JP4539585B2 - Metal powder for dust core and method for producing dust core - Google Patents
Metal powder for dust core and method for producing dust core Download PDFInfo
- Publication number
- JP4539585B2 JP4539585B2 JP2006052509A JP2006052509A JP4539585B2 JP 4539585 B2 JP4539585 B2 JP 4539585B2 JP 2006052509 A JP2006052509 A JP 2006052509A JP 2006052509 A JP2006052509 A JP 2006052509A JP 4539585 B2 JP4539585 B2 JP 4539585B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal powder
- dust core
- producing
- temperature range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、モータやトランスの磁心およびインダクタの素材として好適な圧粉磁心用の金属粉末および該金属粉末を用いた圧粉磁心の製造方法に関するものである。 The present invention relates to a metal powder for a dust core that is suitable as a material for a magnetic core of a motor or a transformer and an inductor, and a method for manufacturing a dust core using the metal powder.
粉末冶金技術の進歩により、高寸法精度の複雑な形状の部品をニアネット形状に製造することができるようになり、粉末冶金技術を利用した製品が各種分野で利用されている。
粉末冶金技術では、金属粉末に、必要に応じて潤滑剤粉末や合金用粉末を混合した後、金型で加圧成形して成形体として、ついで焼結さらには熱処理を行って、所望の寸法形状および特性を有する焼結部品としている。また、粉末冶金技術では、金属粉末に、樹脂等の結合剤を混合したのち、金型で加圧成形して成形体とし、部品とする場合もある。
Advances in powder metallurgy technology have made it possible to manufacture parts with high dimensional accuracy and complex shapes in a near net shape, and products using powder metallurgy technology have been used in various fields.
In powder metallurgy technology, lubricant powder and alloy powder are mixed with metal powder as needed, then pressed with a mold to form a compact, then sintered and heat treated to obtain the desired dimensions. Sintered parts with shape and characteristics. In the powder metallurgy technique, a binder such as a resin is mixed with metal powder, and then pressure-molded with a mold to form a molded body, which may be a part.
このような粉末冶金技術を利用して、優れた磁気特性や高強度を有する部品を製造する場合には、一定の成形圧力で加圧成形した際に高密度の成形体が得られるように、使用する金属粉末には高圧縮性を具備することが要求される。
また、優れた磁気特性を得るために、圧粉磁心の鉄損(渦電流損やヒステリシス損)を低くすることが要求される。渦電流損を低減するためには、金属粉末を絶縁被覆し、圧粉磁心の比抵抗を大きくする必要がある。また、ヒステリシス損を低減するためには、加圧成形時に圧粉体に蓄積される歪みを除去する必要がある。
Using such powder metallurgy technology, when producing parts with excellent magnetic properties and high strength, so as to obtain a high-density molded body when pressure-molded with a constant molding pressure, The metal powder used is required to have high compressibility.
In order to obtain excellent magnetic properties, it is required to reduce the iron loss (eddy current loss and hysteresis loss) of the dust core. In order to reduce eddy current loss, it is necessary to insulate metal powder and increase the specific resistance of the dust core. In order to reduce the hysteresis loss, it is necessary to remove the distortion accumulated in the green compact during pressure molding.
このような要求に対し、例えば特許文献1には、粉末の表面から深さ0.2μmまでの部分の平均Si含有量が少なくとも0.5重量%である軟磁性金属の粉末を、リン酸、ホウ酸、 またはリン酸もしくはホウ酸のNa,K,Ca,Mg,Al,Si,MnもしくはZnの塩の溶液で絶縁処理したもの、あるいはシリコーン樹脂で絶縁処理したものを、圧縮成形により磁心形状に成形後、500℃以上での歪み取り焼鈍により残留歪みを除去することによって、保磁力が低く、高い電気抵抗を有する圧粉磁心を製造する方法が提案されている。 In response to such a request, for example, Patent Document 1 discloses a soft magnetic metal powder having an average Si content of at least 0.5 wt% from the surface of the powder to a depth of 0.2 μm, phosphoric acid, boric acid, Or after being molded into a magnetic core shape by compression molding after insulation treatment with a solution of Na, K, Ca, Mg, Al, Si, Mn or Zn salt of phosphoric acid or boric acid, or insulation treatment with silicone resin A method of manufacturing a dust core having a low coercive force and high electric resistance by removing residual strain by strain relief annealing at 500 ° C. or higher has been proposed.
また、特許文献2には、絶縁皮膜で被覆された、鉄(Fe)およびケイ素(Si)を主成分とする磁性粉末を加圧成形してなる圧粉磁心において、前記磁性粉末中のSi含有量(X:質量%) と、該磁性粉末の真密度(ρ0)に対する前記圧粉磁心の嵩密度(ρ)の比である密度比(ρ/ρ0:%)とが、ρ/ρ0≧94−X(%)を満たすことを特徴とする圧粉磁心が開示されている。この技術によれば、従来、高密度化が困難と考えられていたFe−Si系磁性粉末を用いた場合でも、金型潤滑温間加圧成形法を用いることにより、従来になく高密度の圧粉磁心を得ることができ、絶縁皮膜で被覆されたFe−Si系磁性粉末の圧粉磁心により、優れた磁気特性が得られるとしている。 Patent Document 2 discloses a powder magnetic core formed by press-molding magnetic powder mainly composed of iron (Fe) and silicon (Si), which is covered with an insulating film, and contains Si in the magnetic powder. The amount (X: mass%) and the density ratio (ρ / ρ 0 :%), which is the ratio of the bulk density (ρ) of the dust core to the true density (ρ 0 ) of the magnetic powder, are ρ / ρ A dust core characterized by satisfying 0 ≧ 94−X (%) is disclosed. According to this technology, even when using Fe-Si magnetic powder, which has been considered difficult to increase in density, by using the mold lubrication warm pressing method, a higher density than in the past has been achieved. A dust core can be obtained, and excellent magnetic properties can be obtained by the dust core of the Fe-Si magnetic powder coated with an insulating film.
しかしながら、前掲特許文献1に記載された軟磁性金属の粉末は、粉末自体が、Fe−Si合金、Fe−Si−AlおよびFe−Si−Co合金といった硬い合金からなる粉末であり、圧縮性が悪いため、これらを用いて高密度の圧粉体を得るのは難しく、また高い磁束密度を得ることも困難と考えられる。 However, the soft magnetic metal powder described in Patent Document 1 is a powder made of a hard alloy such as Fe-Si alloy, Fe-Si-Al, and Fe-Si-Co alloy, and has compressibility. Since it is bad, it is difficult to obtain a high-density green compact using these, and it is also difficult to obtain a high magnetic flux density.
また、前掲特許文献2では、Fe−Si合金粉末であっても高い圧粉密度が得られるものの、この技術は特殊な成形技術を必要とし、非常に高い圧力で成形する必要があるだけでなく、実施例によれば得られる圧粉体の密度は真密度の95%が上限である。 Moreover, in the above-mentioned patent document 2, even if it is Fe-Si alloy powder, although a high compaction density is obtained, this technique requires a special shaping | molding technique and it is not only necessary to shape | mold by a very high pressure. According to the example, the upper limit of the density of the green compact obtained is 95% of the true density.
