite anion, chlorate anion It is. Examples of the counter ion (cation) of the anion of the oxidizing agent include lithium ion, sodium ion, potassium ion, ammonium ion, calcium ion, strontium ion, and barium ion. These oxygen source releasing compounds may be used alone or in combination of two or more.
[圧縮成形]
圧粉成形体は、上記混合物を圧縮成形することにより得られる。圧縮成形法は特に限定されず、従来公知の方法が採用可能である。圧縮成形条件は特に限定されず、所望の密度の圧粉磁心が得られるように面圧を調整すればよい(例えば面圧490MPa〜1960MPa程度)。
[Compression molding]
The green compact is obtained by compression molding the above mixture. The compression molding method is not particularly limited, and a conventionally known method can be employed. The compression molding conditions are not particularly limited, and the surface pressure may be adjusted so as to obtain a dust core having a desired density (for example, about 490 MPa to 1960 MPa).
本発明では、圧縮成形して得られる圧粉成形体を、以下の熱処理工程1〜3で加熱処理することによって、高強度の圧粉磁心を製造することができる。 In this invention, a high intensity | strength powder magnetic core can be manufactured by heat-processing the compacting body obtained by compression molding in the following heat processing processes 1-3.
[熱処理工程1]
本発明の製造方法では、圧縮成形後の圧粉成形体を、まず、300℃以上、500℃以下で加熱する。当該工程により、絶縁皮膜(りん酸系化成皮膜および/またはシリコーン樹脂皮膜)が破壊されることを防ぎつつ、潤滑剤を熱分解して除去することができる。
[Heat treatment step 1]
In the production method of the present invention, the compacted body after compression molding is first heated at 300 ° C. or more and 500 ° C. or less. By this step, the lubricant can be thermally decomposed and removed while preventing the insulating film (phosphoric acid-based chemical film and / or silicone resin film) from being destroyed.
また酸素源放出化合物を添加している場合には、当該加熱により、酸素源放出化合物から酸素、水、過酸化水素などの酸素源が緩やかに放出されるため、長時間に亘って圧粉成形体内部の鉄粉間の酸素源の経路の封鎖を抑制しつつ、潤滑剤の蒸発・飛散を促進できる。 When an oxygen source releasing compound is added, oxygen source such as oxygen, water, hydrogen peroxide, etc. is slowly released from the oxygen source releasing compound by the heating, so that compacting can be performed for a long time. Evaporation and scattering of the lubricant can be promoted while suppressing the blockage of the oxygen source path between the iron powders inside the body.
熱処理工程1は、具体的には、例えば、耐圧容器内に圧粉成形体を投入した後、容器内に後記ガスを封入して、容器内を飽和させた後に、容器内を上記温度範囲内に加熱して行う方法が挙げられる。 Specifically, the heat treatment step 1 is performed, for example, by putting a green compact into a pressure vessel, filling the gas in the vessel to saturate the inside of the vessel, and then keeping the inside of the vessel within the above temperature range. The method performed by heating is mentioned.
熱処理工程1の雰囲気は特に限定されず、大気、酸素、オゾン、水蒸気などの酸化性雰囲気、あるいは窒素、ヘリウム、アルゴン等の希ガス、真空などの不活性雰囲気のいずれでもよい。なお、各雰囲気中には、熱処理工程1の目的を阻害しない範囲において、他のガスが含まれていても良い。 The atmosphere of the heat treatment step 1 is not particularly limited, and may be any of an oxidizing atmosphere such as air, oxygen, ozone, and water vapor, a rare gas such as nitrogen, helium, and argon, and an inert atmosphere such as vacuum. Each atmosphere may contain other gases as long as the purpose of the heat treatment step 1 is not impaired.
また、熱処理工程1の温度を300℃より低温に設定した場合には、潤滑剤の分解除去効果が不十分となる。したがって熱処理工程1の温度は、300℃以上、好ましくは330℃以上とする。一方、温度が高くなりすぎると、潤滑剤の分解・除去が十分に行われる前に圧粉成形体の酸化が進行して体積膨張が起こり、潤滑剤の揮発経路が塞がれて潤滑剤が十分に除去されない。そのため、成形体内部に供給される酸素が不十分となり、成形体内部の酸化が阻害されてしまう。このようなことが起こると、成形体の機械的強度(折損強度)が悪化する。したがって熱処理工程1の温度は、500℃以下、好ましくは480℃以下、より好ましくは450℃以下とする。 Further, when the temperature of the heat treatment step 1 is set lower than 300 ° C., the effect of decomposing and removing the lubricant becomes insufficient. Therefore, the temperature of the heat treatment step 1 is set to 300 ° C. or higher, preferably 330 ° C. or higher. On the other hand, if the temperature becomes too high, the compacted body undergoes oxidation and volume expansion occurs before the lubricant is sufficiently decomposed and removed, thereby blocking the lubricant volatilization path and Not fully removed. Therefore, oxygen supplied into the molded body becomes insufficient, and oxidation inside the molded body is hindered. When such a thing occurs, the mechanical strength (breaking strength) of the molded body deteriorates. Therefore, the temperature of the heat treatment step 1 is set to 500 ° C. or lower, preferably 480 ° C. or lower, more preferably 450 ° C. or lower.
熱処理工程1での加熱時間は、上記熱処理目的が達成できればよく、特に限定されない。加熱時間が短い場合には、熱処理工程1による上記効果を十分に享受できない場合がある。したがって加熱時間は、好ましくは10分以上、より好ましくは20分以上であって、好ましくは250分以下、より好ましくは200分以下、さらに好ましくは150分以下である。 The heating time in the heat treatment step 1 is not particularly limited as long as the purpose of the heat treatment can be achieved. When the heating time is short, the above-mentioned effect by the heat treatment step 1 may not be sufficiently enjoyed. Therefore, the heating time is preferably 10 minutes or more, more preferably 20 minutes or more, preferably 250 minutes or less, more preferably 200 minutes or less, and even more preferably 150 minutes or less.
