JP2011233827A - Dust core and manufacturing method therefor - Google Patents

Dust core and manufacturing method therefor Download PDF

Info

Publication number
JP2011233827A
JP2011233827A JP2010105271A JP2010105271A JP2011233827A JP 2011233827 A JP2011233827 A JP 2011233827A JP 2010105271 A JP2010105271 A JP 2010105271A JP 2010105271 A JP2010105271 A JP 2010105271A JP 2011233827 A JP2011233827 A JP 2011233827A
Authority
JP
Japan
Prior art keywords
sio
powder
layer
dust core
silicon resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105271A
Other languages
Japanese (ja)
Other versions
JP5240234B2 (en
Inventor
Yuji Higaki
有治 檜垣
Teppei Watanabe
哲平 渡邉
Takeshi Senoo
剛士 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010105271A priority Critical patent/JP5240234B2/en
Publication of JP2011233827A publication Critical patent/JP2011233827A/en
Application granted granted Critical
Publication of JP5240234B2 publication Critical patent/JP5240234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dust core which has reduced both eddy current loss and hysteresis loss, and has high strength and low iron loss.SOLUTION: The dust core in which a powder particle forming a magnetic core is coated with an SiOphase and an FeOphase is formed on an SiOlayer, is obtained by: pressure molding an iron-based magnetic metal powder coated with a silicon resin; heating the obtained molded body at a low temperature of lower than 600°C in water vapor; and furthermore, annealing the molded body at a temperature of 600°C or higher in a non-oxidizing atmosphere.

Description

本発明は、磁性金属粉末を成型した圧粉磁心、特に、ヒステリシス損失の低い圧粉磁心およびその製造方法に関する。   The present invention relates to a dust core obtained by molding a magnetic metal powder, and more particularly to a dust core having a low hysteresis loss and a method for manufacturing the same.

変圧器やモータなどに用いられる磁心として、絶縁材料により被覆された磁性金属粉末を加圧成型して製造された圧粉磁心が用いられている。このような圧粉磁心は、軟磁気特性が優れているばかりでなく、機械的性質が良好であることも必要である。
絶縁材料により被覆された磁性金属粉末を加圧成型して製造された圧粉磁心は、高温に加熱すると絶縁被覆が損傷するため、焼結処理を行うことができず、また、高い圧力で成型すると絶縁皮膜が破壊されて、渦電流損が悪化するおそれもあり、十分な抗折強度を得ることが困難である。
As magnetic cores used for transformers, motors, etc., powder magnetic cores manufactured by pressure molding magnetic metal powder coated with an insulating material are used. Such a powder magnetic core is required not only to have excellent soft magnetic properties but also to have good mechanical properties.
A powder magnetic core produced by pressure molding magnetic metal powder coated with an insulating material cannot be sintered because it is damaged when heated to high temperatures, and it is molded at high pressure. As a result, the insulating film is destroyed and the eddy current loss may be deteriorated, and it is difficult to obtain a sufficient bending strength.

この問題を解決するために、絶縁材料により被覆された磁性金属粉末に潤滑剤を添加して加圧成型し、得られた圧粉成型体を水蒸気中で加熱処理することが、特許文献1及びその技術をさらに改良した特許文献2などによって知られている。
たとえば、特許文献2では、リンを含む無機皮膜を有する電磁軟質鉄または鉄基合金粉末を潤滑剤と混合して加圧成型した後、得られた圧粉成型体を、まず非還元性雰囲気で500℃で熱処理して皮膜を劣化させずに潤滑剤を気化させ、その後さらに、550℃の温度で水蒸気中で加熱する処理をしている。この水蒸気処理により、鉄基粒子の表面が酸化されて、圧粉成型体の曲げ強度が大きく改善されている。
In order to solve this problem, it is possible to add a lubricant to a magnetic metal powder coated with an insulating material and perform pressure molding, and heat-treat the resulting green compact in water vapor. This is known from Patent Document 2 and the like obtained by further improving the technique.
For example, in Patent Document 2, after electromagnetically soft iron or iron-based alloy powder having an inorganic film containing phosphorus is mixed with a lubricant and subjected to pressure molding, the obtained powder compact is first subjected to a non-reducing atmosphere. A heat treatment is performed at 500 ° C. to vaporize the lubricant without deteriorating the film, and thereafter, a heat treatment is performed at a temperature of 550 ° C. in water vapor. By this steam treatment, the surface of the iron-based particles is oxidized, and the bending strength of the green compact is greatly improved.

ところで、磁性金属粉末を加圧成型して圧粉磁心とする際、磁性金属粉末に加工歪みが加えられるため、圧粉磁心は、内部に加工歪を有しており、この歪に起因してヒステリシス損失が悪化している。
ヒステリシス損失の低減には、圧粉成形体を600℃以上の温度で焼鈍することにより、内部歪を充分に除去することが有効であるが、上記特許文献では、いずれの熱処理も600℃より低い加熱温度で行われているため、圧粉磁心内の歪を充分除去できておらず、ヒステリシス損失が十分低減されないという問題がある。
By the way, when the magnetic metal powder is pressure-molded to form a powder magnetic core, a processing strain is applied to the magnetic metal powder. Therefore, the powder magnetic core has a processing strain inside. Hysteresis loss is getting worse.
In order to reduce the hysteresis loss, it is effective to sufficiently remove the internal strain by annealing the green compact at a temperature of 600 ° C. or higher. However, in the above patent document, any heat treatment is lower than 600 ° C. Since it is performed at the heating temperature, there is a problem in that the distortion in the dust core cannot be sufficiently removed and the hysteresis loss is not sufficiently reduced.

リンを含む無機皮膜は、600℃以上の加熱では分解して劣化してしまい、電気絶縁性が確保できなくなり、渦電流損失が悪化するという問題があり、上記特許文献では、無機皮膜による絶縁性の確保と水蒸気処理による圧粉磁心の強度を確保できても、内部歪による損失を十分低減できるものとなっていない。
そのため、渦電流損失とヒステリシス損失の両方を低減して低損失にするためには、600℃以上での焼鈍を可能として、電気絶縁性を確保した上でさらに内部歪を除去できるようにすることが有効である。
The inorganic coating containing phosphorus decomposes and deteriorates when heated at 600 ° C. or higher, and there is a problem that the electrical insulation cannot be secured and the eddy current loss is deteriorated. However, even if the strength of the powder magnetic core can be secured by steam treatment, the loss due to internal strain cannot be sufficiently reduced.
Therefore, in order to reduce both eddy current loss and hysteresis loss to achieve low loss, annealing at 600 ° C. or higher is possible, and internal strain can be further removed while ensuring electrical insulation. Is effective.

特表2001−510286号公報Special table 2001-510286 gazette 特表2008−544520号公報Special table 2008-544520 gazette

そこで、本発明は、加熱処理による酸化によって強度を改善した圧粉磁心において、電気絶縁性を劣化させないで600℃以上の温度での焼鈍を可能として、渦電流損失とヒステリシス損失の両方を低減した高強度低鉄損の圧粉磁心を得ることを目的とする。   Therefore, the present invention enables annealing at a temperature of 600 ° C. or more without deteriorating electrical insulation in a dust core whose strength is improved by oxidation by heat treatment, and reduces both eddy current loss and hysteresis loss. The object is to obtain a dust core with high strength and low iron loss.

本発明は、シリコン樹脂で被覆された鉄系磁性金属粉末を用い、加熱により、軟質のシリコン樹脂を硬質で、耐熱性のあるSiOに変化させ、さらには、SiO層上にFe酸化物層を形成させ、さらには歪を除去することにより、上記課題を解決できることを見出したことに基づいてなされたものである。 The present invention uses an iron-based magnetic metal powder coated with a silicon resin, and changes the soft silicon resin to hard and heat-resistant SiO 2 by heating, and further, Fe oxide on the SiO 2 layer. This is based on the finding that the above-mentioned problems can be solved by forming a layer and removing strain.

そのような本発明は、鉄系磁性金属粉末を成型した圧粉磁心であって、該磁心を形成する粉末粒子は、SiO層で被覆されており、さらに、SiO層上にFe酸化物層が形成されていることを特徴とする圧粉磁心にある。
なお、上記圧粉磁心において、Fe酸化物層がFe層であってもよく、また、SiO層は、シリコン樹脂が加熱によりSiOに構造変化してなるものであってもよい。
Such present invention is a dust core obtained by molding the iron-based magnetic metal powder, the powder particles forming the magnetic heart is covered with the SiO 2 layer, further, Fe oxide on the SiO 2 layer The dust core is characterized in that a layer is formed.
In the powder magnetic core, the Fe oxide layer may be an Fe 3 O 4 layer, and the SiO 2 layer may be formed by changing the structure of the silicon resin to SiO 2 by heating. .

さらに、本発明は、粉末粒子がシリコン樹脂で被覆された鉄系磁性金属粉末を加圧成型する工程と、得られた圧粉成型体を加熱処理する工程とを有する圧粉磁心の製造方法において、前記加熱処理する工程が、(a)60〜300℃で加熱してシリコン樹脂を硬化する工程と、(b)硬化したシリコン樹脂をSiOに変化させてSiO層を形成する工程と、(c)600℃未満の温度で水蒸気処理することにより、前記SiO層上にFe酸化物層を形成する工程と、(d)非酸化性雰囲気で600℃以上の温度に加熱することによって前記圧粉成型体のひずみを除去する工程とを含むことを特徴とする圧粉磁心の製造方法にある。
なお、上記圧粉磁心の製造方法において、(b)と(c)の工程は同時に行ってもよいし、また、(c)と(d)の工程は同時に行ってもよい。また、(d)の工程における非酸化性雰囲気は、真空または不活性ガスを含む雰囲気であってよい。
Furthermore, the present invention relates to a method for producing a powder magnetic core having a step of pressure-molding an iron-based magnetic metal powder whose powder particles are coated with a silicon resin, and a step of heat-treating the obtained powder-molded product. The heat treatment step includes (a) a step of curing at 60 to 300 ° C. to cure the silicon resin, and (b) a step of changing the cured silicon resin to SiO 2 to form a SiO 2 layer, (C) forming a Fe oxide layer on the SiO 2 layer by performing steam treatment at a temperature of less than 600 ° C., and (d) heating to a temperature of 600 ° C. or higher in a non-oxidizing atmosphere. And a step of removing the distortion of the powder molded body.
In the method of manufacturing a dust core, the steps (b) and (c) may be performed simultaneously, and the steps (c) and (d) may be performed simultaneously. Further, the non-oxidizing atmosphere in the step (d) may be a vacuum or an atmosphere containing an inert gas.

本発明によれば、加熱処理によって強度を改善するとともに、渦電流損失とヒステリシス損失の両方を低減した高強度で低鉄損の鉄系磁性金属粉末よりなる圧粉磁心を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, while improving intensity | strength by heat processing, the powder magnetic core which consists of a high intensity | strength and low iron loss iron-type magnetic metal powder which reduced both eddy current loss and hysteresis loss can be obtained.

本発明の圧粉磁心の断面の一部を示す電子顕微鏡写真を用いた図である。It is the figure using the electron micrograph which shows a part of cross section of the powder magnetic core of this invention. 従来品と本発明品の損失を比較して示す図である。It is a figure which compares and shows the loss of the conventional product and this invention product. 加熱処理における焼鈍と水蒸気処理の順序の影響を比較して示す図である。It is a figure which compares and shows the influence of the order of annealing and water vapor | steam processing in heat processing.

以下、添付の図面を参照して本発明の実施の形態を説明する。
本発明者らは、比較的耐熱性のある圧粉磁心の絶縁材料として、従来から知られているシリコン樹脂に着目して検討を重ねた。その結果、加熱処理によって、軟質のシリコン樹脂を硬質で、耐熱性のあるSiOに変化させることにより、上記課題を解決できることを見出した。
以下、本発明の基本原理及び本発明に係る圧粉磁心について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
The inventors of the present invention have repeatedly studied focusing on a conventionally known silicon resin as an insulating material for a dust core having relatively heat resistance. As a result, it has been found that the above problems can be solved by changing the soft silicon resin to hard and heat-resistant SiO 2 by heat treatment.
The basic principle of the present invention and the dust core according to the present invention will be described below.

本発明では、シリコン樹脂で被覆された鉄系磁性金属粉末を用い、その粉末原料を加圧成型した後に、加熱処理する。加熱処理では、軟質のシリコン樹脂を硬質で耐熱性のあるSiOに変化させる。また、水蒸気中での加熱処理(水蒸気処理)により、SiO層上にFe酸化物層が形成されるようにする。
生成するSiO層には、欠陥(空隙)が約5%程度存在しているが、水蒸気処理中の加熱により、粉末粒子中のFe成分が欠陥中に拡散し、さらに酸化されて、Fe酸化物層が、欠陥を生めるようにSiO層上に生成されて、圧粉磁心の強度が向上する。
In the present invention, iron-based magnetic metal powder coated with a silicon resin is used, and the powder raw material is subjected to heat treatment after being pressure-molded. In the heat treatment, soft silicon resin is changed to hard and heat-resistant SiO 2 . In addition, an Fe oxide layer is formed on the SiO 2 layer by heat treatment in water vapor (water vapor treatment).
In the generated SiO 2 layer, about 5% of defects (voids) are present, but due to the heating during the steam treatment, the Fe component in the powder particles diffuses into the defects and is further oxidized to cause Fe oxidation. A physical layer is generated on the SiO 2 layer so as to cause defects, and the strength of the dust core is improved.

図1に、後述の実施例で得られた圧粉磁心の電子顕微鏡写真を示す。図1より、該磁心を形成する個々の鉄系磁性金属粉末粒子は、シリコン樹脂から生成したSiO層によって被覆されており、鉄系磁性金属粉末粒子間に存在するSiO層上にFe酸化物(Fe)層が形成されていることがわかる。
このように、磁心を形成する粉末粒子は、SiO層とFe酸化物層よりなる被覆層で被覆されているので、600℃以上の温度に加熱しても、絶縁性に問題が生じることはなく、成型に伴う内部歪の除去された圧粉磁心が得られる。
In FIG. 1, the electron micrograph of the powder magnetic core obtained in the below-mentioned Example is shown. As shown in FIG. 1, the individual iron-based magnetic metal powder particles forming the magnetic core are covered with a SiO 2 layer formed from a silicon resin, and Fe oxidation is performed on the SiO 2 layer existing between the iron-based magnetic metal powder particles. It can be seen that an object (Fe 3 O 4 ) layer is formed.
As described above, since the powder particles forming the magnetic core are coated with the coating layer composed of the SiO 2 layer and the Fe oxide layer, there is a problem in insulation even when heated to a temperature of 600 ° C. or higher. And a dust core from which internal strain associated with molding is removed is obtained.

ここで、鉄系磁性金属粉末として、たとえば、純鉄や、Fe−Si系合金、Fe−N系合金、Fe−B系合金、Fe−Co系合金、Fe−Al−Si系合金などの公知の鉄基軟磁性合金を用いることができる。
また、シリコン樹脂としては、特定のものに限定されず、シリコン樹脂として市販されているものを用いることができる。
Here, as the iron-based magnetic metal powder, for example, pure iron, Fe-Si alloy, Fe-N alloy, Fe-B alloy, Fe-Co alloy, Fe-Al-Si alloy, and the like are known. An iron-based soft magnetic alloy can be used.
Moreover, as a silicon resin, it is not limited to a specific thing, What is marketed as a silicon resin can be used.

次に、本発明に係る圧粉磁心の製造方法について説明する。
原料粉末として、個々の粉末粒子が樹脂によって被覆された鉄系金属磁性粉末を用いる。粉末の粒度やシリコン樹脂の被覆厚みは特に限定されるものではなく、通常用いられている範囲でよいが、一例をあげると、粒度は30〜400μmの範囲、被覆厚みは、10〜300nmの範囲である。
Next, the manufacturing method of the powder magnetic core which concerns on this invention is demonstrated.
An iron-based metal magnetic powder in which individual powder particles are coated with a resin is used as a raw material powder. The particle size of the powder and the coating thickness of the silicon resin are not particularly limited, and may be in the range usually used. For example, the particle size is in the range of 30 to 400 μm, and the coating thickness is in the range of 10 to 300 nm. It is.

シリコン樹脂による皮膜の形成方法は特に限定されるものではなく、湿式被覆法やスプレー法などの公知の方法を適宜採用できる。
シリコン樹脂は可塑性であるため、粉末原料の加圧成型時に破損することなく、所定の形状に成形できる。また、可塑性のため、必ずしも成型時に潤滑剤を原料粉末に混合する必要はない。
シリコン樹脂によって被覆された原料粉末を、圧力500〜1500MPaの範囲で成形し圧粉成型体を得る。なお、成型の際の好ましい温度範囲は、60〜200℃である。
The method for forming a film with a silicon resin is not particularly limited, and a known method such as a wet coating method or a spray method can be appropriately employed.
Since the silicone resin is plastic, it can be molded into a predetermined shape without being damaged during pressure molding of the powder raw material. Also, because of plasticity, it is not always necessary to mix the lubricant with the raw material powder during molding.
The raw material powder coated with the silicon resin is molded in a pressure range of 500 to 1500 MPa to obtain a green compact. In addition, the preferable temperature range in the case of shaping | molding is 60-200 degreeC.

以上のようにして得られた圧粉成型体に加熱処理を施して、圧粉磁心を得る。
加熱処理の工程は、60〜300℃で加熱してシリコン樹脂を硬化する工程と、硬化したシリコン樹脂を加熱によりSiOに変化させてSiO層を形成する工程と、前記SiO層上にFe酸化物層を形成する工程と、加熱して前記圧粉成型体のひずみを除去する工程とを含んでいる。
The dust compact obtained as described above is subjected to heat treatment to obtain a dust core.
The step of the heat treatment includes a step of curing the silicon resin by heating at 60 to 300 ° C., a step of forming the SiO 2 layer by changing the cured silicon resin to SiO 2 by heating, and on the SiO 2 layer. A step of forming an Fe oxide layer and a step of removing distortion of the green compact by heating.

生成したSiO層上にFe酸化物層を形成する工程では、600℃未満、より好ましくは550℃以下の温度で水蒸気処理を実施する。水蒸気温度の下限は、400℃以上が好ましい。生成されるSiO層には、空隙にともなう欠陥が約5%程度存在する。このため、水蒸気処理中の加熱により、鉄系金属磁性粉末粒子からFe原子が欠陥中に拡散し、Fe酸化物層(Fe層)が欠陥を生めるようにSiO層上に生成される。これにより、圧粉成型体の強度が向上する。
なお、水蒸気処理の温度を600℃未満とするのは、生成するFe酸化物をFeとし、脆いFeを生成させないためである。そのために、水蒸気処理の時間は5分〜120分が好ましい。
In the step of forming the Fe oxide layer on the generated SiO 2 layer, steam treatment is performed at a temperature of less than 600 ° C., more preferably 550 ° C. or less. The lower limit of the water vapor temperature is preferably 400 ° C. or higher. In the generated SiO 2 layer, there are about 5% of defects due to voids. For this reason, by heating during the steam treatment, Fe atoms diffuse from the iron-based metal magnetic powder particles into the defects, and an Fe oxide layer (Fe 3 O 4 layer) is generated on the SiO 2 layer so as to produce defects. The Thereby, the intensity | strength of a compacting body improves.
The reason why the temperature of the steam treatment is lower than 600 ° C. is that the Fe oxide to be generated is Fe 3 O 4 and brittle Fe 2 O 3 is not generated. Therefore, the steam treatment time is preferably 5 minutes to 120 minutes.

これらのSiO層を形成する工程とFe酸化物層を形成する工程は、別々に行ってもよいし、SiO層を形成する工程も水蒸気雰囲気中で行って、これらの工程を組み合わせて同時に行うこともできる。 The step of forming the SiO 2 layer and the step of forming the Fe oxide layer may be performed separately, or the step of forming the SiO 2 layer is also performed in a steam atmosphere, and these steps are combined simultaneously. It can also be done.

ひずみを除去する工程では、水蒸気処理された圧粉成型体を、さらに、300℃以上の温度で焼鈍するが、その際、少なくとも600℃以上の温度となるような期間を含むように加熱して、成型に伴う内部歪を除去する。この工程では、成形時に発生したひずみをリセットするのに必要な条件下で、それを達成するのに必要な温度及び時間で、非酸化性雰囲気下で実施する。非酸化性雰囲気としては、真空雰囲気や、窒素ガスやアルゴンガスなどの不活性ガス雰囲気のいずれでもよいが、好ましくは真空雰囲気下である。
加熱温度は、通常、300℃もしくはそれ以上から、絶縁被膜の熱分解温度を下回る温度、例えば300〜910℃の温度で実施する。加熱保持時間は、通常、1分間から10時間である。
なお、ひずみを除去する焼鈍は、水蒸気処理に続いて、それと組み合わせて同時に実施してもよく、SiO層を形成する工程の後、水蒸気処理前に実施してもよい。
In the step of removing the strain, the steam-molded green compact is further annealed at a temperature of 300 ° C. or higher, and at that time, heated to include a period of at least 600 ° C. or higher. , To remove internal distortion accompanying molding. This step is carried out in a non-oxidizing atmosphere at the temperature and time required to achieve the conditions necessary to reset the strain generated during molding. The non-oxidizing atmosphere may be a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas, but is preferably a vacuum atmosphere.
The heating temperature is usually 300 ° C. or higher and lower than the thermal decomposition temperature of the insulating coating, for example, 300 to 910 ° C. The heating and holding time is usually 1 minute to 10 hours.
The annealing for removing the strain may be performed simultaneously with the steam treatment in combination with it, or after the step of forming the SiO 2 layer and before the steam treatment.

以上によって、600℃以上の温度での加熱によって内部歪が除去され、渦電流損失とヒステリシス損失の両方を低減した高強度で低鉄損の鉄系磁性金属粉末よりなる圧粉磁心を得ることができる。   As described above, the internal strain is removed by heating at a temperature of 600 ° C. or higher, and a dust core made of iron-based magnetic metal powder having high strength and low iron loss with reduced both eddy current loss and hysteresis loss can be obtained. it can.

以下、実施例により、本発明の実施可能性および効果についてさらに説明する。
(実施例1)
原料粉末として、水アトマイズ鉄粉(ヘガネス社製、商品名:ABC100.30)を用い、この粉末粒子をシリコン樹脂(信越シリコーン社製、商品名:KR−220L)で被覆した鉄系磁性金属粉末を作成し、この磁性金属粉末を1000MPaの圧力で加圧成型して圧粉成型体を得た。次に、この成型体に530℃の温度で40分間の水蒸気処理を行い、ついで、600℃の温度で真空雰囲気中で60分間の焼鈍を行って本発明品を得た。
また、同じ水アトマイズ鉄粉を用いて、リン酸系被膜を有する粉末を作成し、これに同様の水蒸気処理をすることで、従来品を得た。
得られた本発明品について組織の電子顕微鏡観察を行うとともに、本発明品及び従来品の鉄損を測定した。
The following examples further illustrate the feasibility and effects of the present invention.
Example 1
Iron-based magnetic metal powder in which water atomized iron powder (product name: ABC100.30) is used as a raw material powder and this powder particle is coated with silicon resin (product name: KR-220L, manufactured by Shin-Etsu Silicone Co., Ltd.) The magnetic metal powder was pressure molded at a pressure of 1000 MPa to obtain a green compact. Next, the molded body was subjected to a water vapor treatment at a temperature of 530 ° C. for 40 minutes, and then annealed in a vacuum atmosphere at a temperature of 600 ° C. for 60 minutes to obtain a product of the present invention.
Moreover, the conventional product was obtained by creating the powder which has a phosphoric acid type coating film using the same water atomized iron powder, and performing the same water vapor treatment to this.
The obtained inventive product was observed with an electron microscope, and the iron loss of the inventive product and the conventional product was measured.

図1に、得られた本発明品の断面の一部を示す。600℃の非酸化性雰囲気で焼鈍した場合でも、磁性金属粒子上にSiO層が見られ、皮膜が分解せず、磁性金属粒子間の絶縁が保たれていることが確認できる。
図2に、従来品と本発明品の損失の比較を示す。本発明品の渦電流損失(∝電気絶縁性)は、従来品と同等であり、ヒステリシス損失が低下していることから、600℃の焼鈍でも電気絶縁性を確保した上でさらに加工歪が除去できていることが分かる。
FIG. 1 shows a part of the cross section of the product of the present invention obtained. Even when annealing is performed in a non-oxidizing atmosphere at 600 ° C., it can be confirmed that the SiO 2 layer is seen on the magnetic metal particles, the coating is not decomposed, and the insulation between the magnetic metal particles is maintained.
FIG. 2 shows a comparison of loss between the conventional product and the product of the present invention. The eddy current loss (∝electrical insulation) of the product of the present invention is the same as that of the conventional product, and the hysteresis loss is reduced. Therefore, processing strain is further removed after ensuring electrical insulation even at 600 ° C annealing. You can see that it is made.

(実施例2)
実施例1で得られた本発明の圧粉成型体に、600℃非酸化性雰囲気の焼鈍と水蒸気処理の順序を変えて加熱処理を実施した。水蒸気処理と焼鈍の条件は、実施例1と同様とした。
図3に、焼鈍して水蒸気処理した場合と、水蒸気処理して焼鈍した場合の得られた製品の損失の比較を示す。図に示されるように、水蒸気処理後に焼鈍をした方が良好な結果が得られた。
(Example 2)
The compacted body of the present invention obtained in Example 1 was subjected to heat treatment by changing the order of annealing in a non-oxidizing atmosphere at 600 ° C. and steam treatment. The conditions for the water vapor treatment and annealing were the same as in Example 1.
In FIG. 3, the comparison of the loss of the product obtained when it anneals and steam-processes, and when it steam-processes and anneals is shown. As shown in the figure, better results were obtained when annealing was performed after the steam treatment.

以上説明した実施の形態は本発明の例であり、本発明は、該実施の形態により制限されるものではなく、上記以外の実施の形態でも実施可能である。   The embodiment described above is an example of the present invention, and the present invention is not limited by the embodiment, and can be implemented in other embodiments.

Claims (7)

鉄系磁性金属粉末を成型した圧粉磁心であって、該磁心を形成する粉末粒子はSiO層で被覆されており、さらに、SiO層上にFe酸化物層が形成されていることを特徴とする圧粉磁心。 A dust core obtained by molding the iron-based magnetic metal powder, the powder particles forming the magnetic heart is covered with the SiO 2 layer, further, that the Fe oxide layer is formed on the SiO 2 layer Features a dust core. 前記Fe酸化物がFeであることを特徴とする請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the Fe oxide is Fe 3 O 4 . 前記SiO層は、シリコン樹脂が加熱によりSiOに構造変化してなることを特徴とする請求項1または2に記載の圧粉磁心。 The powder magnetic core according to claim 1, wherein the SiO 2 layer is formed by changing the structure of silicon resin to SiO 2 by heating. 粉末粒子がシリコン樹脂で被覆された鉄系磁性金属粉末を加圧成型する工程と、得られた圧粉成型体を加熱処理する工程とを有する圧粉磁心の製造方法において、
前記加熱処理する工程が、
60〜300℃で加熱してシリコン樹脂を硬化する工程と
硬化したシリコン樹脂をSiOに変化させてSiO層を形成する工程と
前記SiO層上に600℃未満の温度で水蒸気処理することによりFe酸化物層を形成する工程と
600℃以上の非酸化性雰囲気で加熱して前記圧粉成型体のひずみを除去する工程と、
を含むことを特徴とする圧粉磁心の製造方法。
In a method for producing a powder magnetic core comprising a step of pressure-molding an iron-based magnetic metal powder whose powder particles are coated with a silicon resin, and a step of heat-treating the obtained powder-molded product,
The heat treatment step includes
A step of curing the silicon resin by heating at 60 to 300 ° C., a step of changing the cured silicon resin to SiO 2 to form a SiO 2 layer, and subjecting the SiO 2 layer to steam treatment at a temperature of less than 600 ° C. A step of forming an Fe oxide layer by heating, a step of removing distortion of the green compact by heating in a non-oxidizing atmosphere at 600 ° C. or higher,
The manufacturing method of the powder magnetic core characterized by including.
前記加熱処理する工程において、前記のSiO層を形成する工程と前記のFe酸化物層を形成する工程とを同時に行うことを特徴とする請求項4に記載の圧粉磁心の製造方法。 5. The method of manufacturing a dust core according to claim 4, wherein, in the heat treatment step, the step of forming the SiO 2 layer and the step of forming the Fe oxide layer are performed simultaneously. 前記加熱処理する工程において、前記のFe酸化物層を形成する工程と前記の圧粉成型体のひずみを除去する工程とを同時に行うことを特徴とする請求項4に記載の圧粉磁心の製造方法。   5. The dust core manufacturing method according to claim 4, wherein, in the heat treatment step, the step of forming the Fe oxide layer and the step of removing distortion of the powder compact are simultaneously performed. Method. 前記加熱処理する工程における非酸化性雰囲気は、真空または不活性ガス雰囲気であることを特徴とする請求項4に記載の圧粉磁心の製造方法。   The method for producing a dust core according to claim 4, wherein the non-oxidizing atmosphere in the heat treatment step is a vacuum or an inert gas atmosphere.
JP2010105271A 2010-04-30 2010-04-30 Manufacturing method of dust core Active JP5240234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105271A JP5240234B2 (en) 2010-04-30 2010-04-30 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105271A JP5240234B2 (en) 2010-04-30 2010-04-30 Manufacturing method of dust core

Publications (2)

Publication Number Publication Date
JP2011233827A true JP2011233827A (en) 2011-11-17
JP5240234B2 JP5240234B2 (en) 2013-07-17

Family

ID=45322823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105271A Active JP5240234B2 (en) 2010-04-30 2010-04-30 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP5240234B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108643A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Compressed soft magnetic powder body
JP2013168648A (en) * 2012-01-18 2013-08-29 Kobe Steel Ltd Method of manufacturing dust core, and dust core manufactured by that method
JP2014143286A (en) * 2013-01-23 2014-08-07 Tdk Corp Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
KR101504131B1 (en) 2014-04-01 2015-03-19 한국생산기술연구원 Fe-P soft magnetic materials with low core loss and method of manufacturing the same
JP2015126047A (en) * 2013-12-26 2015-07-06 日立金属株式会社 Dust core, coil component using the same, and method for producing dust core
WO2017170901A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
JP2017188678A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Silica-based insulated coated dust core, method for manufacturing the same, and electromagnetic circuit part
WO2018180659A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Method for producing composite magnetic body, magnetic powder, composite magnetic body and coil component
JP2018198319A (en) * 2018-06-22 2018-12-13 日立金属株式会社 Manufacturing method of powder magnetic core
CN109119222A (en) * 2017-06-26 2019-01-01 太阳诱电株式会社 The manufacturing method of magnetic material, electronic component and magnetic material
WO2019069923A1 (en) 2017-10-04 2019-04-11 三菱マテリアル株式会社 Silica-based insulator-coated soft magnetic powder and method for producing same
JP2020027812A (en) * 2018-08-09 2020-02-20 太陽誘電株式会社 Magnetic substrate including metal magnetic particles and electronic component including magnetic substrate
JP2020155674A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
US11367558B2 (en) * 2016-08-30 2022-06-21 Samsung Electro-Mechanics Co., Ltd. Magnetic composition and inductor including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287004A (en) * 2005-04-01 2006-10-19 Nec Tokin Corp Magnetic core for high frequency and inductance component using it
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
JP2008244347A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Pmg Corp Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP2009088502A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2009185312A (en) * 2008-02-04 2009-08-20 Denso Corp Composite soft magnetic material, dust core using the same, and their production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287004A (en) * 2005-04-01 2006-10-19 Nec Tokin Corp Magnetic core for high frequency and inductance component using it
JP2007254768A (en) * 2006-03-20 2007-10-04 Aisin Seiki Co Ltd Soft magnetic powder material, its production method, soft magnetic compact and its production method
JP2008244347A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Pmg Corp Manufacturing method of high-strength soft magnetism compound consolidation burning material, and the high-strength soft magnetism compound consolidation burning material
JP2009088502A (en) * 2007-09-12 2009-04-23 Seiko Epson Corp Method of manufacturing oxide-coated soft magnetic powder, oxide-coated soft magnetic powder, dust core, and magnetic element
WO2009060895A1 (en) * 2007-11-07 2009-05-14 Mitsubishi Materials Pmg Corporation High-strength soft-magnetic composite material obtained by compaction/burning and process for producing the same
JP2009185312A (en) * 2008-02-04 2009-08-20 Denso Corp Composite soft magnetic material, dust core using the same, and their production method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108643A1 (en) * 2012-01-17 2013-07-25 株式会社日立産機システム Compressed soft magnetic powder body
JP2013149659A (en) * 2012-01-17 2013-08-01 Hitachi Industrial Equipment Systems Co Ltd Powder soft magnetic material
JP2013168648A (en) * 2012-01-18 2013-08-29 Kobe Steel Ltd Method of manufacturing dust core, and dust core manufactured by that method
KR101420562B1 (en) * 2012-01-18 2014-07-16 가부시키가이샤 고베 세이코쇼 Method for manufacturing dust core and dust core obtained by the method
JP2014143286A (en) * 2013-01-23 2014-08-07 Tdk Corp Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
JP2015126047A (en) * 2013-12-26 2015-07-06 日立金属株式会社 Dust core, coil component using the same, and method for producing dust core
KR101504131B1 (en) 2014-04-01 2015-03-19 한국생산기술연구원 Fe-P soft magnetic materials with low core loss and method of manufacturing the same
WO2017170901A1 (en) * 2016-03-31 2017-10-05 三菱マテリアル株式会社 Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
JP2017188678A (en) * 2016-03-31 2017-10-12 三菱マテリアル株式会社 Silica-based insulated coated dust core, method for manufacturing the same, and electromagnetic circuit part
CN108701519A (en) * 2016-03-31 2018-10-23 三菱综合材料株式会社 Silica-based insulating wrapped compressed-core and its manufacturing method and electromagnetic circuit component
US11183321B2 (en) 2016-03-31 2021-11-23 Diamet Corporation Powder magnetic core with silica-based insulating film, method of producing the same, and electromagnetic circuit component
CN108701519B (en) * 2016-03-31 2020-06-23 三菱综合材料株式会社 Silica-based insulating coated dust core, method for producing same, and electromagnetic circuit component
US11367558B2 (en) * 2016-08-30 2022-06-21 Samsung Electro-Mechanics Co., Ltd. Magnetic composition and inductor including the same
CN110537233A (en) * 2017-03-31 2019-12-03 松下知识产权经营株式会社 Manufacturing method, magnetic powder, composite magnetic body and the coil component of composite magnetic body
JPWO2018180659A1 (en) * 2017-03-31 2020-02-06 パナソニックIpマネジメント株式会社 Manufacturing method of composite magnetic body, magnetic powder, composite magnetic body, and coil component
JP7417830B2 (en) 2017-03-31 2024-01-19 パナソニックIpマネジメント株式会社 Manufacturing method of composite magnetic material
US11651892B2 (en) 2017-03-31 2023-05-16 Panasonic Intellectual Property Management Co., Lid. Method for producing composite magnetic body, magnetic powder, composite magnetic body and coil component
WO2018180659A1 (en) * 2017-03-31 2018-10-04 パナソニックIpマネジメント株式会社 Method for producing composite magnetic body, magnetic powder, composite magnetic body and coil component
CN109119222B (en) * 2017-06-26 2021-12-31 太阳诱电株式会社 Magnetic material, electronic component, and method for producing magnetic material
CN109119222A (en) * 2017-06-26 2019-01-01 太阳诱电株式会社 The manufacturing method of magnetic material, electronic component and magnetic material
EP3693101A4 (en) * 2017-10-04 2021-03-31 Mitsubishi Materials Corporation Silica-based insulator-coated soft magnetic powder and method for producing same
WO2019069923A1 (en) 2017-10-04 2019-04-11 三菱マテリアル株式会社 Silica-based insulator-coated soft magnetic powder and method for producing same
JPWO2019069923A1 (en) * 2017-10-04 2020-09-10 三菱マテリアル株式会社 Silica-based insulation-coated soft magnetic powder and its manufacturing method
CN111132778A (en) * 2017-10-04 2020-05-08 三菱综合材料株式会社 Silica-based insulating-coated soft magnetic powder and method for producing same
JP7179617B2 (en) 2017-10-04 2022-11-29 株式会社ダイヤメット Silica-based insulation-coated soft magnetic powder and method for producing the same
JP2018198319A (en) * 2018-06-22 2018-12-13 日立金属株式会社 Manufacturing method of powder magnetic core
CN110828108A (en) * 2018-08-09 2020-02-21 太阳诱电株式会社 Magnetic matrix containing metal magnetic particles and electronic component containing the same
JP7299000B2 (en) 2018-08-09 2023-06-27 太陽誘電株式会社 Magnetic substrate containing metal magnetic particles and electronic component containing said magnetic substrate
JP2020027812A (en) * 2018-08-09 2020-02-20 太陽誘電株式会社 Magnetic substrate including metal magnetic particles and electronic component including magnetic substrate
JP2020155674A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP7229825B2 (en) 2019-03-22 2023-02-28 日本特殊陶業株式会社 dust core

Also Published As

Publication number Publication date
JP5240234B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5240234B2 (en) Manufacturing method of dust core
JP4134111B2 (en) Method for producing insulating soft magnetic metal powder compact
JP4706411B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP4613622B2 (en) Soft magnetic material and dust core
JP5580725B2 (en) Manufacturing method of dust core and dust core obtained by the manufacturing method
JP5218567B2 (en) Manufacturing method of dust core
JP2009228107A (en) Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP5597512B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
JP2007214366A (en) Powder magnetic core, powder for use thereof, and manufacturing methods of them
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JPWO2007077689A1 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP2010251696A (en) Soft magnetic powder core and method of manufacturing the same
JP4539585B2 (en) Metal powder for dust core and method for producing dust core
TWI478184B (en) Powder mixture for dust cores, dust cores and manufacturing method for dust cores
JP5435398B2 (en) Soft magnetic dust core and manufacturing method thereof
JP2002064027A (en) Method for manufacturing dust core
WO2005024859A1 (en) Soft magnetic material and method for producing same
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
JP2009290128A (en) Method for manufacturing powder magnetic core
JP5568983B2 (en) Manufacturing method of powder core
WO2005024858A1 (en) Soft magnetic material and method for producing same
JP2018142642A (en) Powder magnetic core
JP6836106B2 (en) Method for manufacturing iron-based soft magnetic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5240234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250