本発明は、上記したような従来技術の問題を有利に解決するもので、粉末の表層部のみにSiを均一に濃化させることにより、飽和磁束密度の低下や圧縮性の劣化を招くことなしに、絶縁材料と粒子間の結合力を高めた、電気絶縁性に優れた圧粉磁心用金属粉末の有利な製造方法を提案することを目的とする。
また、本発明は、上記の圧粉磁心用金属粉末を素材とすることにより、圧粉密度が真密度の95%以上という高い密度を得ることができる圧粉磁心の製造方法を提案することを目的とする。
The present invention advantageously solves the problems of the prior art as described above, and does not cause a decrease in saturation magnetic flux density or deterioration in compressibility by uniformly concentrating Si only on the surface layer portion of the powder. Another object of the present invention is to propose an advantageous method for producing a metal powder for a dust core having an excellent electrical insulating property and having a high bonding force between an insulating material and particles.
In addition, the present invention proposes a method of manufacturing a dust core that can obtain a high dust density of 95% or more of the true density by using the metal powder for dust core as a raw material. Objective.
前述したとおり、金属粉末の表層部に適量のSiが存在すると絶縁処理効果が高まり、その結果、高い電気抵抗を有する圧粉磁心が得られるが、特許文献1のように粉末全体がFe−Si合金であると、高い圧粉密度および高い磁束密度を得ることは難しい。
しかしながら、粉体の表層部のみにSiを濃化させることができれば、上記の絶縁処理効果を確保した上で、高い圧粉密度および高い磁束密度が得られると考えられる。
そこで、発明者らは、金属粉末の表層部のみにSi濃化層を形成する方法について検討を重ねた。
As described above, when an appropriate amount of Si is present in the surface layer portion of the metal powder, the insulation treatment effect is enhanced, and as a result, a dust core having high electrical resistance is obtained. However, as in Patent Document 1, the entire powder is Fe-Si. When it is an alloy, it is difficult to obtain a high dust density and a high magnetic flux density.
However, if Si can be concentrated only in the surface layer portion of the powder, it is considered that a high dust density and a high magnetic flux density can be obtained while ensuring the above-described insulation treatment effect.
Therefore, the inventors have repeatedly studied a method of forming a Si concentrated layer only on the surface layer portion of the metal powder.
ところで、従来から、気相反応法により低Si含有の鋼板に浸珪処理を施して、高珪素鋼板を製造する方法が知られている。この方法は、たとえば圧延が容易なSi含有量が4mass%未満の鋼板をSiCl4と1000〜1200℃程度の温度で反応させることにより、SiCl4+5Fe→Fe3Si+2FeCl2の反応により、鋼板表面にFe3Siを形成し、さらに板厚方向にSiを拡散させることにより、磁気特性および磁歪特性に優れた高Si濃度の鋼板を得る方法である。 By the way, conventionally, a method for producing a high silicon steel sheet by subjecting a low Si-containing steel sheet to a siliconization treatment by a gas phase reaction method is known. In this method, for example, a steel sheet with an Si content of less than 4 mass%, which is easy to roll, is reacted with SiCl 4 at a temperature of about 1000 to 1200 ° C., and a reaction of SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2 is applied to the steel sheet surface. This is a method of obtaining a high Si concentration steel sheet having excellent magnetic and magnetostrictive properties by forming Fe 3 Si and further diffusing Si in the thickness direction.
そこで、発明者らは、この方法を、本発明で対象とする圧粉磁心用の金属粉末に対して適用したところ、金属粉末では短時間のうちに粉末の内部までSiが拡散し、粉末の表層部のみに安定してSiを濃化させることは極めて難しいことが判明した。
この理由は、粉末は、鋼板に比べて比表面積が大きく反応性が高いため、容易に中心部までSiが浸透するためであることが判明した。粉末全体にわたってSi濃度が高まると、高Si濃度の鋼板の圧延が困難であることと同様に、粒子が硬くなり、後工程である成形工程において圧縮性が低下して成形体密度が低下し、その結果、高い飽和磁束密度が得られなくなる。
Therefore, the inventors applied this method to the metal powder for a dust core that is the subject of the present invention. In the metal powder, Si diffuses to the inside of the powder within a short period of time. It was found that it was extremely difficult to concentrate Si stably only on the surface layer.
The reason is that the powder has a larger specific surface area and higher reactivity than the steel plate, and therefore Si easily penetrates to the center. When the Si concentration increases throughout the powder, the particles become hard, as well as the difficulty in rolling a steel sheet with a high Si concentration, the compressibility decreases in the subsequent molding step, and the compact density decreases. As a result, a high saturation magnetic flux density cannot be obtained.
そこで、発明者らは、さらに研究を進めた結果、上記の浸珪処理でSiが短時間のうちに粉末の内部まで浸透する理由は、鋼組織がフェライト相であることに起因すると考えられた。すなわち、フェライト相ではSiの拡散速度が極めて速い。この点、鋼組織がオーステナイト相の場合は、フェライト相に比べて拡散速度は格段に遅い。 Therefore, as a result of further research, the inventors thought that the reason why Si penetrates into the powder within a short time by the above-described siliconization treatment is that the steel structure is a ferrite phase. . That is, the diffusion rate of Si is extremely fast in the ferrite phase. In this regard, when the steel structure is an austenite phase, the diffusion rate is much slower than that of the ferrite phase.
そこで、次に、発明者らは、高温域においてオーステナイト相を呈する組成の材料、すなわち純鉄や低Si含有鋼の粉末について、オーステナイト相が形成される温度域において、気相反応法によりSiの蒸着を試みたところ、鋼中におけるSiの拡散速度が格段に抑制されて、粉末の表層部のみに効果的にSi濃化層を形成できることの知見を得た。
本発明は、上記の知見に立脚するものである。
Therefore, next, the inventors of a material having a composition that exhibits an austenite phase in a high temperature range, i.e., pure iron or low Si-containing steel powder, in a temperature range at which the austenite phase is formed by a gas phase reaction method. When vapor deposition was attempted, the knowledge was obtained that the Si diffusion rate in the steel was remarkably suppressed, and an Si-enriched layer could be effectively formed only on the surface layer of the powder.
The present invention is based on the above findings.
すなわち、本発明の要旨構成は次のとおりである。
(1)高温域においてオーステナイト相を呈する金属粉末を、該オーステナイト相が形成される温度域まで加熱し、この温度域にて気相反応により該金属粉末の表層部にSiを濃化させることを特徴とする圧粉磁心用金属粉末の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) heating a metal powder exhibiting an austenite phase in a high temperature range to a temperature range where the austenite phase is formed, and concentrating Si in a surface layer portion of the metal powder by a gas phase reaction in this temperature range A method for producing a metal powder for a dust core.
(2)上記(1)において、前記金属粉末が、純度99%以上の純鉄粉であることを特徴とする圧粉磁心用金属粉末の製造方法。 (2) The method for producing a metal powder for a dust core according to (1), wherein the metal powder is a pure iron powder having a purity of 99% or more.
(3)上記(1)において、前記金属粉末が、Siを1mass%以下で含有するFe−Si合金粉であることを特徴とする圧粉磁心用金属粉末の製造方法。 (3) The method for producing a metal powder for a dust core according to (1), wherein the metal powder is an Fe-Si alloy powder containing Si at 1 mass% or less.
(4)上記(1)〜(3)のいずれかにおいて、表層部にSiを濃化させた金属粉末の表面に、さらに絶縁被覆処理を施すことを特徴とする圧粉磁心用金属粉末の製造方法。 (4) In any one of the above (1) to (3), the surface of the metal powder whose surface layer portion is enriched with Si is further subjected to an insulation coating treatment, whereby the metal powder for a dust core is produced. Method.
(5)上記(4)に記載の方法により製造した絶縁被覆処理済みの金属粉末を、加圧成形することを特徴とする圧粉磁心の製造方法。 (5) A method for producing a dust core, wherein the metal powder produced by the method described in (4) above is subjected to pressure molding.
(6)上記(4)に記載の方法により製造した絶縁被覆処理済みの金属粉末を、加圧成形後、600℃以上 1000℃以下の温度域にて熱処理を施すことを特徴とする圧粉磁心の製造方法。 (6) A dust core characterized by subjecting a metal powder having been subjected to an insulation coating process manufactured by the method described in (4) above to heat treatment in a temperature range of 600 ° C. to 1000 ° C. after pressure forming. Manufacturing method.
本発明によれば、絶縁処理性に優れ、かつ飽和磁束密度の高い圧粉磁心用金属粉末を得ることができる。
また、上記の圧粉磁心用金属粉末を素材として加圧成形することにより、電気抵抗が高く、かつ成形密度が高い圧粉磁心を得ることができる。
従って、上記の圧粉磁心を利用することにより、優れた磁気特性を有するモータおよびトランス、さらにはインダクタ素子等を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the metal powder for powder magnetic cores which is excellent in insulation process property and has a high saturation magnetic flux density can be obtained.
In addition, a powder magnetic core having a high electrical resistance and a high molding density can be obtained by pressure molding using the above metal powder for powder magnetic core as a raw material.
Therefore, by using the above-described powder magnetic core, a motor and a transformer having excellent magnetic characteristics, an inductor element, and the like can be obtained.
以下、本発明を具体的に説明する。
本発明で対象とする軟磁性金属材料は、高温域においてオーステナイト相を呈する材料であり、代表的なものとしては、純鉄および低Si濃度のFe−Si合金が挙げられる。ここに、純鉄とはFe濃度が99mass%以上のものを指し、高純度で軟質あるが故に、高い飽和磁束密度と優れた圧縮性を得ることができる。また、低Si濃度のFe−Si合金とはSi濃度が1mass%以下のものを指し、少量とはいえSiを含有するが故に、比抵抗の増大ひいては渦電流損の低減を図ることができる。また、Si含有量が1mass%以下と少ないので、圧縮性や飽和磁束密度に及ぼす悪影響はほとんどない。
The present invention will be specifically described below.
The soft magnetic metal material targeted by the present invention is a material exhibiting an austenite phase in a high temperature range, and representative examples thereof include pure iron and a low Si concentration Fe—Si alloy. Here, pure iron refers to one having an Fe concentration of 99 mass% or more, and since it is high purity and soft, high saturation magnetic flux density and excellent compressibility can be obtained. Further, the Fe-Si alloy having a low Si concentration refers to an Si concentration of 1 mass% or less, and although it contains a small amount of Si, it is possible to increase the specific resistance and thus reduce the eddy current loss. Moreover, since Si content is as small as 1 mass% or less, there is almost no adverse effect on compressibility and saturation magnetic flux density.
本発明は、これらの純鉄あるいはFe−Si合金の粉末を、所定の温度域に加熱したのち、気相反応により粉末の表層部にSiを濃化させ、ついで粒子表面に絶縁被覆処理を施してから、加圧成形により所望の磁心形状に加工し、さらに歪み取りのための熱処理を行うという一連のプロセスからなる。 In the present invention, after pure iron or Fe-Si alloy powder is heated to a predetermined temperature range, Si is concentrated on the surface layer of the powder by a gas phase reaction, and then an insulating coating is applied to the particle surface. After that, it is a series of processes in which a desired magnetic core shape is processed by pressure molding and further heat treatment is performed to remove distortion.
本発明で使用する純鉄粉としては、アトマイズ鉄粉、還元鉄粉、電解鉄粉などが使用でき、特に限定されることはないが、なかでも溶湯を水アトマイズして得られる水アトマイズ鉄粉が高密度化の観点から好ましい。
以下、水アトマイズ法を適用する場合を例に、好ましい製造方法を説明するが、これに限定されないことは言うまでもない。
通常の純鉄組成の溶湯を、水アトマイズ法で噴霧、急冷・凝固させるとともに高圧水で解砕して、水アトマイズ製鉄粉(生粉)とする。ついで、この生粉に、脱水・乾燥処理、さらに還元処理を施して、粒子表面の酸化皮膜を除去した製品(純鉄粉)とする。
また、Fe−Si合金粉についても、同様に、アトマイズ法や粉砕法を利用して製造することができる。
As the pure iron powder used in the present invention, atomized iron powder, reduced iron powder, electrolytic iron powder and the like can be used, and are not particularly limited, but water atomized iron powder obtained by water atomizing a molten metal among them Is preferable from the viewpoint of densification.
Hereinafter, although a preferable manufacturing method will be described by taking the case of applying the water atomizing method as an example, it goes without saying that the present invention is not limited thereto.
A molten metal having a normal pure iron composition is sprayed, rapidly cooled and solidified by a water atomizing method, and crushed with high-pressure water to obtain a water atomized iron powder (raw powder). Next, the raw powder is subjected to dehydration / drying treatment and reduction treatment to obtain a product (pure iron powder) from which the oxide film on the particle surface has been removed.
Similarly, the Fe—Si alloy powder can be manufactured by using an atomizing method or a pulverizing method.
かかる純鉄粉およびFe−Si合金粉(以下、単に金属粉末という)の粒径は、高密度化の観点から、500μm以下とすることがが好ましいが、特に限定されるものではない。また、粒径の下限は1μm 程度とすることが好ましい。というのは、微細な粉末は反応性が高いため、次に述べる気相反応工程に供した場合に、気相反応が開始する前に焼結が始まり粒子同士が固着するおそれがあるからである。 The particle sizes of such pure iron powder and Fe—Si alloy powder (hereinafter simply referred to as metal powder) are preferably 500 μm or less from the viewpoint of high density, but are not particularly limited. The lower limit of the particle size is preferably about 1 μm. This is because fine powder has high reactivity, and therefore, when subjected to the gas phase reaction step described below, sintering may start before the gas phase reaction starts, and the particles may stick to each other. .
次に、気相反応によって金属粉末の表層部にSiを濃化させる方法について説明する。
前述したとおり、気相反応法により低Si含有の鋼板に浸珪処理を施して、高珪素鋼板を製造する方法が知られている。この方法は、例えば、圧延が容易なSi含有量:4mass%未満の鋼板をSiCl4と1000〜1200℃程度の温度で反応させることにより、鋼板表面にSiCl4+5Fe→Fe3Si+2FeCl2の反応により、鋼板表面にFe3Siを形成し、さらに板厚方向にSiを拡散させることにより、磁気特性および磁歪特性に優れた高Si濃度の鋼板を得る方法である。
Next, a method for concentrating Si in the surface layer portion of the metal powder by a gas phase reaction will be described.
As described above, a method of manufacturing a high silicon steel sheet by subjecting a low Si-containing steel sheet to a siliconization process by a gas phase reaction method is known. In this method, for example, a steel sheet having a Si content of less than 4 mass%, which is easy to roll, is reacted with SiCl 4 at a temperature of about 1000 to 1200 ° C., whereby the surface of the steel sheet is reacted with SiCl 4 + 5Fe → Fe 3 Si + 2FeCl 2 . In this method, Fe 3 Si is formed on the surface of the steel sheet and Si is diffused in the thickness direction to obtain a steel sheet having a high Si concentration with excellent magnetic properties and magnetostrictive properties.
しかしながら、この浸珪法を、本発明で対象とする圧粉磁心用の金属粉末に対して適用した場合、粉末は鋼板に比べて比表面積が大きく反応性が高いため、短時間のうちに粉末の内部までSiが浸透・拡散し、粉末の表層部のみに安定してSiを濃化させることができなかった。粉末内部全体にわたってSi濃度が高まると、高Si濃度の鋼板の圧延が困難であることと同様に、粒子が硬くなり、後工程である成形工程において圧縮性が低下して成形体密度が低下し、その結果、高い飽和磁束密度が得られなくなる。 However, when this siliconization method is applied to a metal powder for a dust core that is the subject of the present invention, the powder has a higher specific surface area and higher reactivity than a steel plate, so that Si penetrated and diffused to the inside, and it was not possible to concentrate Si stably only on the surface layer of the powder. As the Si concentration increases throughout the powder, the particles become harder, as well as the difficulty in rolling steel sheets with high Si concentration. As a result, a high saturation magnetic flux density cannot be obtained.
そこで、発明者らは、この点を解決すべく鋭意検討を重ねた結果、気相反応によってSiを粉末表面に蒸着させる場合に、反応温度さらには反応時間を的確に制御することにより、Siの粉末内部への浸透・拡散を効果的に抑制して、粉末の表層部のみに安定してSiを濃化できることを究明したのである。 Therefore, as a result of intensive investigations to solve this point, the inventors have determined that the Si temperature can be appropriately controlled by controlling the reaction temperature and the reaction time when vapor-depositing Si on the powder surface. They found that it was possible to effectively suppress the penetration and diffusion into the powder, and to concentrate Si stably only on the surface layer of the powder.
Fe−Si2元系状態図では、鋼温域においてオーステナイト相が存在する。純Feでは910〜1400℃の範囲であるが、Si濃度の増加に伴いこの温度範囲は次第に狭くなり、1%Si−Feではおおよそ1000〜1350℃となり、2%Si−Feでは、ほぼ全温度範囲でオーステナイト相とフェライト相の共存相となる。
フェライト相ではSiの拡散速度がオーステナイト相に比べて格段に速い。このため、気相反応処理を施す鋼板のSi濃度が3〜4mass%であれば、フェライト相になっているため、厚み方向にSiを十分浸透させることが可能である。一方、本発明が対象としている粉末の場合は、同様の粉末組成に対して、気相反応処理を同条件で施すと、鋼板に比べて比表面積が大きく反応性が高いため、Siが浸透し易く、かつ拡散により速やかに粉末中心部までSi濃度が高くなってしまう。
In the Fe-Si binary phase diagram, an austenite phase exists in the steel temperature range. For pure Fe, the temperature range is 910 to 1400 ° C, but this temperature range gradually narrows as the Si concentration increases, with 1% Si-Fe approximately 1000 to 1350 ° C, and with 2% Si-Fe, almost the entire temperature. In the range, austenite phase and ferrite phase coexist.
In the ferrite phase, the Si diffusion rate is much faster than in the austenite phase. For this reason, if the Si concentration of the steel sheet to be subjected to the gas phase reaction treatment is 3 to 4 mass%, since it is in the ferrite phase, it is possible to sufficiently infiltrate Si in the thickness direction. On the other hand, in the case of the powder that is the subject of the present invention, when the gas phase reaction treatment is performed on the same powder composition under the same conditions, Si has penetrated because the specific surface area is larger and the reactivity is higher than that of the steel plate. The Si concentration is easily increased to the center of the powder quickly due to diffusion.
一方、オーステナイト相は、フェライト相に比べるとSiの拡散速度は格段に遅い。
そこで、発明者らは、このSiの拡散速度が遅いオーステナイト相となる温度域で気相反応を行えば、粉体内部までのSiの浸透・拡散が効果的に抑制されて表層部のみにSi濃化層を形成できるのではないかと考え、実験を行った結果、所期した目的の達成に関し、望外の成果が得られ、本発明を完成させるに至ったのである。
On the other hand, the austenite phase has a much slower diffusion rate of Si than the ferrite phase.
Therefore, if the inventors perform a gas phase reaction in the temperature range where the diffusion rate of Si becomes a low austenite phase, Si penetration / diffusion to the inside of the powder is effectively suppressed, and only the surface layer portion has Si. As a result of conducting experiments and thinking that a thickened layer could be formed, an unexpected result was achieved with regard to achieving the intended purpose, and the present invention was completed.
以下、SiCl4ガスおよび純鉄粉を用いる場合を例に、好ましいSi濃化方法について説明するが、これに限定されないことは言うまでな無い。
石英製の容器内に、粒径が10〜200μmの鉄粉を、厚さ:5mm以下より好ましくは3mm以下に載積し、非酸化性雰囲気中にて910℃以上、1400℃以下、より好ましくは910℃以上、1200℃以下に加熱する。次に、SiCl4ガスを0.01〜10NL/min/kg導入する。
かくすることにより、鉄粉の表層部のみに安定してSiを濃化させることができた。
Hereinafter, a preferred Si concentration method will be described by taking the case of using SiCl 4 gas and pure iron powder as an example, but it goes without saying that the present invention is not limited to this.
An iron powder having a particle size of 10 to 200 μm is placed in a quartz container to a thickness of 5 mm or less, more preferably 3 mm or less, and 910 ° C. or higher and 1400 ° C. or lower, more preferably in a non-oxidizing atmosphere. Is heated to 910 ° C or higher and 1200 ° C or lower. Next, 0.01 to 10 NL / min / kg of SiCl 4 gas is introduced.
By doing so, it was possible to concentrate Si stably only on the surface layer portion of the iron powder.
なお、鉄粉の載積厚みが5mmを超えると、SiCl4ガスが粉末全体にいきわたらず、全ての粉末表面に均一にSiが蒸着されない。従って、大量に処理を行う場合には、粉末を撹拌しながら処理する方法等により、不均一な気相反応を抑制することが好ましい。粉末を撹拌する方法としては、粉末を入れた容器自体を回転させる方法、撹拌羽根を用いて撹拌する方法、容器内に非酸化性ガスとSiCl4ガスの混合ガスを導入して粉末を流動させる方法等が挙げられる。
なお、SiCl4ガスの流量は、効果ならびに経済性の観点から、0.01 〜10NL/min/kg程度とすることが好ましい。
Incidentally, when Noseki thickness of iron powder is more than 5 mm, not spread SiCl 4 gas in the powder mass uniformly Si is not deposited on all of the powder surface. Therefore, when a large amount of treatment is performed, it is preferable to suppress non-uniform gas phase reaction by a method of treating the powder while stirring. As a method of stirring the powder, a method of rotating the container itself containing the powder, a method of stirring using a stirring blade, and introducing a mixed gas of non-oxidizing gas and SiCl 4 gas into the container to flow the powder Methods and the like.