[熱処理工程2]
本発明の製造方法では、上記熱処理工程1に続いて、酸化性雰囲気中で、500℃超700℃以下で加熱する工程(熱処理工程2)を含む。当該工程により、圧粉成形体の内部の圧粉成形用鉄粉の酸化が促進され、マグネタイトおよびヘマタイトが生成すると共に、鉄粉表面とりん酸系化成皮膜との結合が強固になる。更に隣接する絶縁皮膜同士の結合も強固になり、得られる圧粉磁心の機械的強度が向上する。
[Heat treatment step 2]
In the manufacturing method of this invention, following the said heat processing process 1, the process (heat processing process 2) heated at 500 degreeC or more and 700 degrees C or less in an oxidizing atmosphere is included. By the said process, the oxidation of the iron powder for compacting inside a compacting body is accelerated | stimulated, while a magnetite and a hematite are produced | generated, and the coupling | bonding of an iron powder surface and a phosphoric acid system chemical film becomes strong. Further, the bonding between adjacent insulating films is strengthened, and the mechanical strength of the obtained dust core is improved.
また酸素源放出化合物を添加している場合には、当該加熱により、酸素源放出化合物から放出される酸素源によって圧粉成形体内部の酸化を一層促進できる。 Further, when an oxygen source releasing compound is added, the heating can further promote oxidation inside the green compact by the oxygen source released from the oxygen source releasing compound.
なお、本発明では各熱処理工程は連続して、あるいは一旦冷却してから所定の温度にしてもよい。容器内の雰囲気を変える場合は、例えば熱処理工程1の終了後に圧粉成形体を一旦冷却し、次いで耐圧容器内を酸化性ガスで置換して、容器内を酸化性ガスで飽和させた後に、容器内を所定温度に加熱して熱処理工程2を行えばよい。また雰囲気を変えない場合は、例えば熱処理工程1と熱処理工程2を連続的に行うことが望ましい。即ち、熱処理工程1終了後、一旦冷却することなく、そのまま所定の温度まで昇温させて熱処理工程2を行えばよい。 In the present invention, each heat treatment step may be performed continuously or once cooled to a predetermined temperature. When changing the atmosphere in the container, for example, after the heat treatment step 1 is completed, the green compact is once cooled, and then the pressure-resistant container is replaced with an oxidizing gas, and the container is saturated with an oxidizing gas. Heat treatment step 2 may be performed by heating the inside of the container to a predetermined temperature. In the case where the atmosphere is not changed, it is desirable that, for example, the heat treatment step 1 and the heat treatment step 2 are continuously performed. That is, after the heat treatment step 1, the heat treatment step 2 may be performed by raising the temperature to a predetermined temperature without cooling.
熱処理工程2における雰囲気は、鉄粉の酸化を促進するために酸化性雰囲気で行うことが必要であり、窒素等の不活性雰囲気で行うと、酸化が不十分になり、高い機械的強度を得ることが困難となる。熱処理工程2は上記した酸化性雰囲気で実施すればよく、製造コストの観点からは、大気雰囲気でもよい。 The atmosphere in the heat treatment step 2 needs to be performed in an oxidizing atmosphere in order to promote the oxidation of the iron powder, and if performed in an inert atmosphere such as nitrogen, the oxidation becomes insufficient and high mechanical strength is obtained. It becomes difficult. The heat treatment step 2 may be performed in the above-described oxidizing atmosphere, and may be an air atmosphere from the viewpoint of manufacturing cost.
熱処理工程2における熱処理温度が低すぎる場合には、鉄粉の酸化が不十分であったり、また圧粉成形体の内部まで酸化を進行させるのに長時間を要する場合がある。また、熱処理温度が高すぎる場合には、鉄粉とりん酸系化成皮膜との界面強度が低下して、圧粉磁心の機械的強度が低下する場合がある。また絶縁皮膜が高温に曝されると薄肉化して絶縁性が低下する場合がある。熱処理工程2の加熱温度は、500℃超、好ましくは520℃以上、より好ましくは550℃以上であって、700℃以下、好ましくは680℃以下、より好ましくは650℃以下、さらに好ましくは625℃以下である。 When the heat treatment temperature in the heat treatment step 2 is too low, the iron powder may be insufficiently oxidized, or it may take a long time to advance the oxidation to the inside of the green compact. If the heat treatment temperature is too high, the interface strength between the iron powder and the phosphoric acid-based chemical conversion film may be reduced, and the mechanical strength of the dust core may be reduced. Further, when the insulating film is exposed to high temperature, it may be thinned and the insulating property may be lowered. The heating temperature in the heat treatment step 2 is over 500 ° C., preferably 520 ° C. or higher, more preferably 550 ° C. or higher, 700 ° C. or lower, preferably 680 ° C. or lower, more preferably 650 ° C. or lower, and further preferably 625 ° C. It is as follows.
熱処理工程2における加熱時間は、上記熱処理目的が達成できればよく、特に限定されない。もっとも加熱時間が短すぎる場合には、熱処理工程2による上記効果を十分に享受できない場合がある。したがって加熱時間は、好ましくは10分以上、より好ましくは15分以上である。また加熱時間は歪み取りの観点からは長い方が好ましいが、長時間に亘って高温の熱処理を行うと上記したように絶縁皮膜の薄肉化によって絶縁性が低下する場合がある。したがって加熱時間は、好ましくは60分以下、より好ましくは50分以下、さらに好ましくは40分以下である。 The heating time in the heat treatment step 2 is not particularly limited as long as the purpose of the heat treatment can be achieved. Of course, when the heating time is too short, the above-described effects of the heat treatment step 2 may not be sufficiently enjoyed. Therefore, the heating time is preferably 10 minutes or more, more preferably 15 minutes or more. In addition, the heating time is preferably longer from the viewpoint of distortion removal. However, when high-temperature heat treatment is performed for a long time, the insulating property may be lowered due to the thinning of the insulating film as described above. Accordingly, the heating time is preferably 60 minutes or less, more preferably 50 minutes or less, and even more preferably 40 minutes or less.
また、熱処理工程2の加熱温度、および加熱時間を適切に制御すると、高強度化に寄与するヘマタイトを含む圧粉磁心を得ることができる。具体的には熱処理工程2における加熱温度を520℃以上、625℃以下とし、35分以上の加熱時間で熱処理を行うことで、ヘマタイトを生成することができ、具体的にはマグネタイトに対するヘマタイトの体積割合が、0.05〜0.25である圧粉磁心を得ることができる。 Moreover, if the heating temperature and heating time in the heat treatment step 2 are appropriately controlled, a dust core containing hematite that contributes to high strength can be obtained. Specifically, the heating temperature in the heat treatment step 2 is set to 520 ° C. or more and 625 ° C. or less, and heat treatment is performed for a heating time of 35 minutes or more, so that hematite can be generated. Specifically, the volume of hematite with respect to magnetite A dust core having a ratio of 0.05 to 0.25 can be obtained.
[熱処理工程3]
本発明の製造方法では、上記熱処理工程2に続いて、更に、300℃以上450℃以下で、30分以上、120分以下加熱する工程(熱処理工程3)を含む。当該工程により、ウスタイトをマグネタイトに変換して低強度の原因となるウスタイトの低減を図ると共に、高強度化に寄与するマグネタイトを増加できるため、得られる圧粉磁心の機械的強度が一層向上する。具体的には、後記するようにマグネタイトの体積率が5.0〜15%、ウスタイトの体積率が3.0%以下(0%を含む)の圧粉磁心を得ることができる。
[Heat treatment step 3]
In the manufacturing method of this invention, following the said heat processing process 2, the process (heat treatment process 3) further heated at 300 degreeC or more and 450 degrees C or less for 30 minutes or more and 120 minutes or less is included. By this process, wustite is converted into magnetite to reduce wustite that causes low strength, and magnetite that contributes to high strength can be increased, so that the mechanical strength of the obtained dust core is further improved. Specifically, as will be described later, it is possible to obtain a dust core having a magnetite volume ratio of 5.0 to 15% and a wustite volume ratio of 3.0% or less (including 0%).
熱処理工程3を所定の温度範囲内で行うことにより、既に生成しているマグネタイトやヘマタイトが破壊されるのを防ぎつつ、ウスタイトをマグネタイトに変換することができる。熱処理工程3を300℃より低温で行った場合には、ウスタイトをマグネタイトに変換することができず、高強度化を図ることができない。また熱処理工程3を450℃より高温で行った場合には、ウスタイトが新たに成長する場合がある。熱処理工程3の加熱温度は、好ましくは320℃以上、より好ましくは340℃以上であって、好ましくは430℃以下、より好ましくは410℃以下である。 By performing the heat treatment step 3 within a predetermined temperature range, it is possible to convert wustite to magnetite while preventing the already generated magnetite and hematite from being destroyed. When the heat treatment step 3 is performed at a temperature lower than 300 ° C., wustite cannot be converted to magnetite, and high strength cannot be achieved. In addition, when the heat treatment step 3 is performed at a temperature higher than 450 ° C., wustite may newly grow. The heating temperature in the heat treatment step 3 is preferably 320 ° C. or higher, more preferably 340 ° C. or higher, preferably 430 ° C. or lower, more preferably 410 ° C. or lower.
また、加熱時間は上記熱処理温度域で30分以上、120分以下とする。加熱時間が短い場合には、ウスタイトをマグネタイトに十分に変換できず、機械的強度を高めることができない場合がある。したがって加熱時間は、好ましくは40分以上、より好ましくは50分以上である。ウスタイトからマグネタイトの生成を促進する観点からは加熱時間は長い方が好ましいが、長時間に亘って高温の熱処理を行うとウスタイトが新たに成長する場合がある。好ましくは110分以下、より好ましくは90分以下である。 The heating time is 30 minutes or more and 120 minutes or less in the heat treatment temperature range. When the heating time is short, wustite cannot be sufficiently converted to magnetite, and the mechanical strength may not be increased. Therefore, the heating time is preferably 40 minutes or more, more preferably 50 minutes or more. From the viewpoint of promoting the production of magnetite from wustite, a longer heating time is preferable. However, when high-temperature heat treatment is performed for a long time, wustite may newly grow. Preferably it is 110 minutes or less, More preferably, it is 90 minutes or less.
熱処理工程3の雰囲気は特に限定されず、大気、酸素、オゾン、水蒸気などの酸化性雰囲気、あるいは窒素、ヘリウム、アルゴン等の希ガス、真空などの不活性雰囲気のいずれでもよい。なお、各雰囲気中には、熱処理工程3の目的を阻害しない範囲において、他のガスが含まれていても良い。 The atmosphere of the heat treatment step 3 is not particularly limited, and may be any of an oxidizing atmosphere such as air, oxygen, ozone, and water vapor, a rare gas such as nitrogen, helium, and argon, and an inert atmosphere such as vacuum. Each atmosphere may contain other gases as long as the purpose of the heat treatment step 3 is not impaired.
[圧粉磁心]
圧粉成形体を熱処理した後は、冷却して常温に戻せば本発明の圧粉磁心が得られる。
[Dust core]
After heat-treating the green compact, the powder magnetic core of the present invention can be obtained by cooling to room temperature.
以上、本発明の製造方法では、上記した条件で熱処理工程1〜熱処理工程3を行うと、従来よりも高い機械的強度を有する圧粉磁心を製造することができる。 As mentioned above, in the manufacturing method of this invention, if the heat processing process 1-the heat processing process 3 are performed on above-described conditions, the powder magnetic core which has mechanical strength higher than before can be manufactured.
具体的には、マグネタイトが5.0〜15体積%、ウスタイトが3.0体積%以下(0体積%を含む)の圧粉磁心を得ることができる。 Specifically, it is possible to obtain a dust core having magnetite of 5.0 to 15% by volume and wustite of 3.0% by volume or less (including 0% by volume).
マグネタイトの体積率が低すぎると、十分な強度を得ることができず、また体積率が高すぎても、かえって強度が低下する。したがってマグネタイトは、5.0体積%以上、好ましくは5.2体積%以上、より好ましくは5.5体積%以上であって、15体積%以下、好ましくは13体積%以下、より好ましくは11体積%以下である。 If the volume fraction of magnetite is too low, sufficient strength cannot be obtained, and if the volume fraction is too high, the strength is rather lowered. Accordingly, the magnetite content is 5.0% by volume or more, preferably 5.2% by volume or more, more preferably 5.5% by volume or more, and 15% by volume or less, preferably 13% by volume or less, more preferably 11% by volume. % Or less.
またウスタイトの体積率が高くなると強度が低下するため、3.0体積%以下、好ましくは1.0体積%以下、より好ましくは全く含まないこと(0体積%)である。 Further, since the strength decreases as the volume fraction of wustite increases, it is 3.0% by volume or less, preferably 1.0% by volume or less, more preferably not contained at all (0% by volume).
さらに、ヘマタイトは高強度化に寄与するため、圧粉磁心に含まれていることが好ましい。この際、マグネタイトに対するヘマタイトの体積割合が低すぎると、十分な強度向上効果を奏することができず、一方、ヘマタイトの体積割合が高すぎるとかえって強度が低下することがある。したがって、マグネタイトに対するヘマタイトの体積割合は、0.05〜0.25であることが好ましい。 Furthermore, since hematite contributes to high strength, it is preferable that hematite is contained in the dust core. At this time, if the volume ratio of hematite to magnetite is too low, a sufficient strength improvement effect cannot be achieved, whereas if the volume ratio of hematite is too high, the strength may be lowered. Therefore, the volume ratio of hematite to magnetite is preferably 0.05 to 0.25.
マグネタイト、ヘマタイト、およびウスタイトの体積割合(平均値)は、圧粉磁心の破断面(任意の複数位置)をX線回折法により測定することによって、得ることができる。 The volume ratio (average value) of magnetite, hematite, and wustite can be obtained by measuring the fracture surface (arbitrary plural positions) of the dust core by the X-ray diffraction method.
なお、マグネタイト、ヘマタイト、およびウスタイト以外の残部組織は、鉄などであるが、機械的強度確保の観点からはマグネタイト、ヘマタイト、およびウスタイトの体積率を適切に制御すればよく、その他の残部組織の構成については特に限定されない。 The remaining structure other than magnetite, hematite, and wustite is iron, but from the viewpoint of securing mechanical strength, the volume ratio of magnetite, hematite, and wustite may be appropriately controlled. The configuration is not particularly limited.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
(成形工程)
圧粉成形体用鉄粉として、純鉄粉(鉄基軟磁性粉末)の表面にりん酸系化成皮膜、および該りん酸系化成皮膜の上にシリコーン樹脂皮膜を有する圧粉成形体用鉄基軟磁性粉末(神戸製鋼所製「ML35D」を用いた。
(Molding process)
As iron powder for powder compacts, an iron base for compact compacts having a phosphoric acid-based chemical film on the surface of pure iron powder (iron-based soft magnetic powder) and a silicone resin film on the phosphoric acid-based chemical film. Soft magnetic powder (“ML35D” manufactured by Kobe Steel) was used.
潤滑剤としてポリヒドロキシカルボン酸アミド潤滑剤を、圧粉成形体用鉄粉、潤滑剤、及び酸素源放出化合物との混合物全量に対して0.2質量%となるように添加・混合して混合物を得た。 Polyhydroxycarboxylic acid amide lubricant as a lubricant is added and mixed so as to be 0.2% by mass with respect to the total amount of the mixture of iron powder for compacting body, lubricant, and oxygen source releasing compound. Got.
なお、一部の実施例については、更に表1記載の酸素源放出剤(酸素源放出化合物)をシリコーン樹脂皮膜が形成された圧粉成形体用鉄粉、潤滑剤、及び酸素源放出化合物の混合物全量に対して0.1質量%添加・混合した混合物を得た。 For some examples, the oxygen source releasing agent (oxygen source releasing compound) described in Table 1 is further added to the iron powder for a green compact formed with a silicone resin film, the lubricant, and the oxygen source releasing compound. A mixture obtained by adding and mixing 0.1% by mass with respect to the total amount of the mixture was obtained.
この混合物を金型に充填し、面圧784MPaで室温(25℃)での圧縮成形を行い、圧粉成形体(縦31.75mm×横12.7mm×高さ約5mm)を得た。 This mixture was filled in a mold and compression molded at room temperature (25 ° C.) at a surface pressure of 784 MPa to obtain a green compact (length 31.75 mm × width 12.7 mm × height about 5 mm).
