JP2021000133A5 - - Google Patents

Download PDF

Info

Publication number
JP2021000133A5
JP2021000133A5 JP2020162997A JP2020162997A JP2021000133A5 JP 2021000133 A5 JP2021000133 A5 JP 2021000133A5 JP 2020162997 A JP2020162997 A JP 2020162997A JP 2020162997 A JP2020162997 A JP 2020162997A JP 2021000133 A5 JP2021000133 A5 JP 2021000133A5
Authority
JP
Japan
Prior art keywords
cells
induced
motor neuron
derived
progenitor cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020162997A
Other languages
English (en)
Other versions
JP7100096B2 (ja
JP2021000133A (ja
Filing date
Publication date
Application filed filed Critical
Publication of JP2021000133A publication Critical patent/JP2021000133A/ja
Priority to JP2021104038A priority Critical patent/JP7282129B2/ja
Publication of JP2021000133A5 publication Critical patent/JP2021000133A5/ja
Application granted granted Critical
Publication of JP7100096B2 publication Critical patent/JP7100096B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (8)

  1. 細胞を培養する方法であって、
    a)膜を備える流体装置を提供するステップであって、前記膜は、上面および底面を含むステップと;
    b)前記膜の前記上面をラミニンで、前記底面をコラーゲンとフィブロネクチンとの混合物で被覆するステップであって、前記混合物は、ラミニンを含まないステップと;
    c)播種された細胞を創製するために、前記上面に誘導された運動ニューロン前駆細胞、前記底面に脳微小血管内皮細胞(BMEC)を播種するステップと;
    d)ある時間にわたって培養培地の流れに前記播種された細胞を曝露するステップであって、ここで、前記誘導された運動ニューロン前駆細胞がニューロンに分化する、ステップと;
    e)前記底面上の前記脳微小血管内皮細胞が前記ニューロンと接触し、タイトジャンクションを形成する条件下で、前記播種された細胞を培養するステップとを含む、方法。
  2. 前記誘導された運動ニューロン前駆細胞が、CNS障害と診断されたヒト患者由来の人工多能性幹細胞に由来する、請求項1に記載の方法。
  3. 前記流れが、前記誘導された運動ニューロン前駆細胞の分化を促進する、請求項1に記載の方法。
  4. 前記ニューロンと前記内皮細胞とが直接接触する、請求項3に記載の方法。
  5. 前記ニューロンが、静置培養で培養された同じニューロンと比較してより成熟した電気生理学的特性を示す、請求項1に記載の方法。
  6. 前記誘導された運動ニューロン前駆細胞が、筋萎縮性側索硬化症(ALS)と診断された患者由来の人工多能性幹細胞に由来する、請求項1に記載の方法。
  7. 前記脳微小血管内皮細胞が、MCT8特異的甲状腺ホルモン細胞−膜輸送体欠損症と診断された患者由来の人工多能性幹細胞に由来する、請求項1に記載の方法。
  8. 前記誘導された運動ニューロン前駆細胞が、凍結して貯蔵され、次いでステップc)の前に解凍される、請求項1に記載の方法。
JP2020162997A 2015-10-19 2020-09-29 血液脳関門のマイクロ流体モデル Active JP7100096B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021104038A JP7282129B2 (ja) 2015-10-19 2021-06-23 血液脳関門のマイクロ流体モデル

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201562243642P 2015-10-19 2015-10-19
US62/243,642 2015-10-19
US201662277723P 2016-01-12 2016-01-12
US62/277,723 2016-01-12
US201662332727P 2016-05-06 2016-05-06
US62/332,727 2016-05-06
US201662380780P 2016-08-29 2016-08-29
US62/380,780 2016-08-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018519812A Division JP2018533940A (ja) 2015-10-19 2016-10-19 血液脳関門のマイクロ流体モデル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021104038A Division JP7282129B2 (ja) 2015-10-19 2021-06-23 血液脳関門のマイクロ流体モデル

Publications (3)

Publication Number Publication Date
JP2021000133A JP2021000133A (ja) 2021-01-07
JP2021000133A5 true JP2021000133A5 (ja) 2021-08-05
JP7100096B2 JP7100096B2 (ja) 2022-07-12

Family

ID=58558248

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2018519812A Withdrawn JP2018533940A (ja) 2015-10-19 2016-10-19 血液脳関門のマイクロ流体モデル
JP2020162997A Active JP7100096B2 (ja) 2015-10-19 2020-09-29 血液脳関門のマイクロ流体モデル
JP2021104038A Active JP7282129B2 (ja) 2015-10-19 2021-06-23 血液脳関門のマイクロ流体モデル
JP2023080727A Pending JP2023100993A (ja) 2015-10-19 2023-05-16 血液脳関門のマイクロ流体モデル