The flow rate of SiCl 4 gas is preferably about 0.01 to 10 NL / min / kg from the viewpoints of effects and economy.
気相処理温度は、オーステナイト相が形成される温度域とすることが重要である。というのは、オーステナイト相は、フェライト相に比べるとSiの拡散速度は格段に遅いため、このオーステナイト相となる温度域で気相反応を行えば、粉体内部までのSiの浸透・拡散が効果的に抑制されて表層部のみにSi濃化層を形成できるからである。
ここに、金属粉末が純鉄粉の場合のオーステナイト相温度域は910〜1400℃である。より好ましい処理温度は910〜1200℃の範囲である。
また、金属粉末がFe−Si合金粉の場合、Si量が0.5mass%のときのオーステナイト相温度域はおよそ950〜1370℃、Si量が1mass%のときのオーステナイト相温度域はおよそ1000〜1350℃である。
It is important that the gas phase treatment temperature is a temperature range in which an austenite phase is formed. This is because the austenite phase has a much slower diffusion rate of Si than the ferrite phase, so if a gas phase reaction is performed in the temperature range where this austenite phase is used, the penetration and diffusion of Si into the powder is effective. This is because the Si concentration layer can be formed only on the surface layer portion.
Here, the temperature range of the austenite phase when the metal powder is pure iron powder is 910 to 1400 ° C. A more preferred treatment temperature is in the range of 910 to 1200 ° C.
When the metal powder is Fe-Si alloy powder, the austenite phase temperature range when the Si content is 0.5 mass% is approximately 950 to 1370 ° C, and the austenite phase temperature range when the Si content is 1 mass% is approximately 1000 to 1350. ° C.
また、反応時間すなわちSiCl4ガスと接触させる時間は、加熱処理温度に合わせ、適宜調整すればよいが、効果ならびに経済性の観点からは1分ないし60分程度とするのが好ましい。 Further, the reaction time, that is, the time for contacting with the SiCl 4 gas, may be appropriately adjusted in accordance with the heat treatment temperature, but is preferably about 1 to 60 minutes from the viewpoints of effects and economy.
なお、気相反応後は、反応によって生じる塩化鉄が付着し易いため、数分から1時間程度不活性ガスを流して反応温度と同じかあるいはそれ以上の温度で保持することが望ましい。また、反応を行う系を減圧にすることも有利である。
また、これらの気相反応後、酸素を微量含むガスを系内に導入することにより、粉末粒子の表面を酸化してSiO2を形成することができる。これは、特に5μm以下の粒径の粉末 が大気に曝された瞬間に急激に酸化されて発熱し、さらに酸化が進行することを防ぐ効果がある。さらに、絶縁被覆処理において、粒子と絶縁被膜材料との密着性を高める点でも効果がある。
In addition, after the gas phase reaction, iron chloride generated by the reaction is likely to adhere, so it is desirable to keep the temperature at or higher than the reaction temperature by flowing an inert gas for several minutes to 1 hour. It is also advantageous to reduce the pressure of the reaction system.
In addition, after these gas phase reactions, by introducing a gas containing a small amount of oxygen into the system, the surface of the powder particles can be oxidized to form SiO 2 . This has the effect of preventing the powder from having a particle size of 5 μm or less from being rapidly oxidized and generating heat at the moment when it is exposed to the atmosphere, and further preventing the oxidation from proceeding. Furthermore, there is an effect in increasing the adhesion between the particles and the insulating coating material in the insulating coating treatment.
本発明において、金属粉末の表層部に形成するSi濃化層の厚みは、0.01〜10μm 程度とすることが好ましい。というのは、Si濃化層の厚みが0.01μmに満たないと、本発明で意図する絶縁処理効果の向上が望めず、一方10μmを超えるとSi濃化層が粉末内部まで浸透しすぎる結果、圧縮性の低下および飽和磁束密度の低下を招くからである。
また、本発明では、上記したSi濃化層の厚み範囲内において、該Si濃化層の厚みを粉末粒径(半径)の1/2以下とすることが重要である。というのは、Si濃化層の厚みが粉末粒径の1/2超では、Si濃化層が粉末内部まで浸透しすぎ、やはり飽和磁束密度の低下および圧縮性の低下を招くからである。より好ましいSi濃化層の厚みは粉末粒径の1/5以下である。
In the present invention, the thickness of the Si concentrated layer formed on the surface portion of the metal powder is preferably about 0.01 to 10 μm. Because, if the thickness of the Si concentrated layer is less than 0.01μm, the improvement of the insulation treatment effect intended in the present invention cannot be expected, whereas if it exceeds 10μm, the Si concentrated layer penetrates too much into the powder. This is because the compressibility and the saturation magnetic flux density are reduced.
In the present invention, it is important that the thickness of the Si concentrated layer is ½ or less of the powder particle diameter (radius) within the thickness range of the Si concentrated layer. This is because when the thickness of the Si concentrated layer exceeds 1/2 of the powder particle diameter, the Si concentrated layer penetrates too much into the powder, resulting in a decrease in saturation magnetic flux density and a decrease in compressibility. A more preferable thickness of the Si concentrated layer is 1/5 or less of the powder particle diameter.
さらに、本発明では、上記したSi濃化層における平均Si濃度は0.5〜32mass%程度とするのが好ましい。というのは、このSi濃度が0.5mass%に満たないと、本発明で所期したほど良好な絶縁処理効果が得られず、一方32mass%を超えるとSi濃化層が剥がれ易くなり、絶縁効果が低下するためである。 Furthermore, in the present invention, the average Si concentration in the Si enriched layer is preferably about 0.5 to 32 mass%. This is because if the Si concentration is less than 0.5 mass%, the insulation effect as good as expected in the present invention cannot be obtained. On the other hand, if it exceeds 32 mass%, the Si-concentrated layer tends to peel off, and the insulation effect This is because of a decrease.
次に、Siを表層部に濃化させた粉末の絶縁被覆処理について説明する。
本発明の金属粉末を、圧粉磁心のような磁性部品に適用する際には、粉末粒子に絶縁被覆処理を施し、粒子表面を層状に覆う被膜構造の絶縁層を形成して圧粉体の電気抵抗を高め、渦電流損失を低減することにより、磁気特性を高める必要がある。
ここに、絶縁被覆用の材料としては、金属粉末を加圧成形し所望の形状に成形した後でも要求される絶縁性を保持できるものであればよく、とくに限定されない。かような材料としては、Al,Si,Mg,Ca,Mn,Zn,Ni,Fe,Ti,V,Bi,B,Mo,W,Na,K等の酸化物等が挙げられる。また、スピネル型フェライトのような磁性酸化物、水ガラスに代表される非晶質材を使用することもできる。さらに、リン酸塩化成処理被膜やクロム酸塩化成処理被膜なども用いることができる。リン酸塩化成処理被膜にはホウ酸やMgを含むこともできる。その他、絶縁材料として、リン酸アルミニウム、リン酸亜鉛、リン酸カルシウムおよびリン酸鉄等のリン酸化合物を用いることもできる。また、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、ポリイミド樹脂等の有機樹脂を用いてもよい。
さらに、特開2003−303711号公報に記載された絶縁被覆用材料、例えばシリコーン樹脂と、金属酸化物、金属窒化物、金属炭化物、鉱物およびガラス等の顔料との混合物などをを用いても何ら問題はない。
Next, a description will be given of the insulating coating treatment of the powder in which Si is concentrated in the surface layer portion.
When the metal powder of the present invention is applied to a magnetic component such as a powder magnetic core, the powder particles are subjected to an insulation coating treatment to form an insulating layer having a coating structure that covers the particle surface in a layered manner. There is a need to increase magnetic properties by increasing electrical resistance and reducing eddy current losses.
The material for the insulating coating is not particularly limited as long as it can maintain the required insulation even after the metal powder is pressure-molded and formed into a desired shape. Examples of such a material include oxides such as Al, Si, Mg, Ca, Mn, Zn, Ni, Fe, Ti, V, Bi, B, Mo, W, Na, and K. Further, a magnetic oxide such as spinel type ferrite or an amorphous material typified by water glass can also be used. Furthermore, a phosphate chemical conversion treatment film or a chromate chemical conversion treatment film can also be used. The phosphate chemical conversion coating can also contain boric acid and Mg. In addition, as an insulating material, phosphate compounds such as aluminum phosphate, zinc phosphate, calcium phosphate, and iron phosphate can be used. Moreover, you may use organic resins, such as an epoxy resin, a phenol resin, a silicone resin, and a polyimide resin.
Further, the insulating coating material described in JP-A-2003-303711, for example, a mixture of a silicone resin and a pigment such as a metal oxide, a metal nitride, a metal carbide, a mineral, and glass can be used. No problem.
なお、絶縁材料の金属粒子表面への付着力を高める目的、あるいは絶縁層の均一性を高める目的で、界面活性剤やシランカップリング剤を添加してもよい。この場合、界面活性剤やシランカップリング剤の添加量は、絶縁層全量に対し0.001〜1mass%程度とすることが好ましい。 Note that a surfactant or a silane coupling agent may be added for the purpose of increasing the adhesion of the insulating material to the metal particle surface or for the purpose of increasing the uniformity of the insulating layer. In this case, the addition amount of the surfactant and the silane coupling agent is preferably about 0.001 to 1 mass% with respect to the total amount of the insulating layer.
絶縁被覆処理により形成される絶縁層の厚さは、粉末の粒径にもよるが、10〜10000nm 程度とすることが好ましい。10nm未満では、絶縁効果が十分でなく、一方10000nmを超えると圧粉体の密度が低下し、高い磁束密度が得られなくなる。 The thickness of the insulating layer formed by the insulating coating treatment is preferably about 10 to 10,000 nm, although it depends on the particle size of the powder. If the thickness is less than 10 nm, the insulating effect is not sufficient. On the other hand, if the thickness exceeds 10000 nm, the density of the green compact decreases and a high magnetic flux density cannot be obtained.
金属粉末の表面に絶縁層を形成する方法については、特に制限はなく、従来から公知の被膜形成方法(コーティング方法)いずれもが有利に適合する。代表的なコーティング方法としては、流動層法、浸漬法、噴霧法などが挙げられる。なお、いずれの方法においても、被覆工程の後あるいは被覆工程と同時に、絶縁材料を溶解または分散させる溶媒を乾燥する工程が必要となる。また、絶縁層が加圧成形時に剥離することを防止するために、絶縁層と粉末粒子表面との間に反応層を形成してもよい。反応層の形成は、化成処理を施すことによるのが好ましい。 The method for forming the insulating layer on the surface of the metal powder is not particularly limited, and any conventionally known film forming method (coating method) is advantageously suitable. Typical coating methods include fluidized bed method, dipping method, spray method and the like. In any method, a step of drying a solvent for dissolving or dispersing the insulating material is required after the coating step or simultaneously with the coating step. Further, a reaction layer may be formed between the insulating layer and the powder particle surface in order to prevent the insulating layer from peeling off during pressure molding. Formation of the reaction layer is preferably performed by chemical conversion treatment.
次に、加圧成形方法について説明する。
上記したような絶縁被覆処理を施し、粒子表面に絶縁層を形成した金属粉末(絶縁被覆粉)を、加圧成形して圧粉磁心とする。なお、この加圧成形に先立ち、粉末には必要に応じて金属石鹸やアミド系ワックス等の潤滑剤を配合することもできる。潤滑剤の配合量は、粉末:100質量部に対し0.5質量部以下程度とすることが好ましい。潤滑剤の配合量が多くなると圧粉磁心の密度が低下するためである。
Next, the pressure molding method will be described.
A metal powder (insulating coating powder), which has been subjected to the above-described insulating coating process and formed an insulating layer on the particle surface, is pressed to form a powder magnetic core. Prior to the pressure molding, the powder may be blended with a lubricant such as a metal soap or an amide wax, if necessary. The blending amount of the lubricant is preferably about 0.5 parts by mass or less with respect to 100 parts by mass of the powder. This is because as the blending amount of the lubricant increases, the density of the dust core decreases.
加圧成形法としては、従来公知の方法がいずれも適用できる。例えば、一軸プレスを用いて常温で加圧成形する金型成形工法、温間で加圧成形する温間成形工法、金型を潤滑して加圧成形する金型潤滑工法、それを温間で行う温間金型潤滑工法、さらには高圧で成形する高圧成形工法、静水圧プレス法などである。 Any conventionally known method can be applied as the pressure molding method. For example, a mold forming method in which pressure molding is performed at normal temperature using a uniaxial press, a warm molding method in which pressure molding is performed warm, a mold lubrication method in which a mold is lubricated and pressure molded, These include a warm mold lubrication method to be performed, a high pressure molding method in which molding is performed at a high pressure, and a hydrostatic pressure pressing method.
次に、歪み取りのための熱処理について説明する。
圧粉体は、成形時に歪みが加わっているため、ヒステリシス損失が大きくなっている。従って、この歪みを取り除いて本来の磁気特性を発現させために、歪み取り熱処理が必要である。この処理温度は、600℃以上 1000℃以下程度とすることが好ましい。この処理温度が高すぎると、歪み取り効果は増加するものの絶縁被覆が結晶化や分解するために絶縁効果を失い、電気抵抗が著しく低下する。また、熱処理時間も長い方が歪み取りには好ましいが、長すぎると同様に電気抵抗が著しく低下する。従って、熱処理時間は効果ならびに経済性の観点から5〜300分、より好ましくは10〜120分程度とするのが好適である。
Next, heat treatment for removing distortion will be described.
Since the green compact is strained during molding, the hysteresis loss is large. Therefore, in order to remove this distortion and develop the original magnetic properties, a distortion removing heat treatment is necessary. The treatment temperature is preferably about 600 ° C. or higher and 1000 ° C. or lower. If this treatment temperature is too high, the effect of removing strain increases, but the insulating coating loses its insulating effect due to crystallization and decomposition, and the electrical resistance is remarkably reduced. Also, a longer heat treatment time is preferable for removing distortion, but if it is too long, the electrical resistance is remarkably lowered as well. Therefore, the heat treatment time is preferably about 5 to 300 minutes, more preferably about 10 to 120 minutes from the viewpoints of effect and economy.
金属粉末として、JFEスチール(株)製の純鉄粉 「JIP-304AS」(Fe濃度:99.8mass%、平均粒径:90μm)と、これにSiを0.1〜3mass%の範囲で含有させた各種Fe−Si合金粉(いずれも平均粒径は90μm )を用いた。なお、粉末の粒子径は、レーザー散乱回折式粒度分布測定装置により測定し、平均値を求めた。
これらの粉末を、石英容器内に載積厚み:3〜10mmで充填し、アルゴンガス中にて880〜1420℃で5分間加熱後、塩化珪素ガスを1Nl/min/kgの流量で1〜30分間流しながら所定の温度に保持し、さらにアルゴンガスに置換後3〜60分間加熱処理する、気相反応処理を施した。
表1に、金属粉末の加熱温度、SiCl4ガス中での加熱時間およびArガス中での加熱時間を示す。また、表1には、気相反応処理後の金属粉末のSi濃化層厚みおよび該濃化層中の平均Si濃度について調べた結果も示す。
As metal powder, pure iron powder “JIP-304AS” (Fe concentration: 99.8 mass%, average particle size: 90 μm) manufactured by JFE Steel Co., Ltd., and various types of Si containing 0.1 to 3 mass% Fe-Si alloy powder (both average particle diameter is 90 μm) was used. In addition, the particle diameter of the powder was measured by a laser scattering diffraction particle size distribution measuring device, and an average value was obtained.
These powders are filled in a quartz container at a loading thickness of 3 to 10 mm, heated in argon gas at 880 to 1420 ° C. for 5 minutes, and then silicon chloride gas is flowed at a flow rate of 1 Nl / min / kg for 1 to 30. A gas phase reaction process was performed in which the temperature was maintained at a predetermined temperature while flowing for a minute, and further heat treatment was performed for 3 to 60 minutes after substitution with argon gas.
Table 1 shows the heating temperature of the metal powder, the heating time in SiCl 4 gas, and the heating time in Ar gas. Table 1 also shows the results of examining the Si concentrated layer thickness of the metal powder after the gas phase reaction treatment and the average Si concentration in the concentrated layer.
ついで、得られた粉末粒子の表面に、以下の方法によりシリコーン樹脂を被覆した。シリコーン樹脂として、東レダウコーニング社の「SR2400」を用いた。樹脂分で5mass%となるようにキシレンで調整した被覆液を、転動流動層型被覆装置にて装置容器内で流動化させたSi濃化粉末に、スプレーを用いて表1に示す樹脂固形分となるように噴霧した。噴霧終了後、20分間流動状態を維持して乾燥した。ついで、大気中にて250℃,60分間の加熱処理を行い、シリコーン樹脂を加熱硬化させて被覆粉末とした。 Subsequently, the surface of the obtained powder particles was coated with a silicone resin by the following method. “SR2400” from Toray Dow Corning was used as the silicone resin. Resin solids shown in Table 1 are sprayed on Si-concentrated powder obtained by fluidizing the coating liquid adjusted with xylene so that the resin content becomes 5 mass% in the apparatus container with a rolling fluidized bed type coating apparatus. Sprayed to minutes. After spraying, the fluidized state was maintained for 20 minutes to dry. Subsequently, a heat treatment was performed in the atmosphere at 250 ° C. for 60 minutes to heat and cure the silicone resin to obtain a coating powder.
ついで、得られた被覆粉末を、加圧成形して測定用のリング状の圧粉磁心(外径:38mm、内径:25mm、高さ:6.2mm)を作製した。なお、成形前に金型内にステアリン酸亜鉛の5mass%アルコール懸濁液を塗布して金型潤滑を行い、成形圧力:980MPaで成形した。
その後、得られた圧粉体に、窒素雰囲気中にて800℃,60分間の熱処理を施した。
かくして得られた圧粉磁心の圧粉密度、磁束密度および電気抵抗について調べた結果を表1に併記する。
なお、表1には、比較のため、本発明に従うSiの濃化処理を施さなかった2%Si−Fe合金粉(比較例3)および3%Si−Fe合金粉(比較例4)についても、同様の調査を行った結果を示す。
Next, the obtained coated powder was pressure-molded to produce a ring-shaped dust core for measurement (outer diameter: 38 mm, inner diameter: 25 mm, height: 6.2 mm). Prior to molding, a 5 mass% alcohol suspension of zinc stearate was applied to the mold and the mold was lubricated, and molded at a molding pressure of 980 MPa.
Thereafter, the obtained green compact was heat-treated at 800 ° C. for 60 minutes in a nitrogen atmosphere.
The results of examining the dust density, magnetic flux density and electrical resistance of the dust core thus obtained are also shown in Table 1.
In Table 1, for comparison, 2% Si-Fe alloy powder (Comparative Example 3) and 3% Si-Fe alloy powder (Comparative Example 4) which were not subjected to Si concentration treatment according to the present invention are also shown. The results of a similar investigation are shown.
なお、圧粉密度は、圧粉磁心の寸法と重量を測定し、計算により求めた。
また、磁束密度は、圧粉磁心に1次側:100ターン、2次側:20ターンを巻き、直流磁化特性測定装置を用いて10kA/mの磁化での磁束密度(B10k)を測定した。
さらに、電気抵抗は四端子法により通電電流1Aで測定した。
The dust density was obtained by measuring the size and weight of the dust core and calculating it.
The magnetic flux density was measured by measuring the magnetic flux density (B 10k ) at a magnetization of 10 kA / m using a DC magnetization characteristic measuring device by winding the primary side: 100 turns and the secondary side: 20 turns around the dust core. .
Furthermore, the electrical resistance was measured at an energization current of 1 A by the four probe method.
表1に示したとおり、本発明の条件で気相反応処理を行った金属粉末はいずれも、表層部に適正厚みでかつ適正濃度のSi濃化層が形成されていた。また、かかる金属粉末を用いて製造した圧粉磁心はいずれも、真密度の95%以上という優れた圧粉密度を得ることができ、また磁束密度および電気抵抗にも優れていた。
これに対し、比較例1,2は、気相反応処理温度が本発明の適正温度域を外れた場合であり、高い比抵抗は得られたものの、圧粉密度、磁束密度は低かった。これは、フェライト相が生成する温度域で加熱処理を行っているため、鉄粉の内部まで深くSiの浸透が進み、鉄粉が硬化したためと考えられる。
比較例3,4は、Siを表面濃化した鉄粉の代わりに、単にFe−Si合金粉を用いた場合であるが、粉末自体の硬度が高いため、圧粉密度が上がらず、比抵抗は高いものの、高い磁束密度を得ることはできなかった。
As shown in Table 1, all metal powders subjected to the gas phase reaction treatment under the conditions of the present invention had an Si thickened layer having an appropriate thickness and an appropriate concentration on the surface layer portion. Further, any dust core produced using such metal powder was able to obtain an excellent dust density of 95% or more of the true density, and was excellent in magnetic flux density and electrical resistance.
On the other hand, Comparative Examples 1 and 2 are cases where the gas phase reaction treatment temperature deviated from the appropriate temperature range of the present invention, and although high specific resistance was obtained, the dust density and magnetic flux density were low. This is probably because the heat treatment is performed in the temperature range where the ferrite phase is generated, so that the penetration of Si deeply progresses into the iron powder and the iron powder is cured.
Comparative Examples 3 and 4 are cases where the Fe-Si alloy powder was simply used instead of the iron powder whose surface of Si was concentrated. However, since the hardness of the powder itself was high, the powder density did not increase, and the specific resistance. However, high magnetic flux density could not be obtained.
本発明によれば、気相反応により粉末粒子表面にSiを蒸着させるに際し、粉体表面にオーステナイト相が形成される条件下で行うことによって、Siの拡散を遅らせ、表層部のみに適量のSiを濃化させた金属粉末を得ることができる。さらに、この粉末に絶縁被覆処理を施した後、加圧成形し、600℃以上 1000℃以下で熱処理をすることにより、高い圧粉密度と高い磁束密度および比抵抗を有する圧粉磁心を得ることができる。その結果、優れた磁気特性を有するモータ、トランスおよびインダクタ用の圧粉磁心を、低コストで得ることが可能となる。 According to the present invention, when Si is vapor-deposited on the surface of the powder particles by a gas phase reaction, the diffusion of Si is delayed by performing the conditions under which an austenite phase is formed on the powder surface, and an appropriate amount of Si is applied only to the surface layer portion. Can be obtained. Furthermore, after applying an insulating coating to this powder, it is pressure-molded and heat treated at 600 ° C to 1000 ° C to obtain a dust core having a high dust density, a high magnetic flux density and a specific resistance. Can do. As a result, dust cores for motors, transformers, and inductors having excellent magnetic properties can be obtained at low cost.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006052509A JP4539585B2 (en) | 2006-02-28 | 2006-02-28 | Metal powder for dust core and method for producing dust core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006052509A JP4539585B2 (en) | 2006-02-28 | 2006-02-28 | Metal powder for dust core and method for producing dust core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007231331A JP2007231331A (en) | 2007-09-13 |
JP4539585B2 true JP4539585B2 (en) | 2010-09-08 |
Family
ID=38552223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006052509A Expired - Fee Related JP4539585B2 (en) | 2006-02-28 | 2006-02-28 | Metal powder for dust core and method for producing dust core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4539585B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4589374B2 (en) | 2007-11-02 | 2010-12-01 | 株式会社豊田中央研究所 | Powder for magnetic core, dust core and method for producing the same |
JP4802182B2 (en) * | 2007-12-14 | 2011-10-26 | Jfeスチール株式会社 | Iron powder for dust cores |
JP2009235517A (en) * | 2008-03-27 | 2009-10-15 | Jfe Steel Corp | Metal powder for dust core and method for producing dust core |
JP2010040666A (en) * | 2008-08-01 | 2010-02-18 | Toyota Motor Corp | METHOD FOR FORMING THIN SiO2 FILM ON MAGNETIC MATERIAL |
JP5187438B2 (en) * | 2010-03-02 | 2013-04-24 | トヨタ自動車株式会社 | Powder core powder manufacturing method, powder magnetic core powder using powder core powder manufactured by the powder core manufacturing method, and powder core powder manufacturing apparatus |
WO2019059259A1 (en) * | 2017-09-25 | 2019-03-28 | 国立研究開発法人産業技術総合研究所 | Magnetic material and method for producing same |
CN113063707B (en) * | 2021-03-12 | 2023-04-18 | 浙江美力科技股份有限公司 | Corrosion method for prior austenite grain size of tempered troostite and martensite structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111760A (en) * | 1997-06-06 | 1999-01-06 | Nkk Corp | Corrosion resisting steel member and manufacture therefor |
JPH1187123A (en) * | 1997-09-08 | 1999-03-30 | Mitsubishi Materials Corp | High-frequency soft magnetic powder |
JP2003142310A (en) * | 2001-11-02 | 2003-05-16 | Daido Steel Co Ltd | Dust core having high electrical resistance and manufacturing method therefor |
-
2006
- 2006-02-28 JP JP2006052509A patent/JP4539585B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111760A (en) * | 1997-06-06 | 1999-01-06 | Nkk Corp | Corrosion resisting steel member and manufacture therefor |
JPH1187123A (en) * | 1997-09-08 | 1999-03-30 | Mitsubishi Materials Corp | High-frequency soft magnetic powder |
JP2003142310A (en) * | 2001-11-02 | 2003-05-16 | Daido Steel Co Ltd | Dust core having high electrical resistance and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2007231331A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107851507B (en) | Method for producing soft magnetic dust core, and soft magnetic dust core | |
JP5470683B2 (en) | Metal powder for dust core and method for producing dust core | |
JP4539585B2 (en) | Metal powder for dust core and method for producing dust core | |
JP5580725B2 (en) | Manufacturing method of dust core and dust core obtained by the manufacturing method | |
JP4430607B2 (en) | Method for producing surface high Si layer coated iron powder | |
KR101420562B1 (en) | Method for manufacturing dust core and dust core obtained by the method | |
JP5597512B2 (en) | Manufacturing method of dust core and dust core obtained by this manufacturing method | |
CN103262183A (en) | Composite soft magnetic powder, composite soft magnetic powder core, and preparation method therefor | |
JP2007012994A (en) | Method for manufacturing insulating soft magnetic metal powder molding | |
JP2009228107A (en) | Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core | |
KR101519282B1 (en) | Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core | |
JP2012253317A (en) | Manufacturing method of dust core, and dust core manufactured by the method | |
JP2008028162A (en) | Soft magnetic material, manufacturing method therefor, and dust core | |
JP5363081B2 (en) | Metallurgical powder, dust core, metallurgical powder manufacturing method and dust core manufacturing method | |
WO2007077689A1 (en) | Soft magnetic material, dust magnetic core, process for producing soft magnetic material and process for producing dust magnetic core | |
JP2019151909A (en) | Soft magnetic material, powder magnetic core, and manufacturing method of powder magnetic core | |
JP6571146B2 (en) | Soft magnetic material, dust core using soft magnetic material, reactor using dust core, and method for manufacturing dust core | |
WO2014013914A1 (en) | Powder for powder magnetic core, and powder magnetic core | |
JP2007231330A (en) | Methods for manufacturing metal powder for dust core and the dust core | |
WO2012173239A1 (en) | Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core | |
JP2003142310A (en) | Dust core having high electrical resistance and manufacturing method therefor | |
JP2011243830A (en) | Powder magnetic core and method for manufacturing the same | |
TW200524690A (en) | Iron based soft magnetic powder | |
JP2019178402A (en) | Soft magnetic powder | |
WO2014034616A1 (en) | Iron powder for powder magnetic core and process for producing powder magnetic core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |