JP2020525215A - Artificial heart valve device - Google Patents

Artificial heart valve device Download PDF

Info

Publication number
JP2020525215A
JP2020525215A JP2019572460A JP2019572460A JP2020525215A JP 2020525215 A JP2020525215 A JP 2020525215A JP 2019572460 A JP2019572460 A JP 2019572460A JP 2019572460 A JP2019572460 A JP 2019572460A JP 2020525215 A JP2020525215 A JP 2020525215A
Authority
JP
Japan
Prior art keywords
valve
inner core
heart valve
outer material
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019572460A
Other languages
Japanese (ja)
Other versions
JP2020525215A5 (en
Inventor
リチャード フランシス,
リチャード フランシス,
スコット ロバートソン,
スコット ロバートソン,
マリアン ラリー,
マリアン ラリー,
キャサリン ミヤシロ,
キャサリン ミヤシロ,
ジェイムズ キーオ,
ジェイムズ キーオ,
アレクサンダー ヒル,
アレクサンダー ヒル,
パライック フリスビー,
パライック フリスビー,
Original Assignee
トゥエルヴ, インコーポレイテッド
トゥエルヴ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トゥエルヴ, インコーポレイテッド, トゥエルヴ, インコーポレイテッド filed Critical トゥエルヴ, インコーポレイテッド
Publication of JP2020525215A publication Critical patent/JP2020525215A/en
Publication of JP2020525215A5 publication Critical patent/JP2020525215A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

本技術は、天然弁輪および天然弁尖を有する人間の心臓の天然弁を治療するための、人工心臓弁デバイス、ならびに関連システムおよび方法である。一実施形態は、弁支持体と、弁支持体内の人工弁アセンブリと、上流部および下流部を有する固着部材と、備える。本デバイスは、固定フレームに連結され、かつそこから半径方向外向きに延在する、拡張部材をさらに含む。拡張部材は、複数のワイヤを含み、それらのワイヤの少なくとも一部分は、外側材料によって包囲された内核を含む。ワイヤは、外側材料の厚さの少なくとも一部分を通して延在する複数の凹部、および人工心臓弁デバイスが天然弁輪に位置付けられたときに、生体構造に送達するための、凹部内にある治療剤を含む。【選択図】図7The present technology is an artificial heart valve device, as well as related systems and methods, for treating the natural valve of the human heart with natural annulus and leaflet. One embodiment comprises a valve support, an artificial valve assembly within the valve support, and a fastening member having upstream and downstream portions. The device further includes an extension member that is connected to and extends radially outward from the fixed frame. The expansion member comprises a plurality of wires, at least a portion of those wires including an inner core surrounded by an outer material. The wire contains multiple recesses that extend through at least a portion of the thickness of the outer material, and a therapeutic agent within the recesses for delivery to the anatomy when the artificial heart valve device is positioned on the natural annulus. Including. [Selection diagram] Fig. 7

Description

関連出願の相互参照
本出願は、参照によりその全体が本明細書に組み込まれる、2017年7月6日に出願された米国特許出願番号第15/642,834号に対する優先権を主張するものである。
CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority to US patent application Ser. No. 15/642,834 filed July 6, 2017, which is hereby incorporated by reference in its entirety. is there.

本出願は、(1)2014年3月14日に出願された国際特許出願第PCT/US2014/029549号、(2)2012年10月19日に出願された国際特許出願第PCT/US2012/061219号、(3)2012年10月19日に出願された国際特許出願第PCT/US2012/061215号、(4)2012年6月21日に出願された国際特許出願第PCT/US2012/043636号の主題を組み込む。本出願はまた、2017年4月18日に出願された米国特許出願番号第15/490,047号、およびこれと共に同時に出願された米国特許出願番号第15/643,011号(弁理士整理番号C00013493.USU2)の主題を組み込む。 This application is (1) International Patent Application No. PCT/US2014/029549 filed on March 14, 2014, (2) International Patent Application No. PCT/US2012/061219 filed on October 19, 2012. (3) International Patent Application No. PCT/US2012/061215 filed on October 19, 2012, (4) International Patent Application No. PCT/US2012/043636 filed on June 21, 2012 Incorporate the subject. This application is also filed on April 18, 2017, US Patent Application No. 15/490,047, and concurrently filed with it, US Patent Application No. 15/643,011 (Patent Attorney Docket No. C00013493.USU2) incorporated.

本技術は、概して、人工心臓弁デバイスに関する。具体的には、いくつかの実施形態は、天然僧帽弁の経皮的修復および/または置換のための人工僧帽弁およびデバイス、ならびに関連システムおよび方法を対象とする。 The present technology relates generally to prosthetic heart valve devices. Specifically, some embodiments are directed to prosthetic mitral valves and devices for percutaneous repair and/or replacement of native mitral valves, and related systems and methods.

心臓弁は、いくつかの条件に影響を受けることができる。例えば、僧帽弁は、僧帽弁逆流、僧帽弁脱出、および僧帽弁狭窄症に影響を受けることができる。僧帽弁逆流は、僧帽弁尖がピーク収縮圧力で並列に接合できない、心臓の障害に起因する、左室から左心房の中への血液の異常漏出である。心臓病が、心筋の拡張をしばしば引き起こし、次に、弁尖が収縮期中に接合しない程度にまで、天然僧帽弁輪を拡大するので、僧帽弁尖は、十分に接合しなくてもよい。異常逆流はまた、乳頭筋が虚血または他の条件に起因して機能的に損なわれたときに起こり得る。より具体的には、左心室が収縮期中に収縮すると、罹患乳頭筋が、弁尖の適正な閉鎖を達成するほど十分には収縮しない。 Heart valves can be affected by several conditions. For example, the mitral valve can be affected by mitral regurgitation, mitral valve prolapse, and mitral stenosis. Mitral regurgitation is an abnormal leakage of blood from the left ventricle into the left atrium due to heart failure, where the mitral leaflets cannot join in parallel at peak systolic pressure. The mitral leaflets do not need to be well joined because heart disease often causes dilation of the myocardium, which then enlarges the natural mitral annulus to the extent that the leaflets do not join during systole. .. Abnormal reflux can also occur when the papillary muscles are functionally impaired due to ischemia or other conditions. More specifically, when the left ventricle contracts during systole, the affected papillary muscles do not contract sufficiently to achieve proper closure of the leaflets.

僧帽弁脱出は、僧帽弁尖が左心房の中まで異常に突出するときの症状である。これは、僧帽弁の不規則的な挙動を引き起こし、僧帽弁逆流につながり得る。乳頭筋を僧帽弁尖(腱索)の下側に接続する腱が、伸張または裂傷し得るので、弁尖は、逸脱して、接合できない場合がある。僧帽弁狭窄症は、拡張期の左心室の充填を阻止する僧帽弁口の狭小である。 Mitral valve prolapse is a symptom when the mitral valve leaflets project abnormally into the left atrium. This causes irregular behavior of the mitral valve, which can lead to mitral regurgitation. The leaflets may deviate and fail to join because the tendons that connect the papillary muscles to the underside of the mitral valve leaflets (chordae tendineae) may stretch or tear. Mitral stenosis is the narrowing of the mitral valve orifice that prevents diastolic left ventricular filling.

僧帽弁逆流は、左心房の中へ戻って流れる血液の量を低減させるように、多くの場合、利尿剤および/または血管拡張剤を使用して治療される。弁の修復または置換のいずれかのための外科的アプローチ(開胸および血管内)はまた、僧帽弁逆流を治療するために使用されてきた。例えば、典型的な修復技法は、拡張した弁輪の部分を締めること、または切除することを伴う。締めることは、例えば、弁輪または周辺組織に略固定される、環状または略環状リングを埋め込むことを含む。他の修復手技はまた、相互に、部分的に並列に弁尖を縫合すること、または締める。 Mitral regurgitation is often treated with diuretics and/or vasodilators to reduce the amount of blood flowing back into the left atrium. Surgical approaches (thoracotomy and endovascular) for either valve repair or replacement have also been used to treat mitral regurgitation. For example, typical repair techniques involve tightening or excising portions of the expanded annulus. Tightening includes, for example, implanting an annular or generally annular ring that is generally secured to the annulus or surrounding tissue. Other repair procedures also suture or tighten the leaflets in parallel with each other, partially in parallel.

代替として、より侵襲的な手技は、機械弁または生物組織を天然僧帽弁の代わりに心臓に埋め込むことによって、弁全体自体を置換する。これらの侵襲手技は、従来、大規模な開胸術を必要とし、したがって、非常に苦痛を伴い、有意な罹患率を有し、長い回復期間を必要とする。その上、多くの修復および置換手技では、デバイスの耐久性、あるいは弁輪形成リングまたは置換弁の不適切なサイズ決定が、患者にとって付加的な問題をもたらし得る。修復手技はまた、不良または不正確に配置され縫合糸が手技の成功に影響を及ぼし得るので、高度な技術を持つ心臓外科医を必要とする。 Alternatively, a more invasive procedure replaces the entire valve by implanting a mechanical valve or biological tissue in the heart instead of the native mitral valve. These invasive procedures traditionally require extensive thoracotomy and are therefore very painful, have significant morbidity, and require a long recovery period. Moreover, in many repair and replacement procedures, device durability or improper sizing of the annuloplasty ring or replacement valve can present additional problems to the patient. Restorative procedures also require a highly skilled cardiac surgeon, as poorly or incorrectly placed sutures can affect the success of the procedure.

近年、大動脈弁置換への低侵襲アプローチが実装されている。事前に組み立てられた経皮的人工弁の実施例は、例えば、Medtronic/Corevalve Inc.(Irvine,CA,USA)からのCoreValve Revalving(登録商標)System、およびEdwards Lifesciences(Irvine,CA,USA)からのEdwards−Sapien(登録商標)Valveを含む。両方の弁システムは、拡大可能なフレームと、拡大可能なフレームに取り付けられた三葉生体弁と、を含む。大動脈弁は、実質的に対照で円形であり、筋性の円環を有する。天然生体構造に一致するために、また、三葉人工弁が、人工弁尖の適正な接合のために円形の対称性を必要とするので、大動脈用途における拡大可能なフレームは、大動脈弁輪における対称な円形形状を有する。したがって、大動脈弁生体構造が実質的に均一、対称、かつ極めて筋性であるため、大動脈弁生体構造は、置換弁を収納する拡大可能なフレームに適する。しかしながら、他の心臓弁生体構造は、均一ではなく、対称ではなく、または十分に筋性ではなく、これにより、大動脈弁置換遺贈は、他の種類の心臓弁に適切でなくてもよい。 Recently, minimally invasive approaches to aortic valve replacement have been implemented. Examples of pre-assembled percutaneous prosthetic valves are described, for example, in Medtronic/Corevalve Inc. CoreValve Reviving® Systems from (Irvine, CA, USA), and Edwards-Sapien® Valve from Edwards Lifesciences (Irvine, CA, USA). Both valve systems include an expandable frame and a trilobal biovalve attached to the expandable frame. The aortic valve is substantially symmetrical, circular and has a muscular torus. In order to match the natural anatomy, and because the trilobal prosthesis requires circular symmetry for proper coaptation of the prosthetic leaflets, an expandable frame in aortic applications has been found in the aortic annulus. It has a symmetrical circular shape. Thus, the aortic valve anatomy is suitable for an expandable frame that houses a replacement valve, as the aortic valve anatomy is substantially uniform, symmetrical, and highly muscular. However, other heart valve anatomy is not uniform, not symmetrical, or not sufficiently muscular, so that aortic valve replacement bequest may not be appropriate for other types of heart valves.

心臓の右側の三尖弁は通常3つの弁尖を有するものの、僧帽弁のように、低侵襲治療に対して類似の課題を提起する。それ故に、三尖弁疾患を治療するためのより良い補綴に対する必要性もまた存在する。 The tricuspid valve on the right side of the heart usually has three leaflets, but like the mitral valve, it presents similar challenges for minimally invasive treatment. Therefore, there is also a need for better prostheses to treat tricuspid valve disease.

現在の手技と関連付けられる困難を考慮すると、機能不全の心臓弁を治療するための単純で効果的な低侵襲デバイスおよび方法の必要性が残っている。 Given the difficulties associated with current procedures, there remains a need for simple and effective minimally invasive devices and methods for treating dysfunctional heart valves.

概説
本技術のいくつかの実施形態は、天然僧帽弁を経皮的に交換する独自の難題に対処し、かつ生体構造に治療剤を送達するのに適切である僧帽弁置換デバイスを対象とする。大動脈弁を置換することと比較して、経皮的僧帽弁置換は、経皮的僧帽弁置換を大動脈弁置換よりも有意に困難にする独特の解剖学的障害物に直面する。第1に、比較的対称かつ均一な大動脈弁と異なり、僧帽弁輪は、しばしば対称性が欠けている非平面的な鞍のような幾何学形状を伴う、非円形のD字形または腎臓のような形状を有する。僧帽弁の複雑かつ高度に可変の生体構造は、特定の患者の天然僧帽弁輪にうまく適合する僧帽弁補綴を設計することを困難にする。結果として、補綴は、血液の逆流が起こることを可能にする隙間を残すことができる、天然弁尖および/または弁輪とうまく嵌合しなくてもよい。例えば、天然僧帽弁内への円筒形弁補綴の配置は、弁周囲漏出が起こってもよい天然弁の交連領域中に間隙を残してもよい。
Overview Some embodiments of the present technology are directed to mitral valve replacement devices that address the unique challenges of percutaneously replacing the natural mitral valve and are suitable for delivering therapeutic agents to anatomy. And Compared to replacing the aortic valve, percutaneous mitral valve replacement faces unique anatomical obstacles that make percutaneous mitral valve replacement significantly more difficult than aortic valve replacement. First, unlike the relatively symmetric and uniform aortic valve, the mitral annulus is a non-circular D-shaped or renal, often with a non-planar saddle-like geometry that lacks symmetry. It has such a shape. The complex and highly variable anatomy of the mitral valve makes it difficult to design a mitral valve prosthesis that fits well into the natural mitral annulus of a particular patient. As a result, the prosthesis may not fit well with the native leaflets and/or annulus, which may leave gaps that allow blood regurgitation to occur. For example, placement of a cylindrical valve prosthesis within the native mitral valve may leave a gap in the commissural area of the native valve where perivalvular leakage may occur.

以下の図面を参照して、本開示の多くの態様をより良く理解することができる。図面中の構成要素は、必ずしも一定の縮尺で描かれておらず、代わりに、本開示の原理を明確に例証することに重点が置かれている。さらに、構成要素は、図示された構成要素が必然的に透明であることを示すためではなく、例証を明確にするためだけに、ある図中で透明として示される場合がある。参照しやすいように、本開示の全体を通して、同様または類似の構成要素または特徴を識別するために、同一の参照番号および/または文字が使用されるが、同一参照番号の使用は、部品が同一であると解釈されるべきであることを暗示しない。実際、本明細書に記載される多くの例において、同一の番号が付けられた構成要素は、構造および/または機能が別個の、異なる実施形態を指す。本明細書で提供される見出しは、便宜のためにすぎない。 Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, and instead focused on clearly illustrating the principles of the present disclosure. Furthermore, components may be shown as transparent in some figures for clarity of illustration only, not to indicate that the illustrated components are necessarily transparent. For ease of reference, the same reference numbers and/or letters are used throughout the disclosure to identify similar or similar components or features, but the use of the same reference numbers indicates that the parts are the same. Does not imply that it should be interpreted as. In fact, in many of the examples described herein, identically numbered components refer to different embodiments having separate structures and/or functions. The headings provided herein are for convenience only.

本技術の種々の実施形態による、静脈血管系からの天然僧帽弁への順行性アプローチを示す、心臓の概略断面図である。FIG. 6 is a schematic cross-sectional view of a heart showing an antegrade approach from the venous vasculature to the native mitral valve, according to various embodiments of the present technology. 本技術の種々の実施形態による、ガイドワイヤ上のガイドカテーテルの配置によって維持された心房中隔(IAS)を通したアクセスを示す、心臓の概略断面図である。FIG. 6 is a schematic cross-sectional view of a heart showing access through an atrial septum (IAS) maintained by placement of a guide catheter over a guidewire, according to various embodiments of the present technology. 本技術の種々の実施形態による、大動脈弁および動脈血管系を通した天然僧帽弁への逆行性アプローチを示す、心臓の概略断面図である。FIG. 6 is a schematic cross-sectional view of a heart showing a retrograde approach to the native mitral valve through the aortic valve and arterial vasculature, according to various embodiments of the present technology. 本技術の種々の実施形態による、大動脈弁および動脈血管系を通した天然僧帽弁への逆行性アプローチを示す、心臓の概略断面図である。FIG. 6 is a schematic cross-sectional view of a heart showing a retrograde approach to the native mitral valve through the aortic valve and arterial vasculature, according to various embodiments of the present technology. 本技術の種々の実施形態による、経心尖穿孔を使用した天然僧帽弁へのアプローチを示す、心臓の概略断面図である。FIG. 6 is a schematic cross-sectional view of a heart showing an approach to a native mitral valve using transapical puncture, according to various embodiments of the present technology. 図6Aは、側面断面図であり、図6Bは、本技術の実施形態による、人工心臓弁デバイスを概略的に示す上面図である。6A is a side cross-sectional view and FIG. 6B is a top view schematically illustrating a prosthetic heart valve device, according to an embodiment of the present technology. 図6Aは、側面断面図であり、図6Bは、本技術の実施形態による、人工心臓弁デバイスを概略的に示す上面図である。6A is a side cross-sectional view and FIG. 6B is a top view schematically illustrating a prosthetic heart valve device, according to an embodiment of the present technology. 本技術の実施形態による、人工心臓弁デバイスの頂部等角図である。FIG. 6A is a top isometric view of a prosthetic heart valve device, according to an embodiment of the present technology. 図7Aに示される人工心臓弁デバイスの支持部材の撚り線の拡大図である。FIG. 7B is an enlarged view of the stranded wire of the support member of the artificial heart valve device shown in FIG. 7A. 7C−7C線に沿って切り取った、図7Aに示される撚り線の断面図である。7C is a cross-sectional view of the stranded wire shown in FIG. 7A taken along line 7C-7C. 本技術の実施形態によって構成されている展開構成の人工心臓弁デバイスの概略上面図である。FIG. 6 is a schematic top view of a prosthetic heart valve device in a deployed configuration configured in accordance with an embodiment of the present technology. 本技術の実施形態によって構成されている送達カテーテル内に位置付けられた送達構成における、図8Aの人工心臓弁デバイスの概略端面図である。FIG. 8B is a schematic end view of the prosthetic heart valve device of FIG. 8A in a delivery configuration positioned within a delivery catheter constructed in accordance with an embodiment of the present technology. 本技術の実施形態による、展開中の図8Aおよび8Bに示される人工心臓弁デバイスの一部分の側面断面図である。FIG. 8D is a side cross-sectional view of a portion of the prosthetic heart valve device shown in FIGS. 8A and 8B during deployment, according to embodiments of the present technology. 本技術の実施形態による、展開中の図8Aおよび8Bに示される人工心臓弁デバイスの一部分の側面断面図である。FIG. 8D is a side cross-sectional view of a portion of the prosthetic heart valve device shown in FIGS. 8A and 8B during deployment, according to embodiments of the present technology. 本技術の実施形態による、展開中の図8Aおよび8Bに示される人工心臓弁デバイスの一部分の側面断面図である。FIG. 8D is a side cross-sectional view of a portion of the prosthetic heart valve device shown in FIGS. 8A and 8B during deployment, according to embodiments of the present technology. それぞれ重複および延長構成に示される、図8Aの人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 8B is an end view of three insulating segments of the expansion member of the prosthetic heart valve device of FIG. 8A shown in an overlapping and extended configuration, respectively. それぞれ重複および延長構成に示される、図8Aの人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 8B is an end view of three insulating segments of the expansion member of the prosthetic heart valve device of FIG. 8A shown in an overlapping and extended configuration, respectively. それぞれ重複および延長構成に示される、人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 6A is an end view of three insulating segments of a dilating member of a prosthetic heart valve device shown in an overlapping and extended configuration, respectively. それぞれ重複および延長構成に示される、人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 6A is an end view of three insulating segments of a dilating member of a prosthetic heart valve device shown in an overlapping and extended configuration, respectively. それぞれ重複および延長構成に示される、人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 6A is an end view of three insulating segments of a dilating member of a prosthetic heart valve device shown in an overlapping and extended configuration, respectively. それぞれ重複および延長構成に示される、人工心臓弁デバイスの拡張部材の3つの絶縁セグメントの端面図である。FIG. 6A is an end view of three insulating segments of a dilating member of a prosthetic heart valve device shown in an overlapping and extended configuration, respectively. 本技術の別の実施形態による、人工心臓弁デバイスの概略等角図である。8 is a schematic isometric view of a prosthetic heart valve device according to another embodiment of the present technology. FIG.

本技術のいくつかの実施形態の具体的詳細が、図1〜10を参照して以下で説明される。実施形態の多くは、天然僧帽弁の経皮的置換のための人工弁デバイス、システム、および方法に関して以下で説明されるが、本明細書で説明されるものに加えて、他の用途および他の実施形態も本技術の範囲内である。加えて、本技術のいくつかの他の実施形態は、本明細書で説明されるものとは異なる構成、構成要素、または手技を有することができる。したがって、当業者であれば、本技術が、付加的な要素を伴う他の実施形態を有することができ、または本技術が、図1〜10を参照して以下で示され、説明される特徴のうちのいくつかを伴わない他の実施形態を有することができることを理解するであろう。 Specific details of some embodiments of the present technology are described below with reference to FIGS. Many of the embodiments are described below with respect to prosthetic valve devices, systems, and methods for percutaneous replacement of a native mitral valve, although in addition to those described herein, other applications and Other embodiments are within the scope of the present technology. In addition, some other embodiments of the present technology may have different configurations, components, or procedures than those described herein. Thus, one of ordinary skill in the art may have other embodiments where the technology is with additional elements, or the technology is shown and described below with reference to FIGS. It will be appreciated that other embodiments may be provided without some of the.

本説明内の「遠位」および「近位」という用語に関して、特に指定されない限り、該用語は、オペレータおよび/または血管系または心臓内の場所を参照して、人工弁デバイスおよび/または関連送達デバイスの部分の相対位置を指すことができる。例えば、本明細書で説明される種々の人工弁デバイスを送達して位置付けるために好適な送達カテーテルを指す際に、「近位」は、デバイスのオペレータまたは血管系の中への切開により近い位置を指すことができ、「遠位」は、デバイスのオペレータからより遠位にあるか、または血管系に沿った切開からさらに遠い位置(例えば、カテーテルの端部)を指すことができる。人工心臓弁デバイスに関して、「近位」および「遠位」という用語は、血流の方向に対するデバイスの部分の場所を指すことができる。例えば、近位は、上流位置、または血液がデバイス内に流入する位置(例えば、流入領域)を指すことができ、遠位は、下流位置、または血液がデバイスから流出する位置(例えば、流出領域)を指すことができる。 With respect to the terms "distal" and "proximal" within this description, unless otherwise specified, the term refers to a location within the operator and/or vasculature or heart to the prosthetic valve device and/or associated delivery. It can refer to the relative position of parts of the device. For example, when referring to a delivery catheter suitable for delivering and positioning the various prosthetic valve devices described herein, “proximal” means a position closer to the incision of the device into the operator or vasculature. Can be referred to as “distal” and can refer to a location that is more distal from the device operator or further away from the incision along the vasculature (eg, the end of the catheter). With respect to prosthetic heart valve devices, the terms "proximal" and "distal" can refer to the location of portions of the device with respect to the direction of blood flow. For example, proximal can refer to an upstream location, or a location where blood flows into the device (eg, inflow area), and distal can refer to a downstream location, or where blood exits the device (eg, outflow area). ) Can be pointed out.

経皮的大動脈弁置換のために開発された現在の人工弁は、僧帽弁における使用に不適切である。第1に、これらのデバイスの多くは、弁輪および/または弁尖に接触するステント状構造と、人工弁との間の直接構造接続を必要とする。いくつかのデバイスでは、人工弁を支持するステント柱もまた、弁輪または他の周辺組織に接触する。これらの種類のデバイスは、弁支持体および人工弁尖に、心臓が収縮するにつれて組織および血液によって及ぼされる力を直接的に移送し、その力は、次に、その所望の円筒形状から弁支持体を歪曲する。これは、大抵の心臓置換デバイスが、生涯の何年にもわたって3つの弁尖の適正な開放および閉鎖のために人工弁の周囲で実質的に対称の円筒形支持体を必要とする、三葉弁を使用するので、懸念されている。結果として、これらのデバイスが弁輪および他の周辺組織からの運動および力を受けているとき、補綴は、圧縮および/または歪曲され、人工弁尖を機能不全にさせ得る。また、罹患僧帽弁輪は、任意の利用可能な人工大動脈弁よりもはるかに大きい。弁のサイズが増加するに伴い、弁尖への力は劇的に増加するため、人工大動脈のサイズを拡張した僧帽弁輪のサイズに単に増加させることは、劇的により厚く、より長い弁尖を必要とし、実現可能ではないであろう。 Current prosthetic valves developed for percutaneous aortic valve replacement are unsuitable for use in mitral valves. First, many of these devices require a direct structural connection between the stent-like structure that contacts the annulus and/or leaflets and the prosthetic valve. In some devices, the stent posts that support the prosthetic valve also contact the annulus or other surrounding tissue. These types of devices directly transfer the force exerted by the tissue and blood as the heart contracts to the valve support and prosthetic leaflets, which in turn, from its desired cylindrical shape. Distort the body. This is because most heart replacement devices require a substantially symmetrical cylindrical support around the prosthetic valve for proper opening and closing of the three leaflets over the years of life, It is a concern because it uses a tri-leaflet valve. As a result, when these devices are subject to motion and forces from the annulus and other surrounding tissue, the prosthesis can be compressed and/or distorted, rendering the artificial valve leaflets dysfunctional. Also, the diseased mitral valve annulus is much larger than any available prosthetic aortic valve. As the size of the valve increases dramatically, the force on the leaflets increases dramatically, so simply increasing the size of the artificial aorta to the size of the dilated mitral annulus is dramatically thicker and longer. It requires cusps and will not be feasible.

各拍動の最中にサイズを変える、その不規則で複雑な形状に加えて、僧帽弁輪は、周辺組織からの有意量の半径方向支持を欠く。人工弁を固着するのに十分な支持を提供する線維弾性組織によって完全に包囲される大動脈弁と比較して、僧帽弁は、外壁上の筋組織のみによって結合される。僧帽弁生体構造の内壁は、大動脈流出路の下部分から僧帽弁輪を分離する、薄い血管壁によって結合される。結果として、ステント補綴を拡大することによって付与される力などの僧帽弁輪への有意な半径方向力は、大動脈路の下部分の虚脱につながり得る。その上、より大きな補綴は、より多くの力を及ぼして、より大きな寸法に拡大し、それにより、僧帽弁置換用途についてこの問題を悪化させる。 In addition to its irregular and complex shape, which changes size during each beat, the mitral annulus lacks a significant amount of radial support from surrounding tissue. Compared to the aortic valve, which is completely surrounded by fibroelastic tissue, which provides sufficient support to anchor the prosthetic valve, the mitral valve is bound only by muscle tissue on the outer wall. The inner walls of the mitral valve anatomy are joined by a thin vessel wall that separates the mitral annulus from the lower portion of the aortic outflow tract. As a result, significant radial forces on the mitral valve annulus, such as those exerted by expanding the stent prosthesis, can lead to collapse of the lower portion of the aortic tract. Moreover, larger prostheses exert more force and expand to larger dimensions, thereby exacerbating this problem for mitral valve replacement applications.

左心室の腱索もまた、人工僧帽弁を展開することにおいて障害を提示し得る。大動脈弁と違って、僧帽弁は、埋め込みの間の展開カテーテルおよび交換デバイスの移動および位置を制限する左心室における弁尖の下に、迷路のような腱索を有する。結果として、天然僧帽弁輪の心室側に弁置換デバイスを展開し、位置付けし、固着することは、複雑となる。 The chordae chordae of the left ventricle may also present an obstacle in deploying a prosthetic mitral valve. Unlike the aortic valve, the mitral valve has a labyrinthine chordae below the leaflets in the left ventricle that limit the movement and position of the deployment catheter and exchange device during implantation. As a result, deploying, positioning and anchoring the valve replacement device on the ventricular side of the native mitral valve annulus is complicated.

本技術の実施形態は、僧帽弁の生体構造に関連付けられた課題に対処し、かつ局所的生体構造への治療剤の送達を提供する、僧帽弁などの身体の心臓弁を治療するためのシステム、方法、および装置を提供する。本装置および方法は、静脈または動脈を通して心臓の中へ、または心臓壁を通して挿入されたカニューレを通して、血管内送達されるカテーテルを使用する、経皮的アプローチを可能にする。例えば、装置および方法は、経中隔アプローチに特に適切であるが、心臓内の標的位置への人工置換弁の経心尖、経心房、および直接大動脈送達であり得る。加えて、本明細書で説明されるようなデバイスおよび方法の実施形態は、順行性または逆行性アプローチおよびそれらの組み合わせで心臓の弁(例えば、僧帽弁または三尖弁)にアクセスする既知の方法などの、多くの既知の手術および手技と組み合わせることができる。 Embodiments of the present technology address the challenges associated with mitral valve anatomy and provide for the delivery of therapeutic agents to local anatomy to treat a body heart valve, such as the mitral valve. Systems, methods, and devices. The present devices and methods allow a percutaneous approach using a catheter that is delivered intravascularly through a vein or artery into the heart or through a cannula inserted through the heart wall. For example, the devices and methods are particularly suitable for transseptal approaches, but may be transapical, transatrial, and direct aortic delivery of artificial replacement valves to target locations within the heart. In addition, embodiments of devices and methods as described herein are known for accessing cardiac valves (eg, mitral or tricuspid valves) with antegrade or retrograde approaches and combinations thereof. Can be combined with many known surgeries and procedures, such as

僧帽弁へのアクセス
本技術による弁置換デバイスの構造および動作をよりよく理解するために、最初にデバイスを埋め込むためのアプローチを理解してみると役に立つ。僧帽弁または他の種類の房室弁は、経皮的な様式で患者の血管系を通してアクセスすることができる。経皮的とは、典型的には、例えば、Seldinger技法を通した針アクセスの使用などの外科的切開手技または最小侵襲手技を使用して、心臓から遠隔にある血管系の場所が皮膚を通してアクセスされることを意味する。遠隔血管系に経皮的にアクセスする能力は、周知であり、特許および医学文献で説明されている。血管アクセスの点に応じて、僧帽弁へのアクセスは、順行性であり得、心房中隔を横断すること(例えば、経中隔アプローチ)による左心房の中への進入に依存し得る。代替として、僧帽弁へのアクセスは、大動脈弁を通して左心室に進入する、逆行性であり得る。僧帽弁へのアクセスは、経心尖アプローチを介してカニューレを使用して達成されてもよい。アプローチに応じて、介入ツールおよび支持カテーテル(複数可)が、本明細書で説明されるように種々の様式で、血管内で心臓まで前進させられ、標的心臓弁に隣接して位置付けられてもよい。
Access to the Mitral Valve To better understand the structure and operation of valve replacement devices according to the present technology, it is helpful to first understand the approach for implanting the device. The mitral valve or other type of atrioventricular valve can be accessed through the patient's vasculature in a percutaneous manner. Percutaneous is typically accessed through the skin at a location in the vasculature that is remote from the heart, using, for example, surgical incision procedures or minimally invasive procedures, such as the use of needle access through the Seldinger technique. Means to be done. The ability to percutaneously access remote vascular systems is well known and described in the patent and medical literature. Depending on the point of vascular access, access to the mitral valve may be antegrade and may depend on entry into the left atrium by crossing the atrial septum (eg, transseptal approach). .. Alternatively, access to the mitral valve may be retrograde, entering the left ventricle through the aortic valve. Access to the mitral valve may be achieved using a cannula via a transapical approach. Depending on the approach, the interventional tool and supporting catheter(s) may be advanced endovascularly to the heart and positioned adjacent the target heart valve in a variety of manners as described herein. Good.

図1は、弁置換デバイスを埋め込むための経中隔アプローチの段階を示す。経中隔アプローチにおいて、下大静脈IVCまたは上大静脈SVCを介して、右心房RAを通り、心房中隔IASを横断して、僧帽弁MVより上側の左心房LAの中へ、アクセスする。図1に示されるように、針2を有するカテーテル1が、下大静脈IVCから右心房RAの中へ移動する。いったんカテーテル1が心房中隔IASの前側に到達すると、針2は、例えば、左心房LAの中への卵円窩FOまたは卵円孔において、中隔を貫通するように前進する。この時点で、ガイドワイヤが針2と交換され、カテーテル1が引き出される。 FIG. 1 shows the stages of a transseptal approach for implanting a valve replacement device. In the transseptal approach, through the inferior vena cava IVC or superior vena cava SVC, through the right atrium RA, across the atrial septum IAS, and into the left atrium LA above the mitral valve MV. .. As shown in FIG. 1, a catheter 1 with a needle 2 is moved from the inferior vena cava IVC into the right atrium RA. Once the catheter 1 reaches the anterior side of the atrial septum IAS, the needle 2 is advanced through the septum, for example at the fossa ovalis or foramen ovale into the left atrium LA. At this point the guide wire is replaced with the needle 2 and the catheter 1 is withdrawn.

図2は、ガイドワイヤ6およびガイドカテーテル4が心房中隔IASを通過する、経中隔アプローチの後の段階を示す。ガイドカテーテル4は、本技術による弁置換デバイスを埋め込むための僧帽弁へのアクセスを提供する。 FIG. 2 shows the latter stage of the transseptal approach, where the guidewire 6 and guide catheter 4 pass through the atrial septum IAS. The guide catheter 4 provides access to the mitral valve for implanting a valve replacement device according to the present technology.

代替的な順行性アプローチ(図示せず)では、好ましくは肋骨を除去することなく、肋間切開を通して、外科的アクセスが得られてもよく、小さい穿孔または切開が左心房壁に加えられてもよい。次いで、ガイドカテーテルが、この穿孔または切開を通過して左心房の中へ直接入り、巾着縫合糸によって密閉される。 An alternative antegrade approach (not shown) may provide surgical access through an intercostal incision, preferably without removing the ribs, even if a small perforation or incision is made in the left atrial wall. Good. The guide catheter is then passed through this perforation or incision directly into the left atrium and sealed with a purse string suture.

上で説明されるような僧帽弁への順行性または経中隔アプローチは、多くの点で有利であり得る。例えば、順行性アプローチは、通常、ガイドカテーテルおよび/または人工弁デバイスのより正確かつ効果的なセンタリングおよび安定化を可能にするであろう。順行性アプローチはまた、カテーテルおよび他の介入ツールを用いて腱索または他の弁下構造を損傷するリスクを低減させ得る。加えて、順行性アプローチは、逆行性アプローチの場合のような大動脈弁の横断と関連付けられるリスクを減少させ得る。これは、全くまたは実質的な損傷のリスクを伴わずには横断することができない、人工大動脈弁を持つ患者に特に関係があり得る。 An antegrade or transseptal approach to the mitral valve as described above can be advantageous in many ways. For example, the antegrade approach will typically allow more accurate and effective centering and stabilization of the guide catheter and/or prosthetic valve device. The antegrade approach may also reduce the risk of damaging chordae chordae or other subvalvular structures with catheters and other interventional tools. In addition, the antegrade approach may reduce the risk associated with traversing the aortic valve as in the retrograde approach. This may be particularly relevant for patients with prosthetic aortic valves that cannot be traversed without any or substantial risk of injury.

図3および4は、僧帽弁にアクセスする逆行性アプローチの例を示す。僧帽弁MVへのアクセスは、大動脈弓AAから、大動脈弁AVを横断して、僧帽弁MVより下側の左心室LVの中へ達成されてもよい。大動脈弓AAは、従来の大腿動脈アクセス経路を通して、または上腕動脈、腋窩動脈、橈骨動脈、もしくは頸動脈を介したより直接的なアプローチを通してアクセスされてもよい。そのようなアクセスは、ガイドワイヤ6の使用により達成されてもよい。いったん定位置になると、ガイドカテーテル4は、ガイドワイヤ6上で追跡されてもよい。代替として、好ましくは、肋骨を除去することなく肋間で、大動脈自体の穿孔を通してガイドカテーテルを配置し、胸部の切開を通して、外科的アプローチがとられてもよい。ガイドカテーテル4は、本明細書でさらに詳細に説明されるように、人工弁デバイスの配置を可能にするように後続のアクセスを提供する。逆行性アプローチは、有利なことに経中隔穿孔を必要としない。心臓専門医はまた、より一般的には、逆行性アプローチを使用しており、したがって、逆行性アプローチは、よく知られている。 3 and 4 show an example of a retrograde approach to access the mitral valve. Access to the mitral valve MV may be achieved from the aortic arch AA, across the aortic valve AV, and into the left ventricle LV below the mitral valve MV. The aortic arch AA may be accessed through the conventional femoral artery access route or through a more direct approach through the brachial, axillary, radial, or carotid arteries. Such access may be achieved through the use of guidewire 6. Once in place, the guide catheter 4 may be tracked over the guide wire 6. Alternatively, a surgical approach may be taken, preferably by placing a guide catheter through the perforation of the aorta itself, intercostally without removing the ribs, and through an incision in the chest. The guide catheter 4 provides subsequent access to allow placement of the prosthetic valve device, as described in further detail herein. The retrograde approach advantageously does not require transseptal perforation. Cardiologists also more commonly use the retrograde approach, and therefore the retrograde approach is well known.

図5は、経心尖穿孔を介して経心尖アプローチを示す。このアプローチでは、心臓へのアクセスは、従来の開胸術または胸骨切開術、あるいはより小さい肋間または剣状突起下切開または穿孔であり得る、胸部切開を介する。次いで、アクセスカニューレが、心尖における、またはその付近の左心室の壁の中の、穿孔を通して配置される。次いで、本発明のカテーテルおよび人工装具は、このアクセスカニューレを通して左心室に導入されてもよい。経心尖アプローチは、僧帽または大動脈弁へのより短く真っ直ぐな直線経路を提供する。さらに、それが血管内アクセスを伴わないため、経心尖アプローチは、他の経皮的アプローチで必要とされるカテーテル法を行うために介入心臓学の訓練を必要としない。 FIG. 5 shows a transapical approach via transapical perforation. In this approach, access to the heart is through a thoracotomy, which may be a conventional thoracotomy or sternotomy, or a smaller intercostal or subxiphoid incision or perforation. An access cannula is then placed through the perforation in the wall of the left ventricle at or near the apex of the heart. The catheter and prosthesis of the present invention may then be introduced into the left ventricle through this access cannula. The transapical approach provides a shorter, straighter straight path to the mitral or aortic valve. Furthermore, because it does not involve intravascular access, the transapical approach does not require interventional cardiology training to perform the catheterization required by other percutaneous approaches.

人工心臓弁デバイスおよび方法の選択された実施形態
本技術の実施形態は、心臓の弁のうちの1つ以上を治療することができ、特にいくつかの実施形態は、有利なことに僧帽弁を治療する。本技術の人工弁デバイスはまた、患者の心臓内の他の弁(例えば、二尖または三尖弁)の置換に好適であり得る。本技術の実施形態による、人工心臓弁デバイスの実施例が、図6A〜10を参照してこの節で説明される。図6A〜10を参照して説明される実施形態の特定の要素、下部構造、利点、用途、および/または他の特徴は、相互と好適に入れ替え、置換し、または別様に構成できる。さらに、図6A〜10を参照して説明される実施形態の好適な要素は、独立型および/または内蔵型デバイスとして使用することができる。
Selected Embodiments of Prosthetic Heart Valve Devices and Methods Embodiments of the present technology may treat one or more of the valves of the heart, and in particular, some embodiments may advantageously be a mitral valve. To treat. The prosthetic valve device of the present technology may also be suitable for replacement of other valves (eg, bicuspid or tricuspid valves) in the patient's heart. Examples of prosthetic heart valve devices according to embodiments of the present technology are described in this section with reference to FIGS. 6A-10. Certain elements, substructures, advantages, applications, and/or other features of the embodiments described with reference to FIGS. 6A-10 may be suitably interchanged, substituted, or otherwise configured with each other. Moreover, suitable elements of the embodiments described with reference to Figures 6A-10 can be used as stand-alone and/or self-contained devices.

図6Aは、本技術の実施形態による人工心臓弁デバイス(「デバイス」)100の、側面断面図であり、図6Bは、平面図である。デバイス100は、弁支持体110と、弁支持体110に取り付けられた固着部材120と、弁支持体110内の人工弁アセンブリ150と、を含む。図6Aを参照すると、弁支持体110は、流入領域112および流出領域114を有する。人工弁アセンブリ150は、弁支持体110の中に配列されて、血液が流入領域112から流出領域114(矢印BF)まで流れることを可能にするが、血液が流出領域114から流入領域112までの方向に流れることを防止する。 6A is a side cross-sectional view and FIG. 6B is a plan view of a prosthetic heart valve device (“device”) 100 according to an embodiment of the present technology. The device 100 includes a valve support 110, an anchoring member 120 attached to the valve support 110, and a prosthetic valve assembly 150 within the valve support 110. Referring to FIG. 6A, the valve support 110 has an inflow region 112 and an outflow region 114. The prosthetic valve assembly 150 is arranged in the valve support 110 to allow blood to flow from the inflow region 112 to the outflow region 114 (arrow BF), while allowing blood to flow from the outflow region 114 to the inflow region 112. Prevent flow in the direction.

図6Aに示される実施形態において、固着部材120は、弁支持体110の流出領域114に取り付けられた基部122と、基部122から外向きに横方向に突出する複数の腕部124と、を含む。固着部材120はまた、腕部124から延在する固定構造130を含む。固定構造130は、第1の部分132および第2の部分134を含むことができる。固定構造130の第1の部分132は、例えば、固定構造130の上流領域であり得、固定構造130は、図6Aに示されるような展開構成において、間隙Gによって弁支持体110の流入領域112から外向きに横方向に離間される。固定構造130の第2の部分134は、固定構造130の最下流部であり得る。固定構造130は、円筒形リング(例えば、直線状円筒、または円錐形)であり得、固定構造130の外面は、天然弁輪に対して外向きに押し付けるように構成されている環状係合表面を画定することができる。固定構造130は、外向きに半径方向に突出し、かつ上流方向に向かって傾斜する、複数の固定要素136をさらに含むことができる。固定要素136は、例えば、鉤、フック、または上流方向(例えば、デバイス100の下流部から離れて延在する方向)にのみ傾斜している他の要素であり得る。 In the embodiment shown in FIG. 6A, the anchoring member 120 includes a base 122 attached to the outflow region 114 of the valve support 110 and a plurality of arms 124 that project laterally outwardly from the base 122. .. The fixation member 120 also includes a fixation structure 130 extending from the arm 124. The fixation structure 130 can include a first portion 132 and a second portion 134. The first portion 132 of the anchoring structure 130 can be, for example, an upstream region of the anchoring structure 130, the anchoring structure 130 having a gap G in the inlet region 112 of the valve support 110 in the deployed configuration as shown in FIG. 6A. Laterally spaced outwards from. The second portion 134 of the anchoring structure 130 may be the most downstream portion of the anchoring structure 130. The fixation structure 130 can be a cylindrical ring (eg, a straight cylinder, or a conical shape), the outer surface of the fixation structure 130 having an annular engagement surface configured to press outward against the native valve annulus. Can be defined. The fixation structure 130 may further include a plurality of fixation elements 136 that project radially outward and slope toward the upstream direction. The fixation element 136 can be, for example, a hook, hook, or other element that is inclined only in the upstream direction (eg, the direction extending away from the downstream portion of the device 100).

さらに図6Aを参照すると、固着部材120は、腕部124と固定構造130との間の滑らかな屈曲140を有する。例えば、固定構造130の第2の部分134は、滑らかな屈曲140で腕部124から延在する。滑らかな屈曲140が連続的支柱の屈曲部分であるように、腕部124および固定構造130は、連続的支柱または支持要素から一体的に形成され得る。他の実施形態において、滑らかな屈曲140は、腕部124または固定構造130のどちらかに関する別個の構成要素であり得る。例えば、滑らかな屈曲140は、滑らかな接続を形成する溶接、接着剤、または他の技術を使用して腕部124および/または固定構造130に取り付けられ得る。デバイス100が少なくとも部分的に展開されたあと、デバイス100がカプセルまたは他の容器内で再捕捉され得るように、滑らかな屈曲140は構成されている。 Still referring to FIG. 6A, the anchoring member 120 has a smooth bend 140 between the arm 124 and the anchoring structure 130. For example, the second portion 134 of the anchoring structure 130 extends from the arm 124 with a smooth bend 140. The arms 124 and the anchoring structure 130 may be integrally formed from continuous struts or support elements such that the smooth bend 140 is a bent portion of the continuous struts. In other embodiments, the smooth bend 140 can be a separate component for either the arm 124 or the anchoring structure 130. For example, the smooth bend 140 may be attached to the arm 124 and/or the anchoring structure 130 using welding, adhesives, or other techniques that form a smooth connection. The smooth bend 140 is configured such that the device 100 can be recaptured within a capsule or other container after the device 100 has been at least partially deployed.

デバイス100は、弁支持体110上の第1の封止部材162と、固着部材120上の第2の封止部材164と、をさらに含むことができる。第1の封止部材162および第2の封止部材164は、Dacron(登録商標)または別の種類の高分子材料などの可撓性材料から作製することができる。第1の封止部材162は、弁支持体110の内部表面および/または外部表面を被覆することができる。図6Aに示される実施形態において、第1の封止部材162は、弁支持体110の内部表面に取り付けられ、人工弁アセンブリ150は、第1の封止部材162、および弁支持体110の交連部分に取り付けられる。第2の封止部材164は、固着部材120の内部表面に取り付けられる。結果として、固定構造130の外側環状係合表面が、天然弁輪の組織に直接的に接触するように、固定構造130の外側環状係合表面は、第2の封止部材164によって被覆されない。 The device 100 can further include a first sealing member 162 on the valve support 110 and a second sealing member 164 on the anchoring member 120. The first sealing member 162 and the second sealing member 164 can be made from a flexible material such as Dacron® or another type of polymeric material. The first sealing member 162 can cover the inner surface and/or the outer surface of the valve support 110. In the embodiment shown in FIG. 6A, the first sealing member 162 is attached to the inner surface of the valve support 110 and the prosthetic valve assembly 150 includes the first sealing member 162 and the commissure of the valve support 110. Attached to the part. The second sealing member 164 is attached to the inner surface of the fixing member 120. As a result, the outer annular engaging surface of the anchoring structure 130 is not covered by the second sealing member 164 such that the outer annular engaging surface of the anchoring structure 130 directly contacts the tissue of the native valve annulus.

デバイス100は、拡張部材170をさらに含むことができる。拡張部材170は、第2の封止部材164の拡張部分である得るか、またはそれは、固定構造130の第2の封止部材164および/または第1の部分132に取り付けられた別個の構成要素であり得る。拡張部材170は、図6Aに示される展開状態において、固定構造130の第1の部分132に対して屈曲する可撓性部材であり得る。動作中、デバイスが所望の高度に位置し、天然弁輪に対して中心に置かれるように、拡張部材170は、埋め込みの間、デバイス100を滑動する。下記のように、拡張部材170は、埋め込みの間、視覚化され得、および/または治療剤を送達するように構成されている、金属ワイヤまたは他の構造などの支持部材を含むことができる。 The device 100 can further include an expansion member 170. The expansion member 170 can be an expansion portion of the second sealing member 164, or it can be a separate component attached to the second sealing member 164 and/or the first portion 132 of the fixation structure 130. Can be The expansion member 170 can be a flexible member that flexes with respect to the first portion 132 of the fixation structure 130 in the deployed state shown in FIG. 6A. During operation, the expansion member 170 slides the device 100 during implantation so that the device is at the desired elevation and centered against the native annulus. As described below, the expansion member 170 can include a support member, such as a metal wire or other structure, that can be visualized and/or configured to deliver a therapeutic agent during implantation.

図7Aは、デバイス100の例の頂部等角図である。この実施形態において、弁支持体110は、第1のフレーム(例えば、内側フレーム)を画定し、固着部材120の固定構造130は、各々が複数の構造要素を含む第2のフレーム(例えば、外側フレーム)を画定する。固定構造130は、より具体的には、図7Aに示されるように自由にかつ完全に拡大されるとき、少なくとも実質的に円筒形のリングを一緒に形成する、ダイヤモンド形セル138内に配列された構造要素137を含む。構造要素137は、自己拡大できる、またはバルーンもしくは他の種類の機械的拡大器によって拡大できる、金属、ポリマー、または他の好適な材料から形成される支柱または他の構造特徴であり得る。 FIG. 7A is a top isometric view of an example of device 100. In this embodiment, the valve support 110 defines a first frame (eg, an inner frame) and the anchoring structure 130 of the anchoring member 120 includes a second frame (eg, an outer frame) each including a plurality of structural elements. Frame). The anchoring structure 130 is more specifically arranged within a diamond-shaped cell 138 that together form an at least substantially cylindrical ring when expanded fully and freely as shown in FIG. 7A. Structure element 137. Structural element 137 may be a strut or other structural feature formed of metal, polymer, or other suitable material that is self-expandable or expandable by a balloon or other type of mechanical expander.

固定構造130のいくつかの実施形態は、外向き係合表面を有する概ね円筒形の固定リングであり得る。例えば、図7Aに示される実施形態において、構造要素137の外表面は、展開状態の天然弁輪に対して外向きに押し付けるように構成されている環状係合表面を画定する。何らの制限もない完全拡大状態において、固定構造130は、弁支持体110と実質的に少なくとも平行である。しかしながら、固定構造130は、それが心臓弁の天然弁輪の内部表面に対して半径方向に外向きに押し付けるとき、展開状態に内向き(矢印I)に屈曲することができる。 Some embodiments of the locking structure 130 can be a generally cylindrical locking ring having an outwardly engaging surface. For example, in the embodiment shown in FIG. 7A, the outer surface of structural element 137 defines an annular engagement surface that is configured to urge outward against the deployed native valve annulus. In the fully expanded state without any restrictions, the fixation structure 130 is substantially at least parallel to the valve support 110. However, the anchoring structure 130 can bend inward (arrow I) in the deployed state when it is pressed radially outwardly against the inner surface of the native annulus of the heart valve.

図7Aに示されるデバイス100の実施形態は、弁支持体110の内部表面に沿って並ぶ第1の封止部材162と、固定構造130の内部表面に沿った第2の封止部材164と、を含む。拡張部材170は、可撓性ウェブ172(例えば、織物)と、可撓性ウェブ172に取り付けられた複数の撚り線180(例えば、ワイヤ、支柱、ケーブル、リボン、繊維など)を備える支持部材174と、を有する。可撓性ウェブ172は、固定構造130と支持部材174との金属同士の接続なしで、第2の封止部材164から延在することができる。例えば、拡張部材170は、第2の封止部材164の材料の延長であり得る。拡張部材170のいくつかの実施形態は、これにより、固定構造130に関して容易に屈曲することができる柔らかい構造である。 The embodiment of the device 100 shown in FIG. 7A includes a first sealing member 162 aligned along the inner surface of the valve support 110 and a second sealing member 164 along the inner surface of the anchoring structure 130. including. The expansion member 170 includes a support member 174 that includes a flexible web 172 (eg, fabric) and a plurality of strands 180 (eg, wires, struts, cables, ribbons, fibers, etc.) attached to the flexible web 172. And. The flexible web 172 can extend from the second sealing member 164 without a metal-to-metal connection between the stationary structure 130 and the support member 174. For example, the expansion member 170 can be an extension of the material of the second sealing member 164. Some embodiments of the expansion member 170 are thereby soft structures that can be easily flexed with respect to the anchoring structure 130.

図7Bは、図7Aに示される支持部材174の撚り線180のうちの1つの一部分の拡大図であり、図7Cは、7C−7C線に沿って切り取った、図7Bに示される撚り線180の断面図である。図7Bおよび7Cを一緒に参照すると、撚り線180の少なくとも一部分は、厚さtを有する外側材料184によって包囲された内核186を含むことができる。外側材料184は、第1の材料であり得、内核186は、第1の材料とは異なる第2の材料であり得る。例えば、いくつかの実施形態において、撚り線180の少なくとも一部分は、撚り線180が、異種材料の各々の所望の物理的および機械的特質を含むような、少なくとも2つの異種材料から形成される引き抜き充填管(「DFTのもの」)である。図7A〜7Cに示される実施形態において、外側材料184は、撚り線180に構造支持体を提供する超弾性合金(例えば、ニチノール、コバルト・クロム、MP35N(登録商標)など)であり、内核186は、支持部材174の可視化を改善し、および/または撚り線180に追加の構造支持体を提供する、X線不透過性材料(例えば、プラチナ、タンタル、タングステン、パラジウム、金、銀など)である。 7B is an enlarged view of a portion of one of the strands 180 of the support member 174 shown in FIG. 7A, and FIG. 7C is a strand 180 shown in FIG. 7B taken along line 7C-7C. FIG. 7B and 7C together, at least a portion of the stranded wire 180 can include an inner core 186 surrounded by an outer material 184 having a thickness t. The outer material 184 can be a first material and the inner core 186 can be a second material that is different than the first material. For example, in some embodiments, at least a portion of the stranded wire 180 is a drawn wire formed from at least two dissimilar materials such that the stranded wire 180 includes the desired physical and mechanical properties of each of the dissimilar materials. Filling tube ("DFT's"). In the embodiment shown in FIGS. 7A-7C, the outer material 184 is a superelastic alloy (eg, Nitinol, Cobalt Chromium, MP35N®, etc.) that provides structural support for the stranded wire 180, and the inner core 186. Is a radiopaque material (eg, platinum, tantalum, tungsten, palladium, gold, silver, etc.) that improves the visualization of the support member 174 and/or provides additional structural support for the stranded wire 180. is there.

ある特定の実施形態において、撚り線180は、外側材料184と内核186との間に位置付けられた任意の中間材料185(図7C、破線で示される)をさらに含む。そのような実施形態において、内核材料および外側材料184は同一であってもよく、中間材料185は異なる材料であってもよい。例えば、外側材料184および内核材料は第1の材料であってもよく、中間材料185は。第1の材料とは異なる第2の材料であってもよい。例えば、外側材料184および内核材料186は、超弾性合金(例えば、ニチノール、コバルト・クロムなど)であってもよく、中間材料185は、X線不透過性材料(例えば、プラチナ、タンタル、パラジウム、金など)であってもよい。他の実施形態において、外側材料184、内核材料、および中間材料185は、異なる材料である。さらに他の実施形態において、撚り線180は、材料の4つ以上の層を含んでもよい。 In certain embodiments, the stranded wire 180 further comprises an optional intermediate material 185 (FIG. 7C, shown in dashed lines) positioned between the outer material 184 and the inner core 186. In such an embodiment, the inner core material and the outer material 184 may be the same and the intermediate material 185 may be a different material. For example, the outer material 184 and inner core material may be the first material and the intermediate material 185. It may be a second material different from the first material. For example, the outer material 184 and the inner core material 186 may be a superelastic alloy (eg, Nitinol, cobalt-chrome, etc.), and the intermediate material 185 may be a radiopaque material (eg, platinum, tantalum, palladium, etc.). Gold). In other embodiments, outer material 184, inner core material, and intermediate material 185 are different materials. In yet other embodiments, the stranded wire 180 may include more than three layers of material.

図7Bおよび7Cに示されるように、撚り線180の少なくとも一部分は、外側材料184の厚さtの少なくとも一部分を通して延在する複数の凹部182と、凹部182内の1つ以上の治療剤188と、を含む。いくつかの実施形態において、内核186の上面が凹部182を通して露出されるように、凹部182のうちの1つ以上は、外側材料184の全体厚さtを通して延在する深度を有してもよい。ある特定の実施形態において、凹部182が、内核186内の深度で終端するように、凹部182のうちの1つ以上は、外側材料184の全体厚さおよび内核186の厚さの一部分を通して延在してもよい。前述の実施形態のどちらにおいても、治療剤188は、内核186上に位置付けられてもよく、あるいは、内核186に治療剤188を含浸してもよい。他の実施形態において、内核186が露出されず、かつ凹部182が、外側材料184内の中間深度で終端するように、凹部182は、外側材料184の厚さtの一部分のみを通して延在する。そのような実施形態において、治療剤188は、外側材料184の露出した内部表面上に位置付けられてもよい。追加として、撚り線180は、外側材料184および/または内核186内の異なる深さに延在する凹部を含んでもよい。その上、中間材料185を含むそれらの実施形態において、撚り線180は、外層を通して延在し、かつ中間材料185を露出する1つ以上の第1の凹部と、外側材料184および中間材料185を通して延在し、かつ内核186を露出する1つ以上の第2の凹部と、を含んでもよい。いくつかの実施形態において、凹部182は、撚り線180の完全な断面寸法(例えば、直径)を通過する貫通孔である。前述の実施形態のいずれにおいてでも、治療剤188は、凹部182の全部または一部分を占めてもよい。 As shown in FIGS. 7B and 7C, at least a portion of the stranded wire 180 includes a plurality of recesses 182 extending through at least a portion of the thickness t of the outer material 184 and one or more therapeutic agents 188 within the recess 182. ,including. In some embodiments, one or more of the recesses 182 may have a depth that extends through the overall thickness t of the outer material 184 such that the top surface of the inner core 186 is exposed through the recesses 182. .. In certain embodiments, one or more of the recesses 182 extend through the entire thickness of the outer material 184 and a portion of the thickness of the inner core 186 such that the recesses 182 terminate at a depth within the inner core 186. You may. In any of the foregoing embodiments, the therapeutic agent 188 may be located on the inner core 186 or the inner core 186 may be impregnated with the therapeutic agent 188. In other embodiments, the recess 182 extends only through a portion of the thickness t of the outer material 184 such that the inner core 186 is not exposed and the recess 182 terminates at an intermediate depth within the outer material 184. In such embodiments, therapeutic agent 188 may be positioned on the exposed interior surface of outer material 184. Additionally, the stranded wire 180 may include recesses that extend to different depths within the outer material 184 and/or the inner core 186. Moreover, in those embodiments that include an intermediate material 185, the stranded wire 180 extends through the outer layer and through one or more first recesses that expose the intermediate material 185 and through the outer material 184 and the intermediate material 185. One or more second recesses that extend and expose the inner core 186. In some embodiments, the recess 182 is a through hole that passes through the complete cross-sectional dimension (eg, diameter) of the stranded wire 180. In any of the foregoing embodiments, the therapeutic agent 188 may occupy all or a portion of the recess 182.

図7A〜7Cに示される凹部182が円形断面形状を有するが、他の実施形態において、凹部のうちの1つ以上は、他の好適な断面形状(例えば、正方形、卵形、長方形など)を有してもよい。同様に、凹部182のうちの1つ以上は、同じ断面積または異なる断面積(異なる深度の凹部において)を有することができる。例えば、凹部182のうちの1つ以上は、凹部の底部表面に向かって漸減する断面積を有してもよい。また、凹部182のうちの少なくともいくつかは、撚り線に沿って同じ周囲位置に位置付けられてもよく、および/または、凹部182のうちの少なくともいくつかは、異なる周囲位置を有してもよい。その上、いくつかの実施形態において、複数の凹部は、撚り線180に沿って同じ軸方向位置に位置付けられてもよい。他の実施形態において、凹部182の全ては、撚り線に沿って異なる軸方向位置に位置付けられる。 Although the recesses 182 shown in FIGS. 7A-7C have a circular cross-sectional shape, in other embodiments, one or more of the recesses have other suitable cross-sectional shapes (eg, square, oval, rectangular, etc.). You may have. Similarly, one or more of the recesses 182 can have the same or different cross-sectional areas (at recesses at different depths). For example, one or more of the recesses 182 may have a decreasing cross-sectional area towards the bottom surface of the recess. Also, at least some of the recesses 182 may be located at the same peripheral position along the strand and/or at least some of the recesses 182 may have different peripheral positions. .. Moreover, in some embodiments, the plurality of recesses may be located at the same axial position along the strand 180. In other embodiments, all of the recesses 182 are located at different axial positions along the strand.

好適な治療剤188は、弁輪において炎症を低減させ、かつ拡張部材170と弁尖および/または心房床のうちの1つ以上との間の内方成長を促進する、1つ以上の薬および/または生物活性剤を含んでもよい。よって、1つ以上の治療剤188の組み込みは、人工心臓弁デバイスの耐性および組み込みを増加し、ならびに/または弁傍の漏出を低減することができる。好適な抗炎症薬の例としては、パクリタキセル、シロリムスなどが挙げられる。生物活性剤の例としては、血小板由来成長因子(「PDGF」)、線維芽細胞成長因子(「FGF」)、変異成長因子(「TGF」)、ならびに内皮細胞、平滑筋細胞、および線維芽細胞の成長を刺激する他の好適な分裂促進因子などの1つ以上の成長因子が挙げられる。 A suitable therapeutic agent 188 reduces the inflammation in the valve annulus and promotes ingrowth between the expansion member 170 and one or more of the leaflets and/or the atrial bed and one or more drugs and And/or may include a bioactive agent. Thus, the incorporation of one or more therapeutic agents 188 can increase the resistance and incorporation of a prosthetic heart valve device and/or reduce paravalvular leakage. Examples of suitable anti-inflammatory agents include paclitaxel, sirolimus and the like. Examples of bioactive agents include platelet-derived growth factor (“PDGF”), fibroblast growth factor (“FGF”), mutant growth factor (“TGF”), and endothelial cells, smooth muscle cells, and fibroblasts. And one or more growth factors, such as other suitable mitogens that stimulate the growth of E. coli.

いくつかの実施形態において、治療剤188は、所望の時間にわたって、制御された送達速度を有するように構成されてもよい。例えば、治療剤188は、送達ビヒクル(例えば、治療剤188の徐放性のための生体再吸収性ポリマーブレンドなど)と関連付けられ(例えば、送達ビヒクルによって封入され、送達ビヒクルに結合され)てもよい。ある特定の実施形態において、ウェブに、生物活性剤または生物活性剤および送達ビヒクルを含浸して、生物活性剤の解放の速度を制御してもよい。 In some embodiments, therapeutic agent 188 may be configured to have a controlled delivery rate over a desired time period. For example, therapeutic agent 188 may also be associated with (eg, encapsulated by, and attached to, a delivery vehicle) a delivery vehicle (eg, a bioresorbable polymer blend, etc. for sustained release of therapeutic agent 188). Good. In certain embodiments, the web may be impregnated with the bioactive agent or bioactive agent and delivery vehicle to control the rate of release of the bioactive agent.

図7Aに図示される実施形態が、十字の蛇状パターン(例えば、ジグザグパターン、菱形パターン)を形成する、撚り線180の略同軸配列を図示する一方で、1つ以上の撚り線180の他の配列およびパターン(例えば、蛇状、波状、半径方向アーム、正方形など)もまた、拡張部材170に所望の剛性を提供するように形成することができる。その上、図7Aに示される支持部材174が固定構造130から分離しているが、他の実施形態において、支持部材174は固定構造130と一体である。加えて、支持部材174、弁支持体110、および/または固着部材120は、上述のように、材料、合金、支柱、ワイヤ、撚り線の種類、および/または撚り線の寸法の混合物を含んでもよい。例えば、いくつかの実施形態において、構造、支柱、または撚り線の一部分は、DFTのものでもよく、構造、支柱、または撚り線の別の部分は、ポリマー繊維および/または金属ワイヤでできていてもよい。特定の実施形態において、拡張部材は、織物のヘム内に、または環状ウェブの周囲に垂直なストリップとして、環状織物ウェブおよび編組超弾性材料(例えば、ニチノール)を含む。本明細書に開示される実施形態のいずれにおいても、拡張部材は、プラチナ含浸織物を含み、および/または織物上に堆積された薄膜超弾性材料(例えば、ニチノール)を含んでもよい。加えて、本明細書に開示される構造部材のいずれも、1つ以上のレーザ切断ニチノールストリップ(例えば、直線状ストリップ、曲線ストリップなど)を含んでもよい。いくつかの実施形態において、構造部材、支持部材174、弁支持体110、および/または固着部材120のうちの1つ以上の部分は、X線不透過性のマーカーを用いてリベットで留められた1つ以上の孔を有してもよい。 The embodiment illustrated in FIG. 7A illustrates a generally coaxial arrangement of strands 180 forming a serpentine pattern of crosses (eg, zigzag pattern, diamond pattern), while one or more strands 180 other. Arrays and patterns (eg, serpentine, wavy, radial arms, squares, etc.) can also be formed to provide the desired rigidity to the expansion member 170. Moreover, although the support member 174 shown in FIG. 7A is separate from the fixation structure 130, in other embodiments the support member 174 is integral with the fixation structure 130. Additionally, support member 174, valve support 110, and/or anchoring member 120 may include a mixture of materials, alloys, struts, wires, strand types, and/or strand dimensions, as described above. Good. For example, in some embodiments, a portion of the structure, struts, or strands may be of DFT, and another portion of the structure, struts, or strands may be made of polymer fibers and/or metal wires. Good. In certain embodiments, the expansion member comprises an annular woven web and a braided superelastic material (eg, Nitinol) within the hem of the fabric or as strips perpendicular to the circumference of the annular web. In any of the embodiments disclosed herein, the expansion member may include a platinum impregnated fabric and/or a thin film superelastic material (eg, Nitinol) deposited on the fabric. In addition, any of the structural members disclosed herein may include one or more laser-cut Nitinol strips (eg, straight strips, curved strips, etc.). In some embodiments, one or more portions of structural member, support member 174, valve support 110, and/or anchoring member 120 have been riveted with a radiopaque marker. It may have one or more holes.

図8Aは、展開構成の人工心臓弁デバイス200(「デバイス200」)の別の実施形態の概略上面図であり、図8Bは、送達カテーテルC内腔内に位置付けられた送達構成のデバイス200の概略端面図である。図8C〜8Eは、デバイス200が展開している(図示のしやすさのために図8C〜8Eに示されない送達カテーテルC)とき、8C−8E線(図8B)に沿って切り取られた、デバイス200の断面図である。デバイス200は、図6A〜7Cにおいて、デバイス100に構造および機能が概ね類似するいくつかの構成要素を含んでもよい。例えば、デバイス200は、弁支持体110(図8A)、固着部材120(図8A)、人工弁アセンブリ150(図8A)、および第2の封止部材164(図8A〜8Eにおいて視認可能ではない)を含むことができ、それらの全ては、図6A〜7Cを参照して上述のしたものに概ね類似している。よって、共通の動作および構造ならびに/または下部構造は、同じ照合番号によって識別され、動作および構造における有意な差のみを後述する。 8A is a schematic top view of another embodiment of a prosthetic heart valve device 200 (“device 200”) in a deployed configuration, and FIG. 8B shows the device 200 in a delivery configuration positioned within the delivery catheter C lumen. It is a schematic end view. 8C-8E are taken along line 8C-8E (FIG. 8B) when device 200 is deployed (delivery catheter C not shown in FIGS. 8C-8E for ease of illustration). 3 is a cross-sectional view of device 200. FIG. Device 200 may include several components that are generally similar in structure and function to device 100 in FIGS. 6A-7C. For example, device 200 is not visible in valve support 110 (FIG. 8A), anchoring member 120 (FIG. 8A), prosthetic valve assembly 150 (FIG. 8A), and second sealing member 164 (FIGS. 8A-8E). ), all of which are generally similar to those described above with reference to Figures 6A-7C. Thus, common motions and structures and/or substructures are identified by the same reference number, and only significant differences in motions and structures are described below.

図8Aを参照すると、デバイス200は、その周囲に複数の個別織物セグメント290を有する(1つのセグメント290のみに図示のしやすさのために図8にラベル付けした)拡張部材270を含み、各個別織物セグメント290は、固着部材120における第1の端部295と、固着部材120と離間している第2の端部297と、対向する縁部291の間に延在する幅と、を有する。いくつかの実施形態において、縁部291が互いに対して自由に摺動するように、隣接したセグメント290は、可撓性部分292(図9Aおよび9Bを参照)によってそれらのそれぞれの縁部291に沿って連結されてもよい。 Referring to FIG. 8A, device 200 includes an expansion member 270 having a plurality of individual fabric segments 290 around it (only one segment 290 is labeled in FIG. 8 for ease of illustration), each The individual fabric segment 290 has a first end 295 on the fastening member 120, a second end 297 spaced from the fastening member 120, and a width extending between the opposing edges 291. .. In some embodiments, adjacent segments 290 have flexible portions 292 (see FIGS. 9A and 9B) attached to their respective edges 291 such that the edges 291 slide freely relative to each other. It may be connected along.

図9Aおよび9Bは、それぞれ重複および延長構成に示される、3つの隣接した絶縁セグメント(それぞれ、「第1〜3のセグメント290a〜c」と称される)の端面図である。重複構成(図9A)において、第1のセグメント290aの縁部291aおよび第3のセグメント290cの縁部291cは、第2のセグメント290bの隣接した縁部291bに重複する。包囲する生体構造によって拡張部材270に及ぼされる1つ以上の力に応答して、第1〜第3のセグメント290a〜cの一部分は、互いから離れて円周方向に反対側の方向(図9Aにおいて、矢印A1によって指示される)に移動してもよく、これによって、縁部291aおよび291cは、円周方向Cに縁部291bに対して摺動する。及ぼされた力に応じて、縁部291aおよび291cは、対応する隣接した縁部291bを越えて摺動してもよく、これによって、第1〜第3のセグメント290a〜cは、縁部291aおよび291cが、拡張部材270の周囲Cに沿って、対応する隣接した縁部291bから離間されている、延長構成(図9B)をしている。いくつかの実施形態において、縁部291aおよび291cの各々は、可撓性部分292の長さ以下だけ、対応する隣接した縁部291bから離間されてもよい。第1〜第3のセグメント290a〜cが、延長構成をしていて、1つ以上の力が、包囲する生体構造によって拡張部材270に及ぼされるとき、第1〜第3のセグメント290a〜cのうちの少なくとも一部分は、互いに円周方向に反対側の方向(図9B中の矢A2によって指示される)に移動してもよい。 9A and 9B are end views of three adjacent insulating segments (referred to as "first to third segments 290a-c", respectively) shown in overlapping and extended configurations, respectively. In the overlapping configuration (FIG. 9A), the edge 291a of the first segment 290a and the edge 291c of the third segment 290c overlap the adjacent edge 291b of the second segment 290b. In response to one or more forces exerted on the expansion member 270 by the surrounding anatomy, portions of the first to third segments 290a-c are spaced apart from one another in a circumferentially opposite direction (FIG. 9A). At (indicated by arrow A1), which causes edges 291a and 291c to slide in the circumferential direction C relative to edge 291b. Depending on the force exerted, edges 291a and 291c may slide over corresponding adjacent edges 291b, which causes first to third segments 290a-c to move to edge 291a. And 291c are in an extended configuration (FIG. 9B) along the perimeter C of the expansion member 270 and spaced from corresponding adjacent edges 291b. In some embodiments, each of the edges 291a and 291c may be separated from the corresponding adjacent edge 291b by no more than the length of the flexible portion 292. Of the first to third segments 290a-c when the first to third segments 290a-c are in an extended configuration and one or more forces are exerted on the expansion member 270 by the surrounding anatomy. At least some of them may move circumferentially in opposite directions (indicated by arrow A2 in FIG. 9B).

いくつかの実施形態において、拡張部材270および/またはセグメント290は、他の構成を有することができる。例えば、図9Cおよび9Dは、それぞれ重複および延長構成に示される、本技術の別の実施形態によって構成されている拡張部材270’の3つの絶縁セグメント290a〜290c(集合的に「セグメント290」)の端面図である。同様に、図9Eおよび9Fは、それぞれ重複および延長構成に示される、本技術によって構成されている別の拡張部材270’’の3つの絶縁セグメント290a〜290c(集合的に「セグメント290」)の端面図である。図9C〜9Fに示されるようないくつかの実施形態において、セグメント290は、可撓性部分292によってそれらのそれぞれの縁部291に沿って連結されない。デバイス200が弁輪の中に位置付けられるとき、複数のセグメント290は、互いに対して移動して、弁輪の自然幾何形状に適合し、および/または、必要に応じてそれらの相対位置を調節してもよい一方で、拡張部材270は、局所的心臓生体構造で封止する。 In some embodiments, expansion member 270 and/or segment 290 can have other configurations. For example, FIGS. 9C and 9D show three insulating segments 290a-290c (collectively "segment 290") of an expansion member 270' configured according to another embodiment of the present technology, shown in overlapping and extended configurations, respectively. FIG. Similarly, FIGS. 9E and 9F show three insulating segments 290a-290c (collectively “segment 290”) of another expansion member 270″ constructed according to the present technique, shown in overlapping and extended configurations, respectively. It is an end view. In some embodiments, as shown in FIGS. 9C-9F, the segments 290 are not connected by their flexible portions 292 along their respective edges 291. When the device 200 is positioned within the annulus, the plurality of segments 290 move relative to each other to conform to the natural geometry of the annulus and/or adjust their relative position as needed. While expandable member 270 may seal with local cardiac anatomy.

いくつかの実施形態において、個々のセグメント290は、それらの個々の縁部のうちの少なくとも一部分に沿って延在し、かつ/またはその一部分を画定する支持部材274(例えば、金属またはポリマー撚り線)を含み、可撓性ウェブ272(例えば、織物)は、各セグメント290の支持部材274の間に延在してもよい。そのような実施形態において、可撓性部分292は、隣接したセグメント290の縁部291の間に延在する別個の可撓性ウェブを備えてもよい。他の実施形態において、拡張部材270および/または個々のセグメント290は、他の好適な構成を有してもよい。例えば、いくつかの実施形態において、個々のセグメント290は、固定構造130から外向きに半径方向に延在する支持部材274(例えば、金属またはポリマー撚り線)を含み、個々のセグメント290は、各支持部材274から延在する可撓性ウェブ272(例えば、織物)によって被覆された少なくとも1つの支持部材を有する。いくつかの実施形態において、個々の各セグメント290の可撓性ウェブ272の少なくとも一部分は、隣接した個々のセグメント部材290の可撓性ウェブ272の少なくとも一部分に重複する。いくつかの実施形態において、可撓性ウェブ272は、各セグメント290の支持部材274の間に延在する。いくつかの実施形態において、拡張部材270は、固定構造130の周りで連続的である可撓性ウェブ272を備える。例えば、一実施形態において、可撓性ウェブ272は、個々の支持部材290を1つ以上のポケットの中で自由に移動または摺動することができる1つ以上のポケットを備えてもよい。一実施形態において、可撓性ウェブポケットの数は、個々の支持部材の数に等しい。代替的実施形態において、ポケットの数は、個々の支持部材の数よりも少ない。例えば、一実施形態において、個々の支持部材の全ては、単一のポケットの中に存在する。 In some embodiments, individual segments 290 extend along and/or define at least a portion of their respective edges, and/or support members 274 (eg, metal or polymer strands). ), the flexible web 272 (eg, fabric) may extend between the support members 274 of each segment 290. In such an embodiment, flexible portion 292 may comprise a separate flexible web extending between edges 291 of adjacent segments 290. In other embodiments, the expansion members 270 and/or individual segments 290 may have other suitable configurations. For example, in some embodiments, the individual segments 290 include support members 274 (eg, metal or polymer strands) that extend radially outwardly from the anchoring structure 130, and each individual segment 290 includes a respective It has at least one support member covered by a flexible web 272 (eg, fabric) extending from the support member 274. In some embodiments, at least a portion of the flexible web 272 of each individual segment 290 overlaps at least a portion of the flexible web 272 of an adjacent individual segment member 290. In some embodiments, flexible web 272 extends between support members 274 of each segment 290. In some embodiments, the expansion member 270 comprises a flexible web 272 that is continuous around the anchoring structure 130. For example, in one embodiment, the flexible web 272 may comprise one or more pockets that allow individual support members 290 to freely move or slide within the one or more pockets. In one embodiment, the number of flexible web pockets is equal to the number of individual support members. In an alternative embodiment, the number of pockets is less than the number of individual support members. For example, in one embodiment, all of the individual support members are in a single pocket.

図10は、本技術の別の実施形態による、人工心臓弁デバイス300の概略等角図である。デバイス300は、図6A〜7Cにおいて、デバイス100に構造および機能が概ね類似するいくつかの構成要素を含んでもよい。例えば、デバイス300は、弁支持体110、固着部材120、人工弁アセンブリ150、および第2の封止部材164を含むことができ、それらの全ては、図6A〜7Cを参照して上述のしたものに概ね類似している。よって、共通の動作および構造ならびに/または下部構造は、同じ照合番号によって識別され、動作および構造における有意な差のみを後述する。 FIG. 10 is a schematic isometric view of a prosthetic heart valve device 300 according to another embodiment of the present technology. Device 300 may include a number of components that are generally similar in structure and function to device 100 in FIGS. 6A-7C. For example, the device 300 can include a valve support 110, an anchoring member 120, a prosthetic valve assembly 150, and a second sealing member 164, all of which are described above with reference to Figures 6A-7C. It is almost similar to the one. Thus, common motions and structures and/or substructures are identified by the same reference number, and only significant differences in motions and structures are described below.

図10に示される実施形態において、拡張部材370は、固着部材120から半径方向外向きに延在する第1の環状部分370aと、第1の環状部分370aから半径方向外向きに延在する第2の環状部分370bと、を含む。第1の環状部分370aは、図8〜9Bに示される拡張部材270のセグメント290および可撓性部分292と同様に、複数の個別セグメント390aおよび可撓性部分392(各々のうちの1つのみをラベル付けした)を有してもよい。第2の環状部分370bはまた、図8〜9Bに示される拡張部材270のセグメント290および可撓性部分292と同様に、複数の個別セグメント390bおよび可撓性部分392b(各々のうちの1つのみをラベル付けした)を有してもよい。図10に示されるように、いくつかの実施形態において、第2の環状部分370bのセグメント390bは、第1の環状部分370aのセグメント390bと円周方向に整合され、第2の環状部分370bの可撓性部分392bは、第1の環状部分370aの可撓性部分392aと円周方向に整合される。 In the embodiment shown in FIG. 10, the expansion member 370 includes a first annular portion 370a extending radially outward from the anchoring member 120 and a first annular portion 370a extending radially outward from the first annular portion 370a. And two annular portions 370b. The first annular portion 370a includes a plurality of individual segments 390a and flexible portions 392 (only one of each), similar to the segment 290 and flexible portion 292 of the expansion member 270 shown in FIGS. 8-9B. Labeled). The second annular portion 370b also includes a plurality of individual segments 390b and flexible portions 392b (one of each), similar to the segment 290 and flexible portion 292 of the expansion member 270 shown in FIGS. 8-9B. Labeled only). As shown in FIG. 10, in some embodiments, the segment 390b of the second annular portion 370b is circumferentially aligned with the segment 390b of the first annular portion 370a and of the second annular portion 370b. The flexible portion 392b is circumferentially aligned with the flexible portion 392a of the first annular portion 370a.

以下の実施例は、本技術のいくつかの実施形態を例証する。
1.人工心臓弁デバイスであって、
上流部および下流部を有する環状固定フレームを有する固着部材と、
前記固定フレームの前記下流部に連結した第1の部分と、前記固定フレームの前記上流部から半径方向に内向きに離間した第2の部分と、を有する管状弁支持体と、
前記弁支持体に連結され、かつ前記弁支持体を通る血流が遮断される閉鎖位置と、下流方向への前記弁支持体を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁アセンブリと、
前記固定フレームに連結され、かつそこから半径方向に外向きに延在する拡張部材であって、前記拡張部材が、複数のワイヤを含み、前記ワイヤの少なくとも一部分が、外側材料によって包囲された内核を含み、(a)前記内核が、第1の材料であり、(b)前記外側材料が、前記第1の材料とは異なる第2の材料であり、かつある厚さを有し、(c)前記ワイヤが、前記外側材料の前記厚さの少なくとも一部分を通して延在する複数の凹部を含み、(d)前記人工心臓弁デバイスが、天然弁輪に位置付けられるとき、治療剤が、前記生体構造への送達のための前記凹部内にある、拡張部材と、を備える、人工心臓弁デバイス。
2.前記固定フレームの前記上流部が、前記管状弁支持体の前記第2の部分を実質的に変形させることなく、半径方向に変形可能である、実施例1に記載のデバイス。
3.前記拡張部材が、その長さの少なくとも一部分に沿って延在する封止部材をさらに含み、前記ワイヤが、前記封止部材に連結されている、実施例1または実施例2に記載のデバイス。
4.前記ワイヤが、前記固定フレームの前記上流部と一体である、実施例1〜3のいずれか1つに記載のデバイス。
5.前記ワイヤが、前記固定フレームから機械的に絶縁される、実施例1〜3のいずれか1つに記載のデバイス。
6.前記第1の材料が、X線不透過性であり、前記第2の材料が、超弾性合金である、実施例1〜5のいずれか1つに記載のデバイス。
7.前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、実施例1〜6のいずれか1つに記載のデバイス。
8.前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、実施例1〜7のいずれか1つに記載のデバイス。
9.前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記内核の厚さの少なくとも一部分を通して延在し、これによって、前記複数の凹部のうちの前記少なくともいくつかが、前記内核内の中間の深さで終端する、実施例1〜8のいずれか1つに記載のデバイス。
10.前記拡張部材が、前記内核と前記外側材料との間に位置付けられた中間材料をさらに含む、実施例1〜9のいずれか1つに記載のデバイス。
11.前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記中間材料の少なくとも一部分を露出する、実施例10に記載のデバイス。
12.前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記中間材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、実施例10に記載のデバイス。
13.人工心臓弁デバイスであって、
上流部および下流部を有する環状固定フレームを有する固着部材と、
前記固着部材の前記下流部に連結した第1の部分と、前記固着部材の前記上流部から半径方向に内向きに離間した第2の部分と、を有する管状弁支持体と、
前記弁支持体に連結され、かつ前記弁支持体を通る血流が遮断される閉鎖位置と、下流方向への前記弁支持体を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁アセンブリと、
前記固定フレームに連結され、かつそこから半径方向に外向きに延在する拡張部材であって、前記拡張部材が、複数のワイヤを含み、前記ワイヤの少なくとも一部分が、外側材料によって囲まれる内核を含み、(a)前記内核が、第1の材料であり、(b)前記外側材料が、前記第1の材料とは異なる第2の材料であり、かつある厚さを有し、(c)前記ワイヤが、前記外側材料の前記厚さの少なくとも一部分を通して延在する複数の凹部を含み、(d)X線不透過性材料が、凹部内にある、拡張部材と、を備える、人工心臓弁デバイス。
14.前記固定フレームの前記上流部が、前記管状弁支持体の前記第2の部分を実質的に変形させることなく、半径方向に変形可能である、実施例13に記載のデバイス。
15.前記拡張部材が、その長さの少なくとも一部分に沿って延在する封止部材をさらに含み、前記ワイヤが、前記封止部材に連結されている、実施例13または実施例14に記載のデバイス。
16.前記ワイヤが、前記固定フレームの前記上流部と一体である、実施例13〜15のいずれか1つに記載のデバイス。
17.前記ワイヤが、前記固定フレームから機械的に絶縁される、実施例13〜15のいずれか1つに記載のデバイス。
18.前記第1の材料が、X線不透過性であり、前記第2の材料が、超弾性合金である、実施例13〜17のいずれか1つに記載のデバイス。
19.前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、実施例13〜18のいずれか1つにデバイス。
20.前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、実施例13〜19のいずれか1つに記載のデバイス。
21.前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記内核の厚さの少なくとも一部分を通して延在し、これによって、前記複数の凹部のうちの前記少なくともいくつかが、前記内核内の中間の深さで終端する、実施例13〜20のいずれか1つに記載のデバイス。
22.前記拡張部材が、前記内核と前記外側材料との間に位置付けられた中間材料をさらに含む、実施例13〜21のいずれか1つに記載のデバイス。
23.前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記中間材料の少なくとも一部分を露出する、実施例22に記載のデバイス。
24.前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記中間材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、実施例22に記載のデバイス。
27.人工心臓弁デバイスであって、
内部を伴い、上流部および下流部を有する半径方向に拡大可能なフレームを有する固着部材であって、前記上流部が、対象中の心臓弁の天然弁輪に、および/またはその下流に位置する組織に対して外向きに押し付けるように構成され、かつ前記組織の形状に一致するように少なくとも部分的に変形可能であるように構成される組織固定部分を含む、固着部材と、
前記固着部材に対して位置付けられ、かつ前記内部を通る血流が遮断される閉鎖位置と、前記上流部から前記下流部へ向かう流れの方向で前記内部を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁であって、前記弁が、前記組織固定部分が前記組織の前記形状に一致するように変形されるとき、前記弁が有能なままであるように、前記固着部材の前記組織固定部分から内向きに離間される、弁と、
展開構成の前記固着部材の前記上流部から離れて横方向に延在する拡張アセンブリであって、前記拡張部材が、前記固着部材における第1の端部と、前記固着部材から離間される第2の端部と、を有する複数の個別織物区分を備え、前記織物区分が、前記拡張部材の周りに並んで配列されており、隣接した織物区分が、可撓性連結手段によって一緒にゆるく連結し、これによって、隣接した織物区分の前記第2の端部が、前記展開状態において互いに独立して構成され得る、拡張アセンブリと、を備える、人工心臓弁デバイス。
28.前記セグメントが、構造部材を含まない、実施例27に記載の人工心臓弁デバイス。
29.前記拡張部材が、前記展開構成の前記拡大可能なフレームに対して変形するように構成されている、実施例27または実施例28に記載の人工心臓弁デバイス。
30.前記連結手段が、弾性である、実施例27〜29のいずれか1つに記載の人工心臓弁デバイス。
31.前記連結手段が、縫合糸である、実施例27〜29のいずれか1つに記載の人工心臓弁デバイス。
32.前記セグメントの前記遠位終端が、前記拡張部材の前記第2の端部と一致する、実施例27〜31のいずれか1つに記載の人工心臓弁デバイス。
33.前記セグメントが前記固着部材に間接的にのみ連結されるように、前記セグメントが前記拡大可能なフレームから離間される、実施例27〜32のいずれか1つに記載の人工心臓弁デバイス。
34.前記セグメントが、前記拡大可能なフレームに直接的に接続される、実施例27〜32のいずれか1つに記載の人工心臓弁デバイス。
The following examples illustrate some embodiments of the present technology.
1. An artificial heart valve device,
A fixing member having an annular fixing frame having an upstream portion and a downstream portion,
A tubular valve support having a first portion connected to the downstream portion of the stationary frame and a second portion radially inwardly spaced from the upstream portion of the stationary frame;
At least movable from a closed position connected to the valve support and blocking blood flow through the valve support, and an open position allowing blood flow through the valve support in the downstream direction. A valve assembly having one leaflet;
An expansion member coupled to the stationary frame and extending radially outwardly therefrom, the expansion member including a plurality of wires, at least a portion of the wires being surrounded by an outer material. (A) the inner core is a first material, (b) the outer material is a second material different from the first material, and has a thickness; ) The wire includes a plurality of recesses extending through at least a portion of the thickness of the outer material; A prosthetic heart valve device within the recess for delivery to the prosthetic heart valve device.
2. The device of example 1 wherein the upstream portion of the stationary frame is radially deformable without substantially deforming the second portion of the tubular valve support.
3. The device of example 1 or example 2, wherein the expansion member further comprises a sealing member extending along at least a portion of its length, and the wire is coupled to the sealing member.
4. The device of any one of Examples 1-3, wherein the wire is integral with the upstream portion of the stationary frame.
5. The device of any one of Examples 1-3, wherein the wire is mechanically isolated from the fixed frame.
6. The device of any one of Examples 1-5, wherein the first material is radiopaque and the second material is a superelastic alloy.
7. The device of any one of Examples 1-6, wherein the therapeutic agent comprises at least one of an anti-inflammatory agent and a bioactive agent.
8. The device of any one of Examples 1-7, wherein at least some of the plurality of recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the inner core. ..
9. At least some of the plurality of recesses extend through the overall thickness of the outer material and at least a portion of the thickness of the inner core, such that at least some of the plurality of recesses include: The device of any one of Examples 1-8, terminating at an intermediate depth within the inner core.
10. 10. The device of any one of Examples 1-9, wherein the expansion member further comprises an intermediate material positioned between the inner core and the outer material.
11. The device of example 10, wherein at least some of the recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the intermediate material.
12. The device of Example 10, wherein at least some of the recesses extend through the entire thickness of the outer material and the intermediate material, thereby exposing at least a portion of the inner core. ..
13. An artificial heart valve device,
A fixing member having an annular fixing frame having an upstream portion and a downstream portion,
A tubular valve support having a first portion connected to the downstream portion of the anchoring member and a second portion radially inwardly spaced from the upstream portion of the anchoring member;
At least movable from a closed position connected to the valve support and blocking blood flow through the valve support, and an open position allowing blood flow through the valve support in the downstream direction. A valve assembly having one leaflet;
An expansion member coupled to the stationary frame and extending radially outwardly therefrom, the expansion member comprising a plurality of wires, at least a portion of the wires defining an inner core surrounded by an outer material. Including (a) the inner core is a first material, (b) the outer material is a second material different from the first material, and has a thickness; (c) The wire includes a plurality of recesses extending through at least a portion of the thickness of the outer material, and (d) a radiopaque material in the recesses; and an expansion member. device.
14. 14. The device of example 13, wherein the upstream portion of the stationary frame is radially deformable without substantially deforming the second portion of the tubular valve support.
15. 15. The device of example 13 or example 14, wherein the expansion member further comprises a sealing member extending along at least a portion of its length and the wire is coupled to the sealing member.
16. 16. The device of any one of Examples 13-15, wherein the wire is integral with the upstream portion of the stationary frame.
17. 16. The device according to any one of Examples 13-15, wherein the wire is mechanically insulated from the fixed frame.
18. 18. The device according to any one of Examples 13-17, wherein the first material is radiopaque and the second material is a superelastic alloy.
19. The device of any one of Examples 13-18, wherein the therapeutic agent comprises at least one of an anti-inflammatory agent and a bioactive agent.
20. The device of any one of Examples 13-19, wherein at least some of the plurality of recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the inner core. ..
21. At least some of the plurality of recesses extend through the overall thickness of the outer material and at least a portion of the thickness of the inner core, such that at least some of the plurality of recesses include: 21. The device according to any one of Examples 13-20, terminating at an intermediate depth within the inner core.
22. 22. The device of any one of Examples 13-21, wherein the expansion member further comprises an intermediate material positioned between the inner core and the outer material.
23. 23. The device of example 22, wherein at least some of the recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the intermediate material.
24. 23. The device of example 22, wherein at least some of the recesses extend through the total thickness of the outer material and the intermediate material, thereby exposing at least a portion of the inner core. ..
27. An artificial heart valve device,
An anchoring member having a radially expandable frame with an interior and an upstream portion and a downstream portion, the upstream portion being located at and/or downstream of a natural annulus of a heart valve of interest. An anchoring member comprising a tissue anchoring portion configured to be pressed outwardly against tissue and configured to be at least partially deformable to conform to the shape of said tissue;
A closed position that is positioned with respect to the fixing member and that blocks blood flow through the interior, and an open position that allows blood flow through the interior in the direction of flow from the upstream portion to the downstream portion A valve having at least one leaflet movable from the valve, the valve remaining capable when the tissue anchoring portion is deformed to conform to the shape of the tissue. A valve inwardly spaced from the tissue fixation portion of the fixation member;
A expansion assembly extending laterally away from the upstream portion of the securing member in a deployed configuration, the expansion member being spaced apart from the first end of the securing member and the securing member. A plurality of individual fabric sections having an end of, the fabric sections being arranged side by side around the expansion member, and adjacent fabric sections being loosely coupled together by a flexible coupling means. A dilation assembly whereby the second ends of adjacent textile sections may be configured independently of each other in the deployed state.
28. The prosthetic heart valve device of Example 27, wherein the segment does not include a structural member.
29. 29. The prosthetic heart valve device of example 27 or example 28, wherein the expansion member is configured to deform with respect to the expandable frame in the deployed configuration.
30. The prosthetic heart valve device of any one of Examples 27-29, wherein the connecting means is elastic.
31. The artificial heart valve device according to any one of Examples 27 to 29, wherein the connecting means is a suture.
32. The prosthetic heart valve device of any one of Examples 27-31, wherein the distal end of the segment coincides with the second end of the expansion member.
33. 33. The prosthetic heart valve device of any one of Examples 27-32, wherein the segment is spaced from the expandable frame such that the segment is only indirectly connected to the anchoring member.
34. The prosthetic heart valve device of any one of Examples 27-32, wherein the segment is directly connected to the expandable frame.

以上により、本発明の具体的実施形態が、例証の目的で本明細書において説明されているが、本発明の範囲から逸脱することなく、種々の修正が行われてもよいことが理解されるであろう。例えば、いくつかの個々の構成要素は、異なる実施形態において、互いと入れ替えることができる。したがって、本発明は、添付の特許請求の範囲による場合を除いて限定されない。 While the above describes specific embodiments of the present invention for purposes of illustration, it is understood that various modifications may be made without departing from the scope of the present invention. Will. For example, some individual components may be interchangeable with each other in different embodiments. Therefore, the present invention is not limited except as by the appended claims.

Claims (34)

人工心臓弁デバイスであって、
上流部および下流部を有する環状固定フレームを有する固着部材と、
前記固定フレームの前記下流部に連結した第1の部分と、前記固定フレームの前記上流部から半径方向に内向きに離間した第2の部分と、を有する管状弁支持体と、
前記弁支持体に連結され、かつ前記弁支持体を通る血流が遮断される閉鎖位置と、下流方向への前記弁支持体を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁アセンブリと、
前記固定フレームに連結され、かつそこから半径方向に外向きに延在する拡張部材であって、前記拡張部材が、複数のワイヤを含み、前記ワイヤの少なくとも一部分が、外側材料によって包囲された内核を含み、(a)前記内核が、第1の材料であり、(b)前記外側材料が、前記第1の材料とは異なる第2の材料であり、かつある厚さを有し、(c)前記ワイヤが、前記外側材料の前記厚さの少なくとも一部分を通して延在する複数の凹部を含み、(d)前記人工心臓弁デバイスが、天然弁輪に位置付けられるとき、生体構造への送達のための前記凹部内にある治療剤、拡張部材と、を備える、人工心臓弁デバイス。
An artificial heart valve device,
A fixing member having an annular fixing frame having an upstream portion and a downstream portion,
A tubular valve support having a first portion connected to the downstream portion of the stationary frame and a second portion radially inwardly spaced from the upstream portion of the stationary frame;
At least movable from a closed position connected to the valve support and blocking blood flow through the valve support, and an open position allowing blood flow through the valve support in the downstream direction. A valve assembly having one leaflet;
An expander member coupled to the stationary frame and extending radially outwardly therefrom, the expander member comprising a plurality of wires, at least a portion of the wires being surrounded by an outer material. (A) the inner core is a first material, (b) the outer material is a second material different from the first material, and has a thickness; ) The wire includes a plurality of recesses extending through at least a portion of the thickness of the outer material, and (d) for delivery to an anatomy when the prosthetic heart valve device is positioned in a native annulus. A prosthetic heart valve device comprising: a therapeutic agent in the recess of the.
前記固定フレームの前記上流部が、前記管状弁支持体の前記第2の部分を実質的に変形させることなく、半径方向に変形可能である、請求項1に記載のデバイス。 The device of claim 1, wherein the upstream portion of the stationary frame is radially deformable without substantially deforming the second portion of the tubular valve support. 前記拡張部材が、その長さの少なくとも一部分に沿って延在する封止部材をさらに含み、前記ワイヤが、前記封止部材に連結されている、請求項1に記載のデバイス。 The device of claim 1, wherein the expansion member further comprises a sealing member extending along at least a portion of its length, the wire being coupled to the sealing member. 前記ワイヤが、前記固定フレームの前記上流部と一体である、請求項1に記載のデバイス。 The device of claim 1, wherein the wire is integral with the upstream portion of the stationary frame. 前記ワイヤが、前記固定フレームから機械的に絶縁される、請求項1に記載のデバイス。 The device of claim 1, wherein the wire is mechanically isolated from the fixed frame. 前記第1の材料が、X線不透過性であり、前記第2の材料が、超弾性合金である、請求項1に記載のデバイス。 The device of claim 1, wherein the first material is radiopaque and the second material is a superelastic alloy. 前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、請求項1に記載のデバイス。 The device of claim 1, wherein the therapeutic agent comprises at least one of an anti-inflammatory agent and a bioactive agent. 前記第1の材料が、X線不透過性であり、
前記第2の材料が、超弾性合金であり、
前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、請求項1に記載のデバイス。
The first material is radiopaque,
The second material is a superelastic alloy,
The device of claim 1, wherein the therapeutic agent comprises at least one of an anti-inflammatory agent and a bioactive agent.
前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、請求項1に記載のデバイス。 The device of claim 1, wherein at least some of the plurality of recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the inner core. 前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記内核の厚さの少なくとも一部分を通して延在し、これによって、前記複数の凹部のうちの前記少なくともいくつかが、前記内核内の中間の深さで終端する、請求項1に記載のデバイス。 At least some of the plurality of recesses extend through the overall thickness of the outer material and at least a portion of the thickness of the inner core, such that at least some of the plurality of recesses include: The device of claim 1, terminating at an intermediate depth within the inner core. 前記拡張部材が、前記内核と前記外側材料との間に位置付けられた中間材料をさらに含む、請求項1に記載のデバイス。 The device of claim 1, wherein the expansion member further comprises an intermediate material positioned between the inner core and the outer material. 前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記中間材料の少なくとも一部分を露出する、請求項11に記載のデバイス。 12. The device of claim 11, wherein at least some of the recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the intermediate material. 前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記中間材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、請求項11に記載のデバイス。 12. The device of claim 11, wherein at least some of the recesses extend through the entire thickness of the outer material and the entire thickness of the intermediate material, thereby exposing at least a portion of the inner core. .. 人工心臓弁デバイスであって、
上流部および下流部を有する環状固定フレームを有する固着部材と、
前記固着部材の前記下流部に連結した第1の部分と、前記固着部材の前記上流部から半径方向に内向きに離間した第2の部分と、を有する管状弁支持体と、
前記弁支持体に連結され、かつ前記弁支持体を通る血流が遮断される閉鎖位置と、下流方向への前記弁支持体を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁アセンブリと、
前記固定フレームに連結され、かつそこから半径方向に外向きに延在する拡張部材であって、前記拡張部材が、複数のワイヤを含み、前記ワイヤの少なくとも一部分が、外側材料によって包囲された内核を含み、(a)前記内核が、第1の材料であり、(b)前記外側材料が、前記第1の材料とは異なる第2の材料であり、かつある厚さを有し、(c)前記ワイヤが、前記外側材料の前記厚さの少なくとも一部分を通して延在する複数の凹部を含み、(d)X線不透過性材料が、凹部内にある、拡張部材と、を備える、人工心臓弁デバイス。
An artificial heart valve device,
A fixing member having an annular fixing frame having an upstream portion and a downstream portion,
A tubular valve support having a first portion connected to the downstream portion of the anchoring member and a second portion radially inwardly spaced from the upstream portion of the anchoring member;
At least movable from a closed position connected to the valve support and blocking blood flow through the valve support, and an open position allowing blood flow through the valve support in the downstream direction. A valve assembly having one leaflet;
An expander member coupled to the stationary frame and extending radially outwardly therefrom, the expander member comprising a plurality of wires, at least a portion of the wires being surrounded by an outer material. (A) the inner core is a first material, (b) the outer material is a second material different from the first material, and has a thickness; ) The wire comprises a plurality of recesses extending through at least a portion of the thickness of the outer material, and (d) a radiopaque material in the recesses; and an expansion member. Valve device.
前記固定フレームの前記上流部が、前記管状弁支持体の前記第2の部分を実質的に変形させることなく、半径方向に変形可能である、請求項14に記載のデバイス。 15. The device of claim 14, wherein the upstream portion of the stationary frame is radially deformable without substantially deforming the second portion of the tubular valve support. 前記拡張部材が、その長さの少なくとも一部分に沿って延在する封止部材をさらに含み、前記ワイヤが、前記封止部材に連結されている、請求項14に記載のデバイス。 15. The device of claim 14, wherein the expansion member further comprises a sealing member extending along at least a portion of its length, the wire being coupled to the sealing member. 前記ワイヤが、前記固定フレームの前記上流部と一体である、請求項14に記載のデバイス。 15. The device of claim 14, wherein the wire is integral with the upstream portion of the stationary frame. 前記ワイヤが、前記固定フレームから機械的に絶縁される、請求項14に記載のデバイス。 15. The device of claim 14, wherein the wire is mechanically isolated from the fixed frame. 前記第1の材料が、X線不透過性であり、前記第2の材料が、超弾性合金である、請求項14に記載のデバイス。 15. The device of claim 14, wherein the first material is radiopaque and the second material is a superelastic alloy. 前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、請求項14に記載のデバイス。 15. The device of claim 14, wherein the therapeutic agent comprises at least one of an anti-inflammatory drug and a bioactive agent. 前記第1の材料が、X線不透過性であり、
前記第2の材料が、超弾性合金であり、
前記治療剤が、抗炎症薬および生物活性剤のうちの少なくとも1つを含む、請求項14に記載のデバイス。
The first material is radiopaque,
The second material is a superelastic alloy,
15. The device of claim 14, wherein the therapeutic agent comprises at least one of an anti-inflammatory drug and a bioactive agent.
前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、請求項14に記載のデバイス。 15. The device of claim 14, wherein at least some of the plurality of recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the inner core. 前記複数の凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記内核の厚さの少なくとも一部分を通して延在し、これによって、前記複数の凹部のうちの前記少なくともいくつかが、前記内核内の中間の深さで終端する、請求項14に記載のデバイス。 At least some of the plurality of recesses extend through the overall thickness of the outer material and at least a portion of the thickness of the inner core, such that at least some of the plurality of recesses include: 15. The device of claim 14, terminating at an intermediate depth within the inner core. 前記拡張部材が、前記内核と前記外側材料との間に位置付けられた中間材料をさらに含む、請求項14に記載のデバイス。 15. The device of claim 14, wherein the expansion member further comprises an intermediate material positioned between the inner core and the outer material. 前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さを通して延在し、それによって、前記中間材料の少なくとも一部分を露出する、請求項24に記載のデバイス。 25. The device of claim 24, wherein at least some of the recesses extend through the entire thickness of the outer material, thereby exposing at least a portion of the intermediate material. 前記凹部のうちの少なくともいくつかが、前記外側材料の全体厚さ、および前記中間材料の全体厚さを通して延在し、それによって、前記内核の少なくとも一部分を露出する、請求項24に記載のデバイス。 25. The device of claim 24, wherein at least some of the recesses extend through a total thickness of the outer material and a total thickness of the intermediate material, thereby exposing at least a portion of the inner core. .. 人工心臓弁デバイスであって、
内部を伴い、上流部および下流部を有する半径方向に拡大可能なフレームを有する固着部材であって、前記上流部が、対象中の心臓弁の天然弁輪に、および/またはその下流に位置する組織に対して外向きに押し付けるように構成され、かつ前記組織の形状に一致するように少なくとも部分的に変形可能であるように構成される組織固定部分を含む、固着部材と、
前記固着部材に対して位置付けられ、かつ前記内部を通る血流が遮断される閉鎖位置と、前記上流部から前記下流部へ向かう流れの方向で前記内部を通る血流が許容される開放位置とから移動可能である少なくとも1つの弁尖を有する、弁であって、前記弁が、前記組織固定部分が前記組織の前記形状に一致するように変形されるとき、前記弁が有能なままであるように、前記固着部材の前記組織固定部分から内向きに離間される、弁と、
展開構成の前記固着部材の前記上流部から離れて横方向に延在する拡張アセンブリであって、前記拡張部材が、前記固着部材における第1の端部と、前記固着部材から離間される第2の端部と、を有する複数の個別織物セグメントを備え、前記織物セグメントが、前記拡張部材の周りに並んで配列されており、隣接した織物セグメントが、可撓性連結手段によって一緒にゆるく連結し、これによって、隣接した織物セグメントの前記第2の端部が、前記展開状態において互いに独立して構成され得る、拡張アセンブリと、を備える、人工心臓弁デバイス。
An artificial heart valve device,
An anchoring member having a radially expandable frame with an interior and an upstream portion and a downstream portion, the upstream portion being located at and/or downstream of a natural annulus of a heart valve of interest. An anchoring member comprising a tissue anchoring portion configured to be pressed outwardly against tissue and configured to be at least partially deformable to conform to the shape of said tissue;
A closed position that is positioned with respect to the fixing member and that blocks blood flow through the interior, and an open position that allows blood flow through the interior in the direction of flow from the upstream portion to the downstream portion. A valve having at least one leaflet movable from the valve, the valve remaining capable when the tissue anchoring portion is deformed to conform to the shape of the tissue. A valve inwardly spaced from the tissue fixation portion of the fixation member;
A expansion assembly extending laterally away from the upstream portion of the securing member in a deployed configuration, the expansion member being spaced apart from the first end of the securing member and the securing member. A plurality of individual fabric segments having an end of, the fabric segments being arranged side by side around the expansion member, and adjacent fabric segments being loosely coupled together by a flexible coupling means. A dilatation assembly whereby the second ends of adjacent fabric segments may be configured independently of each other in the deployed state.
前記セグメントが、構造部材を含まない、請求項27に記載の人工心臓弁デバイス。 28. The prosthetic heart valve device of claim 27, wherein the segment does not include a structural member. 前記拡張部材が、前記展開構成の前記拡大可能なフレームに対して変形するように構成されている、請求項27に記載の人工心臓弁デバイス。 28. The prosthetic heart valve device of claim 27, wherein the expansion member is configured to deform with respect to the expandable frame in the deployed configuration. 前記連結手段が、弾性である、請求項27に記載の人工心臓弁デバイス。 28. A prosthetic heart valve device according to claim 27, wherein the connecting means is elastic. 前記連結手段が、縫合糸である、請求項27に記載の人工心臓弁デバイス。 28. The prosthetic heart valve device of claim 27, wherein the connecting means is a suture. 前記セグメントの前記遠位終端が、前記拡張部材の前記第2の端部と一致する、請求項27に記載の人工心臓弁デバイス。 28. The prosthetic heart valve device of claim 27, wherein the distal end of the segment coincides with the second end of the expansion member. 前記セグメントが前記固着部材に間接的にのみ連結されるように、前記セグメントが前記拡大可能なフレームから離間される、請求項27に記載の人工心臓弁デバイス。 28. The prosthetic heart valve device of claim 27, wherein the segment is spaced from the expandable frame such that the segment is only indirectly connected to the anchoring member. 前記セグメントが、前記拡大可能なフレームに直接的に接続される、請求項27に記載の人工心臓弁デバイス。 The prosthetic heart valve device of claim 27, wherein the segment is directly connected to the expandable frame.
JP2019572460A 2017-07-06 2018-06-21 Artificial heart valve device Pending JP2020525215A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/642,834 2017-07-06
US15/642,834 US10729541B2 (en) 2017-07-06 2017-07-06 Prosthetic heart valve devices and associated systems and methods
PCT/US2018/038841 WO2019010010A1 (en) 2017-07-06 2018-06-21 Prosthetic heart valve devices

Publications (2)

Publication Number Publication Date
JP2020525215A true JP2020525215A (en) 2020-08-27
JP2020525215A5 JP2020525215A5 (en) 2021-07-29

Family

ID=62981328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019572460A Pending JP2020525215A (en) 2017-07-06 2018-06-21 Artificial heart valve device

Country Status (6)

Country Link
US (3) US10729541B2 (en)
EP (2) EP3648707B1 (en)
JP (1) JP2020525215A (en)
CN (2) CN115444619A (en)
AU (1) AU2018297210A1 (en)
WO (1) WO2019010010A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090276040A1 (en) * 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US8444689B2 (en) 2009-03-30 2013-05-21 Causper Medical Inc. Valve prosthesis with movably attached claspers with apex
US11406497B2 (en) 2013-03-14 2022-08-09 Jc Medical, Inc. Heart valve prosthesis
US11259923B2 (en) 2013-03-14 2022-03-01 Jc Medical, Inc. Methods and devices for delivery of a prosthetic valve
JP2016512077A (en) 2013-03-14 2016-04-25 カーディオヴァンテージ・メディカル・インク Embolization protection device and method of use
WO2015148241A1 (en) * 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
JP6990315B2 (en) 2018-01-07 2022-01-12 ジェイシー メディカル、インコーポレイテッド Artificial heart valve delivery system
CN210673509U (en) 2018-01-07 2020-06-05 苏州杰成医疗科技有限公司 Valve prosthesis delivery device
AU2019353156A1 (en) 2018-10-05 2021-05-13 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
WO2020191216A1 (en) 2019-03-19 2020-09-24 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
AU2021217945A1 (en) 2020-02-06 2022-08-25 Laplace Interventional Inc. Transcatheter heart valve prosthesis assembled inside heart chambers or blood vessels
US11318013B2 (en) 2020-04-21 2022-05-03 Medtronic, Inc. Compact prosthetic heart valve device
WO2021257722A1 (en) * 2020-06-16 2021-12-23 Shifamed Holdings, Llc Minimal frame prosthetic cardiac valve delivery devices, systems, and methods
WO2022012010A1 (en) * 2020-07-15 2022-01-20 上海臻亿医疗科技有限公司 Heart valve prosthesis
WO2022047393A1 (en) 2020-08-31 2022-03-03 Shifamed Holdings, Llc Prosthetic delivery system
US11850371B2 (en) 2021-07-13 2023-12-26 Medtronic, Inc. Prosthetic delivery device trays, packaging systems and methods
CN113679512A (en) * 2021-08-11 2021-11-23 上海傲流医疗科技有限公司 Repair device for treating tricuspid valve regurgitation
WO2023161766A1 (en) * 2022-02-25 2023-08-31 Medtronic, Inc. Prosthetic heart valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519957A (en) * 2007-03-01 2010-06-10 ボストン サイエンティフィック リミテッド Coated medical device for delivering a drug outside the lumen
US20120067103A1 (en) * 2010-09-17 2012-03-22 Medtronic Vascular, Inc. Method of Forming a Drug-Eluting Medical Device
JP2015510415A (en) * 2012-01-27 2015-04-09 メドトロニック ヴァスキュラー インコーポレイテッド Drug-filled hollow stent and method for forming a drug-filled hollow stent
JP2016512753A (en) * 2013-03-15 2016-05-09 トゥエルヴ, インコーポレイテッド Prosthetic heart valve device, prosthetic mitral valve, and related systems and methods

Family Cites Families (779)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526219A (en) 1967-07-21 1970-09-01 Ultrasonic Systems Method and apparatus for ultrasonically removing tissue from a biological organism
NL145136C (en) 1967-07-25 1900-01-01
US3565062A (en) 1968-06-13 1971-02-23 Ultrasonic Systems Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like
US3667474A (en) 1970-01-05 1972-06-06 Konstantin Vasilievich Lapkin Dilator for performing mitral and tricuspidal commissurotomy per atrium cordis
US3739402A (en) * 1970-10-15 1973-06-19 Cutter Lab Bicuspid fascia lata valve
DE2219790C3 (en) 1972-04-22 1974-11-07 R Pohlman Device for generating brittle fractures in hard stones
US3861391A (en) 1972-07-02 1975-01-21 Blackstone Corp Apparatus for disintegration of urinary calculi
DE2242863A1 (en) 1972-08-31 1974-03-14 Karl Storz SURGICAL ELEMENT FOR CRUSHING STONES IN THE HUMAN BODY BY ULTRASOUND
US4188952A (en) 1973-12-28 1980-02-19 Loschilov Vladimir I Surgical instrument for ultrasonic separation of biological tissue
US4042979A (en) 1976-07-12 1977-08-23 Angell William W Valvuloplasty ring and prosthetic method
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
IT1144379B (en) 1981-07-14 1986-10-29 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS
US4431006A (en) 1982-01-07 1984-02-14 Technicare Corporation Passive ultrasound needle probe locator
ATE21330T1 (en) 1982-01-20 1986-08-15 Martin Morris Black ARTIFICIAL HEART VALVES.
US4445509A (en) 1982-02-04 1984-05-01 Auth David C Method and apparatus for removal of enclosed abnormal deposits
JPS58173931U (en) 1982-05-14 1983-11-21 アルパイン株式会社 car radio receiver
US4484579A (en) 1982-07-19 1984-11-27 University Of Pittsburgh Commissurotomy catheter apparatus and method
DE3230858C2 (en) 1982-08-19 1985-01-24 Ahmadi, Ali, Dr. med., 7809 Denzlingen Ring prosthesis
EP0139753B1 (en) 1983-04-04 1988-11-09 Sumitomo Bakelite Company Limited Ultrasonic oscillator
IT1159433B (en) 1983-07-25 1987-02-25 Sorin Biomedica Spa PROCEDURE AND EQUIPMENT FOR THE MANUFACTURE OF VALVE FLAPS FOR CARDIAC VALVE PROSTHESIS AND CARDIAC VALVE PROSTHESIS PROVIDED WITH SUCH FLAPS
US5387247A (en) 1983-10-25 1995-02-07 Sorin Biomedia S.P.A. Prosthetic device having a biocompatible carbon film thereon and a method of and apparatus for forming such device
US4629459A (en) 1983-12-28 1986-12-16 Shiley Inc. Alternate stent covering for tissue valves
IT1208326B (en) 1984-03-16 1989-06-12 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS PROVIDED WITH VALVES OF ORGANIC FABRIC
CA1237482A (en) 1984-03-09 1988-05-31 Frank B. Stiles Catheter for effecting removal of obstructions from a biological duct
US4646736A (en) 1984-09-10 1987-03-03 E. R. Squibb & Sons, Inc. Transluminal thrombectomy apparatus
US4960411A (en) 1984-09-18 1990-10-02 Medtronic Versaflex, Inc. Low profile sterrable soft-tip catheter
US4589419A (en) 1984-11-01 1986-05-20 University Of Iowa Research Foundation Catheter for treating arterial occlusion
DE3583431D1 (en) 1984-12-20 1991-08-14 Matsushita Electric Ind Co Ltd MICROWAVE OVEN.
US4750902A (en) 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
DE3685873T2 (en) 1985-11-26 1992-12-17 Sorin Biomedica Spa PRODUCTION OF A PROSTHESIS DEVICE.
US5084151A (en) 1985-11-26 1992-01-28 Sorin Biomedica S.P.A. Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon
CH668192A5 (en) 1985-11-29 1988-12-15 Schneider Medintag Ag CATHETER FOR TREATING NARROW BODIES, FOR EXAMPLE IN A BLOOD VESSEL.
CA1293663C (en) 1986-01-06 1991-12-31 David Christopher Auth Transluminal microdissection device
US4653577A (en) 1986-01-23 1987-03-31 Shiley, Inc. Unitary heat exchanger and debubbler for a liquid
US4679556A (en) 1986-04-16 1987-07-14 Shiley Inc. Releasable holder and method of use
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4747821A (en) 1986-10-22 1988-05-31 Intravascular Surgical Instruments, Inc. Catheter with high speed moving working head
US5314407A (en) 1986-11-14 1994-05-24 Heart Technology, Inc. Clinically practical rotational angioplasty system
US4808153A (en) 1986-11-17 1989-02-28 Ultramed Corporation Device for removing plaque from arteries
DE3689793T2 (en) 1986-11-27 1994-09-22 Sumitomo Bakelite Co SURGICAL ULTRASONIC DEVICE.
IT1196836B (en) 1986-12-12 1988-11-25 Sorin Biomedica Spa Polymeric or metal alloy prosthesis with biocompatible carbon coating
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4898575A (en) 1987-08-31 1990-02-06 Medinnovations, Inc. Guide wire following tunneling catheter system and method for transluminal arterial atherectomy
US4819751A (en) 1987-10-16 1989-04-11 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
IT1218947B (en) 1988-01-12 1990-04-24 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS
US4892540A (en) 1988-04-21 1990-01-09 Sorin Biomedica S.P.A. Two-leaflet prosthetic heart valve
US4909252A (en) 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
JPH024516A (en) 1988-06-23 1990-01-09 Seiko Epson Corp Ink jet head
US4920954A (en) 1988-08-05 1990-05-01 Sonic Needle Corporation Ultrasonic device for applying cavitation forces
US4919133A (en) 1988-08-18 1990-04-24 Chiang Tien Hon Catheter apparatus employing shape memory alloy structures
US5904679A (en) 1989-01-18 1999-05-18 Applied Medical Resources Corporation Catheter with electrosurgical cutter
US4936281A (en) 1989-04-13 1990-06-26 Everest Medical Corporation Ultrasonically enhanced RF ablation catheter
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5076276A (en) 1989-11-01 1991-12-31 Olympus Optical Co., Ltd. Ultrasound type treatment apparatus
US5069664A (en) 1990-01-25 1991-12-03 Inter Therapy, Inc. Intravascular ultrasonic angioplasty probe
IT1240110B (en) 1990-02-21 1993-11-27 Sorin Biomedica Spa CARDIAC VALVE PROSTHESIS
US5344426A (en) 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5106302A (en) 1990-09-26 1992-04-21 Ormco Corporation Method of fracturing interfaces with an ultrasonic tool
US5269291A (en) 1990-12-10 1993-12-14 Coraje, Inc. Miniature ultrasonic transducer for plaque ablation
US5248296A (en) 1990-12-24 1993-09-28 Sonic Needle Corporation Ultrasonic device having wire sheath
US5304115A (en) 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
US5957882A (en) 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5916192A (en) 1991-01-11 1999-06-29 Advanced Cardiovascular Systems, Inc. Ultrasonic angioplasty-atherectomy catheter and method of use
US5267954A (en) 1991-01-11 1993-12-07 Baxter International Inc. Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels
DE69215722T3 (en) 1991-03-22 2001-03-08 Katsuro Tachibana Amplifiers for ultrasound therapy of diseases and liquid pharmaceutical compositions containing them
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5382261A (en) 1992-09-01 1995-01-17 Expandable Grafts Partnership Method and apparatus for occluding vessels
US5318014A (en) 1992-09-14 1994-06-07 Coraje, Inc. Ultrasonic ablation/dissolution transducer
US5356418A (en) 1992-10-28 1994-10-18 Shturman Cardiology Systems, Inc. Apparatus and method for rotational atherectomy
US5397293A (en) 1992-11-25 1995-03-14 Misonix, Inc. Ultrasonic device with sheath and transverse motion damping
US5352199A (en) 1993-05-28 1994-10-04 Numed, Inc. Balloon catheter
US5989280A (en) 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
AU1301095A (en) 1993-12-13 1995-07-03 Brigham And Women's Hospital Aortic valve supporting device
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
WO1996010366A1 (en) 1994-10-03 1996-04-11 Heart Technology, Inc. Transluminal thrombectomy apparatus
IT1268777B1 (en) 1994-10-05 1997-03-06 Fogazzi Di Venturelli Andrea & HYDRAULIC STENT INTRODUCER
US6689086B1 (en) 1994-10-27 2004-02-10 Advanced Cardiovascular Systems, Inc. Method of using a catheter for delivery of ultrasonic energy and medicament
US5827229A (en) 1995-05-24 1998-10-27 Boston Scientific Corporation Northwest Technology Center, Inc. Percutaneous aspiration thrombectomy catheter system
US6774278B1 (en) * 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US5681336A (en) 1995-09-07 1997-10-28 Boston Scientific Corporation Therapeutic device for treating vien graft lesions
US5725494A (en) 1995-11-30 1998-03-10 Pharmasonics, Inc. Apparatus and methods for ultrasonically enhanced intraluminal therapy
DE19605042A1 (en) 1996-02-12 1998-01-15 Figulla Hans Reiner Prof Dr Me Vessel implant for bridging vascular weaknesses
US8865788B2 (en) 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
AU721034B2 (en) 1996-02-15 2000-06-22 Biosense, Inc. Catheter based surgery
US5972004A (en) 1996-02-23 1999-10-26 Cardiovascular Technologies, Llc. Wire fasteners for use in minimally invasive surgery and apparatus and methods for handling those fasteners
IT1285308B1 (en) 1996-03-12 1998-06-03 Sorin Biomedica Cardio Spa PROCEDURE FOR THE PREPARATION OF BIOLOGICAL MATERIAL FOR PLANT
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5897566A (en) 1996-07-15 1999-04-27 Shturman Cardiology Systems, Inc. Rotational atherectomy device
US5662671A (en) 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6080170A (en) 1996-07-26 2000-06-27 Kensey Nash Corporation System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels
US5782931A (en) 1996-07-30 1998-07-21 Baxter International Inc. Methods for mitigating calcification and improving durability in glutaraldehyde-fixed bioprostheses and articles manufactured by such methods
CA2213948C (en) 1996-09-19 2006-06-06 United States Surgical Corporation Ultrasonic dissector
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US6217595B1 (en) 1996-11-18 2001-04-17 Shturman Cardiology Systems, Inc. Rotational atherectomy device
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6183411B1 (en) 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US5873811A (en) 1997-01-10 1999-02-23 Sci-Med Life Systems Composition containing a radioactive component for treatment of vessel wall
US6129734A (en) 1997-01-21 2000-10-10 Shturman Cardiology Systems, Inc. Rotational atherectomy device with radially expandable prime mover coupling
US5827321A (en) 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
KR100469779B1 (en) 1997-02-10 2005-02-02 스미카 다케다 노야쿠 가부시키가이샤 Aqueous suspension of agrochemical
US5817101A (en) 1997-03-13 1998-10-06 Schneider (Usa) Inc Fluid actuated stent delivery system
US5989208A (en) 1997-05-16 1999-11-23 Nita; Henry Therapeutic ultrasound system
US6269819B1 (en) 1997-06-27 2001-08-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
WO1999004730A1 (en) 1997-07-22 1999-02-04 Baxter International Inc. Expandable annuloplasty ring
US6494890B1 (en) 1997-08-14 2002-12-17 Shturman Cardiology Systems, Inc. Eccentric rotational atherectomy device
US6132444A (en) 1997-08-14 2000-10-17 Shturman Cardiology Systems, Inc. Eccentric drive shaft for atherectomy device and method for manufacture
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6221006B1 (en) 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
EP2258312B9 (en) 1997-12-29 2012-09-19 The Cleveland Clinic Foundation Deployable surgical platform and system for the removal and delivery of a medical device comprising such deployable surgical platform
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US6254635B1 (en) 1998-02-02 2001-07-03 St. Jude Medical, Inc. Calcification-resistant medical articles
US6423032B2 (en) 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
US6047700A (en) 1998-03-30 2000-04-11 Arthrocare Corporation Systems and methods for electrosurgical removal of calcified deposits
CA2331386A1 (en) 1998-06-26 2000-01-06 Incyte Pharmaceuticals, Inc. Human signal peptide-containing proteins
US6085754A (en) 1998-07-13 2000-07-11 Acorn Cardiovascular, Inc. Cardiac disease treatment method
US6113608A (en) 1998-11-20 2000-09-05 Scimed Life Systems, Inc. Stent delivery device
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US7226467B2 (en) 1999-04-09 2007-06-05 Evalve, Inc. Fixation device delivery catheter, systems and methods of use
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
WO2000060995A2 (en) 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
GB2349824B (en) 1999-05-04 2003-03-12 Medtronic Inc Apparatus for inhibiting or minimizing calcification of aortic valves
US6648854B1 (en) 1999-05-14 2003-11-18 Scimed Life Systems, Inc. Single lumen balloon-tipped micro catheter with reinforced shaft
US7628803B2 (en) 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6997951B2 (en) 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6168579B1 (en) 1999-08-04 2001-01-02 Scimed Life Systems, Inc. Filter flush system and methods of use
US9694121B2 (en) 1999-08-09 2017-07-04 Cardiokinetix, Inc. Systems and methods for improving cardiac function
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6626930B1 (en) 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6494891B1 (en) 1999-12-30 2002-12-17 Advanced Cardiovascular Systems, Inc. Ultrasonic angioplasty transmission member
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
WO2001056512A1 (en) 2000-02-02 2001-08-09 Snyders Robert V Artificial heart valve
JP2003526448A (en) 2000-03-10 2003-09-09 パラコー サージカル インコーポレイテッド Inflatable cardiac harness for treating congestive heart failure
US10092313B2 (en) 2000-04-05 2018-10-09 Boston Scientific Limited Medical sealed tubular structures
CA2403925C (en) 2000-04-05 2008-09-16 Stx Medical, Inc. Intralumenal material removal systems and methods
US8475484B2 (en) 2000-04-05 2013-07-02 Medrad, Inc. Liquid seal assembly for a rotating torque tube
US6565588B1 (en) 2000-04-05 2003-05-20 Pathway Medical Technologies, Inc. Intralumenal material removal using an expandable cutting device
US7344546B2 (en) 2000-04-05 2008-03-18 Pathway Medical Technologies Intralumenal material removal using a cutting device for differential cutting
US20040243162A1 (en) 2000-04-05 2004-12-02 Pathway Medical Technologies, Inc. Interventional catheter assemblies and control systems
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
EP1512383B1 (en) 2000-06-26 2013-02-20 Rex Medical, L.P. A vascular system for valve leaflet apposition
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US7077861B2 (en) 2000-07-06 2006-07-18 Medtentia Ab Annuloplasty instrument
US8956407B2 (en) 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
WO2004030569A2 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
US6669722B2 (en) 2000-09-22 2003-12-30 Cordis Corporation Stent with optimal strength and radiopacity characteristics
WO2002026168A2 (en) 2000-09-29 2002-04-04 Tricardia, Llc Venous valvuloplasty device
WO2002028421A1 (en) 2000-10-06 2002-04-11 University Of Washington Methods of inhibition of stenosis and/or sclerosis of the aortic valve
US7608704B2 (en) 2000-11-08 2009-10-27 Incyte Corporation Secreted proteins
WO2002039908A2 (en) 2000-11-16 2002-05-23 Hill J Donald Automatic suture fixation apparatus and method
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
US6579308B1 (en) 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires
US6623452B2 (en) 2000-12-19 2003-09-23 Scimed Life Systems, Inc. Drug delivery catheter having a highly compliant balloon with infusion holes
US6893456B2 (en) 2000-12-22 2005-05-17 Advanced Cardiovascular Systems, Inc. Catheter and method for making the same
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7186264B2 (en) 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US7935145B2 (en) 2001-05-17 2011-05-03 Edwards Lifesciences Corporation Annuloplasty ring for ischemic mitral valve insuffuciency
US6599314B2 (en) 2001-06-08 2003-07-29 Cordis Corporation Apparatus and method for stenting a vessel using balloon-actuated stent with interlocking elements
ES2230262T3 (en) 2001-06-11 2005-05-01 Sorin Biomedica Cardio S.R.L. PROTECTION OF ANULOPLASTY AND METHOD FOR THEIR PRODUCTION.
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
EP1423066B1 (en) 2001-09-07 2008-07-16 Mardil, Inc. Method and apparatus for external heart stabilization
US20030064095A1 (en) 2001-09-14 2003-04-03 Imedd, Inc. Microfabricated nanopore device for sustained release of therapeutic agent
US20040057955A1 (en) 2001-10-05 2004-03-25 O'brien Kevin D. Methods of inhibition of stenosis and/or sclerosis of the aortic valve
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6852118B2 (en) 2001-10-19 2005-02-08 Shturman Cardiology Systems, Inc. Self-indexing coupling for rotational angioplasty device
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
WO2003043685A2 (en) 2001-11-19 2003-05-30 Cardiovascular Systems, Inc High torque, low profile intravascular guidewire system
US20080249504A1 (en) 2007-04-06 2008-10-09 Lattouf Omar M Instrument port
US6811801B2 (en) 2001-12-12 2004-11-02 Abbott Laboratories Methods and compositions for brightening the color of thermally processed nutritionals
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
WO2003105670A2 (en) 2002-01-10 2003-12-24 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7018404B2 (en) 2002-01-24 2006-03-28 St. Jude Medical, Inc. Conduit for aorta or pulmonary artery replacement
US7125420B2 (en) 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
ATE518501T1 (en) 2002-03-27 2011-08-15 Sorin Biomedica Cardio Srl ANNULOPLASTY PROSTHESIS WITH PERFORATED ELEMENT
US7588582B2 (en) 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
US7753922B2 (en) 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US8348963B2 (en) 2002-07-03 2013-01-08 Hlt, Inc. Leaflet reinforcement for regurgitant valves
US6686820B1 (en) 2002-07-11 2004-02-03 Intel Corporation Microelectromechanical (MEMS) switching apparatus
WO2004008996A1 (en) 2002-07-22 2004-01-29 Timur Paul Sarac Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
EP1545371B1 (en) 2002-08-01 2016-04-13 Robert A. Levine Cardiac devices and methods for minimally invasive repair of ischemic mitral regurgitation
US8172856B2 (en) 2002-08-02 2012-05-08 Cedars-Sinai Medical Center Methods and apparatus for atrioventricular valve repair
US6702748B1 (en) 2002-09-20 2004-03-09 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
EP1402826B1 (en) 2002-08-20 2013-06-12 Nipro Corporation Thrombus capture catheter
CA2827984A1 (en) 2002-08-28 2004-03-11 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
ATE464028T1 (en) 2002-08-29 2010-04-15 St Jude Medical Cardiology Div IMPLANTABLE DEVICES FOR CONTROLLING THE INNER DIAMETER OF AN OPENING IN THE BODY
CO5500017A1 (en) 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US8512252B2 (en) 2002-10-07 2013-08-20 Integrated Sensing Systems Inc. Delivery method and system for monitoring cardiovascular pressures
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US20040082910A1 (en) 2002-10-29 2004-04-29 Constantz Brent R. Devices and methods for treating aortic valve stenosis
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6746463B1 (en) 2003-01-27 2004-06-08 Scimed Life Systems, Inc Device for percutaneous cutting and dilating a stenosis of the aortic valve
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
SE0300854D0 (en) 2003-03-26 2003-03-26 Oeyvind Reitan Device for the treatment of a heart valve insufficiency
US8083707B2 (en) 2003-04-17 2011-12-27 Tosaya Carol A Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US7279002B2 (en) 2003-04-25 2007-10-09 Boston Scientific Scimed, Inc. Cutting stent and balloon
US20040260394A1 (en) 2003-06-20 2004-12-23 Medtronic Vascular, Inc. Cardiac valve annulus compressor system
JP4942031B2 (en) 2003-07-08 2012-05-30 メドトロニック ベンター テクノロジーズ リミティド In particular, an implantable prosthetic device suitable for transarterial delivery in the treatment of aortic stenosis, and a method of implanting the prosthetic device
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7744620B2 (en) 2003-07-18 2010-06-29 Intervalve, Inc. Valvuloplasty catheter
WO2005018507A2 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
ATE442107T1 (en) 2003-07-21 2009-09-15 Univ Pennsylvania PERCUTANE HEART VALVE
JP4002293B2 (en) 2003-07-22 2007-10-31 コラゾン テクノロジーズ インコーポレーティッド Apparatus and method for treating aortic valve stenosis
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
US7044966B2 (en) 2003-10-06 2006-05-16 3F Therapeutics, Inc. Minimally invasive valve replacement system
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7431726B2 (en) 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
AU2004308508B2 (en) 2003-12-23 2011-03-10 Sadra Medical, Inc. Repositionable heart valve
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
WO2005092203A1 (en) 2004-03-03 2005-10-06 Nmt Medical, Inc. Delivery/recovery system for septal occluder
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
EP1734903B2 (en) 2004-03-11 2022-01-19 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
JP4503331B2 (en) 2004-03-30 2010-07-14 西松建設株式会社 Granular filling device and filling method
US20050228477A1 (en) 2004-04-09 2005-10-13 Xtent, Inc. Topographic coatings and coating methods for medical devices
DE602005015446D1 (en) 2004-06-29 2009-08-27 Fertin Pharma As TOBACCO ALCOHOL RELEASING CHEWING GUM
EP1796597B1 (en) 2004-09-14 2013-01-09 Edwards Lifesciences AG Device for treatment of heart valve regurgitation
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
WO2006041877A2 (en) 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
JP5219518B2 (en) 2004-12-09 2013-06-26 ザ ファウンドリー, エルエルシー Aortic valve repair
JP2008528117A (en) 2005-01-21 2008-07-31 イノビア,リミティド ライアビリティー カンパニー Stent valve and placement catheter for use therewith
US20100298929A1 (en) 2005-02-07 2010-11-25 Thornton Troy L Methods, systems and devices for cardiac valve repair
WO2011034628A1 (en) 2005-02-07 2011-03-24 Evalve, Inc. Methods, systems and devices for cardiac valve repair
EP3967269A3 (en) 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
WO2006089236A1 (en) 2005-02-18 2006-08-24 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
DE102006039823A1 (en) 2005-02-25 2008-03-20 Strecker, Ernst Peter, Prof. Dr. med. Catheter-stent-device for treatment of e.g. body hollow organ, has catheter surrounding stent, where catheter and stent are movable by difference of pressure developed by pressuring medium consisting of liquid or gas for implanting stent
WO2006097931A2 (en) 2005-03-17 2006-09-21 Valtech Cardio, Ltd. Mitral valve treatment techniques
EP1868663B1 (en) 2005-03-23 2011-11-16 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
ATE534346T1 (en) 2005-05-06 2011-12-15 Sorin Biomedica Cardio Srl ANNULOPLASTY PROSTHESIS
ES2425779T3 (en) 2005-05-06 2013-10-17 Vasonova, Inc. Apparatus for guiding and positioning an endovascular device
WO2006127756A2 (en) 2005-05-24 2006-11-30 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US7682391B2 (en) 2005-07-13 2010-03-23 Edwards Lifesciences Corporation Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring
US7530253B2 (en) 2005-09-09 2009-05-12 Edwards Lifesciences Corporation Prosthetic valve crimping device
WO2007030823A2 (en) 2005-09-09 2007-03-15 Edwards Lifesciences Corporation Device and method for reshaping mitral valve annulus
US20070073391A1 (en) 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8449606B2 (en) 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
EP3167847B1 (en) 2005-11-10 2020-10-14 Edwards Lifesciences CardiAQ LLC Heart valve prosthesis
US7632308B2 (en) 2005-11-23 2009-12-15 Didier Loulmet Methods, devices, and kits for treating mitral valve prolapse
WO2007067820A2 (en) 2005-12-09 2007-06-14 Edwards Lifesciences Corporation Improved anchoring system for medical implant
WO2007100408A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
WO2007100410A2 (en) 2005-12-15 2007-09-07 Georgia Tech Research Corporation Systems and methods for enabling heart valve replacement
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP1803420B1 (en) 2005-12-28 2009-07-01 Sorin Biomedica Cardio S.R.L. Annuloplasty prosthesis with an auxetic structure
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
US7749266B2 (en) 2006-02-27 2010-07-06 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US7806926B2 (en) 2006-04-14 2010-10-05 Edwards Lifesciences Corporation Holders for prosthetic aortic heart valves
US8551161B2 (en) 2006-04-25 2013-10-08 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
DE102006020035A1 (en) 2006-04-26 2007-10-31 B. Braun Melsungen Ag Preparation and use of poly (hydroxyethyl starch) chitin and poly (carboxymethyl starch) chitin compounds
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US20140276782A1 (en) 2013-03-15 2014-09-18 Larry D. Paskar Catheter system
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
CN102283721B (en) 2006-06-01 2015-08-26 爱德华兹生命科学公司 For improving the prosthetic insert of heart valve function
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
WO2008013915A2 (en) 2006-07-28 2008-01-31 Arshad Quadri Percutaneous valve prosthesis and system and method for implanting same
EP2056750A2 (en) 2006-08-14 2009-05-13 BUCH, Wally S. Methods and apparatus for mitral valve repair
US8876895B2 (en) 2006-09-19 2014-11-04 Medtronic Ventor Technologies Ltd. Valve fixation member having engagement arms
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
US8068920B2 (en) 2006-10-03 2011-11-29 Vincent A Gaudiani Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
FR2906998B1 (en) 2006-10-16 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
DE102006052564B3 (en) 2006-11-06 2007-12-13 Georg Lutter Mitral valve stent for surgical implantation and fixation of heart valve prosthesis to heart, has stent clips arranged distally, where one of stent clips forms section that is externally rolled in unfolded condition of stent
WO2008060553A1 (en) 2006-11-14 2008-05-22 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Transcatheter coronary sinus mitral valve annuloplasty procedure and coronary artery and myocardial protection device
AU2007329243B2 (en) 2006-12-06 2014-04-03 Medtronic CV Luxembourg S.a.r.l System and method for transapical delivery of an annulus anchored self-expanding valve
US8470024B2 (en) 2006-12-19 2013-06-25 Sorin Group Italia S.R.L. Device for in situ positioning of cardiac valve prosthesis
EP1967164A3 (en) 2006-12-19 2009-01-28 Sorin Biomedica Cardio S.R.L. Instrument for in situ deployment of cardiac valve prostheses
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
FR2910269B1 (en) 2006-12-22 2009-02-27 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE
US9107750B2 (en) 2007-01-03 2015-08-18 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
US9192471B2 (en) 2007-01-08 2015-11-24 Millipede, Inc. Device for translumenal reshaping of a mitral valve annulus
WO2008091515A2 (en) 2007-01-19 2008-07-31 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
WO2008091614A1 (en) 2007-01-23 2008-07-31 Cvdevices, Llc Systems and methods for valve annulus remodeling
WO2008103280A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US8845723B2 (en) 2007-03-13 2014-09-30 Mitralign, Inc. Systems and methods for introducing elements into tissue
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US20080262603A1 (en) 2007-04-23 2008-10-23 Sorin Biomedica Cardio Prosthetic heart valve holder
FR2915678B1 (en) 2007-05-02 2010-04-16 Lapeyre Ind Llc MECHANICAL PROTHETIC CARDIAC VALVE
EP2157916A2 (en) 2007-06-04 2010-03-03 Mor Research Applications Ltd. Cardiac valve leaflet augmentation
US20100235981A1 (en) 2007-06-05 2010-09-23 Vivi Aakjaer Jensen Container unit for storage and disinfection
JP5660890B2 (en) 2007-06-26 2015-01-28 バソノバ・インコーポレイテッドVasonova, Inc. Vascular access and guidance system
EP2014257B1 (en) 2007-07-12 2010-09-08 Sorin Biomedica Cardio S.R.L. Expandable prosthetic valve crimping device
US8006535B2 (en) 2007-07-12 2011-08-30 Sorin Biomedica Cardio S.R.L. Expandable prosthetic valve crimping device
EP2026280B1 (en) 2007-07-23 2013-10-23 Esaote S.p.A. Method and corresponding apparatus for quantitative measurements on sequences of images, particularly ultrasonic images
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
FR2919798B1 (en) 2007-08-09 2010-08-27 Univ Haute Alsace VALVULAR ENDOPROTHESIS
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
DE602007013225D1 (en) 2007-09-07 2011-04-28 Mayo Foundation Fluid-filled delivery system for in situ use of heart valve prostheses
EP2399527A1 (en) 2007-09-07 2011-12-28 Sorin Biomedica Cardio S.r.l. Prosthetic valve delivery system including retrograde/antegrade approach
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
ES2396738T3 (en) 2007-09-07 2013-02-25 Sorin Biomedica Cardio S.R.L. Microprocessor-controlled delivery system of a heart valve prosthesis
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8425593B2 (en) 2007-09-26 2013-04-23 St. Jude Medical, Inc. Collapsible prosthetic heart valves
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US8454686B2 (en) 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
EP2194888B1 (en) 2007-10-03 2021-04-28 Bioventrix, Inc. System for treating dysfunctional cardiac tissue
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US7981151B2 (en) 2007-10-15 2011-07-19 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
US8197464B2 (en) 2007-10-19 2012-06-12 Cordis Corporation Deflecting guide catheter for use in a minimally invasive medical procedure for the treatment of mitral valve regurgitation
US8597347B2 (en) 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US9131928B2 (en) 2007-12-20 2015-09-15 Mor Research Applications Ltd. Elongated body for deployment in a heart
EP2240121B1 (en) 2008-01-16 2019-05-22 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
WO2009094197A1 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US7972378B2 (en) 2008-01-24 2011-07-05 Medtronic, Inc. Stents for prosthetic heart valves
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8968393B2 (en) 2008-02-28 2015-03-03 Medtronic, Inc. System and method for percutaneous mitral valve repair
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
FR2930137B1 (en) 2008-04-18 2010-04-23 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE.
EP3141219A1 (en) 2008-04-23 2017-03-15 Medtronic, Inc. Stented heart valve devices
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
ES2386239T3 (en) 2008-05-16 2012-08-14 Sorin Biomedica Cardio S.R.L. Atraumatic cardiovalvular prosthesis
WO2009155088A1 (en) 2008-05-30 2009-12-23 University Of Cincinnati Use of zinc chelators to inhibit biofilm formation
CA2726807C (en) 2008-06-05 2016-05-31 Medtronic, Inc. Connection systems for two piece prosthetic heart valve assemblies and methods for making and using them
US8591460B2 (en) 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US8647254B2 (en) 2008-07-01 2014-02-11 Maquet Cardiovascular Llc Epicardial clip
EP4176845A1 (en) 2008-07-15 2023-05-10 St. Jude Medical, LLC Collapsible and re-expandable prosthetic heart valve cuff designs
US9226820B2 (en) 2008-07-15 2016-01-05 St. Jude Medical, Inc. Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
ES2421333T3 (en) 2008-07-17 2013-08-30 Nvt Ag Cardiac valve prosthesis system
US7951193B2 (en) 2008-07-23 2011-05-31 Boston Scientific Scimed, Inc. Drug-eluting stent
US20100030330A1 (en) 2008-08-01 2010-02-04 Edwards Lifesciences Corporation Device and method for mitral valve repair
US8778016B2 (en) 2008-08-14 2014-07-15 Edwards Lifesciences Corporation Method and apparatus for repairing or replacing chordae tendinae
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
WO2010031060A1 (en) 2008-09-15 2010-03-18 Medtronic Ventor Technologies Ltd. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US9314335B2 (en) 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US20100076376A1 (en) 2008-09-19 2010-03-25 Sorin Biomedica Cardio S. r. l. Surgical tool for vascular exposure and access
EP2165651B1 (en) 2008-09-19 2011-08-17 Sorin Biomedica Cardio S.R.L. Surgical tool for vascular exposure and access
AU2009295960A1 (en) 2008-09-29 2010-04-01 Cardiaq Valve Technologies, Inc. Heart valve
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
EP2358297B1 (en) 2008-11-21 2019-09-11 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8688234B2 (en) 2008-12-19 2014-04-01 Cardiac Pacemakers, Inc. Devices, methods, and systems including cardiac pacing
ES2551694T3 (en) 2008-12-23 2015-11-23 Sorin Group Italia S.R.L. Expandable prosthetic valve with anchoring appendages
EP2376011B1 (en) 2009-01-09 2019-07-03 ReCor Medical, Inc. Apparatus for treatment of mitral valve insufficiency
US9402720B2 (en) 2009-01-12 2016-08-02 Valve Medical Ltd. Modular percutaneous valve structure and delivery method
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US8808366B2 (en) 2009-02-27 2014-08-19 St. Jude Medical, Inc. Stent features for collapsible prosthetic heart valves
US8715207B2 (en) 2009-03-19 2014-05-06 Sorin Group Italia S.R.L. Universal valve annulus sizing device
ES2543460T3 (en) 2009-03-26 2015-08-19 Sorin Group Usa, Inc. Annuloplasty sizing devices for minimally invasive interventions
US8444689B2 (en) 2009-03-30 2013-05-21 Causper Medical Inc. Valve prosthesis with movably attached claspers with apex
CA2758156A1 (en) 2009-04-10 2010-10-14 Lon Sutherland Annest An implantable scaffolding containing an orifice for use with a prosthetic or bio-prosthetic valve
US9011522B2 (en) 2009-04-10 2015-04-21 Lon Sutherland ANNEST Device and method for temporary or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve
US8414644B2 (en) 2009-04-15 2013-04-09 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
EP4035623A1 (en) 2009-04-29 2022-08-03 Edwards Lifesciences Corporation Apparatus and method for replacing a diseased cardiac valve
US8353953B2 (en) 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
EP2250975B1 (en) 2009-05-13 2013-02-27 Sorin Biomedica Cardio S.r.l. Device for the in situ delivery of heart valves
US9168105B2 (en) 2009-05-13 2015-10-27 Sorin Group Italia S.R.L. Device for surgical interventions
EP2250976B1 (en) 2009-05-13 2015-08-26 Sorin Group Italia S.r.l. Device for the in situ delivery of heart valves
EP2263747B1 (en) 2009-06-15 2015-08-26 Sorin CRM SAS Implantable cardiac prosthesis comprising means for analysing patient's tolerance of stimulation mode aiming at spontaneous atrio-ventricular conduction
AU2010266210B2 (en) 2009-07-02 2015-01-22 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US8845722B2 (en) 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
WO2011025945A1 (en) 2009-08-27 2011-03-03 Medtronic Inc. Transcatheter valve delivery systems and methods
WO2011025981A1 (en) 2009-08-28 2011-03-03 3F Therapeutics, Inc. Transapical delivery device and method of use
US8652203B2 (en) 2010-09-23 2014-02-18 Cardiaq Valve Technologies, Inc. Replacement heart valves, delivery devices and methods
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
CA2777067A1 (en) 2009-10-14 2011-04-21 Cardiovascular Technologies, Llc Percutaneous transvalvular intraannular band for mitral valve repair
WO2011051043A1 (en) 2009-11-02 2011-05-05 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
WO2011057087A1 (en) 2009-11-05 2011-05-12 The Trustees University Of Pennsylvania Valve prosthesis
EP2327366B1 (en) 2009-11-30 2012-03-14 Sorin CRM SAS Kit for piercing the cardiac septum and implanting a transseptal probe, in particular a probe for detection/stimulation of a left cavity of the heart
US20130190861A1 (en) 2012-01-23 2013-07-25 Tendyne Holdings, Inc. Prosthetic Valve for Replacing Mitral Valve
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
EP3649985B8 (en) 2009-12-08 2021-04-21 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
CN102905626A (en) * 2010-01-29 2013-01-30 Dc设备公司 Devices and systems for treating heart failure
US8812431B2 (en) 2010-02-03 2014-08-19 Siemens Aktiengesellschaft Method and system for medical decision support using organ models and learning based discriminative distance functions
US20110208293A1 (en) 2010-02-23 2011-08-25 Medtronic, Inc. Catheter-Based Heart Valve Therapy System with Sizing Balloon
US9072603B2 (en) 2010-02-24 2015-07-07 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US8579788B2 (en) 2010-03-08 2013-11-12 Wilmo Orejola Auto-regulated R-wave synchronized intraventricular balloon pump heart assist device
US20110224785A1 (en) 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
SE535690C2 (en) 2010-03-25 2012-11-13 Jan Otto Solem An implantable device and cardiac support kit, comprising means for generating longitudinal movement of the mitral valve
SE535140C2 (en) 2010-03-25 2012-04-24 Jan Otto Solem An implantable device, kit and system for improving cardiac function, including means for generating longitudinal movement of the mitral valve
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
JP6085553B2 (en) 2010-04-13 2017-02-22 センターハート・インコーポレイテッドSentreHEART, Inc. Devices and methods for accessing and delivering devices to the heart
EP3384879B1 (en) 2010-04-23 2020-09-30 Medtronic, Inc. Delivery systems for prosthetic heart valves
EP2563278B1 (en) 2010-04-27 2018-07-11 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with biased release features
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
IT1400544B1 (en) 2010-06-09 2013-06-11 Sorin Biomedica Cardio Srl PROCESS OF DETOXIFICATION OF BIOLOGICAL FABRIC.
WO2011156714A2 (en) 2010-06-10 2011-12-15 Chambers Dr Jeffrey W Systems and methods for preventing formation of blood clots in the left atrium
WO2011159779A2 (en) 2010-06-15 2011-12-22 Mayo Foundation For Medical Education And Research Percutaneously deliverable valves
US8496671B1 (en) 2010-06-16 2013-07-30 Cardica, Inc. Mitral valve treatment
EP4018966A1 (en) 2010-06-21 2022-06-29 Edwards Lifesciences CardiAQ LLC Replacement heart valve
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
IT1401060B1 (en) 2010-07-20 2013-07-12 Global Engineering Const S R L WATER WASTE SYSTEM OF THE SEA WAVES IN TUBS TO EXPLOIT THE ENERGY OF THE WILD MOTORCYCLE TO PRODUCE ELECTRICITY BY MEANS OF HYDRAULIC TURBINES AND CURRENT GENERATORS.
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2012012660A2 (en) 2010-07-21 2012-01-26 Accola Kevin D Prosthetic heart valves and devices, systems, and methods for deploying prosthetic heart valves
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
WO2012019052A2 (en) 2010-08-04 2012-02-09 Micardia Corporation Percutaneous transcatheter repair of heart valves
WO2012023978A2 (en) 2010-08-17 2012-02-23 St. Jude Medical, Inc. Delivery system for collapsible heart valve
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
US20120053680A1 (en) 2010-08-24 2012-03-01 Bolling Steven F Reconfiguring Heart Features
US10105224B2 (en) * 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
AU2011296361B2 (en) 2010-09-01 2015-05-28 Medtronic Vascular Galway Prosthetic valve support structure
JP5970458B2 (en) 2010-09-01 2016-08-17 ムバルブ・テクノロジーズ・リミテッド Heart valve support structure
FR2964855B1 (en) 2010-09-17 2013-10-18 Ct Hospitalier Regional Universitaire D Amiens IMPLANT INTENDED TO BE PLACED IN AURICULO-VENTRICULAR BLOOD PASSAGE
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US20120078360A1 (en) 2010-09-23 2012-03-29 Nasser Rafiee Prosthetic devices, systems and methods for replacing heart valves
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
EP3111889B1 (en) 2010-09-24 2019-11-13 Symetis SA A transcatheter aortic valve implantation system
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
US8712133B2 (en) 2010-09-29 2014-04-29 Siemens Aktiengesellschaft Cardiac chamber volume computation from contours and base plane in cardiac MR Cine images
US8792699B2 (en) 2010-09-29 2014-07-29 Siemens Aktiengesellschaft Motion tracking for clinical parameter derivation and adaptive flow acquisition in magnetic resonance imaging
WO2012043898A1 (en) 2010-09-29 2012-04-05 Kim June-Hong Tissue protective device for coronary sinus and tricuspid valve, knot delivery device, and device for mitral valve cerclage, containing same
US8532352B2 (en) 2010-10-06 2013-09-10 Siemens Aktiengesellschaft Method and system for intraoperative guidance using physiological image fusion
EP2629699B1 (en) 2010-10-21 2017-01-04 Medtronic, Inc. Mitral bioprosthesis with low ventricular profile
GB201017921D0 (en) 2010-10-22 2010-12-01 Ucl Business Plc Prothesis delivery system
EP2633457B1 (en) 2010-10-26 2021-10-06 Oslo Universitetssykehus HF Method for myocardial segment work analysis
CA2817319A1 (en) 2010-11-09 2012-05-18 Ironwood Pharmaceuticals, Inc. Triazole derivatives as sgc stimulators
JP6010545B2 (en) 2010-12-23 2016-10-19 トゥエルヴ, インコーポレイテッド System for mitral valve repair and replacement
EP2474287A1 (en) 2011-01-11 2012-07-11 Symetis Sa Delivery catheter for stent-valve, and sub-assembly therefor
EP2663257B1 (en) 2011-01-11 2016-10-26 Hans Reiner Figulla Valve prosthesis for replacing an atrioventricular valve of the heart
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
WO2012106602A2 (en) 2011-02-04 2012-08-09 Annest Lon Sutherland A device and method for temporaty or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9445898B2 (en) 2011-03-01 2016-09-20 Medtronic Ventor Technologies Ltd. Mitral valve repair
US8454656B2 (en) 2011-03-01 2013-06-04 Medtronic Ventor Technologies Ltd. Self-suturing anchors
US20120226340A1 (en) 2011-03-03 2012-09-06 Empire Technology Development, Llc Temporary perfusion channel for percutaneous delivery of balloon-expandable stents
EP2688516B1 (en) 2011-03-21 2022-08-17 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
EP3644194B1 (en) 2011-04-15 2022-12-07 Heartstitch, Inc. Suturing devices for suturing an anatomic valve
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2522307B1 (en) 2011-05-08 2020-09-30 ITSO Medical AB Device for delivery of medical devices to a cardiac valve
CN102883662B (en) 2011-05-11 2015-04-08 株式会社东芝 Medical image processing device and method for same
US20120303048A1 (en) 2011-05-24 2012-11-29 Sorin Biomedica Cardio S.R.I. Transapical valve replacement
AU2012262538B2 (en) 2011-05-27 2015-09-17 Cormatrix Cardiovascular, Inc. Sterilized, acellular extracellular matrix compositions and methods of making thereof
US9011523B2 (en) 2011-06-20 2015-04-21 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
CA2840084C (en) 2011-06-21 2019-11-05 Foundry Newco Xii, Inc. Prosthetic heart valve devices and associated systems and methods
EP2723272A4 (en) 2011-06-24 2015-01-28 Inceptus Medical LLC Percutaneously implantable artificial heart valve system and associated methods and devices
EP2723277B1 (en) 2011-06-27 2018-05-30 University of Maryland, Baltimore Transapical mitral valve repair device
WO2013017359A1 (en) 2011-08-03 2013-02-07 Aeeg Ab Delivery device for medical implant and medical procedure
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP3417813B1 (en) 2011-08-05 2020-05-13 Cardiovalve Ltd Percutaneous mitral valve replacement
US9480559B2 (en) * 2011-08-11 2016-11-01 Tendyne Holdings, Inc. Prosthetic valves and related inventions
DE102014102725A1 (en) 2014-02-28 2015-09-17 Highlife Sas Transcatheter valve prosthesis
DE102014102653A1 (en) 2014-02-28 2015-09-03 Highlife Sas Transcatheter valve prosthesis
ES2616030T3 (en) 2011-09-12 2017-06-09 Highlife Sas Treatment catheter system
DE102014102721A1 (en) 2014-02-28 2015-09-03 Highlife Sas Transcatheter valve prosthesis
CN103917194B (en) 2011-09-12 2017-02-15 高品质生活简化股份公司 Transcatheter valve prosthesis
US10080651B2 (en) 2011-09-12 2018-09-25 Highlife Sas Transcatheter valve prosthesis
US9387075B2 (en) 2011-09-12 2016-07-12 Highlife Sas Transcatheter valve prosthesis
WO2015020971A1 (en) 2013-08-04 2015-02-12 Mehr Medical Llc Devices, systems and methods for repairing lumenal systems
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
US8900295B2 (en) 2011-09-26 2014-12-02 Edwards Lifesciences Corporation Prosthetic valve with ventricular tethers
US9039757B2 (en) * 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN107028685B (en) 2011-10-19 2019-11-15 托尔福公司 Artificial heart valve film device, artificial mitral valve and related systems and methods
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
EP2586492B1 (en) 2011-10-24 2014-06-18 St. Jude Medical AB Pacing sequence optimization
CN104023646A (en) 2011-11-23 2014-09-03 奥特鲁泰克控股有限公司 Medical occlusion device
US20140350669A1 (en) 2011-12-01 2014-11-27 The Trustees if The University of Pennsylvania Percutaneous valve replacement devices
EP2790609B1 (en) 2011-12-12 2015-09-09 David Alon Heart valve repair device
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US10321988B2 (en) 2011-12-21 2019-06-18 The Trustees Of The University Of Pennsylvania Platforms for mitral valve replacement
EP2609893B1 (en) 2011-12-29 2014-09-03 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
WO2013103612A1 (en) 2012-01-04 2013-07-11 Tendyne Holdings, Inc. Improved multi-component cuff designs for transcatheter mitral valve replacement, subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly
FR2986149B1 (en) 2012-01-26 2014-12-26 Ct Hospitalier Universitaire De Clermont Fd DEVICE FOR REPLACING AT LEAST ONE CORDAGE OF THE MITRAL VALVE AND KIT COMPRISING AT LEAST TWO DEVICES
US20130197354A1 (en) 2012-01-30 2013-08-01 Siemens Aktiengesellschaft Minimally invasive treatment of mitral regurgitation
EP2809263B1 (en) 2012-01-31 2017-08-23 Mitral Valve Technologies Sàrl Mitral valve docking devices, systems
AU2013221670A1 (en) 2012-02-13 2014-10-02 Mitraspan, Inc Method and apparatus for repairing a mitral valve
CA3097321A1 (en) 2012-02-22 2013-08-29 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US20130304197A1 (en) 2012-02-28 2013-11-14 Mvalve Technologies Ltd. Cardiac valve modification device
AU2013227235B2 (en) 2012-02-28 2017-10-19 Mvalve Technologies Ltd. Single-ring cardiac valve support
US20150094802A1 (en) 2012-02-28 2015-04-02 Mvalve Technologies Ltd. Single-ring cardiac valve support
WO2013128432A1 (en) 2012-02-28 2013-09-06 Mvalve Technologies Ltd. Cardiac valve support structure
US9180008B2 (en) 2012-02-29 2015-11-10 Valcare, Inc. Methods, devices, and systems for percutaneously anchoring annuloplasty rings
EP3542758B1 (en) 2012-02-29 2022-12-14 Valcare, Inc. Percutaneous annuloplasty system with anterior-posterior adjustment
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
AU2013229583B2 (en) 2012-03-06 2017-04-13 Highlife Sas Treatment catheter member with encircling function
GB2500432A (en) 2012-03-22 2013-09-25 Stephen Brecker Replacement heart valve with resiliently deformable securing means
ES2675936T3 (en) 2012-03-23 2018-07-13 Sorin Group Italia S.R.L. Folding valve prosthesis
US9295547B2 (en) 2012-03-28 2016-03-29 Medtronic Vascular Galway Prosthesis for transcatheter valve implantation
EP2644158A1 (en) 2012-03-28 2013-10-02 Sorin Group Italia S.r.l. A kit for the manipulation of implantable medical devices
US8926694B2 (en) 2012-03-28 2015-01-06 Medtronic Vascular Galway Limited Dual valve prosthesis for transcatheter valve implantation
US9023098B2 (en) 2012-03-28 2015-05-05 Medtronic, Inc. Dual valve prosthesis for transcatheter valve implantation
US9066800B2 (en) 2012-03-28 2015-06-30 Medtronic, Inc. Dual valve prosthesis for transcatheter valve implantation
EP2647354B1 (en) 2012-04-04 2015-10-07 Sorin Group Italia S.r.l. A support device for heart valve prostheses
WO2013152161A1 (en) 2012-04-04 2013-10-10 The Trustees Of The University Of Pennsylvania Treatment of mitral regurgitation
WO2013150512A1 (en) 2012-04-05 2013-10-10 Mvalve Technologies Ltd. Cardiac valve support structure
US9259261B2 (en) 2012-04-12 2016-02-16 Vanderbilt University Ablation catheter having temperature-controlled anchor and related methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US20130289699A1 (en) 2012-04-30 2013-10-31 St. Jude Medical, Cardiology Division, Inc. Aortic valve holder with stent protection and/or ability to decrease valve profile
WO2013163762A1 (en) 2012-05-02 2013-11-07 The Royal Institution For The Advancement Of Learning/Mcgill University Device for soft tissue support and method for anchoring
US20130304180A1 (en) 2012-05-09 2013-11-14 Michael L. Green Catheter having dual balloon hydraulic actuator
US9271855B2 (en) 2012-05-09 2016-03-01 Abbott Cardiovascular Systems Inc. Catheter having hydraulic actuator with tandem chambers
EP2849681B1 (en) 2012-05-16 2017-08-02 Edwards Lifesciences Corporation Devices for reducing cardiac valve regurgitation
EP2873011A1 (en) 2012-05-16 2015-05-20 Feops BVBA Pre -operative simulation of trans - catheter valve implantation
EP2849680B1 (en) 2012-05-16 2019-01-09 Edwards Lifesciences Corporation Coaptation element for reducing cardiac valve regurgitation
US9474605B2 (en) 2012-05-16 2016-10-25 Edwards Lifesciences Corporation Devices and methods for reducing cardiac valve regurgitation
US20130310436A1 (en) 2012-05-18 2013-11-21 The Regents Of The University Of Colorado, A Body Corporate Methods for predicting response to beta-blocker therapy in non-ischemic heart failure patients
AU2013264730B2 (en) 2012-05-20 2018-02-01 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
RU2508918C2 (en) 2012-05-24 2014-03-10 Закрытое Акционерное Общество Научно-Производственное Предприятие "Мединж" Flexible atrioventricular valve prosthesis
US9526610B2 (en) 2012-06-12 2016-12-27 Medtronic, Inc. Method and device for percutaneous valve annuloplasty
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
EP2863844A4 (en) 2012-06-22 2015-12-09 Middle Peak Medical Inc Device, system, and method for transcatheter treatment of valve regurgitation
JP5892657B2 (en) 2012-07-17 2016-03-23 富士通株式会社 Display processing program, display processing method, and display processing apparatus
US20140046436A1 (en) 2012-07-27 2014-02-13 The Regents Of The University Of California Implantable prosthetic valves and methods
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US9693862B2 (en) 2012-07-31 2017-07-04 Edwards Lifesciences Corporation Holders for prosthetic heart valves
ES2735536T3 (en) 2012-08-10 2019-12-19 Sorin Group Italia Srl A valve prosthesis and a kit
US9468525B2 (en) 2012-08-13 2016-10-18 Medtronic, Inc. Heart valve prosthesis
CN102805676B (en) 2012-08-14 2015-06-17 杭州启明医疗器械有限公司 Compression device for artificial valve replacement device
US9445899B2 (en) 2012-08-22 2016-09-20 Joseph M. Arcidi Method and apparatus for mitral valve annuloplasty
US20140066895A1 (en) 2012-08-29 2014-03-06 Robert Kipperman Anatomic device delivery and positioning system and method of use
US20140067048A1 (en) 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
WO2014043527A2 (en) 2012-09-14 2014-03-20 Millepede, Llc. Mitral valve inversion prostheses
US9309235B2 (en) 2012-09-18 2016-04-12 Ironwood Pharmaceuticals, Inc. SGC stimulators
CA2885645A1 (en) 2012-09-19 2014-03-27 Ironwood Pharmaceuticals, Inc. Sgc stimulators
US10512482B2 (en) 2012-10-05 2019-12-24 Board Of Regents Of The University Of Texas System System and method for scoring the left ventricular endocardium to increase left ventricular compliance
EP2906151B1 (en) 2012-10-12 2023-06-21 Mardil, Inc. Cardiac treatment system
US20140257473A1 (en) 2012-10-22 2014-09-11 Nalini Marie Rajamannan Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
US20140114407A1 (en) 2012-10-22 2014-04-24 ConcieValve LLC Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve
WO2014064694A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US9023099B2 (en) 2012-10-31 2015-05-05 Medtronic Vascular Galway Limited Prosthetic mitral valve and delivery method
EP2928538B1 (en) 2012-12-07 2018-11-21 Valcare, Inc. Devices for percutaneously anchoring annuloplasty rings
US20140163652A1 (en) 2012-12-10 2014-06-12 Thomas Witzel Method for treating and repairing mitral valve annulus
CH707319A1 (en) 2012-12-11 2014-06-13 Carag Ag Stent applicator.
WO2014093861A1 (en) 2012-12-14 2014-06-19 Mayo Foundation For Medical Education And Research Mitral valve repair devices
CN103908729B (en) 2012-12-28 2016-12-28 米特拉利根公司 Energy aid in tissue sting device and using method thereof
US20140200662A1 (en) 2013-01-16 2014-07-17 Mvalve Technologies Ltd. Anchoring elements for intracardiac devices
EP3417827B1 (en) 2013-01-22 2022-08-31 Frederick Guy Kit for tooth and bone restoration via plasma deposition
WO2014116502A1 (en) 2013-01-23 2014-07-31 Rox Medical, Inc. Methods, systems and devices for treating cardiac arrhythmias
US9681952B2 (en) 2013-01-24 2017-06-20 Mitraltech Ltd. Anchoring of prosthetic valve supports
WO2014114794A2 (en) 2013-01-25 2014-07-31 Medtentia International Ltd Oy A medical device and method for facilitating selection of an annuloplasty implant
ES2965612T3 (en) 2013-01-25 2024-04-16 Hvr Cardio Oy A medical system with a device for collecting cords and/or leaflets
PL2948102T3 (en) 2013-01-25 2019-08-30 Medtentia International Ltd Oy A valve for short time replacement, for taking over the function of and/or for temporary or partial support of a native valve in a heart
RU2672804C2 (en) 2013-01-25 2018-11-19 Медтентиа Интернэшнл Лтд Ой System for cardiac valve repair
US20140222040A1 (en) 2013-02-01 2014-08-07 Jin S. Park Method and Device for Connecting a Conduit to a Hollow Organ
JP6280932B2 (en) 2013-02-04 2018-02-14 トゥエルヴ, インコーポレイテッド Hydraulic delivery system and related methods for prosthetic heart valve devices
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20160000564A1 (en) 2013-02-20 2016-01-07 Mvalve Technologies Ltd. Delivery systems for cardiac valve support devices
US9326850B2 (en) 2013-02-25 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Sutureless prosthetic device
US20140243954A1 (en) 2013-02-27 2014-08-28 Donald Shannon Transcatheter mitral valve prosthesis
US20160008636A1 (en) 2013-02-28 2016-01-14 Guided Interventions, Inc. Ultrasound imaging sheath and associated method for guided percutaneous trans-catheter therapy
US10034667B2 (en) 2013-02-28 2018-07-31 St. Jude Medical, Cardiology Division, Inc. Apparatus and method for heart valve repair
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
WO2014138194A1 (en) 2013-03-07 2014-09-12 Medtronic Vascular Galway Prosthesis for transcatheter valve implantation
WO2014138284A1 (en) 2013-03-07 2014-09-12 Cedars-Sinai Medical Center Catheter based apical approach heart prostheses delivery system
WO2014138482A1 (en) 2013-03-07 2014-09-12 Cedars-Sinai Medical Center Method and apparatus for percutaneous delivery and deployment of a cardiovascular prosthesis
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9119713B2 (en) 2013-03-11 2015-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve replacement
US20140277408A1 (en) 2013-03-12 2014-09-18 Boston Scientific Scimed, Inc. Prosthetic Heart Valve System
US9333043B2 (en) 2013-03-12 2016-05-10 Fetal Care Consultants, LLC Fetal intervention using magnetically-guided navigation
EP2967870A4 (en) * 2013-03-13 2016-11-16 Aortic Innovations Llc Dual frame stent and valve devices and implantation
US9539094B2 (en) 2013-03-13 2017-01-10 St. Jude Medical, Cardiology Division, Inc. Simulated environment for transcatheter heart valve repair
US9999425B2 (en) 2013-03-13 2018-06-19 St. Jude Medical, Cardiology Division, Inc. Mitral valve leaflet clip
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
EP2973126A2 (en) 2013-03-14 2016-01-20 Cardio Art Technologies Ltd. System and method for personalized hemodynamics modeling and monitoring
US9687346B2 (en) 2013-03-14 2017-06-27 Edwards Lifesciences Corporation Multi-stranded heat set annuloplasty rings
EP2777616B1 (en) 2013-03-14 2020-08-19 Edwards Lifesciences CardiAQ LLC Prosthesis for atraumatically grasping intralumenal tissue
KR102362835B1 (en) 2013-03-15 2022-02-14 사이클리온 테라퓨틱스, 인크. sGC STIMULATORS
EP2777617B1 (en) 2013-03-15 2022-09-14 Edwards Lifesciences CardiAQ LLC Prosthesis with outer skirt
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
CN110393608B (en) 2013-03-15 2023-02-17 心脏结构导航公司 Catheter-guided valve replacement devices and methods
FR2998167B1 (en) 2013-03-20 2015-01-09 Marco Vola DEVICE FOR PERFORMING AN ANNULOPLASTY BY THE TRANSAPICAL PATH OF THE MITRAL VALVE
US9089414B2 (en) 2013-03-22 2015-07-28 Edwards Lifesciences Corporation Device and method for increasing flow through the left atrial appendage
US20140296969A1 (en) 2013-04-02 2014-10-02 Tendyne Holdlings, Inc. Anterior Leaflet Clip Device for Prosthetic Mitral Valve
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
WO2014162306A2 (en) 2013-04-02 2014-10-09 Tendyne Holdings, Inc. Improved devices and methods for transcatheter prosthetic heart valves
US20140296970A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings, Inc. Positioning Tool for Transcatheter Valve Delivery
US20140296971A1 (en) 2013-04-02 2014-10-02 Tendyne Holdings Alignment Device for Asymmetric Transcatheter Valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
DK2786817T3 (en) 2013-04-05 2019-06-03 Lillbacka Powerco Oy Shrinking machine system
FR3004336A1 (en) 2013-04-12 2014-10-17 St George Medical Inc MITRAL HEART VALVE PROSTHESIS AND RELIEF CATHETER
DE102013208038B4 (en) 2013-05-02 2016-09-08 Michael Siegenthaler Catheter-based cardiac assist system
EP2994072B1 (en) 2013-05-09 2022-01-19 Mitrassist Medical Ltd. Heart valve assistive prosthesis
EP2999435B1 (en) 2013-05-20 2022-12-21 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems
ES2908132T3 (en) 2013-05-20 2022-04-27 Edwards Lifesciences Corp Prosthetic Heart Valve Delivery Apparatus
US10813751B2 (en) 2013-05-22 2020-10-27 Valcare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
EP3533417A1 (en) 2013-05-22 2019-09-04 ValCare, Inc. Transcatheter prosthetic valve for mitral or tricuspid valve replacement
WO2014190329A1 (en) 2013-05-24 2014-11-27 Valcare, Inc. Heart and peripheral vascular valve replacement in conjunction with a support ring
CN105578991B (en) 2013-05-29 2017-11-14 M阀门技术有限公司 It is equipped with valve leaflets heart valve support device
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US20140358224A1 (en) 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
WO2014197924A1 (en) 2013-06-14 2014-12-18 Perfusion Solutions Pty Ltd Cardiac function evaluation system
US9968445B2 (en) 2013-06-14 2018-05-15 The Regents Of The University Of California Transcatheter mitral valve
WO2014201384A1 (en) 2013-06-14 2014-12-18 The Regents Of The University Of California Transcatheter mitral valve
KR20160041040A (en) 2013-06-14 2016-04-15 카디오솔루션즈, 인코포레이티드 Mitral valve spacer and system and method for implanting the same
US20140371844A1 (en) 2013-06-18 2014-12-18 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve and delivery system
WO2014210124A1 (en) 2013-06-25 2014-12-31 Mark Christianson Thrombus management and structural compliance features for prosthetic heart valves
US20140379076A1 (en) 2013-06-25 2014-12-25 Tendyne Holdings, Inc. Halo Wire Fluid Seal Device for Prosthetic Mitral Valves
EP3013262B1 (en) 2013-06-26 2020-04-22 Strait Access Technologies Holdings (PTY) LTD Orientation device for use in mitral valve repair
US20150005874A1 (en) 2013-06-27 2015-01-01 Tendyne Holdings, Inc. Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves
WO2014210299A1 (en) 2013-06-27 2014-12-31 Bridges Charles R Device, system, and method for implanting a prosthetic heart valve
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9895219B2 (en) 2013-07-31 2018-02-20 Medtronic Vascular Galway Mitral valve prosthesis for transcatheter valve implantation
JP6465883B2 (en) 2013-08-01 2019-02-06 テンダイン ホールディングス,インコーポレイテッド Epicardial anchor device and method
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
CN105451686B (en) 2013-08-14 2018-03-20 索林集团意大利有限责任公司 Apparatus and method for chordae tendineae displacement
LT3545906T (en) 2013-08-14 2021-03-10 Mitral Valve Technologies Sarl Replacement heart valve apparatus
EP2839815A1 (en) 2013-08-20 2015-02-25 Biotronik AG Catheter system with movable sleeve
WO2015028986A1 (en) 2013-08-29 2015-03-05 June-Hong Kim Rvot wire capturing (rwc) system in mitral valve cerclage annuloplasty
US20150094803A1 (en) 2013-09-30 2015-04-02 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US9393111B2 (en) 2014-01-15 2016-07-19 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
WO2015057407A1 (en) 2013-10-05 2015-04-23 Sino Medical Sciences Technology, Inc. Device and method for mitral valve regurgitation method
US9839511B2 (en) 2013-10-05 2017-12-12 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
US20150100116A1 (en) 2013-10-07 2015-04-09 Medizinische Universitat Wien Implant and method for improving coaptation of an atrioventricular valve
EP3054895A4 (en) 2013-10-08 2017-07-12 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Cardiac prostheses and their deployment
WO2015051430A1 (en) 2013-10-10 2015-04-16 Neves Filho Antonio Francisco Arrangement applied to supporting element for heart-valve replacement or plasty
US10226333B2 (en) 2013-10-15 2019-03-12 Cedars-Sinai Medical Center Anatomically-orientated and self-positioning transcatheter mitral valve
WO2015057995A2 (en) 2013-10-16 2015-04-23 Cedars-Sinai Medical Center Modular dis-assembly of transcatheter valve replacement devices and uses thereof
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US20160279297A1 (en) 2013-10-22 2016-09-29 ConcieValve LLC Methods for inhibiting stenosis, obstruction, or calcification of a stented heart valve or bioprosthesis
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9662202B2 (en) 2013-10-24 2017-05-30 Medtronic, Inc. Heart valve prosthesis
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
EP3572047A1 (en) 2013-11-06 2019-11-27 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
CN111419472B (en) 2013-11-11 2023-01-10 爱德华兹生命科学卡迪尔克有限责任公司 System and method for manufacturing stent frames
ES2637544T3 (en) 2013-11-12 2017-10-13 St. Jude Medical, Cardiology Division, Inc. Delivery device for transfemoral mitral valve repair
US9848880B2 (en) 2013-11-20 2017-12-26 James E. Coleman Adjustable heart valve implant
US20150173898A1 (en) 2013-12-03 2015-06-25 William Joseph Drasler Transcatheter Mitral Valve Replacement Apparatus
WO2015092554A2 (en) 2013-12-03 2015-06-25 Mark Lynn Jenson Transcatheter mitral valve replacement apparatus
WO2015081775A1 (en) 2013-12-05 2015-06-11 中国科学院过程工程研究所 Method for comprehensively using high-chromium-content vanadium-titanium magnetite concentrate
CN105764447A (en) 2013-12-11 2016-07-13 雪松-西奈医学中心 Methods, devices and systems for transcatheter mitral valve replacement in a double-orifice mitral valve
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
KR102577607B1 (en) 2014-02-04 2023-09-11 이노브하르트 에세.에레.엘레. Prosthetic device for a heart valve
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
EP2907479A1 (en) 2014-02-18 2015-08-19 Medtentia International Ltd Oy A system and a method for delivery of an annuloplasty implant
CN115089349A (en) 2014-02-20 2022-09-23 米特拉尔维尔福科技有限责任公司 Convoluted anchor for supporting a prosthetic heart valve, prosthetic heart valve and deployment device
CR20160366A (en) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE
CN106170269B (en) 2014-02-21 2019-01-11 爱德华兹生命科学卡迪尔克有限责任公司 The delivery apparatus of controlled deployment for valve substitutes
US10064719B2 (en) 2014-03-11 2018-09-04 Highlife Sas Transcatheter valve prosthesis
US9763779B2 (en) 2014-03-11 2017-09-19 Highlife Sas Transcatheter valve prosthesis
WO2015128747A2 (en) 2014-02-28 2015-09-03 Highlife Sas Transcatheter valve prosthesis
JP6625060B2 (en) 2014-02-28 2019-12-25 ハイライフ エスエーエス Transcatheter type artificial valve
US20150250590A1 (en) 2014-03-10 2015-09-10 St. Jude Medical, Cardiology Division, Inc. Transapical mitral chordae replacement
US9687343B2 (en) 2014-03-11 2017-06-27 Highlife Sas Transcatheter valve prosthesis
BR102014006114B1 (en) 2014-03-14 2022-05-10 Antônio Francisco Neves Filho Mechanical or biological heart valve stent for minimally invasive valve replacement procedure and stent delivery device
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
WO2015148241A1 (en) 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
WO2015171743A2 (en) 2014-05-07 2015-11-12 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
CN112891028B (en) 2014-05-09 2024-09-17 福达斯公司 Replacement heart valve and methods of use and manufacture thereof
EP3142603B1 (en) 2014-05-14 2018-03-07 Sorin Group Italia S.r.l. Implant device and implantation kit
US20150328000A1 (en) 2014-05-19 2015-11-19 Cardiaq Valve Technologies, Inc. Replacement mitral valve with annular flap
US9757232B2 (en) 2014-05-22 2017-09-12 Edwards Lifesciences Corporation Crimping apparatus for crimping prosthetic valve with protruding anchors
US9532870B2 (en) * 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
WO2015191604A1 (en) 2014-06-10 2015-12-17 Hlozek Edward Direct view optical cardiac catheter
US9662203B2 (en) 2014-06-11 2017-05-30 Medtronic Vascular, Inc. Prosthetic valve with vortice-inducing baffle
US10111749B2 (en) 2014-06-11 2018-10-30 Medtronic Vascular, Inc. Prosthetic valve with flow director
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
ES2908178T3 (en) 2014-06-18 2022-04-28 Polares Medical Inc Mitral valve implants for the treatment of valvular regurgitation
US9345824B2 (en) 2014-07-07 2016-05-24 Assistocor Gmbh & Co Kg Ventricular assist device
FR3023703B1 (en) 2014-07-17 2021-01-29 Cormove BLOOD CIRCULATION DUCT TREATMENT DEVICE
US9180005B1 (en) 2014-07-17 2015-11-10 Millipede, Inc. Adjustable endolumenal mitral valve ring
EP3174503A1 (en) 2014-08-03 2017-06-07 Mvalve Technologies Ltd. Sealing elements for intracardiac devices
EP2982336A1 (en) 2014-08-04 2016-02-10 Alvimedica Tibb Ürünler San. Ve Dis Tic. A.S. Mitral valve prosthesis, particularly suitable for transcatheter implantation
US20160038283A1 (en) 2014-08-06 2016-02-11 The University Of Iowa Research Foundation Systems and methods utilizing expandable transcatheter valve
US10881461B2 (en) 2014-08-07 2021-01-05 Henry Ford Health System Method of analyzing hollow anatomical structures for percutaneous implantation
US20170273782A1 (en) 2014-08-21 2017-09-28 Mvalve Technologies Ltd. Cardiac valve support devices having improved compatibility with transcatheter prosthetic valves
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
EP3213718B1 (en) 2014-09-24 2019-06-26 Sorin Group Italia S.r.l. A holder for heart valve prostheses, corresponding storage arrangement, delivery instrument and kit
FR3027212A1 (en) 2014-10-16 2016-04-22 Seguin Jacques INTERVALVULAR IMPLANT FOR MITRAL VALVE
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
JP6504516B2 (en) 2014-10-24 2019-04-24 Toto株式会社 Hot water storage type electric water heater
US20160120643A1 (en) 2014-11-05 2016-05-05 Tara Kupumbati Transcatheter cardiac valve prosthetic
EP4410245A3 (en) 2014-11-26 2024-10-16 Edwards Lifesciences Corporation Transcatheter prosthetic heart valve and delivery system
US9492273B2 (en) 2014-12-09 2016-11-15 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
EP3037064B1 (en) 2014-12-23 2018-03-14 Venus MedTech (HangZhou), Inc. Minimally invasive mitral valve replacement with brim
JP2017538540A (en) 2014-12-19 2017-12-28 杭州啓明医療器械有限公司Venus Medtech (Hangzhou), Inc. Minimally invasive brachial mitral valve replacement
WO2016108181A1 (en) 2014-12-30 2016-07-07 Tel Hashomer Medical Research, Infrastructure And Services Ltd. Cardiac prostheses
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016130991A1 (en) 2015-02-13 2016-08-18 Millipede, Inc. Valve replacement using rotational anchors
WO2016133950A1 (en) 2015-02-17 2016-08-25 Medtronic Vascular Inc. Methods for anchoring a heart valve prosthesis in a transcatheter valve implantation procedure
US10595992B2 (en) 2015-02-20 2020-03-24 4C Medical Technologies, Inc. Devices, systems and methods for cardiac treatment
CN107613908B (en) 2015-03-19 2020-03-10 凯森因特万逊奈尔有限公司 Systems and methods for heart valve therapy
EP3270825B1 (en) 2015-03-20 2020-04-22 JenaValve Technology, Inc. Heart valve prosthesis delivery system
EP3273910A2 (en) 2015-03-24 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016201024A1 (en) 2015-06-12 2016-12-15 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
US10226335B2 (en) 2015-06-22 2019-03-12 Edwards Lifesciences Cardiaq Llc Actively controllable heart valve implant and method of controlling same
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
ITUB20152409A1 (en) 2015-07-22 2017-01-22 Sorin Group Italia Srl VALVE SLEEVE FOR VALVULAR PROSTHESIS AND CORRESPONDING DEVICE
WO2017030940A1 (en) 2015-08-14 2017-02-23 Caisson Interventional Llc Systems and methods for heart valve therapy
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
CN108992209B (en) 2015-11-06 2022-03-04 麦克尔有限公司 Mitral valve prosthesis
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
JP2018535754A (en) 2015-12-03 2018-12-06 テンダイン ホールディングス,インコーポレイテッド Frame features for artificial mitral valves
CN105581858B (en) 2015-12-15 2018-04-10 先健科技(深圳)有限公司 Prosthetic heart valve holder and heart valve prosthesis
JP7002451B2 (en) 2015-12-15 2022-01-20 ニオバスク ティアラ インコーポレイテッド Transseptal delivery system
EP3184081B1 (en) 2015-12-22 2021-03-24 Medira Ag Prosthetic mitral valve coaptation enhancement device
US10265166B2 (en) 2015-12-30 2019-04-23 Caisson Interventional, LLC Systems and methods for heart valve therapy
WO2017127939A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
CN108601655B (en) 2016-02-04 2020-06-09 波士顿科学国际有限公司 Mitral valve transition prosthesis
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
DE102016204345A1 (en) 2016-03-16 2017-09-21 Bayerische Motoren Werke Aktiengesellschaft Remote laser processing system and method for operating a remote laser processing system
JP2019513510A (en) 2016-04-01 2019-05-30 リヴァノヴァ ユーエスエイ インコーポレイテッド How to choose vagal nerve stimulation patients
DE102016106575A1 (en) 2016-04-11 2017-10-12 Biotronik Ag Heart valve prosthesis
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10172710B2 (en) 2016-05-10 2019-01-08 William Joseph Drasler Two component mitral valve
WO2017196909A1 (en) 2016-05-12 2017-11-16 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
EP3439582A4 (en) 2016-05-13 2019-11-27 Cardiosolutions, Inc. Heart valve implant and methods for delivering and implanting same
EP3454788B1 (en) 2016-05-13 2020-02-05 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US11173026B2 (en) 2016-06-15 2021-11-16 Corcym S.R.L. Two-part mitral valve and implant method
US20170360558A1 (en) 2016-06-16 2017-12-21 Jianlu Ma Method and design for a mitral regurgitation treatment device
US10350062B2 (en) * 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
EP3848003A1 (en) 2016-08-10 2021-07-14 Cardiovalve Ltd. Prosthetic valve with concentric frames
US10688308B2 (en) 2016-12-12 2020-06-23 Sorin Crm Sas System and method for extra cardiac defibrillation
EP3576670A4 (en) 2017-02-06 2020-12-30 Caisson Interventional LLC Systems and methods for heart valve therapy
WO2018167536A1 (en) 2017-03-15 2018-09-20 Sorin Group Italia S.R.L. Implantable material and method for preserving
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
WO2018217338A1 (en) 2017-05-26 2018-11-29 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US12083013B2 (en) 2017-10-07 2024-09-10 Corcym S.R.L. Bendable cardiac surgery instruments
WO2019209927A1 (en) 2018-04-24 2019-10-31 Caisson Interventional, LLC Systems and methods for heart valve therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519957A (en) * 2007-03-01 2010-06-10 ボストン サイエンティフィック リミテッド Coated medical device for delivering a drug outside the lumen
US20120067103A1 (en) * 2010-09-17 2012-03-22 Medtronic Vascular, Inc. Method of Forming a Drug-Eluting Medical Device
JP2015510415A (en) * 2012-01-27 2015-04-09 メドトロニック ヴァスキュラー インコーポレイテッド Drug-filled hollow stent and method for forming a drug-filled hollow stent
JP2016512753A (en) * 2013-03-15 2016-05-09 トゥエルヴ, インコーポレイテッド Prosthetic heart valve device, prosthetic mitral valve, and related systems and methods

Also Published As

Publication number Publication date
EP3648707B1 (en) 2024-03-27
US20240108466A1 (en) 2024-04-04
EP3648707A1 (en) 2020-05-13
US11877926B2 (en) 2024-01-23
CN115444619A (en) 2022-12-09
WO2019010010A1 (en) 2019-01-10
US20190008635A1 (en) 2019-01-10
CN110891525A (en) 2020-03-17
US10729541B2 (en) 2020-08-04
US20200360137A1 (en) 2020-11-19
AU2018297210A1 (en) 2020-02-06
CN110891525B (en) 2022-07-08
EP3763332A1 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US11877926B2 (en) Prosthetic heart valve devices and associated systems and methods
US12016772B2 (en) Prosthetic heart valve devices and associated systems and methods
US11654021B2 (en) Prosthetic heart valve device and associated systems and methods
JP6736637B2 (en) Devices, systems and methods for heart valve replacement
US20190000619A1 (en) Catheter-guided replacement valves apparatus and methods
US9763780B2 (en) Devices, systems and methods for heart valve replacement
US9775704B2 (en) Implantable valve prosthesis
TW202245716A (en) Expandable prosthetic heart valve with flattened apices

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230323