JP2020529967A - 化合物の塩及びそれらの結晶 - Google Patents

化合物の塩及びそれらの結晶 Download PDF

Info

Publication number
JP2020529967A
JP2020529967A JP2019565031A JP2019565031A JP2020529967A JP 2020529967 A JP2020529967 A JP 2020529967A JP 2019565031 A JP2019565031 A JP 2019565031A JP 2019565031 A JP2019565031 A JP 2019565031A JP 2020529967 A JP2020529967 A JP 2020529967A
Authority
JP
Japan
Prior art keywords
crystal
diffraction
compound
powder
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019565031A
Other languages
English (en)
Other versions
JP6767589B1 (ja
Inventor
淳 新島
淳 新島
弘文 黒田
弘文 黒田
崇 安井
崇 安井
伊藤 洋子
洋子 伊藤
郁雄 櫛田
郁雄 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai R&D Management Co Ltd
Original Assignee
Eisai R&D Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai R&D Management Co Ltd filed Critical Eisai R&D Management Co Ltd
Application granted granted Critical
Publication of JP6767589B1 publication Critical patent/JP6767589B1/ja
Publication of JP2020529967A publication Critical patent/JP2020529967A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7084Compounds having two nucleosides or nucleotides, e.g. nicotinamide-adenine dinucleotide, flavine-adenine dinucleotide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6587Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having two phosphorus atoms as ring hetero atoms in the same ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本発明は、(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ5,39λ5−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のアンモニウム塩、化合物(I)のナトリウム塩、又は化合物(I)の結晶であって、医薬品の原薬として使用される可能性を有する結晶を提供する。【化1】【選択図】 なし

Description

[0001]本発明は、化合物の塩及びそれらの結晶に関する。
[0002]STING(インターフェロン遺伝子の刺激物質)は、細胞質でのdsDNAに対する自然応答におけるシグナル伝達分子である。STINGの欠損は、多数のヒトがんにおいて報告されてきた。加えて、ヒトのがんにおけるSTINGシグナル伝達の脱調節もまた、黒色腫(Xia Tら、「Recurrent Loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis」 Cancer Res.2016)及び結腸がんで報告されてきた(Xia Tら、「Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis」 Cell Rep.2016;14:282〜97)。興味深いことに、これらの研究において、ゲノム解析の結果により、STINGの発現損失は遺伝子の欠損又は突然変異に起因するのではなく、エピジェネティックな変化によることが示された(Xia、Cancer Res.2016;Xia、Cell Rep.2016)。STINGのがん予防活性は、マウスモデル研究から得られた証拠によっても支持される。STINGノックアウトマウスによって、腫瘍制御の欠損が示された(Woo SRら「STING−dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors」 Immunity 2014;41:830〜42)。
[0003]加えて、個体発生を保護するうえでのSTINGの役割が、神経膠腫(Ohkuri Tら、「Protective role of STING against gliomagenesis:Rational use of STING agonist in anti−glioma immunotherapy」 Oncoimmunology.2015;4:e999523)及び結腸がん(Zhu Qら、「Cutting edge:STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation」 J.Immunol.2014;193:4779〜82)を含めていくつかのマウス自然発症モデルで実証された。この抗腫瘍効果は、NF−kB及びSTAT3の過剰活性化を打ち消すSTINGの能力に起因する可能性がある(Ohkuri 2015)。STING経路の活性化はまた、前臨床マウス腫瘍モデルでも強力な活性を示した(Woo 2014;Chandra Dら、「STING ligand c−di−GMP improves cancer vaccination against metastatic breast cancer」 Cancer Immunol Res.2014;2:901〜10;Corrales Lら、「Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity」 Cell Rep.2015;11:1018〜30;Curran Eら、「STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia」 Cell Rep.2016;15:2357〜66;Tang CHら、「Agonist−Mediated Activation of STING Induces Apoptosis in Malignant B Cells」 Cancer Res.2016;76:2137〜52)。この抗腫瘍活性は、腫瘍の血管構造の破壊と、それに続く適応免疫応答の誘導とによる可能性が高い(Corrales Lら、「The host STING pathway at the interface of cancer and immunity」 J.Clin.Invest.2016;126:2404〜11)。したがって、腫瘍微小環境においてアゴニストによってSTINGを直接に刺激することは、複数のがん腫を処置するための新規なアプローチを意味するであろう。
技術的課題
[0004]式(I)で表される化合物、すなわち、(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(以下、化合物(I)と呼ぶ)は、腫瘍の成長を抑制する。
[0005]一般に、医薬製品として使用される化合物、その塩及びそれらの結晶の物理的特性は、薬物のバイオアベイラビリティ、活性医薬成分の純度、調製の処方等に対して大きく影響を及ぼす。したがって、本発明の一目的は、医薬品の原薬として使用される可能性のある化合物(I)の塩又はそれらの結晶を提供することである。
課題の解決
[0006]本発明者は、医薬品の原薬として使用される可能性のある化合物(I)の塩又はそれらの結晶を見いだし、それにより本発明を完成させた。
[0007]詳細には、本発明は、以下の<1>〜<50>を提供する。
<1>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のアンモニウム塩、化合物(I)のナトリウム塩、又は化合物(I)の結晶。

<2>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のアンモニウム塩の結晶である、<1>に記載の結晶。
<3>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶である、<2>に記載の結晶。
<4>粉末X線回折において、回折角(2θ±0.2°)8.3°に回折ピークを有する、<3>に記載の結晶(結晶形1)。
<5>粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°及び16.6°に回折ピークを有する、<4>に記載の結晶(結晶形1)。
<6>粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、16.6°及び25.4°に回折ピークを有する、<4>に記載の結晶(結晶形1)。
<7>粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、14.6°、16.6°、18.1°、22.1°、22.8°、24.4°及び25.4°に回折ピークを有する、<4>に記載の結晶(結晶形1)。
<8>図3に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<7>に記載の結晶(結晶形1)。
<9>水和物である、<4>〜<8>のいずれか一項に記載の結晶(結晶形1)。
<10>粉末X線回折において、回折角(2θ±0.2°)9.0°に回折ピークを有する、<3>に記載の結晶(結晶形2)。
<11>粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°及び20.8°に回折ピークを有する、<10>に記載の結晶(結晶形2)。
<12>粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°、20.8°、24.0°及び30.0°に回折ピークを有する、<10>に記載の結晶(結晶形2)。
<13>粉末X線回折において、回折角(2θ±0.2°)7.0°、9.0°、11.8°、13.2°、15.4°、19.7°、20.8°、24.0°、30.0°及び31.1°に回折ピークを有する、<10>に記載の結晶(結晶形2)。
<14>図4に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<13>に記載の結晶(結晶形2)。
<15>水和物である、<10>〜<14>のいずれか一項に記載の結晶(結晶形2)。
<16>粉末X線回折において、回折角(2θ±0.2°)7.4°に回折ピークを有する、<3>に記載の結晶(結晶形3)。
<17>粉末X線回折において、回折角(2θ±0.2°)7.4°、16.0°及び21.4°に回折ピークを有する、<16>に記載の結晶(結晶形3)。
<18>粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、16.0°及び21.4°に回折ピークを有する、<16>に記載の結晶(結晶形3)。
<19>粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、12.6°、16.0°、16.6°、18.1°、21.4°、22.0°及び22.8°に回折ピークを有する、<16>に記載の結晶(結晶形3)。
<20>図5に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<19>に記載の結晶(結晶形3)。
<21>水和物である、<16>〜<20>のいずれか一項に記載の結晶(結晶形3)。
<22>粉末X線回折において、回折角(2θ±0.2°)9.7°に回折ピークを有する、<3>に記載の結晶(結晶形4)。
<23>粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°及び26.9°に回折ピークを有する、<22>に記載の結晶(結晶形4)。
<24>粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°、17.4°、22.3°及び26.9°に回折ピークを有する、<22>に記載の結晶(結晶形4)。
<25>粉末X線回折において、回折角(2θ±0.2°)5.9°、7.6°、9.7°、11.6°、14.0°、16.0°、17.4°、22.3°、24.6°及び26.9°に回折ピークを有する、<22>に記載の結晶(結晶形4)。
<26>図6に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<25>に記載の結晶(結晶形4)。
<27>粉末X線回折において、回折角(2θ±0.2°)20.0°に回折ピークを有する、<3>に記載の結晶(結晶形5)。
<28>粉末X線回折において、回折角(2θ±0.2°)10.9°、20.0°及び23.6°に回折ピークを有する、<27>に記載の結晶(結晶形5)。
<29>粉末X線回折において、回折角(2θ±0.2°)10.9°、17.7°、18.9°、20.0°及び23.6°に回折ピークを有する、<27>に記載の結晶(結晶形5)。
<30>粉末X線回折において、回折角(2θ±0.2°)9.0°、9.6°、10.9°、13.0°、15.3°、17.7°、18.9°、20.0°、21.5°及び23.6°に回折ピークを有する、<27>に記載の結晶(結晶形5)。
<31>図7に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<30>に記載の結晶(結晶形5)。
<32>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のモノアンモニウム塩の結晶である、<2>に記載の結晶。
<33>粉末X線回折において、回折角(2θ±0.2°)17.0°に回折ピークを有する、<32>に記載の結晶(結晶形6)。
<34>粉末X線回折において、回折角(2θ±0.2°)17.0°、21.6°及び25.9°に回折ピークを有する、<33>に記載の結晶(結晶形6)。
<35>粉末X線回折において、回折角(2θ±0.2°)15.1°、16.4°、17.0°、21.6°及び25.9°に回折ピークを有する、<33>に記載の結晶(結晶形6)。
<36>粉末X線回折において、回折角(2θ±0.2°)6.9°、8.5°、12.0°、15.1°、16.4°、17.0°、21.0°、21.6°、22.8°及び25.9°に回折ピークを有する、<33>に記載の結晶(結晶形6)。
<37>図8に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<36>に記載の結晶(結晶形6)。
<38>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のナトリウム塩の結晶である、<1>に記載の結晶。
<39>粉末X線回折において、回折角(2θ±0.2°)6.1°に回折ピークを有する、<38>に記載の結晶。
<40>粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°及び16.6°に回折ピークを有する、<39>に記載の結晶。
<41>粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、15.9°、16.6°及び22.3°に回折ピークを有する、<39>に記載の結晶。
<42>粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、13.4°、14.8°、15.9°、16.6°、20.6°、22.3°、23.5°及び24.4°に回折ピークを有する、<39>に記載の結晶。
<43>図9に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<42>に記載の結晶。
<44>(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))の結晶である、<1>に記載の結晶。
<45>粉末X線回折において、回折角(2θ±0.2°)5.6°に回折ピークを有する、<44>に記載の結晶。
<46>粉末X線回折において、回折角(2θ±0.2°)5.6°、13.9°及び16.8°に回折ピークを有する、<45>に記載の結晶。
<47>粉末X線回折において、回折角(2θ±0.2°)5.6°、8.9°、11.4°、13.9°及び16.8°に回折ピークを有する、<45>に記載の結晶。
<48>粉末X線回折において、回折角(2θ±0.2°)5.6°、7.9°、8.9°、11.4°、13.9°、16.8°、22.1°及び23.1°に回折ピークを有する、<45>に記載の結晶。
<49>図10に示される粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する、<48>に記載の結晶。
<50><1>〜<49>のいずれか一項に記載の結晶を含む医薬組成物。
発明の有利な効果
[0008]本発明により提供される化合物(I)の塩及びそれらの結晶は、後述の実施例に示される吸湿性などの特性及び医薬品の原薬として使用される可能性を有する。
化合物(I)のアンモニウム塩のH NMRスペクトログラフを示す図である。 化合物(I)のアンモニウム塩の結晶のX線結晶解析結果(ORTEP図面)を示す図であり、非対称結晶単位で2つの分子が存在している。 非対称結晶単位の第1の分子に関するX線結晶解析結果(ORTEP図面)を示す図である。 非対称結晶単位の第2の分子に関するX線結晶解析結果(ORTEP図面)を示す図である。 実施例1で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形1)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例2で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形2)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例3で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形3)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例4で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形4)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例5で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形5)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例6で得られた、化合物(I)のモノアンモニウム塩の結晶(結晶形6)の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例7で得られた、化合物(I)のナトリウム塩の結晶の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例8で得られた、化合物(I)の結晶の粉末X線回折パターンを示す図である。横軸は回折角(2θ)を示し、縦軸はピーク強度を示す。 実施例1で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形1)の吸湿性を示すグラフである。横軸は相対湿度を示し、縦軸は重量変化を示す。 実施例2で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形2)の吸湿性を示すグラフである。横軸は相対湿度を示し、縦軸は重量変化を示す。 実施例5で得られた、化合物(I)のジアンモニウム塩の結晶(結晶形5)の吸湿性を示すグラフである。横軸は相対湿度を示し、縦軸は重量変化を示す。 実施例6で得られた、化合物(I)のモノアンモニウム塩の結晶(結晶形6)の吸湿性を示すグラフである。横軸は相対湿度を示し、縦軸は重量変化を示す。 実施例7で得られた、化合物(I)のナトリウム塩の結晶の吸湿性を示すグラフである。横軸は相対湿度を示し、縦軸は重量変化を示す。 WY STING(pLenti−WTヒトSTING−Puro)の発現ベクターマップを示す図である。 薬理試験実施例6に伴うものであり、CT26二重腫瘍モデルにおける化合物(I)のジアンモニウム塩の治癒的効果を示す図である。 薬理試験実施例6に伴うものであり、CT26二重腫瘍モデルにおける化合物(I)のジアンモニウム塩の治癒的効果を示す図である。 薬理試験実施例7に伴うものであり、処置腫瘍の腫瘍体積プロット及び生存曲線を示す図である。 薬理試験実施例8に伴うものであり、処置腫瘍の腫瘍体積プロット及び生存曲線を示す図である。 結晶(結晶形1)のTG−DTAサーモグラムを示す図である。 室温(下のパターン)及び60℃超(上のパターン)での結晶(結晶形1)の粉末X線回折パターンを示す図である。 粉末X線回折パターンの比較を示す図である:1)透過法により分析された結晶(結晶形1)パターン(下)、2)60℃超に加熱された結晶(結晶形1)試料のパターン、この試料は反射法により分析されている(中央)、3)透過法により分析された結晶(結晶形2)パターン(上)。 種々の温度での結晶(結晶形1)の粉末X線回折パターンを示す図である:1)室温(下のパターン)、2)61〜71℃(中央のパターン)、3)125〜134℃(上のパターン)。 25℃での結晶形1の吸着及び脱着等温線を示す図である。 25℃及び94%RHで4日間保管する、前(下のパターン)と後(上のパターン)との間の結晶形1のPXRDパターンの比較を示す図である。
実施形態の説明
[0010]本発明の化合物(I)の塩、その結晶、及びその製造方法について詳細に説明する。
[0011]本明細書で使用される場合、「塩」とは、酸性成分としての化合物(I)と、化合物(I)に対する特定の当量数の塩基と、から構成されている化学成分を指す。ここでは、「式(I)によって表される(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))と、水酸化ナトリウム、炭酸ナトリウム、エタノール中のアンモニア及び水酸化アンモニウム等からなる群から選択される塩基との塩」という用語は、「水酸化ナトリウム、炭酸ナトリウム、エタノール中のアンモニア及び水酸化アンモニウム等からなる群から選択される塩基と共に形成された、式(I)によって表される(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))の塩」と同じ意味で使用される。
[0012]本明細書で使用される「塩」の例としては、無機塩基との塩が挙げられ、特に、薬学的に許容される塩が好ましい。
[0013]化合物(I)の塩はまた、溶媒和物であっても水和物であってもよい。本明細書で使用される場合、化合物(I)の塩の溶媒和物又は水和物とは、溶媒分子又は水分子と一緒に化合物(I)の塩から形成された固形物を意味する。溶媒和物の溶媒の例としては:ケトン溶媒、例えば、アセトン、メチルエチルケトン又はシクロヘキサノン;エステル溶媒、例えば、酢酸エチル又は酢酸メチル;エーテル溶媒、例えば、1,2−ジメトキシエタン又はメチル−tert−ブチルエーテル;アルコール溶媒、例えば、メタノール、エタノール、1−プロパノール又はイソプロパノール;極性溶媒、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド又はジメチルスルホキシド、が挙げられる。
[0014]本明細書で使用される場合、「結晶」とは、化合物(I)の塩の結晶又は化合物(I)の結晶を指す。したがって、化合物(I)のアンモニウム塩の結晶とは、例えば、化合物(I)とアンモニア(又は水酸化アンモニア)との間で形成された塩の結晶を意味する。加えて、化合物(I)のジアンモニウム塩の結晶とは、例えば、化合物(I)の1分子とアンモニア(又は水酸化アンモニア)の2分子との間で形成された塩の結晶を意味する。
[0015]本明細書において好ましい結晶の例としては:
(a1)粉末X線回折において、回折角(2θ±0.2°)8.3°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(a2)粉末X線回折において、回折角(2θ±0.2°)8.3°及び16.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(a3)粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°及び16.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(a4)粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、16.6°及び25.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(a5)粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、16.6°、22.1°、22.8°及び25.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(a6)粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、14.6°、16.6°、18.1°、22.1°、22.8°、24.4°及び25.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形1);
(b1)粉末X線回折において、回折角(2θ±0.2°)9.0°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(b2)粉末X線回折において、回折角(2θ±0.2°)9.0°及び15.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(b3)粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°及び20.8°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(b4)粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°、20.8°、24.0°及び30.0°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(b5)粉末X線回折において、回折角(2θ±0.2°)9.0°、11.8°、15.4°、20.8°、24.0°、30.0°及び31.1°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(b6)粉末X線回折において、回折角(2θ±0.2°)7.0°、9.0°、11.8°、13.2°、15.4°、19.7°、20.8°、24.0°、30.0°及び31.1°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形2);
(c1)粉末X線回折において、回折角(2θ±0.2°)7.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(c2)粉末X線回折において、回折角(2θ±0.2°)7.4°及び16.0°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(c3)粉末X線回折において、回折角(2θ±0.2°)7.4°、16.0°及び21.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(c4)粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、16.0°及び21.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(c5)粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、12.6°、16.0°、16.6°及び21.4°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(c6)粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、12.6°、16.0°、16.6°、18.1°、21.4°、22.0°及び22.8°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形3);
(d1)粉末X線回折において、回折角(2θ±0.2°)9.7°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(d2)粉末X線回折において、回折角(2θ±0.2°)9.7°及び14.0°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(d3)粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°及び26.9°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(d4)粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°、17.4°、22.3°及び26.9°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(d5)粉末X線回折において、回折角(2θ±0.2°)7.6°、9.7°、14.0°、17.4°、22.3°、24.6°及び26.9°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(d6)粉末X線回折において、回折角(2θ±0.2°)5.9°、7.6°、9.7°、11.6°、14.0°、16.0°、17.4°、22.3°、24.6°及び26.9°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形4);
(e1)粉末X線回折において、回折角(2θ±0.2°)20.0°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(e2)粉末X線回折において、回折角(2θ±0.2°)20.0°及び23.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(e3)粉末X線回折において、回折角(2θ±0.2°)10.9°、20.0°、及び23.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(e4)粉末X線回折において、回折角(2θ±0.2°)10.9°、17.7°、18.9°、20.0°及び23.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(e5)粉末X線回折において、回折角(2θ±0.2°)10.9°、13.0°、17.7°、18.9°、20.0°、21.5°及び23.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(e6)粉末X線回折において、回折角(2θ±0.2°)9.0°、9.6°、10.9°、13.0°、15.3°、17.7°、18.9°、20.0°、21.5°及び23.6°に回折ピークを有する、化合物(I)のジアンモニウム塩の結晶(結晶形5);
(f1)粉末X線回折において、回折角(2θ±0.2°)17.0°に回折ピークを有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(f2)、粉末X線回折において、回折角(2θ±0.2°)17.0°及び25.9°に回折ピークを有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(f3)粉末X線回折において、回折角(2θ±0.2°)17.0°、21.6°及び25.9°に回折ピークを有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(f4)粉末X線回折において、回折角(2θ±0.2°)15.1°、16.4°、17.0°、21.6°及び25.9°に回折を有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(f5)粉末X線回折において、回折角(2θ±0.2°)12.0°、15.1°、16.4°、17.0°、21.6°、22.8°及び25.9°に回折ピークを有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(f6)粉末X線回折において、回折角(2θ±0.2°)6.9°、8.5°、12.0°、15.1°、16.4°、17.0°、21.0°、21.6°、22.8°及び25.9°に回折ピークを有する、化合物(I)のモノアンモニウム塩の結晶(結晶形6);
(g1)粉末X線回折において、回折角(2θ±0.2°)6.1°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(g2)粉末X線回折において、回折角(2θ±0.2°)6.1°及び16.6°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(g3)粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°及び16.6°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(g4)粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、15.9°、16.6°及び22.3°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(g5)粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、13.4°、15.9°、16.6°、20.6°及び22.3°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(g6)粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、13.4°、14.8°、15.9°、16.6°、20.6°、22.3°、23.5°及び24.4°に回折ピークを有する、化合物(I)のナトリウム塩の結晶;
(h1)粉末X線回折において、回折角(2θ±0.2°)5.6°に回折ピークを有する、化合物(I)の結晶;
(h2)粉末X線回折において、回折角(2θ±0.2°)5.6°及び13.9°に回折ピークを有する、化合物(I)の結晶;
(h3)粉末X線回折において、回折角(2θ±0.2°)5.6°、13.9°及び16.8°に回折ピークを有する、化合物(I)の結晶;
(h4)粉末X線回折において、回折角(2θ±0.2°)5.6°、8.9°、11.4°、13.9°及び16.8°に回折ピークを有する、化合物(I)の結晶;及び
(h5)粉末X線回折において、回折角(2θ±0.2°)5.6°、7.9°、8.9°、11.4°、13.9°、16.8°、22.1°及び23.1°に回折ピークを有する、化合物(I)の結晶。
[0016]上記の粉末X線回折法におけるピークは、化合物(I)のジアンモニウム塩の結晶(結晶形1)、化合物(I)のジアンモニウム塩の結晶(結晶形2)、化合物(I)のジアンモニウム塩の結晶(結晶形3)、化合物(I)のジアンモニウム塩の結晶(結晶形4)、化合物(I)のジアンモニウム塩の結晶(結晶形5)、化合物(I)のモノアンモニウム塩の結晶(結晶形6)、化合物(I)のナトリウム塩の結晶及び化合物(I)の結晶のそれぞれ毎に特徴的である。
[0017]一般に、粉末X線回折では±0.2°の範囲内で回折角(2θ)の誤差が発生する可能性があり、したがって、上記の回折角の値はおおよそ±0.2°の範囲内の数値も含むものと考える必要がある。したがって、粉末X線回折において回折角が完全に同じピークを有する結晶だけではなく、回折角がおおよそ±0.2°の誤差の範囲内のピークを有する結晶も、本発明に含まれる。よって、本明細書で使用される場合、「回折角(2θ±0.2°)8.3°に回折ピークを有する」とはつまり、例えば、「回折角(2θ)8.1°〜8.5°に回折ピークを有する」ということである。その他の回折角についても同様である。
[0018]一般に、粉末X線回折における回折角(2θ)のピーク強度及び半値幅は、結晶形態が同じあっても、測定条件の違い及び粉末結晶の各粒子の大きさや形状のばらつきにより各測定で異なり、必ずしも一定であるとは限らない。それゆえ、粉末X線回折パターンを比較する場合には、回折角(2θ)は同じであるが、ピーク強度、相対ピーク強度及び半値幅が違う場合、その違いは、測定した結晶形態が互いに異なることを含意するものではない。したがって、本発明の塩のある特定の結晶に特徴的な回折ピークに関連して、上述の違いを有する粉末X線回折パターンの塩の結晶とはつまり、当該結晶は本発明の塩の結晶と同一の結晶形態を有するということである。
[0019]本明細書で使用される場合、「図3に示す粉末X線回折パターンと実質的に同じ粉末X線回折パターンを有する」とはつまり、このことは、図3に示すのと完全に同じ粉末X線回折パターンを有する場合だけではなく、ピーク強度、相対ピーク強度及び半値幅が違う場合も、又は回折角がおおよそ±0.2°の誤差範囲内の特徴的ピークを有する場合も含まれるということである。したがって、かかる粉末X線回折パターンを有するあらゆる結晶はつまり、当該結晶は本発明の結晶と同一であるということである。
[0020]以下に、化合物(I)の塩及びその結晶を製造する方法について詳細に説明する。
[0021](化合物(I)の製造)
化合物(I)は、下の製造実施例1又は製造実施例2において詳細に記載の通り合成することができる。
[0022](化合物(I)の塩を製造する方法)
化合物(I)の塩は、塩を製造する従来の方法によって得ることができる。詳細には、化合物(I)の塩は、例えば、必要に応じて加熱しながら溶媒に化合物(I)を懸濁又は溶解することによって、次いで、得られた懸濁液又は溶液に塩基(例えば、ナトリウム塩については水酸化ナトリウム、炭酸ナトリウム;一又はジアンモニウム塩についてはエタノール中のアンモニア及び水酸化アンモニウム)を添加することによって、そして、結果として生じる懸濁液又は溶液を室温で又は氷浴冷却で数分〜数日の間、撹拌又は放置することによって、製造することができる。化合物(I)の塩は、この製造方法によって、結晶又は非結晶物質として得ることが可能である。これらの方法で使用される溶媒の例としては、アルコール溶媒、例えば、エタノール、1−プロパノール及びイソプロパノール;アセトニトリル;ケトン溶媒、例えば、アセトン及び2−ブタノン;エステル溶媒、例えば、酢酸エチル;飽和炭化水素溶媒、例えば、ヘキサン及びヘプタン;エーテル溶媒、例えば、t−ブチルメチルエーテル、又は水が挙げられる。これら溶媒はそれぞれ、単独で使用してもよく、又は2種以上を混合し使用してもよい。
[0023](化合物(I)の塩の結晶を製造する方法)
化合物(I)の塩の結晶は、化合物(I)の塩を製造する上記の方法によって、又は、溶媒に化合物(I)の塩を加熱溶解し、撹拌しながら冷却してこれを結晶化させることによって、製造することができる。
[0024]結晶化において使用される化合物(I)の塩は、任意の形態であってもよい:化合物(I)の塩は、溶媒和物、水和物、無水物、非晶質物質、結晶性物質(複数の結晶多形体からなるものを含む)又はそれらの組合わせとすることができる。
[0025]結晶化において使用される溶媒の例としては、アルコール溶媒、例えば、メタノール、エタノール、イソプロパノール及び1−プロパノール;アセトニトリル;アミド溶媒、例えば、N,N−ジメチルホルムアミド;エステル溶媒、例えば、酢酸エチル;飽和炭化水素溶媒、例えば、ヘキサン及びヘプタン;ケトン溶媒、例えば、アセトン及び2−ブタノン;エーテル溶媒、例えば、t−ブチルメチルエーテル、又は水が挙げられる。さらに、これらの溶媒それぞれは、単独で使用してもよく、又は2種以上を混合し使用してもよい。
[0026]使用される溶媒の量は適切に選択することができるが、ただし、下限は、化合物(I)の遊離形態若しくはその塩が加熱で溶解する量又は懸濁液を撹拌することができる量であり、上限は、結晶の収率が有意に低下しない量である。
[0027]種結晶(例えば、化合物(I)の所望の塩の結晶)については、結晶化中に添加しても、添加しなくてもよい。種結晶を添加する温度は特に限定されないが、0〜80℃が好ましい。
[0028]化合物(I)の塩が加熱で溶解する場合に用いられる温度として、化合物(I)が溶解する温度を溶媒に応じて適切に選択することができるが、この温度は再結晶溶媒が還流し始める温度と50℃との間の範囲内であることが好ましく、65〜55℃がより好ましい。
[0029]結晶化の過程で冷却することによって、急冷の場合では、様々な形態の結晶(多形体)を含有する物質が得られる可能性がある。したがって、結晶の品質、粒度等への冷却速度の影響を考慮し、適宜冷却速度を制御しながら冷却を実施することが望ましい。例えば、40〜5℃/時間の冷却速度で冷却することが好ましい。例えば、25〜5℃/時間の冷却速度で冷却するのがより好ましい。
[0030]さらに、最終的な結晶化温度は、結晶の収率、品質等に対して適切に選択することができるが、30〜−25℃であることが好ましい。
[0031]目的の結晶は、形成された結晶を従来のろ過手順を通じて分離し、必要に応じて溶媒でろ別した結晶を洗浄し、さらにそれを乾燥させることによって得ることができる。結晶を洗浄するのに使用される溶媒としては、結晶化の際と同じ溶媒を使用することができる。さらに、これらの溶媒それぞれは、単独で使用してもよく、又は2種以上を混合し使用してもよい。溶媒は、例えば、アセトン、2−ブタノン、酢酸エチル、t−ブチルメチルエーテル、ヘキサン、又はヘキサン/2−ブタノンの混合溶媒であることが好ましい。
[0032]ろ過手順を通じて分離された結晶は、空気中に若しくは窒素流中にこれを放置することによって、又は加熱することによって、適切に乾燥させることができる。
[0033]乾燥時間としては、残留溶媒の量が所定の量未満になるまでの時間を、生産量、乾燥装置、乾燥温度等に応じて、適宜選択することができる。さらに、乾燥は、気流中又は減圧下で実施することができる。減圧の程度は、生産量、乾燥装置、乾燥温度等に応じて適宜選択することができる。得られた結晶は、乾燥後、求めるところにより、空気中に放置してもよい。
[0034](化合物(I)の結晶を製造する方法)
化合物(I)の結晶は、上に示した通り、結晶を製造する従来の方法により得ることができる。
[0035]本発明の医薬組成物は、薬学的に許容される添加剤を化合物(I)の塩又はその結晶と混合することによって調製することができるであろう。本発明の医薬組成物は、日本薬局方第17版の製剤総則に記載の方法などの、既知の方法に準拠して調製することができるであろう。
[0036]本発明の医薬組成物は、剤形に適切に応じて患者に投与することができるであろう。
[0037]化合物(I)の塩又はその結晶はSTING経路を強力に活性化し、且つ、強力な抗腫瘍活性を示すことができるので、本発明の医薬組成物は、がんを処置するための治療剤として適用性を有する。がんの例としては、神経膠腫、黒色腫及び結腸がんが挙げられる。
[0038]化合物(I)の塩又はその結晶の投与量は、症状の程度、年齢、性別、体重、剤形、塩のタイプ、疾患の特定のタイプ等に応じて変動する。成人の場合、典型的には、それぞれの場合で、単回投与で又は分割投与で、1日当たり約30μg〜10g、好ましくは100μg〜5g、より好ましくは100μg〜1gが経口投与され、又は、1日当たり約30μg〜1g、好ましくは100μg〜500mg、より好ましくは100μg〜300mgが注射によって投与される。
[0039]以下に、本発明を製造実施例及び実施例で詳細に説明する。しかし、本発明がこれらの実施例によって限定されることを意図するものではない。
[0040]以下の略語を、実施例全体を通じて使用することができる。
DMT:4,4’−ジメトキシトリチル
(DMTO−:

Bz:ベンゾイル
CE:シアノエチル

DEAD:アゾジカルボン酸ジエチル
DIAD:アゾジカルボン酸ジイソプロピル
DCM:ジクロロメタン
DDTT:N,N−ジメチル−N’−(3−チオキソ−3H−1,2,4−ジチアゾール−5−イル)ホルムイミドアミド

DMOCP:2−クロロ−5,5−ジメチル−1,3,2−ジオキサホスフィナン2−オキシド

TBS:t−ブチルジメチルシリル
3H−ベンゾ[c][1,2]ジチオール−3−オン:

MTBE:メチルt−ブチルエーテル
[0041]粉末X線回折
各結晶試料を粉末X線回折計の試料台に置き、以下の条件のうちの1つの下で分析を行った。
透過法の条件
装置:X’Pert Pro MRD又はEmpyrean(Spectris)
X線源:CuKα(45kV、40mA)
光学系:集束鏡
ソーラースリット:0.02又は0.04ラジアン
検出器:X’Celerator又はPIXcel1D検出器(半導体検出システム)
モード:透過
スキャン範囲:3°又は5°〜35°又は40°
ステップサイズ:0.013、0.017°又は0.033°
スキャンステップ時間:9、19、305、1976、又は2000秒
試料ホルダー:カプトン(Kapton)(登録商標)フィルム
[0042]反射法の条件
装置:RINT TTR−III(Rigaku)
X線源:CuKα(50kV、300mA)
検出器:シンチレーションカウンター
モード:反射
スリット:0.5mm(発散スリット)、オープン(散乱スリット)、オープン(受光スリット)
スキャン速度:5°又は10°/分
サンプリング間隔:0.02°
スキャン範囲:3°又は5°〜35°
試料ホルダー:アルミニウムホルダー
[0043] H NMR:プロトン核磁気共鳴
結合定数をヘルツ(Hz)で記録する。分裂パターンの略語は以下の通りである:
s:一重線、d:二重線、t:三重線、q:四重線、m:多重線、bs:広い一重線、br s:広い一重線、dd:二重線の二重線、dt:三重線の二重線、br d:広い二重線、br t:広い三重線
特に明記しない限り、H NMRスペクトルはBruker 300MHz又は400MHz NMRで取り込んだ。
[0044]吸湿性
得られた結晶を試料カップに秤量し、試料カップを25℃で等温チャンバー内部に置いた。相対湿度(RH)を、重量水蒸気吸着システムを使用して0%〜95%に制御し、各RH段階での試料の重量を所定の時間間隔内で(例えば、2分毎)測定した。各RH段階での重量変化を段階的に評価し、次いで、次の基準の下で最終的に決定した。各測定で最大重量変化は、5分間で0.01%(w/w)未満又は1分間で0.002%(w/w)未満である。
[0045]製造実施例1:化合物(I)の合成
ステップA

THF(1.1L)中に、(2R,3R,4R,5R)−5−(6−ベンズアミド−9H−プリン−9−イル)−2−((ビス(4−メトキシフェニル)(フェニル)メトキシ)メチル)−4−フルオロテトラヒドロフラン−3−イル(2−シアノエチル)ジイソプロピルホスホロアミダイト(化合物(1))(リンのジアステレオマーの混合物;80.0g、91.332mmol、1eq.、ChemGenes Corporation カタログ#ANP−9151)と、アリルアルコール(9.63ml、142mmol、1.55eq)と、トリフェニルホスフィン(38.3g、146mmol、1.60eq.)とを含む混合物に、DEAD(トルエン中の40wt%溶液;54.2ml、137mmol、1.5eq.)を、周囲温度で添加した。周囲温度で撹拌を続け、反応をLC/MSで監視した。完了次第(19時間)、混合物を真空で濃縮し(35℃)、結果として生じる混合物をシリカゲルカラムクロマトグラフィー(800g×2カラム、0.5%トリエチルアミンで緩衝化したn−ヘプタン中の40〜60%EtOAc)で精製して、白色の泡状物として化合物(2)を得た(84.2g、定量的収率、リンのジアステレオマーの混合物)。
H NMR(3:2 リンのジアステレオマーの混合物,400MHz,CDCl)δ1.14〜1.21(m,12H)、2.40(t,J=6.2Hz,1.2H)、2.59(t,J=6.2Hz,0.8H)、3.27(d,J=8.6Hz,1H)、3.52〜3.66(m,5H)、3.78(s 2.4H)、3.79(s 3.6H)、4.28〜4.34(m,1H)、4.84〜4.96(m,0.4H)、4.99(d,J=5.5Hz,2H)、4.95〜5.10(m,0.6H)、5.05(d,J=10.9Hz,1H)、5.22(br d,J=17.6Hz,1H)、5.64(br d,J=53.2Hz,0.6H)、5.70(br d,J=51.6Hz,0.4H)、5.96〜6.75(m,1H)、6.20(d,J=16.0Hz,0.6H)、6.24(d,J=17.2Hz,0.4H)、6.74〜6.79(m,4H)、7.02〜7.06(m,2H)、7.17〜7.24(m,8H)、7.32〜7.34(m,2H)、7.41〜7.44(m,2H)、8.11(s,1H)、8.52(s,0.4H)、8.54(s,0.6H)。
[0046]ステップB

アセトニトリル(30ml)中に化合物(2)(3.00g、3.28mmol、1eq.)を含む溶液に、水(0.118ml、6.55mmol、2.0eq.)及びピリジントリフルオロ酢酸塩(0.759g、3.93mmol、1.2eq)を添加した。周囲温度で1分間撹拌した後、tert−ブチルアミン(14.5g、21.0ml、0.20mol、60eq.)を添加した。シアノエチル基の開裂が完了次第(LC/MSで監視)、反応混合物を真空で濃縮し、アセトニトリルと2回共沸した。粗混合物をDCM(45.0ml)に溶解し、水(0.118ml、6.55mmol、2.0eq.)及びNaHSO−SiO(1.18g、6.55mmol、2eq.)で周囲温度で処理した。DMT基の開裂が完了次第(LC/MSで監視、おおよそ1時間)、反応混合物をろ過し、DCM/MeOH(9/1、20ml)で2回すすいだ。合わせたろ液を真空で濃縮し、n−ヘプタン/トルエン1:1混合物(およそ30ml)で処理した。最上層をデカンテーションにより除去した。同じ操作をn−ヘプタン/トルエン(1/1、30ml)でもう1回繰り返し、下層をアセトニトリルと2回共沸して、化合物(3)を得た(理論収率100%を想定)。生成物をさらに精製することなく次のステップで使用した。
[0047]ステップC

アセトニトリル(30ml)中に、化合物(3)(1.56g、3.27mmol、1eq.)と化合物(1)(3.00g、3.28mmol、1eq.)とを含む混合物に、ピリジントリフルオロ酢酸塩(ピリジンと共沸乾燥;0.760g、3.94mmol、1.25eq.)を添加した。5分後、DDTT(0.840g、4.09mmol、1.30eq.、ChemGenes Corporation カタログ#RN−1588)を添加し、硫化が完了次第(LC/MSで監視)、反応混合物を真空で濃縮した。残渣をDCM(30ml)に溶解し、水(0.57ml、32mmol、10eq.)及びDCM(30ml)中の6%ジクロロ酢酸(1.56ml、18.9mmol、6.0eq.)で処理した。20分後、ピリジン(20ml)で反応をクエンチし、真空で濃縮した。残渣をピリジンと共沸し、化合物(4)を得た(3.22g、理論収率100%を想定)。生成物をさらに精製することなく次のステップで使用した。
[0048]ステップD

ピリジン(100ml)中に化合物(4)(3.22g、3.15mmol、1eq.)を含む溶液に、DMOCP(1.45g、7.88mmol、2.50eq.)を周囲温度で添加した。大環状化が完了次第(LC/MSで監視)、水(1.7ml、94.5mmol、DMOCPに対して×10倍)を、続いて、3H−ベンゾ[c][1,2]ジチオール−3−オン(0.795g、4.73ミリmmol、1.5eq.)を添加した。硫化が完了次第(おおよそ40分)、反応混合物を真空でおおよそ15mlに部分的に濃縮し、飽和水性NaHCO(50ml)と水(30ml)との混合物に注いだ。周囲温度で10分撹拌した後、混合物をEtOAc/MTBE1:1混合物で抽出した(60ml×3回)。有機層を合わせ、ブライン(25ml)で洗浄し、MgSOで脱水し、真空で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(DCM中0〜20%MeOH)で精製し、茶色の油状物として化合物(5)を得た(3.31g、3.20mmol、理論収率100%を想定)。生成物をさらに精製することなく次のステップで使用した。
[0049]ステップE

アセトニトリル(66.2ml)中に化合物(5)(3.31g、3.20mmol、1eq.)を含む溶液に、2−ニトロベンジルブロミド(2.42g、11.2mmol、3.50eq.)及びトリエチルアミン(1.78ml、12.8mmol、4.00eq.)を添加した。反応が完了次第(LC/MSで監視、周囲温度でおおよそ20時間)、反応混合物を真空で濃縮し、シリカゲルカラムクロマトグラフィー(60%酢酸エチル/n−ヘプタン〜100%酢酸エチル)で精製してリンのジアステレオマーの混合物として生成物0.568gを得た。ジアステレオマーの分取HPLC分離により、化合物(6)(SR異性体;0.225g、0.180mmol、化合物(2)からの全収率5.6%)及び化合物(7)(RR異性体;0.187g、0.149mmol、化合物(2)からの全収率4.7%)を得た。
化合物(6)(SpRp)H NMR(400MHz,CDCl)δ(ppm):8.63(s,1H)、8.61(s,1H)、8.04〜8.00(m,2H)、7.99(s,1H)、7.90(s,1H)、7.65〜7.44(m,8H)、7.40〜7.31(m,4H)、7.25〜7.21(m,4H)、6.15〜5.89(m,5H)、5.61(dd,J=52.0,5.1Hz,1H)、5.55(ddd,J=51.2,4.7,2.7Hz,1H)、5.51〜5.42(m,1H)、5.31〜5.22(m,2H)、5.11(dd,J=3.9,9.8Hz,2H)、5.04〜4.95(m,4H)、4.55〜4.37(m,7H)、4.29〜4.12(m,3H)。
化合物(7)(RpRp)H NMR(400MHz,CDCl)δ(ppm):8.65(s,2H)、8.06(dd,J=1.4,8.0Hz,2H)、7.98(s,2H)、7.57〜7.52(m,6H)、7.47〜7.32(m,6H)、7.25〜7.21(m,4H)、6.15(d,J=18.7Hz,2H)、6.09〜5.99(m,2H)、5.82〜5.76(m,2H)、5.60(dd,J=51.8,4.9Hz,2H)、5.27(dd,J=1.2,17.2Hz,2H)、5.12(dd,J=1.0,10.4Hz,2H)、5.06〜4.96(m,4H)、4.55〜4.40(m,4H)、4.36〜4.24(m,4H)、4.21〜4.02(m,2H)。
[0050]
[0051]ステップF

トルエン(519ml)中に化合物(6)(519mg、0.414mmol、1eq.)を含む加熱(90℃)溶液に、ホベイダ−グラブス触媒(Hoveyda−Grubbs Catalyst)(商標)第2世代((1,3−Bis−(2,4,6−トリメチルフェニル)−2−イミダゾリジニリデン)ジクロロ(o−イソプロポキシフェニルメチレン)ルテニウム;シグマ−アルドリッチ(SIGMA−ALDRITCH)(登録商標)カタログNo.569755で入手可能;CAS 301224−40−8;91mg、0.15mmol、0.35eq.)及びキノン(0.102ml、1.243mmol、3.0eq.)を添加した。混合物を加熱還流し、反応の進行をLC/MSで監視した。3時間後、さらなる触媒を添加し(91mg、0.15mmol、0.35eq.)、反応をさらに3時間続けた。冷却後、混合物をDMSO(0.59ml、8.3mmol、20eq.)で周囲温度で15時間処理し、真空で濃縮し、シリカゲルカラムクロマトグラフィー(SiO 25g、n−ヘプタン中66%酢酸エチル〜100%酢酸エチル)で精製して、茶色の乾燥泡状物として化合物(8)を得た(200mg、0.163mmol、収率39%)。
H NMR(400MHz,CDCl)δ(ppm):8.19(s,1H)、8.12(dd,J=7.8Hz,1.9Hz,1H)、8.10(s,1H)、8.02(d,J=8.2Hz,1H)、7.89(s,1H)、7.63(br d,J=7.0Hz,1H)、7.53〜7.41(m,10H)、7.35〜7.30(m,2H)、7.25〜7.20(m,4H)、6.23(d,J=17.6Hz,1H)、6.14(d,J=18.8Hz,1H)、5.86〜5.75(m,1H)、5.75(dt,J=15.3,5.0Hz,1H)、5.67(dt,J=15.3,4.7Hz,1H)、5.60(dd,J=52.0,3.9Hz.1H)、5.48(dd,J=50.4,3.9Hz.1H)、5.50〜5.39(m,1H)、4.91〜4.64(m,4H)、4.57〜4.25(m,9H)、4.15(d,J=7.03Hz,1H)、4.11(d,J=7.03Hz,1H)。
[0052]ステップG

1,4−ジオキサン(1.76ml)中に化合物(8)(88mg、0.072mmol、1eq.)を含む溶液に、チオフェノール(0.88mL、8.55mmol、119eq.)及びトリエチルアミン(0.88mL、6.31mmol、88eq)を添加した。その結果得られる混合物を周囲温度で撹拌した。反応が完了次第(LC/MSで監視、13時間)、メタノール(5.28ml)及び28%水酸化アンモニウム(3.52ml)を添加し、結果として生じる混合物を50℃に加熱した。反応が完了次第(LC/MSで監視、5時間)、混合物を周囲温度に冷却し、結果として生じる茶色がかったスラリーをろ過し、水(15ml)ですすいだ。ろ液を再度ろ過して、さらなる固形物を除去した。最終的なろ液を、トルエンとn−ヘプタンとの1:1混合物(30ml)で2回抽出した。水層を真空で濃縮し、次いで、水(6ml)に再懸濁した。その結果得られる固形物をろ別し、ろ液を分取HPLCに供して、白色の固形物として化合物(I)のジアンモニウム塩(化合物(1a)とも呼ばれる)(39mg、0.050mmol、収率70%)を得た。
化合物(1a)(SoRp、trans)H NMR(400MHz,CDOD)δ(ppm):9.05(s,1H)、8.33(s,1H)、8.25(s,1H)、8.12(s,1H)、6.34(br s,2H)、5.88(br s,2H)、5.66(br d,J=51.6Hz,1H)、5.59(br d,J=52.2Hz,1H)、5.01(br s,2H)、4.68〜4.34(m,6H)、4.07〜3.82(m,2H)、3.79〜3.55(m,2H);
31P NMR(162MHz,CDOD)δ(ppm):55.48(s,1P)、55.16(s,1P)。
[0053]
[0054]製造実施例2:(化合物(1a)の代替合成)
段階1

化合物(201)(570g、1.53mol、1wt、1vol、1eq.)をピリジン(2.85L、35.2mol、4.89wt、5.0vols、23eq.)に溶解した。混合物を2.6℃に冷却し、4,4’−ジメトキシトリチルクロリド(DMTCl;543g、1.60mol、0.953wt、1.05eq.)で処理した。混合物を0〜5℃で2時間撹拌し、次いで、周囲温度に温めた。反応をLC/MSで監視し、一晩撹拌した後、完全な転換を確認した。反応混合物を5℃未満に冷却し、MeOH(124ml、3.05mol、0.172wt、0.217vol、2.0eq.)で15分間処理することによりクエンチした。混合物をトルエン(2.00L、3.04wt、3.51vol)と真空下で同時蒸発させ、次いでEtOAc(2.850L、4.5wt、5.0vol)とn−ヘプタン(2.85L、3.42wt、5.0vol)との混合物で希釈した。有機層を飽和NaHCO(9wt%水溶液;2.0L、3.5vol)で洗浄した。さらなるEtOAc(2.85L、4.5wt、5.0vol)を添加して、粗生成物を完全に溶解した。5分間撹拌した後、2つの層が分離した。有機層を水(2.0L、3.5wt、3.5vol)で洗浄した。有機層から固形物がゆっくりと沈殿し始めた。水層を分離した。次いで、有機層をおおよそ1volに濃縮した。粗生成物を、n−ヘプタン(2.00L、2.40wt、3.51vol)とトルエン(0.50L、0.76wt、0.88vol)との混合物でスラリー化した。15分間撹拌した後、淡黄色の固形物を真空ろ過により収集した。ろ過ケーキを:(1)n−ヘプタン(0.60L、0.72wt、1.05vol)とトルエン(0.30L、0.46wt、0.53vol)との混合物、次いで、(2)n−ヘプタン(3.00L、3.6wt、5.26vol)、で連続的にすすいだ。固形物を加熱せずに30分間乾燥させ、次いで50℃で真空オーブン中で一晩乾燥させるためにトレイに移して、淡黄色固形物として化合物(202)を得た(996.7g、1.47mol、1.75wt、収率97%)。
H NMR(400MHz,クロロホルム−d)δ(ppm):8.99(s,1H)、8.76(s,1H)、8.21(s,1H)、8.04〜8.00(m,2H)、7.64〜7.59(m,1H)、7.57〜7.50(m,2H)、7.41〜7.36(m,2H)、7.32〜7.15(m,7H)、6.83〜6.76(m,4H)、6.31(dd,J=2.5,17.0Hz,1H)、5.68(ddd,J=2.3,4.7,52.7Hz,1H)、4.88〜4.77(m,1H)、4.26〜4.21(m,1H)、3.77(s,6H)、3.57(dd,J=3.1,10.9Hz,1H)、3.43(dd,J=4.1,10.7Hz,1H)、2.60(br s,1H)。
[0055]段階1’

化合物(201)(430g、1.15mol、1wt、1vol、1eq.)及びイミダゾール(118g、1.73mol、0.274wt、1.50eq.)をDMF(1.72L、3.78wt、4.0vol)に溶解し、結果として生じる混合物を5℃に冷却した。TBS−Cl(191g、1.27mol、0.444wt、1.10eq.)を添加した。混合物を0〜11℃で2時間撹拌し、周囲温度にゆっくり温めた(LCMSで進行を監視)。TBS−Clを添加して6時間後に反応が完了したが、周囲温度でさらに20時間撹拌した。混合物を2℃に冷却し、メタノール(93ml、74g、2.3mol、0.17wt、0.22wt、2.0eq.)で10分間処理した。反応混合物をMTBE(1.72L、1.23kg、2.96wt、4.0vol)とEtOAc(1.72L、1.55kg、3.60wt、4.0vol)との混合物で、続いて、飽和NHCl(28wt%水溶液;2.15L、5.0vol)で、希釈した。固形物が溶液からゆっくりと落ち始めた。混合物を24℃に温め、水(1.08L、1.08kg、2.5wt、2.5vol)を混合物(T内部=22℃)に添加した。より多くの固形物が混合物から沈殿し始めた。さらなる水(1.08L、1.08kg、2.5wt、2.5vol)及びMTBE(1.40L、1.04kg、2.4wt、3.3vol)を混合物に添加した。オフホワイトの固形物を真空ろ過により収集した。反応器を水(320ml、0.74vol)で、次いでMTBE(1.80L、1.33kg、3.10wt、4.19vol)ですすいで、残っている任意の固形物をフィルターに移した。ろ過ケーキを:(1)水(1.80L、1.80kg、4.2wt、4.2vol)、(2)水(1.80L、1.80kg、4.2wt、4.2vol)、(3)MTBE(0.90L、0.67kg、1.5wt、2.1vol)とn−ヘプタン(0.90L、0.62kg、1.4wt、2.1vol)との混合物、(4)MTBE(0.90L、0.67kg、1.5wt、2.1vol)とn−ヘプタン(0.90L、0.62kg、1.4wt、2.1vol)との混合物、で連続的にすすいだ。回収した固形物を真空下で40℃で2日かけて乾燥させて、白色固形物として化合物(203)を得た(483g、0.991mol、1.12wt、収率86%)。
H NMR(400MHz,クロロホルム−d)δ(ppm):8.97(s,1H)、8.82(s,1H)、8.36(s,1H)、8.04〜8.00(m,2H)、7.64〜7.58(m,1H)、7.56〜7.51(m,2H)、6.40(dd,J=2.3,16.0Hz,1H)、5.45(ddd,J=2.7,4.3,53.1Hz,1H)、4.75〜4.66(m,1H)、4.22〜4.17(m,1H)、4.07(dd,J=2.3,11.7Hz,1H)、3.91(dd,J=2.7,11.7Hz,1H)、2.38(dd,J=2.7,7.0Hz,1H)、0.92(s,9H)、0.11(s,3H)、0.11(s,3H)。
[0056]段階2

化合物(202)(993g、1.47mol、1wt、1vol、1eq.)及びイミダゾール(150g、2.20mol、0.151wt、1.5eq.)をDMF(3.48L、3.28kg、3.3wt、3.5vol)に溶解し、混合物を5℃に冷却した。TBS−Cl(244g、1.62mol、0.245wt、1.10eq.)を添加した。反応を0〜5℃で2時間撹拌し、周囲温度にゆっくり温め、LCMSで監視した。17時間後、さらなるイミダゾール(100g、1.47mol、0.10wt、1.0eq.)及びTBS−Cl(111g、735mmol、0.112wt、0.50eq.)を添加し、周囲温度で2時間及び35℃で2時間撹拌を続けた。その結果得られる混合物を13.6℃に冷却し、MeOH(119ml、2.94mol、2eq.)で10分間処理した。別個の反応器に氷(5kg、5wt)及び飽和NHCl(28wt%水溶液、5.0L、5vol)を添加した。反応混合物を氷/NHCl混合物に添加した。オフホワイトの固形物が即座に溶液から沈殿し始めた。さらなる2kgの氷(2kg、2wt)及び水(3.0L、3vol)を混合物に添加した。反応フラスコを水(0.50L、0.5vol)ですすぎ、すすぎ液を混合物に添加した。n−ヘプタン(2.00L、2vol)を混合物に添加し、撹拌を10分間続けた。オフホワイトの固形物を真空ろ過により収集した。ろ過ケーキを:(1)水(4.0L、4.0vol)、(2)水(4.0L、4.0vol)、(3)n−ヘプタン(4.0L、4.0vol)、(4)n−ヘプタン(4.0L、4.0vol)ですすいだ。回収固形物を真空下で45℃で4日間乾燥させて、オフホワイトの固形物として化合物(204)を得た(1.095kg、1.39mol、1.10wt、収率94%)。
H NMR(400MHz,クロロホルム−d)δ(ppm):9.09(s,1H)、8.78(s,1H)、8.28(s,1H)、8.02(d,J=7.4Hz,2H)、7.63〜7.59(m,1H)、7.55〜7.50(m,2H)、7.37(d,J=7.1Hz,2H)、7.29〜7.17(m,7H)、6.79(d,J=7.9Hz,4H)、6.29(dd,J=2.9,16.2Hz,1H)、5.60(ddd,J=2.7,3.9,53.1Hz,1H)、4.78(ddd,J=4.7,6.4,15.8Hz,1H)、4.26〜4.22(m,1H)、3.77(s,6H)、3.58(dd,J=3.1,10.9Hz,1H)、3.26(dd,J=3.7,10.7Hz,1H)、0.85(s,9H)、0.10(s,3H)、0.02(s,3H)。
[0057]段階3

化合物(204)(1000g、1.27mol、1wt、1vol、1eq.)及びtrans−2−ブテン−1,4−ジオール(オレフィン幾何はH−NMRで確認;335g、3.80mol、0.335wt、3.0eq.)をTHF(3.0L、3.0vol)と2回共沸した。残渣をTHF(10L、10vol)とトルエン(15L、15vol)との混合物に溶解した。トリフェニルホスフィン(432g、1.65mol、0.432wt、1.3eq.)を添加し、次いで、反応混合物を−5℃に冷却した。T−内部を5℃未満に保ちながら、DIAD(0.320L、1.65mol、333g、0.333wt、0.320vol、1.3eq.)を20分かけてゆっくりと添加した。反応を0〜5℃で1時間撹拌し、LCMSで監視した。氷浴を取り外し、混合物を室温に温めた。一晩撹拌した後(17時間)、トリフェニルホスフィン(83g、0.32mol、0.083wt、0.25eq.)及びDIAD(62ml、0.32mol、64g、0.064wt、0.062vol、0.25eq.)を添加した。室温でさらに1時間後、反応混合物をMTBE(10L、10vol)で希釈し、半飽和NaCl(18wt%水溶液;2×4L)で2回洗浄し、真空で濃厚な油状物に濃縮した。混合物をMTBE(4.00L、4vol)とn−ヘプタン(0.50L、0.5vol)との混合物に再溶解し、次いで0℃に冷却した。トリフェニルホスフィンオキシドの種結晶を溶液に添加した。溶液から固形物がゆっくりと沈殿し始め、一晩撹拌した。白色固形物を真空ろ過により収集し、MTBE(2L、2vol)ですすいで、トリフェニルホスフィンオキシド540gを分離した。ろ液を濃縮し、Biotage 150L KP−Sil(SiO5kg;ヘプタン/EtOAc中の1%TEAで前処理;溶離液:n−ヘプタン/EtOAc(1%TEAを含む33%EtOAc48L、1%TEAを含む50%EtOAc24L、1%TEAを含む66%EtOAc24L)→1%TEAを含む100%EtOAc)により精製した。カラムをTLC(2:1 EtOAc/n−ヘプタン)で監視した。清浄な生成物画分を合わせ、真空下で濃縮して、淡白色の泡状固形物として化合物(205)を得た(634g、DIAD由来副生成物14wt%を含有、正味545g、0.63mol、調整収率50%)。混合物画分を合わせ、真空下で濃縮して淡黄色の泡状固形物を得(750g)、これを、Biotage 150M HP−Sphere(SiO2.5kg;ヘプタン/EtOAc中の1%TEAで前処理;トルエン溶離液で試料をロード:n−ヘプタン/EtOAc/1%TEA(1%TEAを含む50%EtOAc12L、1%TEAを含む66%EtOAc16L)→1%TEAを含むEtOAc)により再精製に供した。カラムをTLC(2/1/0.03 EtOAc/n−ヘプタン/TEA)で監視した。清浄な生成物画分を合わせ、真空下で濃縮して、淡白色の泡状固形物としてさらなる化合物(205)を得た(206g、0.24mol、収率18%)。
H NMR(400MHz,クロロホルム−d)δ(ppm):8.58(s,1H)、8.10(s,1H)、7.43〜7.37(m,2H)、7.32〜7.28(m,2H)、7.24〜7.15(m,8H)、7.03〜6.98(m,2H)、6.78〜6.73(m,4H)、6.18(dd,J=2.7,17.2Hz,1H)、5.88(td,J=5.5,15.6Hz,1H)、5.77(td,J=5.1,15.6Hz,1H)、5.60(ddd,J=2.7,4.3,53.1Hz,1H)、5.03〜4.96(m,2H)、4.91(ddd,J=4.5,6.6,16.6Hz,1H)、4.18〜4.14(m,1H)、3.88〜3.82(m,2H)、3.78(s,6H)、3.52(dd,J=2.7,10.9Hz,1H)、3.14(dd,J=3.5,10.9Hz,1H)、0.85(s,9H)、0.10(s,3H)、0.01(s,3H)。
[0058]段階4

化合物(205)(800g、0.930mol、1wt、1vol、1eq.)及び化合物(203)(522g、1.07mol、0.652wt、1.15eq.)をTHF(2×3L、2×3.8vol)と共沸乾燥させ、THF(9.60L、8.45kg、12.0vol)に室温で再溶解した。トリフェニルホスフィン(317g、1.21mol、0.396wt、1.30eq.)を添加し、混合物を−5℃未満に冷却した。DIAD(226ml、1.16mol、235g、0.294wt、0.283vol、1.25eq.)をT−内部7℃未満で添加した。反応をゆっくりと室温に温めた。反応をLCMSで監視した。21時間後、反応混合物を真空で濃厚な油状物に濃縮し、n−ヘプタン(2.00、1.37kg、1.71wt、2.50vol)と共沸し、次いでMTBE(2.40L、1.78kg、2.2wt、3.0vol)とn−ヘプタン(800ml、547g、0.68wt、1.0vol)との混合物に再溶解した。溶液にトリフェニルホスフィンオキシドで種をまき、5℃に冷却し、n−ヘプタン(400ml、274g、0.34wt、0.50vol)で希釈し、5℃で30分間撹拌した。真空ろ過により白色固形物沈殿物を収集し、MTBEとn−ヘプタンとの2:1(v/v)混合物(1.8L)ですすいで、トリフェニルホスフィンオキシドを得た(455g)。ろ液を真空下で濃縮し、Biotage 150L KP−Sil(SiO 5kg;1%TEAで前処理;トルエン溶離液に溶解して試料をロード:9:1 n−ヘプタン/EtOAc(16L)及び15 TEA、3.6:1(46L)、2:1(20L)及び1%TEA、1:1(30L)及び1%TEA、並びに100%EtOAc(16L)及び1%TEA)により精製した。合わせた清浄な生成物画分を真空下で濃縮して、オフホワイトの固形泡状物として化合物(206)を得た(662.2g)。混合物画分を合わせ、真空下で濃縮した(480g)。Biotage 150Lにロードする前にトルエン(300ml)で希釈することにより形成された白色の不溶性固形物を真空ろ過により除去した。トルエン可溶性の材料を、Biotage 150M HP−Sphere(SiO 2.5kg(1%TEAで前処理);トルエンで試料をロード;溶離液:2:1 n−ヘプタン/EtOAc(26L)w/ 1%TEA、1:1(25L)w/ 1%TEA、1:4(34L)w/ 1%TEA)により精製した。カラムをTLC(1:1 n−ヘプタン/EtOAc)で監視した。合わせた清浄な生成物画分を真空下で濃縮して、オフホワイトの固形泡状物としてさらなる化合物(206)を得た(165.5g。合計662.2+165.5g=827.7g、930mmol、1.03wt、収率67%)。
H NMR(400MHz,クロロホルム−d)δ(ppm):8.47(s,1H)、8.39(s,1H)、8.20(s,1H)、8.01(s,1H)、7.38〜7.31(m,5H)、7.27〜7.19(m,6H)、7.14〜7.06(m,3H)、6.93〜6.87(m,2H)、6.76(d,J=8.6Hz,4H)、6.26(dd,J=2.0,16.0Hz,1H)、6.15(dd,J=2.7,17.2Hz,1H)、5.86(dd,J=4.7,15.2Hz,1H)、5.80(dd,J=4.7,15.2Hz,1H)、5.51(ddd,J=2.7,4.3,52.8Hz,1H)、5.31(ddd,J=2.0,4.3,52.8Hz,1H)、4.87(d,J=4.7Hz,2H)、4.85〜4.81(m,1H)、4.79(d,J=4.3Hz,2H)、4.71〜4.59(m,1H)、4.20〜4.13(m,2H)、4.06(dd,J=2.7,11.3Hz,1H)、3.90(dd,J=2.7,11.7Hz,1H)、3.77(s,6H)、3.52(dd,J=3.1,10.9Hz,1H)、3.18(dd,J=3.9,10.9Hz,1H)、0.92(s,9H)、0.84(s,9H)、0.10(s,3H)、0.09(s,6H)、0.07(s,3H)。
[0059]段階5〜6

ピリジン(1.23L、1.21kg、15.2mol、2.9wt、3.0vol、49eq.)中に化合物(206)(410.7g、309mmol、1wt、1vol、1eq.)を含む溶液に、亜リン酸ジフェニル(90ml、109g、0.46mol、0.26wt、0.22vol、1.5eq.)を添加した。反応を室温で撹拌し、LCMSで監視した。2時間後(80%転換)、さらなる亜リン酸ジフェニル(29.9ml、36.2g、155mmol、0.088wt、0.073vol、0.50eq.)を添加した。さらに1時間後、追加の亜リン酸ジフェニル(6.0ml、7.2g、31mmol、0.018wt、0.015vol、0.10eq.)を添加し、反応をさらに0.5時間続けた(98%転換)。反応混合物を、T−内部を4.7〜12℃に保ちながら、飽和NaHCO(9wt%水溶液;2.1L、5vol)と水(1.0mL、2.5vol)との混合物に添加した。反応器を少量のEtOAcですすいだ。撹拌を室温で30分間続け、LCMSで反応を監視した(100%転換)。反応混合物をEtOAcとMTBEとの1:1混合物で2回抽出した(2×8.2L、2×20vol)。合わせた有機層を水(4.1L、10vol)で洗浄し、真空で濃縮し、ピリジンを除去するためにトルエン(3×4.1L、3×10vol;連続供給)と共沸して、化合物(207)を得た(ピリジン0.55eq.が残った)。
[0060]段階6
粗化合物(207)をジクロロメタン(3.08L、4.07kg、9.9wt、7.5vol)に周囲温度で溶解した。水(55.7ml、0.136vol、10eq.)を、続いて、内部Tを25℃未満に保ちながら、DCM(3.08L、7.5vol)中にジクロロ酢酸(77ml、120g、0.93mol、0.29wt、0.19vol、3.0eq.)を含む溶液を、添加した(オレンジ色の溶液に変化した)。30分後、トリエチルシラン(EtSiH;494ml、359g、3.09mol、0.875wt、1.20vol、10.0eq.)(T−内部は18.2℃から17℃になった)を添加し、20分間撹拌を続けた。トリエチルアミン(431ml、313g、3.09mol、0.762wt、1.05vol、10.0eq.)を添加した(T−内部は17.8℃から22℃になった)。混合物を1.55kg(3.8wt)に濃縮し、EtOAc(6.2L、5.5kg、14wt、15vol)に再溶解し、(1)水(1.0L、2.5vol)及び飽和NaHCO(9wt%水溶液、0.82L、2.0vol)で、連続的に洗浄した。粗生成物のEtOAc溶液を−20℃で一晩保存した;翌日、溶液を真空で25℃で濃縮した。このようにして得られた粗混合物(654g)を、(1)n−ヘプタン(3.01L、7.5vol)、(2)n−ヘプタン(2.46L、6.0vol)とトルエン(0.82L、2.0vol)との混合物で練和した。溶液部分(上澄み液)をデカントし、底に残った固形物をアセトニトリル(4.1L、10vol)に溶解した。混合物を真空で25℃で濃縮し、アセトニトリルと2回共沸して化合物(208)を得た。生成物を精製することなく次の段階に使用した(理論的100%収率を想定)。
[0061]段階7
[0062]段階7a
化合物(208)(337g、309mmol、1wt、1vol、1eq.)を無水ピリジン(13.5L、13.2kg、39wt、40vol)に室温で溶解した。トリエチルアミン(129ml、927mmol、94g、0.28wt、0.38vol、3.0eq.)を、続いて、2−クロロ−5,5−ジメチル−1,3,2−ジオキサホスフィナン2−オキシド(DMOCP;103g、556mmol、0.31wt、1.80eq.)を、添加した。結果として生じる混合物を周囲温度で30分間撹拌し、LCMSで監視して(100%転換)、化合物(209)を作出した。
[0063]段階7b
TEA(129ml、927mmol、94g、0.28wt、0.38vol、3.0eq.)、水(100ml、5.56mol、0.30wt、0.30wt、18eq)及び硫黄(34.7g、1.08mol、0.10wt、3.5eq)を、化合物(209)の前段の混合物に添加した。90分後(100%転換)、T−内部を30℃未満(16.6℃〜27℃)に保ちながら、NaHCO(9wt%水溶液;3.37L、10vol)を添加した。結果として生じる混合物を、塩を除去するためにろ過した。ろ液を混合物に真空で濃縮し、MTBE(5.1L、15vol)で希釈し、NaCl(30wt%水溶液;2×1.35L、2×4vol)で2回洗浄した。不溶性固形物をろ別し、ろ液を真空で濃縮し、トルエン(4.0L、12vol)と共沸した。その結果得られる固形物をろ過により除去し、粗混合物をトルエンに溶解し、Biotage 150L KP−Sil(SiO 5kg;n−ヘプタン/EtOAc/TEA(1.5/1.5/0.03CV)で前処理;EtOAc/TEA(3/0.03CV)、EtOAc/MeOH/TEA(4/0.2/0.04CV)、EtOAC/MeOH/TEA(2/0.2/0.02CV)で溶出)により精製した。カラムをTLC(EtOAC/MeOH/TEA=9/1/0.1)で監視した。Sp異性体を含有する画分を合わせ、真空下で濃縮して、淡いピンク色の泡状固形物として化合物(210)を得た(Sp異性体;154g、128mmol、0.46wt、収率41.3%)。Rp異性体を含有する画分を合わせ、真空下で濃縮して、淡いピンク色の泡状固形物として化合物(212)を得た(Rp異性体;64g、53mmol、0.19wt、収率17%)。
化合物(210)(SP異性体):
H NMR(400MHz,クロロホルム−d)δ(ppm):8.51(s,1H)、8.50(s,1H)、8.22(s,1H)、8.14(s,1H)、7.49〜7.44(m,2H)、7.38〜7.27(m,4H)、7.25〜7.21(m,2H)、7.14(t,J=7.1Hz,2H)、6.44(dd,J=2.5,13.9Hz,1H)、6.18(d,J=15.2Hz,1H)、5.78(td,J=6.3,15.6Hz,1H)、5.69(td,J=4.7,15.6Hz,1H)、5.56(dd,J=3.9,50.8Hz,1H)、5.20〜5.06(m,1H)、4.95〜4.79(m,4H)、4.69(dd,J=4.3,16.0Hz,1H)、4.54〜4.38(m,3H)、4.35(d,J=5.5Hz,1H)、4.32〜4.29(m,1H)、4.05(dd,J=1.6,11.7Hz,1H)、3.91(dd,J=3.1,11.7Hz,1H)、3.14〜3.06(m,6H)、1.30(t,J=7.4Hz,9H)、0.91(s,9H)、0.90(s,9H)、0.12(s,3H)、0.08(s,3H)、0.06(s,3H)、0.05(s,3H)
化合物(212)(RP異性体)
H NMR(400MHz,クロロホルム−d)δ(ppm):8.54(s,1H)、8.38(s,1H)、8.33(s,1H)、8.01(s,1H)、7.39〜7.09(m,10H)、6.39(dd,J=2.3,14.1Hz,1H)、6.13(d,J=17.2Hz,1H)、5.72(d,J=3.1Hz,2H)、5.68(dd,J=4.3,51.2Hz,1H)、5.43〜5.29(m,1H)、5.10〜4.96(m,3H)、4.90〜4.83(m,2H)、4.78〜4.72(m,1H)、4.52(ddd,J=3.9,6.6,17.2Hz,1H)、4.44〜4.35(m,2H)、4.31〜4.26(m,1H)、4.20〜4.12(m,2H)、3.87(dd,J=3.5,11.7Hz,1H)、3.79〜3.77(m,1H)、3.15〜3.09(m,6H)、1.33(t,J=7.4Hz,9H)、0.94(s,9H)、0.89(s,9H)、0.13(s,3H)、0.12(s,3H)、0.10(s,3H)、0.09(s,3H)。
[0064]段階8

化合物(210)(221g、183mmol、1wt、1vol、1eq)を、ピリジン(530ml、6.56mol、519g、2.3wt、2.4vol)とTEA(2.65L、19.0mol、1.93kg、8.7wt、12vol、104eq.)との混合物に溶解した。トリエチルアミン三フッ化水素酸塩(264ml、1.62mol、262g、1.2wt、1.2vol、錯体として8.9eq.、27eq.HF)を添加し、転換をLCMSで監視しながら、混合物を室温で撹拌した。3時間後(転換97%)、メトキシトリメチルシラン(TMSOMe;1.40L、10.2mol、1.06kg、4.8wt、6.3vol、55eq.)を添加し、撹拌を30分間続けた。粘着性の固形物が反応器を覆った。溶液部分(上澄み液)をデカントした。固形物をトルエンで2回練和した(2×2.2L、2×10vol;上澄みをデカントした)。反応器に残った粗固形物をジクロロメタン(2.2L、10vol)に溶解し、NHCl(28wt%水溶液;2.2L、10vol)で洗浄した。水層をジクロロメタン(2.2L、10vol)で逆抽出した。合わせた有機層をNaCl(36wt%水溶液;1.1L、5vol)と水(1.1L、5vol)との混合物で洗浄し、次いで真空下で濃縮して、黄褐色の乾燥泡状物として化合物(211)を得た(152g、155mmol、0.70wt、収率85%)。粗生成物を精製せずに次の段階へと取った。
[0065]段階9

化合物(211)(150g、153mmol、1wt、1vol、1eq.)をアセトニトリル(4L、27vol)と共沸し、次いで、アセトニトリル(1.05L、0.83kg、5.5wt、7.0vol)に室温で再溶解した。2−ニトロベンジルブロミド(44.4g、205mmol、0.30wt、1.34eq)を室温で添加し、反応をLCMSで監視した。23時間後(100%転換)、EtOAc(1.50L、10vol)、NHCl(28wt%水溶液;300ml、2vol)及び水(300ml、2vol)を添加し(pH=6)、結果として生じる混合物を、真空下で25℃で重量1.11kgに部分的に濃縮した。EtOAc(2.25L、15vol)を添加し、混合物を5分間撹拌した。2つの層が分離した。水層を酢酸エチル(750ml、5vol)で抽出した。合わせた有機層を:(1)NaCl(36wt%水溶液;300ml、2vol)と水(300ml、2vol)との混合物及び(2)水(600ml、4vol)、で連続的に洗浄した。次いで、有機層を真空下で濃縮し、n−ヘプタン(1.50L、10vol)と共沸した。MTBE(0.95L、6.3vol)を粗固形物に添加し、混合物を40℃で加熱した。混合物をEtOAc(300ml、2vol)で希釈し、ゆっくりと0℃に冷却した。高密度の固形物を沈降させ、上澄み液をフィルターフリットチューブを通してポンプで汲みだした。固形物をMTBEで2回すすぎ(2×300ml、2×2vol;上澄みを、フィルターフリットチューブを通して毎回ポンプで汲みだした)、真空下で40℃で一晩乾燥させて、淡黄色固形物として化合物(212)を得た(156g)。ろ液を真空下で濃縮し、茶色の油状物を得(17.8g)、この油状物を、Biotage Snap−Ultra 340g(溶離液:EtOAc中の0〜5%MeOH)による精製に供して、淡黄色の固形物としてさらなる化合物(212)を得た(5.8g)。合計156g+5.8g=161.8g(正味152mmol、純度95%、収率99%)
H NMR(400MHz,クロロホルム−d)δ(ppm);8.46(s,1H)、8.15(s,1H)、8.10(s,1H)、8.09〜8.06(m,1H)、7.89(s,1H)、7.54〜7.51(m,1H)、7.49〜7.45(m,4H)、7.37〜7.28(m,3H)、7.24〜7.19(m,3H)、7.16〜7.11(m,2H)、6.22(d,J=16.8Hz,1H)、6.14(dd,J=2.7,17.2Hz,1H)、5.83〜5.61(m,3H)、5.60〜5.48(m,1H)、5.07(dd,J=3.5,51.6Hz,1H)、5.06〜4.96(m,1H)、4.79(dd,J=4.9,15.8Hz,1H)、4.69(d,J=5.9Hz,2H)、4.67〜4.56(m,1H)、4.48〜4.40(m,3H)、4.37〜4.30(m,1H)、4.27(d,J=5.9Hz,2H)、4.19〜4.13(m,1H)、3.93〜3.85(m,1H)、3.85〜3.78(m,1H)
[0066]段階10〜11
[0067]段階10
化合物(212)(純度95%、正味73.2g、72.3mmol、1wt、1vol、1eq.)及び2−シアノエチルN、N、N’、N’−テトライソプロピルホスホロジアミダイト(25.3ml、79.5mmol、0.33wt、0.35vol、1.10eq.)を無水アセトニトリルと3回共沸し(3×2L)、ジクロロメタン(0.73L、10vol)に再溶解し、0〜5℃に冷却した。ジイソプロピルアンモニウムテトラゾライド(6.19g、36.1mmol、0.085wt、0.50eq.)を添加した。その結果得られる反応混合物を0℃で10時間撹拌し、10℃に2時間かけて温め、10℃で10時間保持し、室温に2時間かけて温めた。反応をLCMS及びTLC(0.5%TEAを含むEtOAc)で監視した。18時間後、無水アセトニトリル(0.73L、10vol)を添加し、混合物を−20℃で3日かけて貯蔵した。
[0068]段階11a
段階10からの混合物を、周囲温度に温め、滴下漏斗を介して小分けして(30分毎に100mL、9時間かけて)ピリジントリフルオロ酢酸塩(事前にピリジンと2回共沸;41.9g、217mmol、0.57wt、3.0eq.)とアセトニトリル(5.85L、80vol)との混合物に添加した。反応をLCMSで監視した。13時間後、アセトニトリル(24mL)中に2−シアノエチルN、N、N’、N’−テトライソプロピルホスホロジアミダイト(5.8mL、18mmol、0.25eq.)を含む溶液を、4時間かけて添加した。さらなる試薬の量については、残っている化合物(212)に基づいて決定した(LCMSに基づいておよそ30%)。6時間後、ジオールのより多くの転換が観察された。
[0069]段階11b
((ジメチルアミノメチリデン)アミノ)−3H−1,2,4−ジチアゾリン−3−チオン(DDTT;20.8g、101mmol、0.28wt、1.4eq.)を添加し、撹拌を1時間続けた。反応混合物をおよそ800mLに部分的に濃縮し、MTBE(1.46L、20vol)、NaHCO(9wt%水溶液;1.1L、15vol)及び水(0.37L、5vol)で希釈した。pH=8。層が分離し、水層をMTBE(1.46L、20vol)とEtOAc(1.10L、15vol)との混合物で抽出した。合わせた有機層を30%aq.NaCl(2×0.73L、2×10vol)で2回洗浄し、真空下で35℃で濃縮し、トルエン(1.46L、20vol)と共沸した。LCMS及びTLC(EtOAc)によって、化合物(215)(SpRp、望ましい):化合物(217)(SpSp)=5:1、が示された。
粗生成物をBiotage 150M KP−Sil、(SiO 2.5 kg;溶離液:EtOAc/n−ヘプタン:2:1(4CV)、3:1(2.5CV)、4:1(2.5CV)、100%EA(3CV)、EA中の5〜10%MeOH 4CV)により精製して、化合物(215)を得た(36g、31.5mmol、収率44%)。
化合物(215)(SpRp):H NMR(400MHz,クロロホルム−d)δ(ppm):8.59(s,1H)、8.10(s,1H)、8.03〜7.99(m,1H)、7.91(s,1H)、7.56〜7.53(m,2H)、7.49〜7.40(m,5H)、7.35〜7.28(m,2H)、7.24〜7.16(m,4H)、6.92(s,1H)、6.29(d,J=14.9Hz,1H)、6.08(d,J=20.7Hz,1H)、5.97〜5.83(m,1H)、5.76(td,J=4.7,15.6Hz,1H)、5.61〜5.51(m,2H)、5.40(d,J=4.3Hz,1H)、5.29〜5.17(m,1H)、4.91(dd,J=7.4,14.9Hz,1H)、4.86〜4.75(m,3H)、4.63(dd,J=3.7,9.2Hz,1H)、4.58〜4.43(m,5H)、4.34〜4.19(m,4H)、2.79(td,J=5.9,16.8Hz,1H)、2.66(td,J=6.3,16.8Hz,1H)。
化合物(217)(SpSp):H NMR(400MHz,クロロホルム−d)δ(ppm):8.11(s,1H)、8.03(d,J=8.2Hz,1H)、7.94(s,1H)、7.90(s,1H)、7.61(s,1H)、7.56〜7.40(m,7H)、7.33〜7.28(m,2H)、7.23〜7.17(m,4H)、6.22(d,J=17.6Hz,1H)、6.15(d,J=18.8Hz,1H)、5.85(dd,J=3.5,51.2Hz,1H)、5.75〜5.45(m,5H)、4.95〜4.23(m,14H)、2.82(t,J=6.1Hz,2H)。
[0070]段階12

化合物(215)(71.6g、62.6mmol、1wt、1vol、1eq.)を1,4−ジオキサン(0.43L、6vol)に溶解した。チオフェノール(215ml、2.09mol、230g、3.2wt、3vol、>30eq.)を、続いて、トリエチルアミン(215ml、1.54mol、156g、2.2wt、3vol)を添加した。いくらかの発熱が観察され(T−内部はおよそ7℃だけ上昇した)、したがって、水/氷浴を使用してT−内部を27℃未満に冷却及び制御した。反応をLCMSで監視した。2時間後、MeOH(0.57L、8vol)及びNHOH(28wt%;15mol、0.57L、8vol、>200eq.)を添加した。その結果得られる混合物を50℃で5時間加熱し、室温に冷却し、一晩撹拌した。14時間後、水(0.72L、10vol)を添加し(固形物は観察されない)、混合物をn−ヘプタンとトルエンとの1:1(v/v)混合物(3×0.86L、3×12vol)で3回、続いて、トルエン(0.57L、8vol)で、抽出した。水層を真空で40〜50℃で濃縮し、水(1.07L、15vol)で希釈した。その結果得られるスラリーを室温で一晩保った。その結果得られる固形物をろ別し、水(0.36L、5vol)ですすいだ。ろ液はまだ濁っており、セライト及びKunoフィルターに通してろ過した。曇りがまだ存在していた。HCl(1.0M水溶液;132ml、132mmol、2.1eq.)を1時間かけて添加し、pHをチェックした(pH<2)。撹拌を室温で1時間続け、混合物をろ過した。ろ過ケーキを水(8×0.20L)ですすぎ、真空オーブンで35℃で2日間、及び加熱無しで1日間乾燥させて、淡いオレンジ色の固形物として化合物(I)を得た(44.88g、60.1mmol、0.63wt、収率96%)。
[0071]段階13

遊離酸化合物(I)(22.42g、30.03mmol、1wt、1vol、1eq.)に、アンモニア(MeOH中の2.0M溶液;220ml、440mmol、10vol、15eq.)を添加した。EtOH(55ml、2.5vol)を添加し、その結果得られる溶液をKunoフィルター(0.45ミクロン、PTFE)に通してろ過し、MeOHとEtOHとの1:1(v/v)混合物(90mL、4vol)ですすいだ。ろ液を真空で30℃で濃縮し、オフホワイトの固形物を得、この固形物を室温で一晩乾燥させ、スパチュラですりつぶし(壊れやすい)、真空で室温でさらに乾燥した。次いで、分離された固形物をトルエン(250ml)に懸濁し、室温で30分間撹拌した。次いで、固形物を真空ろ過により収集し、トルエンで2回(2×50ml)すすいだ。次いで、固形物を真空下で真空オーブン内で乾燥させて、化合物(1a)(化合物(I)のジアンモニウム塩)22.4gを得た。
[0072]再結晶化
化合物(1a)(化合物(I)のジアンモニウム塩)(22.14g、28.36mmol、1wt、1vol、1eq.)を水(664ml、30vol)と水酸化アンモニウム(28wt%、2.5ml、18mmol、0.63eq.)(pH=9〜10)との混合物に溶解し、トルエンで3回(3×300ml、3×14vol)、EtOAcで3回(3×200ml、3×9vol)、及びトルエンで3回(3×300ml、3×14vol)、抽出した。その結果得られる水層をHCl(1.0M水溶液;90ml、90mmol、3.2eq.)で3.5時間かけて処理した(pH2以下)。混合物を30分間撹拌し、次いで固形物沈殿物を真空ろ過により収集した。ろ過ケーキを水で3回(3×200ml、3×9vol)洗浄し、真空で一晩乾燥させた。アンモニア(MeOH中の2.0M溶液;250ml、500mmol、17.6eq.)及びエタノール(100ml)を固形物に添加し、その結果得られる混合物を、結晶が出現するまで真空で濃縮し(およそ100ml)、その時点で濃縮を停止し、混合物を20分間撹拌した。エタノール(45mL)を添加し、混合物を部分的に濃縮した(45mLを除去)。同じ操作をさらにもう2回繰り返し、次いで混合物を0℃に冷却し、3.5時間撹拌した。白色固形物を真空ろ過により収集し、冷エタノール(20ml)で、続いて、酢酸エチル(2×50mL)で、洗浄した。白色固形物を真空下で室温で3日間乾燥させて、白色固形物として化合物(1a)(化合物(I)のジアンモニウム塩)を得た(16.6g、21.3mmol、0.75wt、収率75%)。ろ液を真空下で濃縮し、真空下で室温で3日間乾燥させて、オフホワイトの固形物として化合物(1a)(化合物(I)のジアンモニウム塩)を得た(4.16g、5.3mmol、収率18%)。
[0073]分析実施例1.2−化合物(I)のアンモニウム塩のH NMR分析
化合物(I)のアンモニウム塩のH NMRスペクトログラフを図1に示す。その結果得られるスペクトルは:
H−NMR スペクトル(400MHz,DMSO−d,δ 2.49 ppm,80℃)
δ(ppm):8.59(1H,br s)、8.36(1H,br s)、8.14(1H,s)、8.13(1H,s)、6.29(1H,m)、6.26(1H,m)、5.78(1H,m)、5.76(2H,s)、5.22(1H,m)、4.53〜4.68(2H,m)、4.38(1H,m)、4.28(1H,m)、4.21〜4.24(2H,m)、3.78(1H,dd,J=12,4Hz)、3.70(1H,dd,J=13,5Hz)、3.05〜3.13(4H,m)。
であった。
[0074]分析実施例1.3−化合物(I)のアンモニウム塩のX線分析
化合物(I)のアンモニウム塩約2mgを水600μLに溶解した。この溶液120μLを別のガラス製バイアルに入れ、次いで、このバイアルを、MeCN3mLを有する固定容器に室温で1週間貯蔵した。これは、試料調製に関するHO/MeCN蒸気拡散法である。
[0075]結晶化溶液に見られた無色のブロック単結晶(0.1×0.1×0.1mm)を液体Parabar 10312に分散させ、デュアル−シックネスミクロマウント(Dual−Thickness MicroMount)(商標)(MiTeGen)に搭載した。XtaLAB PRO P200 MM007HF(Rigaku)で−160℃で、多層膜ミラー単色Cu−Kα放射を使用したω軸振動法で、回折データを収集した。
[0076]図2Aに、化合物(I)のアンモニウム塩の結晶のORTEP図を示すが、この場合、2つの分子がいくつかの不規則な水分子と共に非対称単位で存在する。図2Bに、図2Aからの非対称単位である2つの分子のうちの一方のORTEP図を示す。図2Cに、図2Aからの非対称単位である他方の分子のORTEP図を示す。
[0077]化合物(I)のアンモニウム塩の結晶構造は、0.1354の最終的なR因子で解けた。Flackパラメータはほぼゼロ(0.083(17))であり、化合物(I)のアンモニウム塩の絶対配置が(R、S)であることを示している。結晶構造解析により、いくつかの水分子が、化合物(I)のアンモニウム塩の大きなチャネルに存在することも示されたが、このことにより、水分子がチャネルから簡単に抜け出すことができることが示された。分析により、非対称単位である結晶学的に独立した両方の分子の立体配座がほぼ同じであることも確認された。
[0078]
[0079]実施例1
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形1)の調製
酢酸イソプロピル(2.769mL)中に化合物(I)(138.5mg)を含む懸濁液に、28%アンモニア水溶液(62μL)と、酢酸イソプロピル(0.693mL)と、2−プロパノール(0.138mL)との混合物を添加し、その結果得られるスラリーを室温で一晩撹拌した。沈殿物をろ過により収穫し、酢酸イソプロピル(0.8mL)ですすぎ、得られた固形物を減圧下で室温で2時間乾燥させて、表題結晶を得た(126.8mg)。表題の結晶は水和物と確認された。
[0080]実施例1−2
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形1)の調製
酢酸イソプロピル(18.0mL)中に化合物(I)(900mg)を含む懸濁液に、28%アンモニア水溶液(400μL)と、酢酸イソプロピル(4.5mL)と、2−プロパノール(0.90mL)との混合物を添加し、その結果得られるスラリーを室温で一晩撹拌した。沈殿物をろ過により収穫し、酢酸イソプロピル(4.5mL)ですすぎ、得られた固形物を減圧下で室温で5時間乾燥させ、相対湿度50%中に室温で一晩保つことにより水分を連続的に吸収させて、表題結晶を得た(942mg)。表題の結晶は水和物と確認された。
[0081]実施例2
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形2)の調製
化合物(I)(143.6mg)に28%アンモニア水溶液(1.724mL)及びエタノール(1.718mL)を添加し、その結果得られる溶液を約0.86mLまでに減圧下で40℃で濃縮した。残渣にエタノール(1mL)を添加し、溶液を約0.86mLまでに減圧下で40℃で濃縮した。残渣にエタノール(1mL)を添加し、その結果得られる溶液を0.89gまでに減圧下で40℃で濃縮した。残渣溶液を室温で0.5時間撹拌して、それから沈殿物が溶液から落ちた。スラリーに酢酸イソプロピル(1.2mL)を10分間徐々に滴下添加し、その結果得られるスラリーを室温で一晩撹拌した。沈殿物をろ過により収穫し、得られた固形物を減圧下で室温で3.3時間乾燥させて、表題結晶を得た(144mg)。表題の結晶は水和物と確認された。
[0082]実施例3
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形3)の調製
化合物(I)のジアンモニウム塩の結晶(結晶形1)おおよそ10mgを25℃インキュベーター内のデシケーターに置いたが、この場合、湿度条件を飽和硝酸カリウム溶液を使用して94%RHに制御した。固形物試料を4日間貯蔵して、表題の結晶を得た(おおよそ10mg)。表題の結晶は水和物と確認された。
[0083]実施例4
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形4)の調製
アンモニア2mol/Lのメタノール(2.152mL)中に化合物(I)(217.22mg)を含む溶液に、エタノール(0.869mL)を添加し、溶液を約1.1gまでに減圧下で50℃で濃縮した。残渣を室温で0.8時間撹拌して、それから沈殿物が溶液から落ちた。スラリーにエタノール(0.434mL)を添加し、混合物を約0.8gまでに50℃の減圧下で濃縮した。残渣にエタノール(0.434mL)を添加し、混合物を約1.2gまでに減圧下で50℃で濃縮した。その結果得られるスラリーに水(40μL)を添加し、混合物を室温で1時間及び氷冷しながら1.8時間撹拌した。沈殿物をろ過により収穫し、エタノール(0.2mL)及び酢酸エチル(0.2mL)で連続的にすすぎ、得られた固形物を減圧下で室温で1時間乾燥させて、表題結晶を得た(21.22mg)。
[0084]実施例5
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶(結晶形5)の調製
2−プロパノール(5mL)中に化合物(I)(201.62mg)を含む懸濁液に28%アンモニア水溶液(36μL)を添加し、その結果得られる溶液を60℃で撹拌した。この溶液に28%アンモニア水溶液(108μL)を添加して、それから沈殿物が溶液から落ちた。温度が自然に室温に低下した後、沈殿物をろ過により収穫して、表題結晶を得た(160mg)。
[0085]実施例6
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のモノアンモニウム塩の結晶(結晶形6)の調製
実施例5で得られた、化合物(I)のジアンモニウム塩(85.24mg)にエタノール(4mL)を添加し、その結果得られるスラリーを室温で一晩撹拌した。次いで、沈殿物をろ過により収穫して、表題結晶(40.93mg)を得た。
[0086]実施例7
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオンのナトリウム塩の結晶の調製
化合物(I)(201.58mg)にメタノール(5mL)を添加し、その結果得られるスラリーを室温で撹拌した。スラリーに1mol/L水酸化ナトリウム水溶液(0.54mL)を添加し、その結果得られる溶液を60℃でほぼ1時間撹拌した。温度が自然に室温に低下した後、溶液を窒素ガス流中で撹拌しながら濃縮した。溶媒が徐々に除去されるにつれて、結晶化が開始した。得られた固形物を減圧下で室温で乾燥させて、表題結晶を得た(227mg)。
[0087]実施例8
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオンの結晶の調製
エタノール(2.5mL)と、エタノール中の2mol/Lアンモニア(2.5mL)と、水(2.5mL)との混合物中に化合物(I)(500mg)を含む溶液に、酢酸(0.572mL)を滴下添加し、溶液を室温で撹拌した。この溶液に、以下の実施例8−2と同じような方法で得られた、化合物(I)の種結晶を添加した。次いで、混合物を室温で10分間撹拌して、それから沈殿物が溶液から落ちた。スラリーに酢酸(1.144mL)を45分間徐々に滴下添加し、その結果得られるスラリーを室温で一晩撹拌した。沈殿物をろ過により収穫し、冷67%水性エタノール(3.0mL)及びtert−ブチルメチルエーテル(2.0mL)で連続的にすすいだ。得られた固形物を減圧下で室温で5時間乾燥させて、収率83.4%で表題の結晶を得た(417mg)。
[0088]実施例8−2
(1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ ,39λ −ジホスファオクタシクロ[28.6.4.1 3,36 .1 28,31 .0 4,8 .0 7,12 .0 19,24 .0 23,27 ]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオンの結晶の調製
化合物(I)(497.5mg)にエタノール(1.0mL)及びエタノール中の2mol/Lアンモニア(2.0mL)を添加し、混合物を室温で撹拌して溶解した。その結果得られる溶液を綿パッドに通してろ過し、パッドをエタノール中の2mol/Lアンモニア(0.5mL)及びエタノール(1.5mL)ですすぎ、この溶液に水(2.5mL)を添加した。その結果得られる溶液に酢酸(0.57mL)を室温で30分間徐々に滴下添加して、それから沈殿物が溶液から落ち、スラリーを室温で37分間撹拌した。スラリーに酢酸(0.85mL)を32分間徐々に滴下添加し、その結果得られるスラリーを室温で一晩撹拌した。沈殿物をろ過により収穫し、冷67%水性エタノール(4.0mL)及び水(4.0mL)で連続的にすすいだ。得られた固形物を減圧下で室温で一晩及び30℃で3時間、乾燥させて、収率86.9%で表題の結晶を得た(432.4mg)。
[0089]実施例9
結晶(結晶形1)の熱重量−示差熱分析(TG−DTA)
結晶(結晶形1)試料おおよそ5mgをアルミニウム皿に正確に秤量し、次いで以下の条件で分析を実施した。TGサーモグラムでは、脱水による重量損失が、室温〜130℃の範囲で観察された。
測定条件
雰囲気:窒素ガス流100mL/分
基準皿:空のアルミニウム皿
加熱速度:10℃/分
サンプリング間隔:1秒
温度範囲:室温〜300℃
[0090]実施例10
種々の温度での粉末X線回折
結晶(結晶形1)試料を粉末X線回折計の試料台に置き、分析を室温及び60℃超で実施したが、ここでは、脱水による著しい重量損失が結晶(結晶形1)のTG−DTAサーモグラムで観察された。測定条件は次の通りである。
反射法の条件
装置:RINT TTR−III(Rigaku)
X線源:CuKα(50kV、300mA)
検出器:シンチレーションカウンター
モード:反射
スリット:0.5mm(発散スリット)、オープン(散乱スリット)、オープン(受光スリット)
スキャン速度:10°/分
サンプリング間隔:0.02°
スキャン範囲:5°〜35°
試料ホルダー:アルミニウムホルダー
[0091]結晶(結晶形1)のTG−DTAサーモグラム(図21)では、脱水による著しい重量損失が、吸熱ピークを伴って、130℃までの温度範囲で観察された。結晶(結晶形1)を加熱すると、60℃超で粉末X線回折(PXRD)パターンに著しい変化が見られた(図22)。図23に示すように、変化したPXRDパターンは結晶(結晶形2)のPXRDパターンに匹敵した。次いで、結晶(結晶形2)のPXRDパターンは、125℃以上で別のパターンにさらに変化した(図24)。これらの発見が示したことは、結晶(結晶形1)及び結晶(結晶形2)は水和物であると思われることであった。
[0092]実施例11
25℃での、RH範囲30%〜95%における結晶(結晶形1)の吸湿性測定では、図25に示すように、吸脱着過程の間にヒステリシスループが観察された。吸着過程では、重量変化レベルは、80%RHまで1.7%に徐々に増加し、次いで95%RHでおおよそ19%に最終的に達した。吸湿性測定の前後でPXRDパターンに変化は観察されなかった。対照的に、25℃及び94%RHで4日間貯蔵された結晶(結晶形1)試料のPXRDパターンは、図26に記載のように初期パターンと異なった。変化したPXRDパターンの結晶形態は、結晶形3と定義した。このことから、結晶(結晶形3)が水和物であることが証明されている。
[0093]薬理試験実施例
化合物(1a)の薬理効果を試験するために、以下の試験実施例を行った。
[0094]薬理試験実施例1:HAQ STINGアゴニスト活性のレポーターアッセイ
THP1−デュアル(THP1−Dual)(商標)細胞(InvivoGen、カタログ#thpd−nfis)をEC50決定に適用した。THP1−デュアル(商標)細胞は、ベンダーであるInvivogenによってHAQ STING遺伝子型を持っていると特徴付けられてきた(Insight 201402−1)。細胞を、製造業者が推奨する条件下で増殖及び維持した。EC50の決定については、製造業者のマニュアルに記載のインターフェロン調節因子(IRF)経路の誘導に従った。手短に述べれば、細胞を播種し、37℃、5%COでインキュベートしながら、様々な濃度の化合物で20時間処理した。細胞を再懸濁し、QUANTI−Luc(商標)溶液(カタログ#:rep−qlc1)を添加した。結果として得られる発光をルミノメーター(Envision、Perkin Elmer)で測定した。得られたシグナルをプロットし、GraphPad Prism7ソフトウェアでEC50を計算した。EC50値を、下の表1に報告する。
[0095]

化合物(1a)のヒトSTING EC50(μM)を表1で測定した。
[0096]薬理試験実施例2:STINGバリアントの特異的レポーターアッセイ
ヒトSTINGは、WT、HAQ、REF、及びAQの各バリアントを含めて、主要な4つのバリアントを有する。R232Hとも呼ばれるREF−STINGは、例えば、人口の約14%に生じる。野生型の対立遺伝子と比較して、R232Hは細菌及び後生動物の環状ジヌクレオチドに対する応答が低下している。これらの主要な4つのバリアント並びにその他のレアバリアントの詳細については、Yi Gら、「Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides」 PLoS One 2013;8:e77846によって報告されている。STINGバリアントの特異的レポーター細胞株を、THP1−デュアル(商標)KO−STING細胞(InvivoGen、カタログ#thpd−kostg)及び3種のSTINGバリアントタンパク質発現ベクターを使用することによって確立した。WT STINGの発現ベクターマップを図16に示す。他の2つの発現ベクターについては、WT STINGを適切なヌクレオチド配列に置き換えて、当該ベクターにおいて異なるSTINGバリアント配列を使用した。
WT−STING、REF−STING、及びAQ−STINGのSTINGバリアント発現ベクターを調製し、THP1−デュアル(商標)KO−STING細胞に安定的にトランスフェクトして、それぞれ、WT−STING、REF−STING及びAQ−STINGについての、STINGバリアントの特異的レポーターを調製した。EC50値については、HAQ STINGアゴニスト活性のレポーターアッセイに関する薬理試験実施例1で上記の通り決定した。結果を下の表2に示す。これらのSTINGバリアントに使用したDNA配列を、配列番号1(WTヒトSTINGのヌクレオチド配列)、配列番号2(REFヒトSTINGのヌクレオチド配列)、及び配列番号3(AQヒトStingのヌクレオチド配列)に示す。
[0097]WTヒトSTING:
atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccggtgaccgggctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccggacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga(配列番号1)。
[0098]REFヒトSTING:
atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccggtgaccatgctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccggacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga(配列番号2)
[0099]REFヒトSTING:
atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccgctgaccgagctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccagacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga(配列番号3)
[0100]薬理試験実施例3:マウスSTINGアゴニスト活性のレポーターアッセイ
RAW−ルチア(RAW−Lucia)(商標)ISG細胞(InvivoGen、カタログ#rawl−isg)をマウスSTINGアゴニストのレポーターアッセイに使用した。EC50値については、HAQ STINGアゴニスト活性のレポーターアッセイの薬理試験実施例1で上記の通り決定した。結果を下の表2に示す。
[0101]
[0102]薬理試験実施例4:示差走査蛍光光度(DSF)アッセイ
DSFアッセイを用いて、化合物と組換えSTINGタンパク質との間の物理的相互作用を測定した。切断組換えSTINGタンパク質(a.a.155〜341)(配列番号4)を、下記の通りに、大腸菌(E.coli)で発現させ、アッセイ向けに分離した。アッセイマトリックスを、384−ウェルプレート中に、1μMの組換えSTINGタンパク質(a.a.155〜341)(配列番号4)、100mMのKClを補った100mMのPBS pH7.4、5X SYPROオレンジ色素及び50μMの化合物からなる最終体積10μL毎ウェルに調製した(最終DMSO濃度0〜1%)。アッセイについては、0.05℃/分の速度で25℃から95℃までの温度勾配、並びに、それぞれ、470nm及び586nmの励起フィルター及び発光フィルターを使用して、QuantStudio 12K FlexリアルタイムPCRシステムで実施した。アプライドバイオシステムズ(Applied Biosystems)(登録商標)のProtein Thermal Shiftソフトウェア(アルゴリズムバージョン1.3.)によって設定された蛍光微分曲線に従い、非結合及びリガンド結合組換えSTINGタンパク質の熱融解(Tm)並びに熱融解の差(dTm D)を計算した。
一般に、0超のΔTm値を持つ化合物は、被試験タンパク質と物理的な相互作用を有すると考えられ、ΔTmの値は化合物の結合親和性と正の関連がある。ここで、化合物(1a)はΔTm 17.6を示し(上記表2)、STINGタンパク質との物理的相互作用があることが示された。
[0103]薬理試験実施例5:Ex vivoヒトPBMC刺激アッセイ
5人の健常なドナー由来のヒト血液を、10.0mL BD Vacutainerナトリウムヘパリンチューブ(カタログ#367874)を使用して収集した。末梢血単核細胞(PBMC)の分離は、製造業者が提供するプロトコルを使用して、SIGMA ACCUSPIN 50mlチューブ(カタログ#A2055)及びsigma ACCUSPIN システム−HISTOPAQUE−1077(カタログ#A7054)を使用して行った。PBMC層を採取し、Sigmaが推奨する通りに1xリン酸緩衝生理食塩水(PBS)で洗浄した。PBMCをカウントし、10%ウシ胎児血清(FBS)(Gibco カタログ#20140.79)を補ったRPMI(corning カタログ#10−041−CV)に1×10e6/mlで最終的に懸濁させた。細胞(1×10e6)1mlをFalconの5mL丸底ポリプロピレン試験管(カタログ#352063)に移し、5%COインキュベーターで37℃で24時間、様々な濃度(0、0.1、1、10μM)で刺激した。
24時間のインキュベーション後、チューブを1400rpmで5分間遠心分離し、上澄み液を採取した。上澄み液を、その後のIFNβ測定のために−80℃で保存した。IFNβの測定は、ヒトIFN−βベースキット(Meso Scale Diagnostics カタログ#K151ADA)を使用して行い、製造業者によって提供されたプロトコルを使用した。IFN−βの推定は、MESO SECTOR Imager 2400でアッセイプレートを読み取ることによって、MSD Discovery Workbench 4.0プログラムを使用することによって、行った。24時間後、IFNβタンパク質を分析した。結果は、化合物(1a)によって、用量依存的に一次ヒトPBMC IFNβタンパク質産生を誘導し得ることを示した。表3に示す結果は、異なる5人のドナーを使用して実施した測定の平均を表す。
[0104]
[0105]IFNβmRNAの定量の場合、RNeasy Miniキット(Qiagen、ドイツ)を使用して、製造業者のプロトコルに従って全RNAを分離した。IFNβmRNAをqPCRアッセイによって定量した。手短に述べれば、SuperScript VILO MasterMix(Life Technologies、米国)を使用して、60μlの反応容量で全RNA(400ng〜1000ng)をcDNAに転換した。その後、IFNB1(Hs01077958_s1)及びGAPDH(Hs99999905_m1)に対するRNA特異的プライマーを使用したアプライドバイオシステムズのTaqMan発現アッセイを使用して、得られたcDNA(10ng)を増幅した。アプライドバイオシステムズのQuantstudio 12K FlexリアルタイムPCRシステムで、50℃での最初の2分ステップ、続いて95℃で2秒、95℃で1秒及び60℃で20秒の40サイクルで、TaqMan Fast Advanced Master Mix(Life Technologies、米国)を用いて、qPCR分析を実施した。相対遺伝子発現は、2−ΔΔCT法を使用して、参照遺伝子GAPDHに対する正規化後に計算した。計算は、アプライドバイオシステムズのQuantstudio 12K Flexソフトウェアv1.2.2を使用して行った。IFNβmRNAのフォールド変化対媒体処理試料を表4にまとめた。結果は、化合物(1a)によって用量依存的及び時間依存的に一次PBMCのIFNβmRNAを誘導し得ることを示した。表4に、異なる5人のドナーより計算した平均を表す。
[0106]
[0107]薬理試験実施例6:CT26二重腫瘍モデルに対する化合物(1a)の抗がん効果
化合物(1a)について、マウスの結腸がんモデルであるCT26二重腫瘍モデルで、化合物(1a)の抗がん活性に関して試験した。5〜6週齢の雌Balb/cJマウス(Jackson Labs、Bar Harbor、Maine)に、CT26腫瘍細胞を各動物の両側に、各側で10細胞を皮下移植した。研究Aでは、平均腫瘍がおおよそ100mmに達した、腫瘍を移植して5日後に処置を開始した(1.25mg/kg、2.5mg/kg及び5mg/kg)。研究Bでは、平均腫瘍がおおよそ120mmに達した、腫瘍を移植して8日後に処置を開始した(0.6mg/kg及び10mg/kg)。治療スキームを表5及び表6に記載する。
[0108]
[0109]
[0110]
研究においてマウス全てが、2つの皮下CT26腫瘍を有する。「処置腫瘍」とは、化合物の直接投与を伴う腫瘍を示し、一方、「未処置腫瘍」とは、化合物の直接投与を伴わない腫瘍を示す。実験全体を通して腫瘍体積をフォローした。処置開始後、1週間に2回腫瘍体積を測定する。腫瘍量をキャリパ測定値から長球面の体積に関する式(LxW)/2(式中、L及びWはそれぞれ直交長さ及び幅の測定値(mm)である)により計算する。
化合物(1a)は、CT26二重腫瘍モデルにおいて強力な且つ治癒的効果を示した(図17及び図18)。処置腫瘍の場合、研究で試験された最低用量でも治癒率20%が検出された(図18、0.6mg/kg用量)。同時に、最高用量(10mg/kg)によると、研究の終わりに当該腫瘍の動物100%を治癒した。未処置腫瘍の場合、用量依存的な抗腫瘍効果がまた明らかであった。高用量群(10mg/kg)は治癒効果80%を示した;より低い用量も全て腫瘍成長阻害活性を示した。したがって、化合物(1a)について0.6mg/kg〜10mg/kgの治療域が観察され、注入されていない遠位腫瘍部位での効果を基準にすると、局所的だけでなく全身的にも抗腫瘍活性が見られた。結論として、これらの結果は、化合物(1a)の局所投与によって局所及び全身の(遠達の)抗がん活性の両方を誘導し得ることを示している。
[0111]薬理試験実施例7:CT26肝転移モデルに対する化合物(1a)の抗がん効果
化合物(1a)について、CT26肝転移モデルで化合物(1a)の抗がん活性に関して試験した。麻酔した5〜6週齢の雌BALB/cJマウス(Jackson Labs、Bar Harbor、Maine)に、ルシフェラーゼ発現CT26腫瘍細胞(マウス1匹当たり5×10細胞)を脾臓内に移植した。その後の10分の待機時間で、腫瘍細胞を動物の肝臓に流した。次いで、脾臓を取り出し、動物を縫合し、回復させた。3日後、CT26腫瘍細胞(マウス1匹当たり10個の細胞)を、ここでは右前肢領域の下に皮下(sc)で、再び移植して、化合物投与に向け腫瘍塊の発達を可能にした。脾臓内注入の9日後、化合物(10mg/kg)をsc腫瘍に単回、腫瘍内投与した。
化合物の局所的な抗がん効果は、sc腫瘍に対する化合物の効果として測定し、一方、化合物の遠達効果は、各マウス肝臓で成長している腫瘍塊の有害な効果を基準として、媒体処置の対照マウスと比較して、処置マウスの全生存率によって評価した。化合物(1a)は、局所sc腫瘍に向けて強力な活性も、10匹の処置動物のうち9匹で治癒的全身活性も両方とも示した(図19)。これらの結果は、化合物(1a)の局所投与によって、肝臓内などの深部病変を含めて局所抗がん活性も全身の(遠達の)抗がん活性も両方とも誘導し得ることを示している。
[0112]薬理試験実施例8:GL261脳同所性モデルに対する化合物(1a)の抗がん効果
化合物(1a)について、GL261脳同所性モデルで化合物(1a)の抗がん活性に関して試験した。GL261はネズミ神経膠腫細胞株である。ルシフェラーゼ発現性のGL261マウス神経膠腫細胞(2×10細胞/マウス)を、5〜6週齢の雌B6アルビノマウス(Jackson Labs、Bar Harbor、Maine)に頭蓋内で移植した。3〜4日後、GL261細胞を右前肢領域の下に皮下移植して(10細胞/マウス)、化合物投与向けに腫瘍塊の発達を可能にした。頭蓋内腫瘍細胞移植の10日後、化合物(10mg/kg)をsc腫瘍に単回、腫瘍内で投与した。
化合物の局所的な抗がん効果は、sc腫瘍に対する化合物の効果として測定し、一方、化合物の遠達効果は、各マウス脳で成長している腫瘍塊の有害な効果を基準として、媒体処置の対照マウスと比較して、処置マウスの全生存率によって評価した。化合物(1a)は、局所sc腫瘍で強力な活性も、8匹の処置動物のうち5匹で治癒的全身活性も両方とも示した(図20)。これらの結果は、化合物(1a)の局所投与によって、脳内などの深部病変を含めて局所の抗がん活性も全身の(遠達の)の抗がん活性も両方とも誘導し得ることを示している。
[0113]
配列表
配列番号1(WTヒトSTING):
atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccggtgaccgggctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccggacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga
配列番号2(REFヒトSTING):
atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccggtgaccatgctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccggacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga
配列番号3(AQヒトSTING):
Atgccccactccagcctgcatccatccatcccgtgtcccaggggtcacggggcccagaaggcagccttggttctgctgagtgcctgcctggtgaccctttgggggctaggagagccaccagagcacactctccggtacctggtgctccacctagcctccctgcagctgggactgctgttaaacggggtctgcagcctggctgaggagctgcgccacatccactccaggtaccggggcagctactggaggactgtgcgggcctgcctgggctgccccctccgccgtggggccctgttgctgctgtccatctatttctactactccctcccaaatgcggtcggcccgcccttcacttggatgcttgccctcctgggcctctcgcaggcactgaacatcctcctgggcctcaagggcctggccccagctgagatctctgcagtgtgtgaaaaagggaatttcaacgtggcccatgggctggcatggtcatattacatcggatatctgcggctgatcctgccagagctccaggcccggattcgaacttacaatcagcattacaacaacctgctacggggtgcagtgagccagcggctgtatattctcctcccattggactgtggggtgcctgataacctgagtatggctgaccccaacattcgcttcctggataaactgccccagcagaccgctgaccgagctggcatcaaggatcgggtttacagcaacagcatctatgagcttctggagaacgggcagcgggcgggcacctgtgtcctggagtacgccacccccttgcagactttgtttgccatgtcacaatacagtcaagctggctttagccgggaggataggcttgagcaggccaaactcttctgccagacacttgaggacatcctggcagatgcccctgagtctcagaacaactgccgcctcattgcctaccaggaacctgcagatgacagcagcttctcgctgtcccaggaggttctccggcacctgcggcaggaggaaaaggaagaggttactgtgggcagcttgaagacctcagcggtgcccagtacctccacgatgtcccaagagcctgagctcctcatcagtggaatggaaaagcccctccctctccgcacggatttctcttga
配列番号4(WT STING残基155〜341):
VAHGLAWSYYIGYLRLILPELQARIRTYNQHYNNLLRGAVSQRLYILLPLDCGVPDNLSMADPNIRFLDKLPQQTGDRAGIKDRVYSNSIYELLENGQRAGTCVLEYATPLQTLFAMSQYSQAGFSREDRLEQAKLFCRTLEDILADAPESQNNCRLIAYQEPADDSSFSLSQEVLRHLRQEEKEEV

Claims (34)

  1. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のアンモニウム塩、化合物(I)のナトリウム塩、又は化合物(I)の結晶。
  2. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のアンモニウム塩の結晶である、請求項1に記載の結晶。
  3. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のジアンモニウム塩の結晶である、請求項2に記載の結晶。
  4. 粉末X線回折において、回折角(2θ±0.2°)8.3°に回折ピークを有する、請求項3に記載の結晶(結晶形1)。
  5. 粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°及び16.6°に回折ピークを有する、請求項4に記載の結晶(結晶形1)。
  6. 粉末X線回折において、回折角(2θ±0.2°)6.4°、8.3°、12.7°、16.6°及び25.4°に回折ピークを有する、請求項4に記載の結晶(結晶形1)。
  7. 水和物である、請求項4〜6のいずれか一項に記載の結晶(結晶形1)。
  8. 粉末X線回折において、回折角(2θ±0.2°)9.0°に回折ピークを有する、請求項3に記載の結晶(結晶形2)。
  9. 粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°及び20.8°に回折ピークを有する、請求項8に記載の結晶(結晶形2)。
  10. 粉末X線回折において、回折角(2θ±0.2°)9.0°、15.4°、20.8°、24.0°及び30.0°に回折ピークを有する、請求項8に記載の結晶(結晶形2)。
  11. 水和物である、請求項8〜10のいずれか一項に記載の結晶(結晶形2)。
  12. 粉末X線回折において、回折角(2θ±0.2°)7.4°に回折ピークを有する、請求項3に記載の結晶(結晶形3)。
  13. 粉末X線回折において、回折角(2θ±0.2°)7.4°、16.0°及び21.4°に回折ピークを有する、請求項12に記載の結晶(結晶形3)。
  14. 粉末X線回折において、回折角(2θ±0.2°)6.0°、7.4°、9.3°、16.0°及び21.4°に回折ピークを有する、請求項12に記載の結晶(結晶形3)。
  15. 水和物である、請求項12〜14のいずれか一項に記載の結晶(結晶形3)。
  16. 粉末X線回折において、回折角(2θ±0.2°)9.7°に回折ピークを有する、請求項3に記載の結晶(結晶形4)。
  17. 粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°及び26.9°に回折ピークを有する、請求項16に記載の結晶(結晶形4)。
  18. 粉末X線回折において、回折角(2θ±0.2°)9.7°、14.0°、17.4°、22.3°及び26.9°に回折ピークを有する、請求項16に記載の結晶(結晶形4)。
  19. 粉末X線回折において、回折角(2θ±0.2°)20.0°に回折ピークを有する、請求項3に記載の結晶(結晶形5)。
  20. 粉末X線回折において、回折角(2θ±0.2°)10.9°、20.0°及び23.6°に回折ピークを有する、請求項19に記載の結晶(結晶形5)。
  21. 粉末X線回折において、回折角(2θ±0.2°)10.9°、17.7°、18.9°、20.0°及び23.6°に回折ピークを有する、請求項19に記載の結晶(結晶形5)。
  22. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のモノアンモニウム塩の結晶である、請求項2に記載の結晶。
  23. 粉末X線回折において、回折角(2θ±0.2°)17.0°に回折ピークを有する、請求項22に記載の結晶(結晶形6)。
  24. 粉末X線回折において、回折角(2θ±0.2°)17.0°、21.6°及び25.9°に回折ピークを有する、請求項23に記載の結晶(結晶形6)。
  25. 粉末X線回折において、回折角(2θ±0.2°)15.1°、16.4°、17.0°、21.6°及び25.9°に回折ピークを有する、請求項23に記載の結晶(結晶形6)。
  26. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))のナトリウム塩の結晶である、請求項1に記載の結晶。
  27. 粉末X線回折において、回折角(2θ±0.2°)6.1°に回折ピークを有する、請求項26に記載の結晶。
  28. 粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°及び16.6°に回折ピークを有する、請求項27に記載の結晶。
  29. 粉末X線回折において、回折角(2θ±0.2°)6.1°、9.3°、15.9°、16.6°及び22.3°に回折ピークを有する、請求項27に記載の結晶。
  30. (1R,3R,15E,28R,29R,30R,31R,34R,36R,39S,41R)−29,41−ジフルオロ−34,39−ビス(スルファニル)−2,33,35,38,40,42−ヘキサオキサ−4,6,9,11,13,18,20,22,25,27−デカアザ−34λ,39λ−ジホスファオクタシクロ[28.6.4.13,36.128,31.04,8.07,12.019,24.023,27]ドテトラコンタ−5,7,9,11,15,19,21,23,25−ノナエン−34,39−ジオン(化合物(I))の結晶である、請求項1に記載の結晶。
  31. 粉末X線回折において、回折角(2θ±0.2°)5.6°に回折ピークを有する、請求項30に記載の結晶。
  32. 粉末X線回折において、回折角(2θ±0.2°)5.6°、13.9°及び16.8°に回折ピークを有する、請求項31に記載の結晶。
  33. 粉末X線回折において、回折角(2θ±0.2°)5.6°、8.9°、11.4°、13.9°及び16.8°に回折ピークを有する、請求項31に記載の結晶。
  34. 請求項1〜33のいずれか一項に記載の結晶を含む医薬組成物。
JP2019565031A 2018-08-16 2019-08-14 化合物の塩及びそれらの結晶 Active JP6767589B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862764774P 2018-08-16 2018-08-16
US62/764,774 2018-08-16
PCT/JP2019/031951 WO2020036199A1 (en) 2018-08-16 2019-08-14 Salts of compounds and crystals thereof

Publications (2)

Publication Number Publication Date
JP6767589B1 JP6767589B1 (ja) 2020-10-14
JP2020529967A true JP2020529967A (ja) 2020-10-15

Family

ID=69525441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565031A Active JP6767589B1 (ja) 2018-08-16 2019-08-14 化合物の塩及びそれらの結晶

Country Status (12)

Country Link
US (1) US11691990B2 (ja)
EP (1) EP3837268A4 (ja)
JP (1) JP6767589B1 (ja)
KR (1) KR20210045352A (ja)
CN (1) CN112041325B (ja)
AU (1) AU2019322722A1 (ja)
BR (1) BR112021001349A2 (ja)
CA (1) CA3099904A1 (ja)
MX (1) MX2020013322A (ja)
SG (1) SG11202009262VA (ja)
TW (1) TWI717804B (ja)
WO (1) WO2020036199A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4228681A1 (en) 2020-10-14 2023-08-23 Boehringer Ingelheim International GmbH Combination of a sting agonist and a complex comprising a cell penetrating peptide, a cargo and a tlr peptide agonist

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099824A1 (en) * 2012-12-19 2014-06-26 Board Of Regents, The University Of Texas System Pharmaceutical targeting of a mammalian cyclic di-nucleotide signaling pathway
WO2014179335A1 (en) * 2013-04-29 2014-11-06 Memorial Sloan Kettering Cancer Center Compositions and methods for altering second messenger signaling
WO2015185565A1 (en) * 2014-06-04 2015-12-10 Glaxosmithkline Intellectual Property Development Limited Cyclic di-nucleotides as modulators of sting
WO2018152450A1 (en) * 2017-02-17 2018-08-23 Eisai R&D Management Co., Ltd. Cyclic di-nucleotides compounds for the treatment of cancer

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2257704B (en) 1991-07-18 1995-03-01 Erba Carlo Spa Cyclic oligonucleotides phosphorothioates
US7592326B2 (en) 2004-03-15 2009-09-22 Karaolis David K R Method for stimulating the immune, inflammatory or neuroprotective response
US7709458B2 (en) 2004-03-15 2010-05-04 David K. R. Karaolis Method for inhibiting cancer cell proliferation or increasing cancer cell apoptosis
US8076303B2 (en) 2005-12-13 2011-12-13 Spring Bank Pharmaceuticals, Inc. Nucleotide and oligonucleotide prodrugs
WO2009133560A1 (en) 2008-04-29 2009-11-05 Smart Assays Non-hydrolyzable and permeable cyclic bis-[nucleotide monophosphate] derivatives and uses thereof
CN102199183B (zh) 2010-03-26 2013-12-18 北京大学 环二鸟苷酸及其类似物和制备方法
WO2013185052A1 (en) 2012-06-08 2013-12-12 Aduro Biotech Compostions and methods for cancer immunotherapy
WO2014093936A1 (en) 2012-12-13 2014-06-19 Aduro Biotech, Inc. Compositions comprising cyclic purine dinucleotides having defined stereochemistries and methods for their preparation and use
CN105377867B (zh) 2013-05-03 2019-11-12 加利福尼亚大学董事会 I型干扰素的环状二核苷酸诱导
JP6453855B2 (ja) 2013-05-18 2019-01-16 アドゥロ バイオテック,インク. 「インターフェロン遺伝子の刺激因子」依存性シグナル伝達を活性化するための組成物及び方法
US9549944B2 (en) 2013-05-18 2017-01-24 Aduro Biotech, Inc. Compositions and methods for inhibiting “stimulator of interferon gene”—dependent signalling
US20160287623A1 (en) 2013-11-19 2016-10-06 The University Of Chicago Use of sting agonist as cancer treatment
WO2015074145A1 (en) 2013-11-22 2015-05-28 Brock University Use of fluorinated cyclic dinucleotides as oral vaccine adjuvants
WO2016079899A1 (ja) 2014-11-20 2016-05-26 国立研究開発法人医薬基盤・健康・栄養研究所 異なる核酸アジュバントの組み合わせによる、新規Th1誘導性アジュバントおよびその用途
EP3233882B1 (en) 2014-12-16 2019-10-30 Kayla Therapeutics Fluorinated cyclic dinucleotides for cytokine induction
EP3233191A1 (en) 2014-12-16 2017-10-25 Invivogen Combined use of a chemotherapeutic agent and a cyclic dinucleotide for cancer treatment
US20180344758A1 (en) 2014-12-17 2018-12-06 Lipogen Llc Method of Treating Cancer with cGAMP or cGAsMP
GB201501462D0 (en) 2015-01-29 2015-03-18 Glaxosmithkline Ip Dev Ltd Novel compounds
KR20170129802A (ko) 2015-03-10 2017-11-27 아두로 바이오테크, 인코포레이티드 "인터페론 유전자의 자극인자"-의존적 신호전달을 활성화하는 조성물 및 방법
WO2017011622A1 (en) 2015-07-14 2017-01-19 Spring Bank Pharmaceuticals, Inc. Compounds and compositions that induce rig-i-and other pattern recongnition receptors
CA3030582A1 (en) 2015-07-22 2017-01-26 The Royal Institution For The Advancement Of Learning/Mcgill University Compounds and uses thereof in the treatment of cancers and other medical conditions
GEP20207182B (en) 2015-08-13 2020-11-25 Merck Sharp & Dohme Cyclic di-nucleotide compounds as sting agonists
US9809597B2 (en) 2015-08-20 2017-11-07 The Board Of Trustees Of The Leland Stanford Junior University Ganciclovir derivatives for modulating innate and adaptive immunity and for use in immunotherapy
JP2018526013A (ja) 2015-09-01 2018-09-13 イネイト・テューマー・イミュニティ・インコーポレイテッドInnate Tumor Immunity, Inc. 免疫または免疫抑制性サイトカインに対する抵抗性が増大した免疫細胞およびその使用
AU2016343993A1 (en) 2015-10-28 2018-05-10 Aduro Biotech, Inc. Compositions and methods for activating "stimulator of interferon gene"-dependent signalling
MA52157A (fr) 2015-12-03 2021-02-17 Glaxosmithkline Ip Dev Ltd Dinucléotides cycliques de purine utilisés comme modulateurs de sting
WO2017123657A1 (en) 2016-01-11 2017-07-20 Gary Glick Cyclic dinucleotides for treating conditions associated with sting activity such as cancer
CN109451740B (zh) 2016-01-11 2022-09-02 先天肿瘤免疫公司 用于治疗与sting活性相关的病症诸如癌症的环状二核苷酸
IL280430B2 (en) 2016-03-18 2023-11-01 Univ Texas Cyclic dinucleotide compounds and methods of use
EP3440072B1 (en) 2016-04-07 2020-01-29 GlaxoSmithKline Intellectual Property Development Ltd Heterocyclic amides useful as protein modulators
US10537590B2 (en) 2016-09-30 2020-01-21 Boehringer Ingelheim International Gmbh Cyclic dinucleotide compounds
JOP20170188A1 (ar) 2016-11-25 2019-01-30 Janssen Biotech Inc ثنائي النوكليوتيدات الحلقية كمنبهات ستينغ (sting)
WO2018140831A2 (en) 2017-01-27 2018-08-02 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof
WO2018198084A1 (en) 2017-04-27 2018-11-01 Lupin Limited Cyclic di-nucleotide compounds with tricyclic nucleobases
UY37695A (es) 2017-04-28 2018-11-30 Novartis Ag Compuesto dinucleótido cíclico bis 2’-5’-rr-(3’f-a)(3’f-a) y usos del mismo
JP6909061B2 (ja) 2017-06-13 2021-07-28 株式会社三共 遊技機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014099824A1 (en) * 2012-12-19 2014-06-26 Board Of Regents, The University Of Texas System Pharmaceutical targeting of a mammalian cyclic di-nucleotide signaling pathway
WO2014179335A1 (en) * 2013-04-29 2014-11-06 Memorial Sloan Kettering Cancer Center Compositions and methods for altering second messenger signaling
WO2015185565A1 (en) * 2014-06-04 2015-12-10 Glaxosmithkline Intellectual Property Development Limited Cyclic di-nucleotides as modulators of sting
WO2018152450A1 (en) * 2017-02-17 2018-08-23 Eisai R&D Management Co., Ltd. Cyclic di-nucleotides compounds for the treatment of cancer
WO2018152453A1 (en) * 2017-02-17 2018-08-23 Eisai R&D Management Co., Ltd. Cyclic di-nucleotides derivative for the treatment of cancer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MEDICINAL CHEMISTRY, vol. 59, no. 22, JPN6020029214, 2016, pages 10253 - 10267, ISSN: 0004322118 *

Also Published As

Publication number Publication date
US11691990B2 (en) 2023-07-04
US20210198282A1 (en) 2021-07-01
CN112041325A (zh) 2020-12-04
KR20210045352A (ko) 2021-04-26
AU2019322722A1 (en) 2020-10-15
SG11202009262VA (en) 2020-10-29
CN112041325B (zh) 2023-10-24
EP3837268A4 (en) 2022-04-20
JP6767589B1 (ja) 2020-10-14
TW202015701A (zh) 2020-05-01
TWI717804B (zh) 2021-02-01
WO2020036199A1 (en) 2020-02-20
CA3099904A1 (en) 2020-02-20
MX2020013322A (es) 2021-02-22
BR112021001349A2 (pt) 2021-04-20
EP3837268A1 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6672532B2 (ja) がんの治療のための化合物
CN113563323B (zh) 一类苯并噻唑基联芳基类化合物、制备方法和用途
AU2022201061B2 (en) Novel Jak1 selective inhibitors and uses thereof
CN105683195A (zh) 新的喹啉取代的化合物
JP7384536B2 (ja) キナゾリン化合物並びにその調製方法、使用及び医薬組成物
KR20190017977A (ko) Jak 저해제를 제조하기 위한 피롤로피리미딘 결정
HUE029343T2 (en) Quinolylpyrrolo-pyrimidyl fused ring compounds and salts thereof
JP2022527298A (ja) Stat3の低分子分解誘導剤
WO2019011228A1 (zh) 咪唑并[1,2-b]嘧啶并[4,5-d]哒嗪-5(6H)-酮类化合物及其应用
WO2019031990A1 (ru) Новые гетероциклические соединения как ингибиторы cdk8/19
CA3182541A1 (en) Heterocyclic compounds as triggering receptor expressed on myeloid cells 2 agonists and methods of use
JP6767589B1 (ja) 化合物の塩及びそれらの結晶
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
KR20210015937A (ko) 방광암을 치료하기 위한 방법
CA3231813A1 (en) Solid forms, pharmaceutical compositions and preparation of heteroaromatic macrocyclic ether compounds
RU2790175C2 (ru) Циклические ди-нуклеотидные соединения для лечения рака
EP4212511A1 (en) Aromatic ethylene compound and preparation method therefor, and intermediate, pharmaceutical composition, and application thereof
WO2024013395A1 (en) Pyrrolotriazine and imidazotriazine derivatives as modulators of the nlrp3 inflammasome pathway
TW202409047A (zh) 吡啶并[4,3-d]嘧啶化合物
CN117800976A (zh) 一类含氮杂环类化合物、制备方法和用途
KR20080095859A (ko) 고체 형태의 피롤로피리미딘 유도체 및 항종양제로서의그의 용도

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200917

R150 Certificate of patent or registration of utility model

Ref document number: 6767589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250