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018519812A Withdrawn JP2018533940A (ja) 2015-10-19 2016-10-19 血液脳関門のマイクロ流体モデル

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021104038A Active JP7282129B2 (ja) 2015-10-19 2021-06-23 血液脳関門のマイクロ流体モデル
JP2023080727A Pending JP2023100993A (ja) 2015-10-19 2023-05-16 血液脳関門のマイクロ流体モデル

Country Status (9)

Country Link
US (3) US20180305651A1 (ja)
EP (1) EP3365424A4 (ja)
JP (4) JP2018533940A (ja)
KR (1) KR102410389B1 (ja)
AU (1) AU2016341880B2 (ja)
CA (1) CA3002399C (ja)
GB (1) GB2561312B (ja)
SG (1) SG11201803143YA (ja)
WO (1) WO2017070224A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140441A2 (en) 2010-05-06 2011-11-10 Children's Hospital Medical Center Methods and systems for converting precursor cells into intestinal tissues through directed differentiation
ES2860423T3 (es) 2014-05-28 2021-10-05 Childrens Hospital Med Ct Métodos y sistemas para convertir células precursoras en tejidos gástricos mediante diferenciación dirigida
CA2963704A1 (en) 2014-10-17 2016-04-21 Children's Hospital Medical Center In vivo model of human small intestine using pluripotent stem cells and methods of making and using same
US20180057788A1 (en) * 2016-08-29 2018-03-01 EMULATE, Inc. Development of spinal cord on a microfluidic chip
EP3411470A4 (en) 2016-02-01 2019-10-09 Emulate, Inc. SYSTEMS AND METHODS FOR GROWTH OF INTESTINAL CELLS IN MICROFLUIDIC DEVICES
WO2017143049A1 (en) * 2016-02-16 2017-08-24 President And Fellows Of Harvard College Improved blood-brain barrier endothelial cells derived from pluripotent stem cells for blood-brain barrier models
WO2017192997A1 (en) 2016-05-05 2017-11-09 Children's Hospital Medical Center Methods for the in vitro manufacture of gastric fundus tissue and compositions related to same
KR102402097B1 (ko) 2016-08-04 2022-05-25 웨이크 포리스트 유니버시티 헬스 사이언시즈 혈뇌 장벽 모델 및 그의 제조 및 사용 방법
CA3045145A1 (en) 2016-12-05 2018-06-14 Children's Hospital Medical Center Colonic organoids and methods of making and using same
US11913022B2 (en) 2017-01-25 2024-02-27 Cedars-Sinai Medical Center In vitro induction of mammary-like differentiation from human pluripotent stem cells
US11767513B2 (en) 2017-03-14 2023-09-26 Cedars-Sinai Medical Center Neuromuscular junction
US11414648B2 (en) 2017-03-24 2022-08-16 Cedars-Sinai Medical Center Methods and compositions for production of fallopian tube epithelium
AU2018283184B2 (en) * 2017-06-14 2021-08-19 EMULATE, Inc. Effects of space travel on human brain cells
FR3070045B1 (fr) * 2017-08-10 2021-06-25 Univ Poitiers Dispositif pouvant servir de modele de barriere hemato-encephalique
GB2586724B (en) * 2018-03-14 2023-05-24 Emulate Inc Brain on chip comprising glutamatergic/gabaergic neurons and intestine on chip comprising neural crest cells
EP3775161A4 (en) * 2018-04-06 2022-04-06 Cedars-Sinai Medical Center NEURODEGENERATIVE DISEASE MODELS DERIVED FROM HUMAN PLURIPOTENTIC STEM CELLS ON A MICROFLUIDIC CHIP
WO2019195800A1 (en) 2018-04-06 2019-10-10 Cedars-Sinai Medical Center Novel differentiation technique to generate dopaminergic neurons from induced pluripotent stem cells
WO2020038851A1 (en) * 2018-08-21 2020-02-27 F. Hoffmann-La Roche Ag Methods for assessing transendothelial barrier integrity
US20210348098A1 (en) * 2018-09-19 2021-11-11 Cellartgen Inc. Microfluidic device for cerebrovascular simulation and high-efficiency blood-brain barrier simulation system comprising same
US11198842B1 (en) 2019-02-22 2021-12-14 University Of South Florida Microfluidic-coupled in vitro model of the blood-brain barrier
JP7277874B2 (ja) * 2019-03-27 2023-05-19 国立大学法人大阪大学 脳血管モデル及びデバイス
WO2020227648A1 (en) * 2019-05-09 2020-11-12 EMULATE, Inc. Compositions and methods of using partial gel layers in a microfluidic device
KR20230004683A (ko) * 2020-04-22 2023-01-06 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 쥬니어 유니버시티 미세유체 칩 및 그를 사용하는 미세생리학적 시스템
CN113583939A (zh) * 2021-07-13 2021-11-02 华侨大学 一种腺相关病毒跨越血脑屏障模型的构建方法
WO2023201047A1 (en) * 2022-04-14 2023-10-19 University Of Cincinnati Recapitulating tissue-native architectures in bio-printable hydrogels

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766948A (en) * 1993-01-06 1998-06-16 The Regents Of The University Of California Method for production of neuroblasts
JP2001238681A (ja) * 2000-03-03 2001-09-04 Japan Science & Technology Corp 共培養による血液脳関門再構築モデル
US20070077649A1 (en) * 2005-09-06 2007-04-05 Sammak Paul J Transplantable cell growth niche and related compositions and methods
US20080044847A1 (en) * 2006-06-23 2008-02-21 Shusta Eric V Blood-Brain Barrier Model
EP3778858A1 (en) 2008-07-16 2021-02-17 Children's Medical Center Corporation Device with microchannels and method of use
EP2302353A1 (en) * 2009-09-28 2011-03-30 Sanofi-Aventis Online TEER measurement in a system for permeation determination by means of a flow-through permeation cell (FTPC) having structurally integrated electrodes
WO2012080835A2 (en) * 2010-12-13 2012-06-21 Enbio Limited Implantable medical devices
US20120211373A1 (en) * 2011-02-22 2012-08-23 The Regents Of The University Of Michigan Microfluidic system for measuring cell barrier function
US9513280B2 (en) 2012-08-28 2016-12-06 University Of Utah Research Foundation Microfluidic biological barrier model and associated method
US9932559B2 (en) * 2012-11-16 2018-04-03 The Johns Hopkins University Platform for creating an artificial blood brain barrier
KR101426056B1 (ko) * 2013-04-08 2014-08-01 서울대학교산학협력단 생체 외 혈관 생성 장치 및 이를 이용한 혈관 투과성 측정 방법
EP3083057B8 (en) * 2013-12-20 2019-08-21 President and Fellows of Harvard College Organomimetic devices and methods of use and manufacturing thereof
EP3230439B1 (en) * 2014-12-09 2023-08-09 National Research Council Of Canada Human blood brain barrier model
WO2017035119A1 (en) * 2015-08-24 2017-03-02 National University Of Singapore Blood brain barrier model in a 3d co-culture microfluidic system
WO2017053902A1 (en) * 2015-09-25 2017-03-30 Abvitro Llc High throughput process for t cell receptor target identification of natively-paired t cell receptor sequences

Similar Documents

Publication Publication Date Title
JP2021000133A5 (ja)
Arnhold et al. Amniotic‐Fluid Stem Cells: Growth Dynamics and Differentiation Potential after a CD‐117‐Based Selection Procedure
Wang et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates
Bhatia et al. Microfabrication of hepatocyte/fibroblast co‐cultures: Role of homotypic cell interactions
Nichols et al. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry
Eguchi Cellular and molecular background of Wolffian lens regeneration
Lauschke et al. Paving the way toward complex blood-brain barrier models using pluripotent stem cells
Brafman Constructing stem cell microenvironments using bioengineering approaches
Solozobova et al. Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells
US20100055733A1 (en) Manufacture and uses of reactive microcontact printing of biomolecules on soft hydrogels
Sudo et al. Reconstruction of 3D stacked‐up structures by rat small hepatocytes on microporous membranes
Saleh et al. Turning round: multipotent stromal cells, a three-dimensional revolution?
Dosh et al. Tissue engineering laboratory models of the small intestine
Nikoozad et al. Comparison of the liver function and hepatic specific genes expression in cultured mesenchymal stem cells and hepatocytes
TWI523945B (zh) Establishment of blood - brain barrier model in
Kim et al. Bioengineering for intestinal organoid cultures
Frimat et al. The need for physiological micro-nanofluidic systems of the brain
CN105518126A (zh) 根据细胞尺寸来培养间充质干细胞的方法
JPWO2017179375A1 (ja) 血液脳関門インヴィトロモデルおよび血液脳関門インヴィトロモデルの作製方法
Reali et al. Differentiation of human adult CD34+ stem cells into cells with a neural phenotype: role of astrocytes
CN103966159A (zh) 人胎盘亚全能干细胞及其干细胞库构建方法
Higuchi et al. Thermoresponsive surfaces designed for the proliferation and differentiation of human pluripotent stem cells
CN117778313B (zh) 脑类器官获得间充质干细胞分化方法和应用
JP6247932B2 (ja) 細胞培養装置
Oliveira et al. Modeling cell-cell interactions in the brain using cerebral organoids