(熱処理工程)
続いて圧粉成形体を表1に記載の条件で熱処理工程1〜3を実施した(No.11〜14では熱処理工程3を行っていない)。熱処理工程3終了後、容器内でそのまま室温まで冷却(炉冷)して圧粉磁心を製造した。熱処理工程1と熱処理工程2における所定温度までの平均昇温速度は、おおむね10℃/分となるように制御した。また熱処理温度2から熱処理温度3の所定温度までの平均冷却速度は、おおむね10℃/分となるように制御した。なお、各熱処理工程は連続して行った(例えばNo.1では熱処理工程1を300℃で行った後、続けて550℃に昇温して熱処理工程2を行った)。
(Heat treatment process)
Subsequently, heat treatment steps 1 to 3 were performed on the compacted body under the conditions described in Table 1 (No. 11 to 14 did not perform heat treatment step 3). After completion of the heat treatment step 3, the powder core was manufactured by cooling (furnace cooling) to room temperature in the container. In the heat treatment step 1 and the heat treatment step 2, the average rate of temperature rise to a predetermined temperature was controlled to be about 10 ° C./min. Further, the average cooling rate from the heat treatment temperature 2 to the predetermined temperature of the heat treatment temperature 3 was controlled to be about 10 ° C./min. In addition, each heat processing process was performed continuously (For example, in No. 1, after heat processing process 1 was performed at 300 degreeC, it heated up at 550 degreeC and performed heat processing process 2).
(評価)
製造した各圧粉磁心の密度、抗折強度、及びマグネタイト(Fe3O4)とヘマタイト(Fe2O3)、ウスタイト(FeO)の体積割合を測定した結果を表2に示す。
(Evaluation)
Table 2 shows the results of measuring the density, bending strength, and volume ratio of magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), and wustite (FeO) for each of the produced dust cores.
(密度)
圧粉磁心の質量及び大きさの実測値から密度を算出した。本発明では密度が7.40g/cm3以上である場合を合格と評価した。
(density)
The density was calculated from the actual measurement values of the mass and size of the dust core. In the present invention, the case where the density was 7.40 g / cm 3 or more was evaluated as acceptable.
(抗折強度)
圧粉磁心の抗折強度を3点曲げ試験(日本粉末冶金工業会のJPMA M 09-1992に準拠)を行って機械的強度を評価した。測定には引張試験機(島津製作所製「AUTOGRAPH AG−5000E」)を使用し、支点間距離を25mmとした。抗折強度は70MPa以上の場合を合格、70MPa未満の場合を不合格と評価した。
(Folding strength)
The bending strength of the dust core was subjected to a three-point bending test (in accordance with JPMA M 09-1992 of the Japan Powder Metallurgy Industry Association) to evaluate the mechanical strength. For the measurement, a tensile tester (“AUTOGRAPH AG-5000E” manufactured by Shimadzu Corporation) was used, and the distance between the fulcrums was set to 25 mm. The case where the bending strength was 70 MPa or more was evaluated as acceptable, and the case where it was less than 70 MPa was evaluated as unacceptable.
(体積割合)
圧粉磁心に含まれるマグネタイト、ヘマタイト、およびウスタイトの体積割合は、上記抗折試験後の試験片を用いて測定した。具体的には、抗折試験によって破断して露出した面にX線を照射してX線回折測定を実施し、マグネタイト、ヘマタイト、およびウスタイトの体積割合を求めた。測定装置にはリガク社製X線回折装置RAD−RU300を用いた。CoターゲットおよびモノクロメータによりKα線を使用し、測定角度(2θ)15〜110°で測定した。測定面におけるX線の照射面積は、約横10mm×縦15mmであり、破断面の中央部、両端の計3箇所を評価対象とした。Fe3O4由来のピーク、Fe2O3由来のピーク、FeO由来のピークとFe由来のピークにピークフィッティングを施し、マグネタイト(Fe3O4)、ヘマタイト(Fe2O3)、およびウスタイト(FeO)の体積割合を求めた。
(Volume ratio)
The volume ratio of magnetite, hematite, and wustite contained in the dust core was measured using the test piece after the bending test. Specifically, X-ray diffraction measurement was performed by irradiating the surface exposed by fracture in the bending test, and the volume ratio of magnetite, hematite, and wustite was determined. As a measuring device, an X-ray diffractometer RAD-RU300 manufactured by Rigaku Corporation was used. Measurement was performed at a measurement angle (2θ) of 15 to 110 ° using Kα rays with a Co target and a monochromator. The X-ray irradiation area on the measurement surface was about 10 mm wide × 15 mm long, and a total of three locations at the center and both ends of the fracture surface were evaluated. Peak fitting is applied to the peak derived from Fe 3 O 4, the peak derived from Fe 2 O 3 , the peak derived from FeO and the peak derived from Fe, and magnetite (Fe 3 O 4 ), hematite (Fe 2 O 3 ), and wustite ( The volume fraction of FeO) was determined.
本発明の製造条件(熱処理工程1〜3)を満足するNo.1〜10では、圧粉磁心の内部まで酸化が進行しており、機械的強度の高い圧粉磁心が得られた。特に酸素源放出剤(酸素源放出化合物)を添加したNo.6〜10では、酸素源放出剤を添加していないNo.1〜5と比べて酸化が促進されているため、より高い機械的強度を有する圧粉磁心が得られた。 No. satisfying the production conditions of the present invention (heat treatment steps 1 to 3). In 1 to 10, oxidation progressed to the inside of the dust core, and a dust core with high mechanical strength was obtained. In particular, No. 1 to which an oxygen source releasing agent (oxygen source releasing compound) was added. In Nos. 6 to 10, no oxygen source releasing agent was added. Since oxidation was promoted as compared with 1 to 5, a dust core having higher mechanical strength was obtained.
また、No.11〜16は、熱処理工程2をヘマタイト生成に好適な加熱温度、および加熱時間で熱処理しているため、マグネタイト、およびヘマタイトが生成し、高い機械的強度を有する圧粉磁心が得られた。具体的にはNo.11〜16は夫々No.1、6〜10と比べて抗折強度が向上した。 No. In Nos. 11 to 16, since the heat treatment step 2 was heat-treated at a heating temperature and a heating time suitable for producing hematite, magnetite and hematite were produced, and dust cores having high mechanical strength were obtained. Specifically, no. 11 to 16 are No. respectively. The bending strength was improved as compared with 1, 6-10.
一方、本発明の製造条件を満足しないNo.17〜30では圧粉磁心の機械的強度を高めることができなかった。 On the other hand, No. which does not satisfy the production conditions of the present invention. From 17 to 30, the mechanical strength of the dust core could not be increased.
具体的には、熱処理工程3を行わなかったNo.17〜20では、ウスタイトを低減できず、圧粉磁心の機械的強度が低かった。 Specifically, No. in which the heat treatment step 3 was not performed. In 17-20, the wustite could not be reduced, and the mechanical strength of the dust core was low.
熱処理工程1での加熱温度が低かったNo.21、22では、潤滑剤を十分に分解できておらず、その後の熱処理工程で酸化が十分に進行しなかったため、マグネタイトが少なく、圧粉磁心の機械的強度が低かった。 No. in which the heating temperature in the heat treatment step 1 was low. In Nos. 21 and 22, the lubricant was not sufficiently decomposed, and the oxidation did not proceed sufficiently in the subsequent heat treatment step, so that the magnetite was small and the mechanical strength of the dust core was low.
一方、熱処理工程1での加熱温度が高かったNo.23、24では、潤滑剤が十分に除去される前に成形体の酸化が進行したことにより、成形体の酸化が阻害され、十分なマグネタイトを確保できず、機械的強度が低かった。 On the other hand, the heating temperature in heat treatment step 1 was high. In Nos. 23 and 24, since the oxidation of the molded body progressed before the lubricant was sufficiently removed, the oxidation of the molded body was inhibited, and sufficient magnetite could not be secured, resulting in low mechanical strength.
熱処理工程2での加熱温度が低かったNo.25では、酸化が十分に行われなかったため、十分なマグネタイトを確保できず、機械的強度が低かった。 No. in which the heating temperature in heat treatment step 2 was low. In No. 25, since sufficient oxidation was not performed, sufficient magnetite could not be secured, and the mechanical strength was low.
一方、熱処理工程2での加熱温度が高かったNo.26、27では、酸化が過度に進行して、マグネタイトが過剰となり、機械的強度が低かった。 On the other hand, the heating temperature in heat treatment step 2 was high. In Nos. 26 and 27, the oxidation proceeded excessively, the magnetite became excessive, and the mechanical strength was low.
熱処理工程2の雰囲気を窒素としたNo.28、29では、酸化が十分に行われなかったため、十分なマグネタイトを確保できず、機械的強度が低かった。 No. 1 in which the atmosphere in the heat treatment step 2 is nitrogen. In 28 and 29, since the oxidation was not sufficiently performed, sufficient magnetite could not be secured, and the mechanical strength was low.
熱処理工程3の加熱時間が短かったNo.30では、ウスタイトを低減することができず、機械的強度が低かった。 No. in which the heating time in heat treatment step 3 was short. In 30, wustite could not be reduced and the mechanical strength was low.
Claims (7)
前記圧粉成形体を、300℃以上500℃以下で加熱する熱処理工程1と、
次いで、酸化性雰囲気中、500℃超700℃以下で加熱する熱処理工程2と、
次いで、300℃以上450℃以下で、30分以上120分以下加熱する熱処理工程3と、
を含むことを特徴とする圧粉磁心の製造方法。 A molding step in which a mixture obtained by mixing an iron-based soft magnetic powder and a lubricant for a green compact having a phosphoric acid-based chemical film on the surface of the iron-based soft magnetic powder is compression-molded to obtain a green compact; and
A heat treatment step 1 in which the green compact is heated at 300 ° C. or higher and 500 ° C. or lower;
Next, a heat treatment step 2 of heating in an oxidizing atmosphere at over 500 ° C. and below 700 ° C .;
Next, heat treatment step 3 of heating at 300 ° C. to 450 ° C. for 30 minutes to 120 minutes,
The manufacturing method of the powder magnetic core characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013007594A JP6159531B2 (en) | 2012-01-18 | 2013-01-18 | Powder magnetic core and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012008451 | 2012-01-18 | ||
JP2012008451 | 2012-01-18 | ||
JP2013007594A JP6159531B2 (en) | 2012-01-18 | 2013-01-18 | Powder magnetic core and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013168648A true JP2013168648A (en) | 2013-08-29 |
JP6159531B2 JP6159531B2 (en) | 2017-07-05 |
Family
ID=48816825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013007594A Active JP6159531B2 (en) | 2012-01-18 | 2013-01-18 | Powder magnetic core and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6159531B2 (en) |
KR (1) | KR101420562B1 (en) |
CN (1) | CN103219120B (en) |
MY (1) | MY156645A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053542A (en) * | 2018-09-27 | 2020-04-02 | 太陽誘電株式会社 | Magnetic substrate including soft magnetic metal particles and electronic component including the same |
US20200312513A1 (en) * | 2019-03-29 | 2020-10-01 | Taiyo Yuden Co., Ltd. | Inductor |
JP2020198338A (en) * | 2019-05-31 | 2020-12-10 | 太陽誘電株式会社 | Coil component |
JP2021002555A (en) * | 2019-06-20 | 2021-01-07 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method of powder magnetic core |
JP2021093406A (en) * | 2019-12-06 | 2021-06-17 | 株式会社タムラ製作所 | Method of manufacturing dust core |
US11763969B2 (en) * | 2018-03-09 | 2023-09-19 | Tdk Corporation | Soft magnetic metal powder, dust core, and magnetic component |
US11798719B2 (en) * | 2018-03-09 | 2023-10-24 | Tdk Corporation | Soft magnetic metal powder, dust core, and magnetic component |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106104727B (en) * | 2014-03-13 | 2019-03-29 | 日立金属株式会社 | The manufacturing method and compressed-core of compressed-core |
CN104465003B (en) * | 2014-11-25 | 2016-08-17 | 浙江大学 | Acidity is given a protective coating to metal objects the method that technique prepares high saturation magnetic flux density soft-magnetic composite material |
JP6780706B2 (en) * | 2016-11-09 | 2020-11-04 | Tdk株式会社 | Rare earth magnet manufacturing method |
CN108831731A (en) * | 2018-06-27 | 2018-11-16 | 四川东阁科技有限公司 | A kind of powder core resistant to high temperature |
CN111640570A (en) * | 2020-06-12 | 2020-09-08 | 安徽昭田电子科技有限公司 | Preparation method of iron-based soft magnetic core with high temperature resistance and high surface resistance |
CN116426730B (en) * | 2023-02-20 | 2024-02-02 | 娄底市利通磁电科技有限公司 | Heat treatment device for magnetic core production and use method thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008244347A (en) * | 2007-03-28 | 2008-10-09 | Mitsubishi Materials Pmg Corp | Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material |
JP2008544520A (en) * | 2005-06-15 | 2008-12-04 | ホガナス アクチボラゲット | Electromagnetic soft composite material |
JP2009088496A (en) * | 2007-09-12 | 2009-04-23 | Seiko Epson Corp | Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element |
JP2009141346A (en) * | 2007-11-16 | 2009-06-25 | Mitsubishi Materials Corp | High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component |
JP2010118486A (en) * | 2008-11-13 | 2010-05-27 | Nec Tokin Corp | Inductor and method of manufacturing the same |
JP2010199328A (en) * | 2009-02-25 | 2010-09-09 | Toyota Motor Corp | Method of manufacturing dust core |
JP2010225673A (en) * | 2009-03-19 | 2010-10-07 | Kobe Steel Ltd | Mixed powder for dust core, and method of manufacturing dust core using mixed the powder |
JP2011129857A (en) * | 2009-11-20 | 2011-06-30 | Kobe Steel Ltd | Method of manufacturing dust core and dust core obtained by the method |
JP2011233827A (en) * | 2010-04-30 | 2011-11-17 | Denso Corp | Dust core and manufacturing method therefor |
JP2012084803A (en) * | 2010-10-14 | 2012-04-26 | Kobe Steel Ltd | Manufacturing method for powder magnetic core and powder magnetic core obtained from thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB311677A (en) * | 1928-02-11 | 1929-05-13 | Western Electric Co | Improvements in composite magnetic materials |
JP2000232014A (en) * | 1999-02-12 | 2000-08-22 | Matsushita Electric Ind Co Ltd | Manufacture of composite magnetic material |
US7789934B2 (en) * | 2004-01-20 | 2010-09-07 | Kabushiki Kaisha Kobe Seiko Sho | Lubricant for powder metallurgy, powdery mixture for powder metallurgy, and process for producing sinter |
JP4044591B1 (en) | 2006-09-11 | 2008-02-06 | 株式会社神戸製鋼所 | Iron-based soft magnetic powder for dust core, method for producing the same, and dust core |
US9175376B2 (en) * | 2007-09-27 | 2015-11-03 | Hitachi Metals, Ltd. | Method for producing surface-modified rare earth metal-based sintered magnet and surface-modified rare earth metal-based sintered magnet |
JP5417074B2 (en) | 2009-07-23 | 2014-02-12 | 日立粉末冶金株式会社 | Powder magnetic core and manufacturing method thereof |
CN102844824B (en) * | 2010-02-18 | 2017-08-15 | 霍加纳斯股份有限公司 | Ferromagnetic powder composition and its manufacture method |
CN101996723B (en) * | 2010-09-29 | 2012-07-25 | 清华大学 | Composite soft magnetic powder core and preparation method thereof |
-
2012
- 2012-12-24 CN CN201210567029.9A patent/CN103219120B/en active Active
-
2013
- 2013-01-17 KR KR1020130005470A patent/KR101420562B1/en active IP Right Grant
- 2013-01-18 JP JP2013007594A patent/JP6159531B2/en active Active
- 2013-01-18 MY MYPI2013700113A patent/MY156645A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008544520A (en) * | 2005-06-15 | 2008-12-04 | ホガナス アクチボラゲット | Electromagnetic soft composite material |
JP2008244347A (en) * | 2007-03-28 | 2008-10-09 | Mitsubishi Materials Pmg Corp | Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material |
JP2009088496A (en) * | 2007-09-12 | 2009-04-23 | Seiko Epson Corp | Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element |
JP2009141346A (en) * | 2007-11-16 | 2009-06-25 | Mitsubishi Materials Corp | High-strength high-resistivity low-loss composite soft magnetic material and method of manufacturing the same, and electromagnetic circuit component |
JP2010118486A (en) * | 2008-11-13 | 2010-05-27 | Nec Tokin Corp | Inductor and method of manufacturing the same |
JP2010199328A (en) * | 2009-02-25 | 2010-09-09 | Toyota Motor Corp | Method of manufacturing dust core |
JP2010225673A (en) * | 2009-03-19 | 2010-10-07 | Kobe Steel Ltd | Mixed powder for dust core, and method of manufacturing dust core using mixed the powder |
JP2011129857A (en) * | 2009-11-20 | 2011-06-30 | Kobe Steel Ltd | Method of manufacturing dust core and dust core obtained by the method |
JP2011233827A (en) * | 2010-04-30 | 2011-11-17 | Denso Corp | Dust core and manufacturing method therefor |
JP2012084803A (en) * | 2010-10-14 | 2012-04-26 | Kobe Steel Ltd | Manufacturing method for powder magnetic core and powder magnetic core obtained from thereof |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11798719B2 (en) * | 2018-03-09 | 2023-10-24 | Tdk Corporation | Soft magnetic metal powder, dust core, and magnetic component |
US11763969B2 (en) * | 2018-03-09 | 2023-09-19 | Tdk Corporation | Soft magnetic metal powder, dust core, and magnetic component |
CN110957095A (en) * | 2018-09-27 | 2020-04-03 | 太阳诱电株式会社 | Magnetic matrix containing soft magnetic metal particles and electronic component containing the same |
JP2020053542A (en) * | 2018-09-27 | 2020-04-02 | 太陽誘電株式会社 | Magnetic substrate including soft magnetic metal particles and electronic component including the same |
CN110957095B (en) * | 2018-09-27 | 2024-09-20 | 太阳诱电株式会社 | Magnetic matrix containing soft magnetic metal particles and electronic component containing the same |
JP7426191B2 (en) | 2018-09-27 | 2024-02-01 | 太陽誘電株式会社 | Magnetic substrate containing soft magnetic metal particles and electronic components containing the magnetic substrate |
US11594354B2 (en) | 2018-09-27 | 2023-02-28 | Taiyo Yuden Co., Ltd. | Magnetic base body containing soft magnetic metal particles and electronic component including the same |
US11742126B2 (en) * | 2019-03-29 | 2023-08-29 | Taiyo Yuden Co., Ltd. | Inductor |
US20200312513A1 (en) * | 2019-03-29 | 2020-10-01 | Taiyo Yuden Co., Ltd. | Inductor |
JP2020198338A (en) * | 2019-05-31 | 2020-12-10 | 太陽誘電株式会社 | Coil component |
JP7307603B2 (en) | 2019-06-20 | 2023-07-12 | 株式会社タムラ製作所 | Powder magnetic core and method for manufacturing powder magnetic core |
JP2021002555A (en) * | 2019-06-20 | 2021-01-07 | 株式会社タムラ製作所 | Powder magnetic core and manufacturing method of powder magnetic core |
JP7194098B2 (en) | 2019-12-06 | 2022-12-21 | 株式会社タムラ製作所 | Method for manufacturing dust core |
JP2021093406A (en) * | 2019-12-06 | 2021-06-17 | 株式会社タムラ製作所 | Method of manufacturing dust core |
Also Published As
Publication number | Publication date |
---|---|
CN103219120B (en) | 2016-02-10 |
CN103219120A (en) | 2013-07-24 |
JP6159531B2 (en) | 2017-07-05 |
MY156645A (en) | 2016-03-15 |
KR101420562B1 (en) | 2014-07-16 |
KR20130085007A (en) | 2013-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6159531B2 (en) | Powder magnetic core and manufacturing method thereof | |
KR101369109B1 (en) | Method for producing dust core, and dust core obtained by the method | |
JP5597512B2 (en) | Manufacturing method of dust core and dust core obtained by this manufacturing method | |
KR101352214B1 (en) | Production process of dust core and dust core obtained thereby | |
JP5050745B2 (en) | Reactor core, manufacturing method thereof, and reactor | |
US7871474B2 (en) | Method for manufacturing of insulated soft magnetic metal powder formed body | |
JP4044591B1 (en) | Iron-based soft magnetic powder for dust core, method for producing the same, and dust core | |
JP5067544B2 (en) | Reactor core, manufacturing method thereof, and reactor | |
JP2009228107A (en) | Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core | |
JP5470683B2 (en) | Metal powder for dust core and method for producing dust core | |
WO2012173239A1 (en) | Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core | |
JP4539585B2 (en) | Metal powder for dust core and method for producing dust core | |
JP5445801B2 (en) | Reactor and booster circuit | |
TWI478184B (en) | Powder mixture for dust cores, dust cores and manufacturing method for dust cores | |
JP5513922B2 (en) | Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core | |
JP2007273929A (en) | Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method | |
JP2011129857A (en) | Method of manufacturing dust core and dust core obtained by the method | |
JP2006183121A (en) | Iron based powder for powder magnetic core and powder magnetic core using the same | |
JP2011114331A (en) | Method of manufacturing dust core, and dust core obtained by the manufacturing method | |
JP2009038256A (en) | Iron-based soft magnetic powder for dust core, and dust core | |
JP2020150135A (en) | Manufacturing method of dust core | |
JP2015233090A (en) | Manufacturing method of dust core | |
JP5427666B2 (en) | Method for producing modified green compact, and powder magnetic core obtained by the production method | |
JP6073066B2 (en) | Method for producing soft magnetic iron-based powder for dust core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161104 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20170216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6159531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |