JP2020521146A - 光学顕微鏡の画像コントラスト増強 - Google Patents

光学顕微鏡の画像コントラスト増強 Download PDF

Info

Publication number
JP2020521146A
JP2020521146A JP2019565010A JP2019565010A JP2020521146A JP 2020521146 A JP2020521146 A JP 2020521146A JP 2019565010 A JP2019565010 A JP 2019565010A JP 2019565010 A JP2019565010 A JP 2019565010A JP 2020521146 A JP2020521146 A JP 2020521146A
Authority
JP
Japan
Prior art keywords
plasmon
sample holder
layer
light
plasmon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019565010A
Other languages
English (en)
Other versions
JP7189621B2 (ja
Inventor
エウジェニュ・バラウル
ブライアン・アビー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
La Trobe University
Original Assignee
La Trobe University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017901940A external-priority patent/AU2017901940A0/en
Application filed by La Trobe University filed Critical La Trobe University
Publication of JP2020521146A publication Critical patent/JP2020521146A/ja
Application granted granted Critical
Publication of JP7189621B2 publication Critical patent/JP7189621B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

物体を撮像する方法は、物体をサンプルホルダのプラズモン層の上で支持するステップであって、プラズモン層は、物体に近接するサブミクロン構造の周期的アレイを画定する、ステップと、サンプルホルダを光に露出するステップであって、光の第1部分が、(i)プラズモン層を通過するが、物体を通過しないか、あるいは、(ii)プラズモン層および物体の第1セクションを通過するようにし、光の第2部分が、プラズモン層および物体の少なくとも第2セクションを通過するようにし、光は、少なくともプラズモン層と相互作用し、透過光の第1部分は、1つ以上の第1表面プラズモン共鳴ピークによって特徴付けられ、透過光の第2部分は、物体がプラズモン層内を伝搬するプラズモンに影響を与える結果として、第1表面プラズモン共鳴ピークから波長シフトした、1つ以上の第2表面プラズモン共鳴によって特徴付けられる、ステップと、透過光の第1部分および第2部分から物体の画像を構築し、これにより物体を空間的に分解可能にするステップと、を含む。

Description

本開示は、一般に、光学顕微鏡法のための方法、デバイスおよび機器に関する。より詳細には、本開示は、光学顕微鏡内のサンプルの画像コントラストを増強するための方法、デバイスおよび機器に関する。
17世紀のレーベンフックによる生物学への光学顕微鏡の応用は、生命科学において重要な瞬間であった。それ以来、位相差顕微鏡の導入など、顕微鏡の継続的な開発が行われ、通常は光をあまり散乱したり吸収したりせず、透明に見える生体細胞を研究することが可能になった。位相差顕微鏡法は、試料を通る光路長の変動を利用しており、これは、材料の屈折率および厚さの両方の関数である。適切な設定では、異なる光路長の光線間の干渉により、建設的干渉および相殺的干渉が発生し、サンプルの位相情報が光の振幅の変化として見えるようになる。
その偉大な成功にも拘らず、位相差顕微鏡法は、疑似の量の光が撮像物体のエッジを越えて見える、いわゆる「ハロー(halo)」効果など、アーチファクト(人工物)の潜在的な導入を含む多くの短所を有する。従って、ハロー効果は、位相差顕微鏡の空間分解能を事実上減少させる。
光学顕微鏡のコントラストを増強するために使用される他の関連技術は、ジョルジュ・ノマルスキーによって開発された微分干渉コントラスト(DIC)イメージングである。DICは、波面剪断方向の偏光依存の変化率を干渉と組み合わせて使用し、サンプル内の光路長差を増強する。多くの位相差顕微鏡法とは異なり、DICは、回折ハローアーチファクトを含まない。この方法は、構造化された表面に似た擬似3D画像を出力するが、サンプルのトポロジー(位相幾何)の正確な表現ではない。
位相差顕微鏡法とDIC手法の両方は、従来の光学顕微鏡の設定への変更を必要とし、経験豊富なユーザが画像情報を適切に解釈する必要がある。これらの手法の欠点は、従来の顕微鏡法と比較して空間分解能が減少することがあり、得られる画像はアーチファクトを含むことがあることである。
現代の顕微鏡を支える光学システムは、非常に高い開口数のレンズを使用することによって、高い空間分解能でサンプルを撮像することが可能である。しかしながら、生命科学にとって、画像コントラストおよび特異性(specificity)の問題は、光と弱く相互作用する試料のイメージングにとって依然として根本的な課題である。これは、多くの細胞および組織サンプルを含む。従来の明視野顕微鏡において、入射光とサンプルの相互作用、光学システムの品質、および検出器の効率がコントラストを決定付ける。これは、コントラストが撮像試料の固有の特性ではなく、撮像システムの固有の特性であることを意味する。
光学顕微鏡法において、画像コントラストは、位相情報、光路長の勾配(gradient)、サンプルの染色または蛍光標識(labelling)を用いて増強できる。特に位相コントラストイメージングは、光との相互作用が弱すぎて従来の顕微鏡を用いて検出できないサンプル構造(feature)のコントラストを増強するために使用される主要な手法の1つになった。
位相コントラストまたはDICイメージングが利用できないか、またはアーチファクトが生じる場合、染色が通常使用され、コントラストを増加させる。この場合、試料に導入された色素による光吸収の結果として、画像コントラストが増強される。この手法の欠点は、サンプル損傷の可能性、アーチファクトの導入、および生体サンプルを撮像する能力がないことである。
従って、従来の光学設定を用いて、未染色の蛍光フリーのサンプルを撮像するための、高コントラストでラベルフリーの撮像手法を開発するニーズがある。
本明細書に含まれている文書、行為、材料、デバイス、物品などの議論は、これらの事項の何れかまたは全ては、先行技術の基礎の一部を形成するという自認として解釈すべきではなく、本願の各請求項の優先日前に存在しているような本開示に関連する分野での共通の一般的な知識であり、あるいは、関連性ありと見做されるか、または当業者によって組み合わされたと合理的に予想されると理解されるであろう。
本開示の第1態様において、物体を撮像する方法が提供される。該方法は、
物体をサンプルホルダのプラズモン層の上で支持するステップであって、プラズモン層は、物体に近接するサブミクロン構造の周期的アレイを画定する、ステップと、
サンプルホルダを光に露出するステップであって、
光の第1部分が、プラズモン層を通過するが、物体を通過しないか、あるいは、プラズモン層および物体の第1セクションを通過するようにし、
光の第2部分が、プラズモン層および物体の少なくとも第2セクションを通過するようにし、
光は、少なくともプラズモン層と相互作用し、
透過光の第1部分は、1つ以上の第1表面プラズモン共鳴ピークによって特徴付けられ、
透過光の第2部分は、物体がプラズモン層内を伝搬するプラズモンに影響を与える結果として、第1表面プラズモン共鳴ピークから波長シフトした、1つ以上の第2表面プラズモン共鳴によって特徴付けられる、ステップと、
透過光の第1部分および第2部分から物体の画像を構築し、これにより物体を空間的に分解可能にするステップと、を含む。
幾つかの実施形態において、該方法はさらに、画像を解析して物体を空間的に分解することを含む。
光は、200nm〜900nmの範囲の複数の波長を有してもよい。幾つかの実施形態において、第1および第2表面プラズモン共鳴ピークの少なくとも一方は、300nm〜800nmの範囲の波長でピーク強度を有する。
サブミクロン構造は、200nm〜500nmの範囲のサブミクロン構造間の間隔を備えた周期的アレイ状に配置されてもよい。サブミクロン構造は、50nm〜300nmの範囲の最大寸法を有してもよい。
幾つかの実施形態において、サブミクロン構造は、プラズモン層を通るアパーチャ(開口)である。アパーチャは、円、トーラス、楕円、十字形、および複数の交差する細長いアームを含む形状のいずれか1つ以上として成形してもよい。近接する細長いアーム間の角度は、30°〜90°の範囲である。
該方法はさらに、サンプルホルダおよび物体を、偏光した光に露出することを含んでもよい。
更なる実施形態において、偏光した光は、アパーチャの周期的アレイの第1軸に対して第1偏光角で直線偏光しており、周期的アレイは、第1軸に沿ったサブミクロン構造の第1間隔を有し、これは、第2軸に沿ったサブミクロン構造の第2間隔とは異なり、第2軸は、第1軸に対してある角度で配向している。該方法はさらに、第1軸に対して第2偏光角で直線偏光した光にサンプルホルダおよび物体を露出することを含んでもよい。
幾つかの実施形態において、該方法は、光学顕微鏡を用いて実施される。
プラズモン層は、Al,Ag,Au,Ni,PtおよびPdのいずれかから選択される1つ以上の金属から形成してもよい。プラズモン層は、20nm〜300nmの範囲の厚さを有してもよい。
サンプルホルダは、プラズモン層のための機械的支持を提供するために、プラズモン層の第1表面の少なくとも一部に接続された基板を含む。基板は、光学的に透明でもよく、そのため基板を通る光透過率がゼロより大きく、基板は第1表面を化学的に隔離する。
幾つかの実施形態において、サンプルホルダは、プラズモン層を隔離するためにプラズモン層の第2側に結合された光学的に透明な保護層を含む。光学的に透明な保護層は、150nm未満の厚さを有してもよい。幾つかの実施形態において、光学的に透明な保護層は、80nm未満の厚さを有してもよい。光学的に透明な保護層は、酸化シリコン、窒化シリコン、透明金属酸化物およびポリマーのいずれか1つ以上を含んでもよい。
本開示の第2態様において、光学顕微鏡で使用するためのサンプルホルダが提供される。サンプルホルダは、サブミクロン構造の周期的アレイを画定するプラズモン層を含み、
サンプルホルダおよびプラズモン層は、
物体を支持する場合、サブミクロン構造のアレイが物体に近接するように物体を支持し、
光がプラズモン層を透過できるようにし、光は、少なくともプラズモン層と相互作用し、透過光からのスペクトルは、
1つ以上の第1表面プラズモン共鳴ピークによって特徴付けられる第1部分と、
物体がプラズモン層内を伝搬するプラズモンに影響を与える結果として、第1表面プラズモン共鳴ピークから波長シフトした、1つ以上の第2表面プラズモン共鳴によって特徴付けられる第2部分とを含み、
これにより透過光から物体の画像を構築し、物体を該画像から空間的に分解可能にするように構成される。
プラズモン層は、300nm〜800nmの範囲の波長でピーク強度を備えた少なくとも1つの表面プラズモン共鳴ピークを生成するように構成してもよい。
サブミクロン構造は、200nm〜500nmの範囲のサブミクロン構造間の間隔を備えた周期的アレイ状に配置されてもよい。サブミクロン構造は、50nm〜300nmの範囲の最大寸法を有してもよい。
幾つかの実施形態において、サブミクロン構造は、プラズモン層を通るアパーチャ(開口)である。アパーチャは、円、トーラス、楕円、十字形、および複数の交差する細長いアームを含む形状のいずれか1つ以上として成形してもよい。近接する細長いアーム間の角度は、30°〜90°の範囲である。
プラズモン層は、Al,Ag,Au,Ni,PtおよびPdのいずれかから選択される1つ以上の金属から形成してもよい。プラズモン層は、20nm〜300nmの範囲の厚さを有してもよい。
サンプルホルダは、プラズモン層のための機械的支持を提供するために、プラズモン層の第1表面の少なくとも一部に接続された基板を含む。基板は、光学的に透明でもよく、そのため基板を通る光透過率がゼロより大きく、基板は第1表面を化学的に隔離する。
幾つかの実施形態において、サンプルホルダは、プラズモン層を隔離するために、プラズモン層の第2側に結合された光学的に透明な保護層を含む。光学的に透明な保護層は、150nm未満の厚さを有してもよい。幾つかの実施形態において、光学的に透明な保護層は、80nm未満の厚さを有してもよい。光学的に透明な保護層は、酸化シリコン、窒化シリコン、透明金属酸化物およびポリマーのいずれか1つ以上を含んでもよい。
本開示の第3態様において、光学顕微鏡で使用される場合に第1態様に係る方法を実施する、第2態様の請求項の実施形態のいずれか1つに係るサンプルホルダが提供される。
本明細書全体を通して、言葉「備える、含む(comprise)」、または「含む(comprises)」または「含む(comprising)」などの変形は、記述した要素、整数またはステップ、または要素のグループ、整数またはステップの包含を意味し、他の要素、整数またはステップ、または要素のグループ、整数またはステップの除外を意味しないと理解される。
実施形態は、一例として以下に簡単に説明される添付図面を参照して、さらに詳細に後述する。
幾つかの実施形態に係る、撮像物体を支持するためのサンプルホルダの側面断面図である。 図1aのサンプルホルダのあるセクションの上面図であり、挿入画像が、サンプルホルダのプラズモン層のサブミクロン構造またはアパーチャのアレイの拡大図を示す。 表面プラズモン共鳴ピークを含むスペクトルのプロットである。 幾つかの実施形態に係るサンプルホルダのあるセクションの上面図である。 幾つかの実施形態に係るサンプルホルダの側面図である。 幾つかの実施形態に係る、物体を撮像する方法のフローチャートである。 一実施形態に係るサンプルホルダ上に支持された物体の上面明視野顕微鏡画像である。 従来の顕微鏡スライド上に支持された図6aの物体の上面明視野顕微鏡画像である。 幾つかの実施形態に係る、物体を支持するサンプルホルダの側面断面図であり、光の第1部分を示す。 図7aのサンプルホルダおよび物体の側面断面図であり、光の第2部分を示す。 一実施形態に係るサンプルホルダ上に支持された物体の0°直線偏光した光を用いた上面明視野顕微鏡画像である。 一実施形態に係る図8aのサンプルホルダ上に支持された物体の90°直線偏光した光を用いた上面明視野顕微鏡画像である。 一実施形態に係るサンプルホルダ上に支持されたミエリン鞘(myelin sheath)の0°直線偏光した光を用いた明視野顕微鏡画像、および画像の一部の拡大画像である。 図9aのサンプルホルダ上の図9aに示した同じミエリン鞘の90°直線偏光した光を用いた明視野顕微鏡画像、および画像の一部の拡大画像である。 一実施形態に係るサンプルホルダ上に支持されたイオン注入薄膜の明視野顕微鏡画像である。 従来の顕微鏡スライド上に支持されたイオン注入薄膜の明視野顕微鏡画像である。 一実施形態に係るサンプルホルダ上に支持された子房(plant ovary)の断面の明視野顕微鏡画像である。 従来の顕微鏡スライド上に支持された子房の断面の明視野顕微鏡画像である。
本開示は、一般に、光学顕微鏡法のための方法、デバイスおよび機器に関する。より詳細には、本開示は、光学顕微鏡内のサンプルの画像コントラストを増強するための方法、デバイスおよび機器に関する。
幾つかの実施形態は、例えば、顕微鏡スライドなど、変更したサンプルホルダを用いる顕微鏡法のための方法およびデバイスに関する。これらの方法およびデバイスは、染色または蛍光マーカーを使用することなく、構造を空間的に分解可能にしつつ、著しい画像コントラスト増強を好都合に提供できる。
図1aと図1bを参照して、顕微鏡(図示せず)で使用するためのサンプルホルダ100が提供される。サンプルホルダ100は、サブミクロンサイズの構造124の周期的アレイ122を画定するプラズモン層120を含み、サンプルホルダ100およびプラズモン層120は、サブミクロン構造124のアレイ122が物体140に近接するように、物体140を支持するように構成される。
幾つかの実施形態において、サンプルホルダ100は、サブミクロンサイズの構造124の周期的アレイ122を画定するプラズモン層120を備え、サンプルホルダ100は、プラズモン層120のサブミクロン構造124のアレイ122が物体140に近接するように、物体140を支持するように構成される。例えば、プラズモン層120は、物体140を支持するように構成してもよい。
幾つかの実施形態において、プラズモン層120の少なくとも一部は、自立型フィルムまたは自己支持型フィルムであり、サンプルホルダ100は、プラズモン層120の他の部分を支持するフレームを含んでもよい。
光源152が、サンプルホルダ100を露出する光150を生成するために使用される。サンプルホルダ100およびプラズモン層120は、プラズモン層120に入射する光150がサンプルホルダ100およびプラズモン層120を透過できるように構成され、そのため透過光160は、1つ以上の固有の表面プラズモン共鳴ピーク220を備えたスペクトル200(図2A)によって特徴付けられる。透過光160の得られるスペクトル200は、より詳しく後述するように、サンプルホルダ100及び/又はプラズモン層120の特性に特徴的である1つ以上の固有の表面プラズモン共鳴ピーク220を示すことができる。
幾つかの実施形態において、サンプルホルダ100は、プラズモン層120に入射する光150がサンプルホルダ100およびプラズモン層120を透過可能にするように構成される。例えば、サンプルホルダ100は、より詳しく後述するように、ウインドウまたはアパーチャを画定するフレーム、あるいは光学的に透明な基板410を含んでもよい。
入射光150は、プラズモン層120が延在する水平面(不図示)に対して垂直な長手方向Zに伝搬できる。
周期的アレイ122は、例えば、三角形、長方形または正方形のアレイでもよい。三角形の周期的アレイは、六角形アレイの外観を与えることがある。各サブミクロン構造124間の間隔は、必要に応じて200nm〜500nmの範囲である。
幾つかの実施形態において、サブミクロン構造124は、プラズモン層120を通るアパーチャである。アパーチャは、50nm〜300nmの範囲の最大開口を有してもよい。アパーチャは、円、楕円、トーラス、正方形、長方形、十字形、多角形のいずれか1つ以上として成形してもよい。例えば、図1bの挿入画像のスケールバー191は300nmでもよく、円形アパーチャは160nmの直径を有してもよい。
アパーチャ124のアレイ122は、集束イオンビーム、フォトリソグラフィおよび化学エッチング、または電子ビームリソグラフィおよび化学エッチング、またはテンプレートを用いたナノインプリント方式の技術のいずれか1つを用いて、プラズモン層120に形成できる。
サブ波長ナノスケールのアパーチャの周期的アレイを通る光伝搬は、異常光透過(Extraordinary Optical Transmission)によって説明できる。異常光透過は、アパーチャのサイズに等しいか、それより長い入射光150の波長で発生することがある。この現象は、プラズモン層120での表面プラズモンポラリトン伝搬によって説明できる。
サブミクロン構造124はまた、粗い表面、ナノ粒子、柱(pillar)および格子(grating)も含んでもよい。サブミクロン構造は、光150の波長より小さいか、それに等しい距離だけ隔離及び/又は分離してもよい。サブミクロン構造124のサイズに等しいか、これより長い波長を備えた入射光150は、より詳しく後述するように、プラズモン層120での表面プラズモンポラリトンの伝搬を導くことができる。
図2に示すスペクトル200は、透過光160の強度が透過光160の波長λにどのように依存するかを示す。各固有表面プラズモン共鳴ピーク220は、共鳴波長λP222によって定義され得る。表面プラズモン共鳴ピーク220の共鳴波長λ222は、固有の表面プラズモン共鳴ピーク220の最大強度に対応する波長と考えてもよい。代替として、表面プラズモン共鳴ピーク220の共鳴波長λ222は、固有の表面プラズモン共鳴ピーク220の最大強度の半分である波長間の中心波長でもよい。
固有の表面プラズモン共鳴ピーク220は、入射光150と、プラズモン層120の表面125,126での自由電子の集団振動との共鳴相互作用の結果である。これは、伝搬励起または、表面プラズモンポラリトンとして知られる表面プラズモンを導く。表面プラズモンポラリトンの共鳴波長λ222(および個々の共鳴周波数)は、プラズモン層120の表面組成および構造に強く依存する。
固有の表面プラズモン共鳴ピーク220の波長は、サンプルホルダパラメータ、例えば、プラズモン層120の誘電率、アレイ122およびサブミクロン構造またはアパーチャ124の構成などにも依存し得る。例えば、アパーチャの間隔およびサイズ(さらに後述する)は、固有の共鳴ピーク220の波長に影響を与え得る。従って、固有の共鳴ピーク220は、サンプルホルダ100及び/又はプラズモン層120の構成に特徴的である。
幾つかの実施形態において、プラズモン層120は、200nm〜900nmの範囲の波長を備えた少なくとも1つの固有のプラズモン共鳴ピーク220を生成するように構成される。従って、透過光160の少なくとも幾つかは可視であり、可視スペクトルの波長を含むためである。
プラズモン層120の誘電率は、特定の材料からプラズモン層120を形成することによって予め決定できる。幾つかの実施形態において、プラズモン層120は、Al,Ag,Au,Ni,PtおよびPdのグループから選択される1つ以上の金属から形成される。プラズモン層120は、20〜300nmの範囲の厚さを有してもよい。入射光150の幾つかは、使用する材料および光の波長に応じて、プラズモン層120を直接透過することがある。これは、プラズモン層120によって提供される画像コントラスト増強を減少させる背景光に寄与することがあるため、望ましくない場合がある。
プラズモン層120が金属から形成される場合、金属プラズモン層120は、物理的堆積方法、例えば、以下に限定されないが、スパッタリング、熱蒸着または電子ビーム蒸着などを用いて、基板(後述する透明基板410など)上に堆積してもよい。
表面プラズモンポラリトンの電磁場はまた、プラズモン層120の表面126の外側におよびこれを超えて存在する。表面126に垂直な電磁場の成分は、図1に示すように、プラズモンの表面126に垂直な方向Zに指数関数的に減衰する。その結果、プラズモン層120に近接する近傍での環境は、表面プラズモンポラリトン、固有の共鳴ピーク220、および共鳴波長λ222の生成にも影響を与えることができる。表面プラズモンポラリトンは、例えば、プラズモン層120内のサブミクロン構造124のアレイ122に近接する環境の屈折率または誘電率の差に対して敏感である。
図1aに示すように、プラズモン層120は、第1表面125および第2表面126を画定する。第2表面126は、第1表面125の裏面でもよい。第1表面125および第2表面126は、プラズモン層120の主面(major surface)でもよい。各表面125,126に近接する環境の誘電率が異なる場合、プラズモン層120を透過した光からのスペクトル200は、第1表面125においてプラズモンを発生する光に対応する他の固有の表面プラズモン共鳴ピーク221も含んでもよい。
物体140はまた、物体140がプラズモン層120に近接して配置される場合、表面プラズモン伝搬に影響を与えることができる。プラズモン層120での表面プラズモン伝搬に影響を与えるように、物体140がプラズモン層120に充分に近い場合、プラズモン層120および物体140を透過する光170は、第2スペクトル230(図2)によって特徴付けられる。例えば、プラズモン層120での表面プラズモンポラリトンによって発生する電磁場は、プラズモン層120から離れる方向Zに指数関数的な減衰を示す。従って、物体140は、プラズモン層120での表面プラズモン伝搬にさらに影響を与えることがあり、さらにより少ない程度でプラズモン層120から影響を与えることがある。一例として、金属製である物体140は、第2表面から最大100nmまで離れていても、プラズモン層120での表面プラズモン伝搬および表面プラズモン共鳴ピーク220,221に検出可能なように影響を与えることがある。
図2に示すように、第2スペクトル230は、物体140がプラズモン層120内を伝搬する表面プラズモンに影響を与える結果として、固有の表面プラズモン共鳴ピーク220から波長シフトした1つ以上の第2表面プラズモン共鳴ピーク240を含む。
第2表面プラズモン共鳴ピーク240は、固有の表面プラズモン共鳴ピーク220と比較してより低い強度を有することがある。
第1表面125でプラズモンを発生する光に対応する固有の表面プラズモン共鳴ピーク221の光の強度も、物体140が第2表面126に近接して配置される結果として増加することがある。
物体140(図1a)の画像180が、透過光160,170から構築できる。理由は、透過光160の第1部分のスペクトル220は、透過光170の第2部分のスペクトル230と異なることがあるためである。スペクトル200,230間のこの相違は、画像コントラストとして現れる。画像180の構築は、より詳細に後述する。
図3を参照して、幾つかの実施形態において、プラズモン層120,320は、十字形のアパーチャ324の周期的アレイを画定する。アパーチャ324は、中央アパーチャ326から延びる複数の交差する細長いアーム325を画定する形状として記述できる。各アーム325は、近接するアーム325間にある角度が存在するように配向している。近接するアーム325間の角度は、必要に応じて30°〜90°の範囲である。幾つかの実施形態において、アパーチャ324が十字形として成形された場合、角度は90°でもよい。アパーチャ324が8つの細長いアームを含む実施形態において、角度は45°でもよい。アパーチャ324は、100nm〜300nmの範囲の最大開口を有する。例えば、図示したスケールバー390は300nmでもよく、十字形の最大開口は160nmでもよい。好都合には、十字形のアパーチャ324は、円形アパーチャから得られる表面プラズモン共鳴ピーク220,221,240よりも鋭い表面プラズモン共鳴ピーク220,221,240を生成できる。これにより、より大きな画像コントラストが得られ、従って、表面プラズモン共鳴ピーク220,221,240の幅よりも少ない小さな波長シフトをもたらす物体140に対する検出感度が得られることがある。例えば、10nm未満の厚さである物体または、類似の屈折率を有する物体のセクションは、小さな波長シフトをもたらすことがある。
アパーチャ324の周期的アレイは、第2軸Yに沿った第2間隔Bとは異なる第1軸Xに沿った第1間隔Aを有してもよい。従って、周期的アレイは、非対称アレイとして記述できる。第2軸は、第1軸に対してある角度で配向している。該角度は、例えば、30°〜90°の範囲でもよい。幾つかの実施形態において、周期的アレイは長方形アレイである。一実施形態において、第1間隔Aは400nmであり、第2間隔Bは350nmである。
図4を参照して、幾つかの実施形態において、サンプルホルダ100,400はまた、プラズモン層120,420の機械的支持を提供するために、プラズモン層120,420の第1表面125,425に接続された光学的に透明な基板410を含む。光学的に透明な基板410は、光150が、これを通過してプラズモン層120,420まで0パーセントより大きい光透過(例えば、透過率)で通過可能にする。光学的に透明な基板410は、プラズモン層120,420内で伝搬表面プラズモンを生成するのに充分な光を透過させる。幾つかの実施形態において、基板410を通る光透過率は少なくとも50%である。
基板410は、二酸化シリコン系ガラス、石英(quartz)、サファイア、透明金属酸化物、またはポリマーのうちの1つから選択された材料から形成してもよい。
幾つかの実施形態において、基板410は、プラズモン層120,420の第1表面125,425を露出させるウインドウ(不図示)を画定してもよく、光150がウインドウを通過してプラズモン層120,420と相互作用することを可能にする。これらの実施形態において、基板410は、必ずしも光学的に透明な材料から形成される必要はなく、基板410は、必ずしも光150に露出される必要はない。従って、基板410は、プラズモン層120,420の第1表面425の少なくとも一部に接続してもよい。
サンプルホルダ100,400は、従来の光学顕微鏡での撮像のために容易に使用できるように成形してもよい。サンプルホルダ100,400は、例えば、顕微鏡スライドの形態を成してもよい。
幾つかの実施形態において、サンプルホルダ100,400はさらに、プラズモン層120,420の第2表面126,426に連結または結合された光学的に透明な保護層430を含む。光学的に透明な保護層430は、光160,170がそこを通過して、プラズモン層120,420を化学的に隔離する。このことは、好都合にはプラズモン層120,420を保護するのに役立ち、サンプルホルダ100,400を洗浄および再利用することを可能にする。光学的に透明な保護層430は、表面プラズモン共鳴ピーク220の少なくとも1つの光がそこを通過することを可能にする。
光学的に透明な保護層430は、シリコン系酸化物(例えば、SiO)、シリコン窒化物(例えば、Si)、透明金属酸化物、およびポリマーのうちのいずれか1つ以上を含んでもよい。光学的に透明な保護層430は、均一な薄膜を生成するための半導体産業で日常的に使用されるコーティング方法で形成できる。例えば、光学的に透明な保護層430は、「スピンオンガラス」である水素シルセスキオキサンなどの液体前駆体から形成してもよい。この技術では、液体前駆体は、プラズモン層120,420上に堆積され、その後、サンプルホルダ100,400が急速に回転して、液体前駆体は均一な薄膜を形成する。そして、液体前駆体は、電子ビーム、UV光および加熱の1つ以上を用いて硬化される。代替として、光学的に透明な保護層430は、化学気相堆積法を用いて堆積してもよい。光学的に透明な保護層430は、一般に、プラズモン層120,420上に形成することがある自然酸化物を含まない。
幾つかの実施形態において、光学的に透明な保護層430は、約150nm未満の厚さを有する。光学的に透明な保護層430が厚いほど、耐摩耗性が大きくなる。しかしながら、前述のように、表面プラズモンの電場は指数関数的に減衰する。従って、表面プラズモン生成に対する物体140の影響は、物体140が表面126から遠くなるほど減少する。従って、より厚い光学的に透明な層430では、波長シフトおよび画像コントラストがより低くなることがある。光学的に透明な保護層430は、0.5nm〜150nmの範囲の厚さを有してもよい。アモルファス二酸化シリコンから形成された光学的に透明な保護層430では、その厚さは、可視スペクトルにおいて増強された画像コントラストを生成するために80nm未満でもよい。
幾つかの実施形態において、サンプルホルダ100,400は、サンプルホルダへの物体140の接着を促進するために、該技術分野で知られた任意の従来の方法を用いて処理してもよい。幾つかの例では、これは、接着剤、透過性保護フィルム、プラズマ処理または紫外光露出のいずれか1つ以上を使用することを含んでもよい。
図5を参照して、幾つかの実施形態に係る、物体500を撮像する方法が示される。方法500は、510において、サンプルホルダ100,400(図1aと図4)のプラズモン層120,420上で物体140(図1a)を支持することを含むかまたは備える。上述のように、プラズモン層120,420は、物体140が支持される場合、物体140に近接するように配置されたサブミクロン構造124の周期的アレイ122を画定する。
方法500はまた、520において、サンプルホルダ100,400を光150に露出することを含み、光の第1部分160がプラズモン層120,420を通過するが、物体140を通過せず、そして、光の第2部分170がサンプルホルダ100,400および物体140を通過する。光の第1部分160は、プラズモン層120,420と相互作用し、光の第1部分160は、1つ以上の固有の(第1)表面プラズモン共鳴ピーク220によって特徴付けられる。光の第2部分170は、プラズモン層120,420および物体140の少なくとも一部と相互作用し、物体140がプラズモン層120,420内を伝搬するプラズモンに影響を与える結果として、固有の表面プラズモン共鳴ピーク220から波長シフトした1つ以上の第2表面プラズモン共鳴ピーク240によって特徴付けられる。
従って、プラズモン層120,420を光150に露出することによって、表面プラズモン共鳴の結果として、伝搬する表面プラズモンがプラズモン層120,420に生成される。
方法はさらに、530において、透過光の第1部分160および第2部分170から物体140の画像180を構築することを含み、これにより物体140を空間的に分解可能にする。物体140は、画像から空間的に分解できる。理由は、物体140を通る透過光170は波長シフトしているため、プラズモン層120を通過したが、物体140を通過していない透過光160とは異なるように見えるためである。従って、透過光160から由来する画像180の第1領域182と、透過光170から由来する画像180の第2領域184との間で画像コントラストが生成される。
図7a〜図7bを参照して、幾つかの実施形態において、不均一な物体740が撮像できる。物体140の異なる構造も画像180から空間的に分解できる。これらの実施形態における光の第1部分760は、プラズモン層720および物体740の第1セクション741を通過する。光の第2部分770は、プラズモン層720および物体740の第2セクション742を透過する。物体740の第1セクション741および第2セクション742が表面プラズモン共鳴に異なるように影響を与える場合、これは、異なる表面プラズモン共鳴ピーク220,221,240(図2)をもたらし、従って、光の第1部分760と光の第2部分770との間の画像コントラストは、物体の異なる構造を空間的に分解可能にする。
幾つかの実施形態において、物体740は、プラズモン層720によって画定される周期的アレイ(不図示)を完全にカバーしてもよい。幾つかの実施形態において、物体740は、プラズモン層720によって画定される周期的アレイ(不図示)を部分的にのみカバーしてもよい。
幾つかの実施形態において、画像180(図1a)の構築は、例えば、光学顕微鏡で使用されるようなレンズを用いて、第1部分160および第2部分170からの透過光を画像平面(不図示)に投影することを含んでもよい。画像平面は、カメラまたは人間の眼などのセンサまたは検出器に設置してもよい。好都合には、物体140の画像180は、従来の光学顕微鏡法で使用される明視野撮像モードで構築できる。従って、特殊なサンプル調製、例えば、染色、特殊な顕微鏡、特殊な顕微鏡コンポーネント、または特殊な画像解析などは、画像コントラスト増強を提供するために必要とされない。好都合には、画像180は、広い視野を用いて取得できるため、物体140を走査して大きな領域に渡って画像を生成する必要がない。イメージングシステムが画像180内の関心のある構造を光学的に分解できるのであれば、アレイ122および撮像物体140のサイズに制限はない。
透過光160,170が可視の波長範囲内にある場合、画像コントラストは、色のコントラストとして現れることがある。幾つかの実施形態において、方法500は、画像180を解析することも含んでもよい。例えば、透過光160,170はまたフィルタリング処理して、画像コントラストが強度コントラストとして現れるようしてもよい。このフィルタリング処理は、画像処理ソフトウェアを用いて画像180のスペクトルを解析することによって実施できる。
また、画像解析は、共鳴波長または物体140からの波長シフトを決定するために使用できる。これにより、物体140の未知のパラメータの計算を決定することが可能になる。例えば、物体140の誘電率が既知である場合、エバネッセント長範囲(例えば、最大400nm)よりも小さければ、波長シフトを使用して物体140の厚さを決定できる。
幾つかの実施形態において、物体140の画像180は、プラズモン層120,420を、波長λのフィルタリングなしの範囲を含む入射光150に露出することによって取得できる。入射光150は、例えば、白色光源と見なされる光源152によって生成してもよい。代替として、画像180は、プラズモン層120,420を単色の入射光150に露出することによって取得できる。
好都合には、フィルタリングなしの光を用いた撮像は、波長λ223の単色光または波長λ223に近い狭帯域光の使用と比較して、増強された画像コントラストを提供できる。例えば、図2を参照して、波長シフトしたスペクトル230に見られるように、物体140からの透過光170の強度は、プラズモン層120,420を通過しただけの透過光160の強度と同じである。従って、波長λの光を用いて撮像を実施した場合、画像180において物体140から画像コントラストは観察されない。
しかしながら、共鳴波長λ222を用いて撮像を実施し、スペクトル200に類似した強度の他の共鳴ピークが存在しない場合、プラズモン共鳴ピーク220の波長シフトは、強度の変化を生じさせ、画像のコントラストを示す領域を生成する。
透過光170は、物体140との相互作用、例えば、散乱、分散、吸収などによっても影響を受けることがある。従って、より厚い物体は、従来の顕微鏡法のように、より低い強度で光170を通過させることがある。しかしながら、物体140がプラズモン層120,420で発生した表面プラズモンポラリトンと相互作用することに起因した波長シフトの結果として、画像コントラストが増強される。従って、プラズモン効果、散乱、分散、吸収の組合せに起因して波長シフトしたより低い強度の透過光170により、より厚い物体は、増加した画像コントラストを生成できる。
しかしながら、波長シフトは、光と物体の相互作用、例えば、散乱、分散、吸収などから独立していることがある。これにより、好都合には、光と弱く相互作用し、それ以外に透明であるか、または従来の光学顕微鏡法を用いて観察するのが非常に困難である物体140の撮像が可能になる。言い換えれば、方法500は、色の変化を利用して、画像コントラスト増強を達成する。
幾つかの実施形態において、方法500はさらに、512において第1偏光角での直線偏光した光150をさらに含む。方法500はまた、サンプルホルダ100,400(プラズモン層320,820を含む)および物体140,840を直線偏光光150に露出することを含んでもよい(図8aと図8bを参照)。ここで説明するように、プラズモン層320は、第2軸に沿った第2間隔Bとは異なる第1軸に沿った第1間隔Aを有するアパーチャ124,324の周期的アレイを画定し、第2軸は、第1軸に対してある角度で配向している。光は、第1軸に対して第1偏光角で直線偏光しており、サンプルホルダ100,400および物体140,840を第1偏光角の直線偏光光150に露出することから構成される画像180,880が記録できる。そして、方法500は、サンプルホルダ100,400および物体140,840を、第1軸に対して第2偏光角で直線偏光した光150に露出することによって繰り返してもよい。第2偏光角は、例えば、第2軸と整列してもよい。第2偏光角の直線偏光光150への露出から構築される画像180,882(図8b)も記録できる。
好都合には、プラズモン層320,820および物体140,840を含むサンプルホルダ100,400を第1軸に対して異なる偏光角で直線偏光した光150に露出することから構成される画像180,880,882は、異なる波長シフトが画像コントラスト条件をもたらすことに起因して、異なる画像180,880,882を生成できる。例えば、図8aにおいて0°直線偏光光を用いて画像880の領域841に見られる物体140,840は、オレンジ色に見える。しかしながら、図8bにおいて90°直線偏光光を用いて画像882の領域845に見られる同じ物体140,840は、黄色に見える。従って、方法500を使用して、従来の光学撮像方法からは容易に取得できない追加情報を物体140から好都合に取得できる。画像コントラストに対する偏光角変化の影響は、次第に厚くなる物体842,843ではそれほど顕著ではない。
異なる偏光角で得られた異なる画像880,882は、第1間隔Aが第2間隔Bと異なるため、プラズモン層120,420,820および物体140,840と相互作用する偏光光から異なって生じる。偏光角が第1軸と整列する場合、表面プラズモン共鳴は、第2間隔Bに依存する。偏光角が第2軸と整列する場合、表面プラズモン共鳴は、第1間隔Aに依存する。第1軸と第2軸の間で配向した偏光角は、第1間隔Aと第2間隔Bの両方に依存する。
幾つかの実施形態において、方法500はさらに、円偏光または楕円偏光の光150がサンプルホルダ100,400および物体140,840を露出することをさらに含む。サブミクロン構造124,324のアレイは、偏光が右回りか左回りか(時計回りまたは反時計回り)に応じて、異なる表面プラズモン共鳴を生成するように構成できる。
例示の実施形態において、サンプルホルダ400は、約150nm厚の銀層から形成されたプラズモン層420を備えた従来のガラス顕微鏡スライドから形成された光学的に透明な基板410を含む。プラズモン層420は、約200nmだけ分離された直径約160nmの円形アパーチャの周期的な三角形アレイを画定する。サンプルホルダ400はさらに、約10nm厚のアモルファス二酸化シリコンの光学的に透明な保護層430を含む。この構成において、サンプルホルダ400を通過した透過光160からのスペクトル200は、約500nm(緑色光)の共鳴波長を備えた可視スペクトルでの固有の表面プラズモン共鳴ピーク220を含む。明視野構成の光学顕微鏡においてサンプルホルダ400を用いて方法500を実施すると、約3nm厚のPt/C材料の層からなる物体640が、適正な画像コントラストを生成し、それが容易に認識できることが観察された(図6a)。しかしながら、領域641において単純なガラス顕微鏡スライド上で見られる同じ物体640は、従来の明視野光学顕微鏡法を用いて容易に観察できなかった(図6b)。
図6aはまた、次第に厚くなる物体642が、より大きな波長シフトに起因してより大きな画像コントラストを示すことを示す。物体642は、約8nm、約13nmおよび約19nmの厚さを有する。図6bは、領域643において見られるものとガラススライド上の同じ物体642は、より大きい画像コントラストを示すが、画像コントラストは、サンプルホルダ400上で観察されるほど大きくないことを示す。
図9aは、ミエリン鞘の明視野顕微鏡画像である。画像は、0°直線偏光光で物体500を撮像する方法の実施形態を用いて取得した。図9bは、90°直線偏光光で方法500を用いて図9aと同じ領域の明視野顕微鏡画像である。
図10aは、幾つかの離間した領域に渡ってイオン注入された薄膜の上面図を示す明視野顕微鏡画像である。図10bは、従来の顕微鏡スライド上に支持された幾つかの離間した領域に渡ってイオン注入された薄膜の従来の明視野顕微鏡画像である。
図11aは、物体500を撮像する方法の実施形態を用いて得られた子房の断面の明視野顕微鏡画像である。図11bは、従来の顕微鏡スライド上に支持された子房の断面の従来の明視野顕微鏡画像である。
本開示の広い一般的範囲から逸脱することなく、上述した実施形態に対して多数の変形及び/又は変更を行ってもよいことは、当業者によって理解されるよう。従って、本実施形態は、全ての点で例示的かつ非限定的であると見做すべきである。

Claims (38)

  1. 物体を撮像する方法であって、
    ・物体をサンプルホルダのプラズモン層の上で支持するステップであって、該プラズモン層は、物体に近接するサブミクロン構造の周期的アレイを画定する、ステップと、
    ・サンプルホルダを光に露出するステップであって、
    光の第1部分が、(i)プラズモン層を通過するが、物体を通過しないか、あるいは、(ii)プラズモン層および物体の第1セクションを通過するようにし、
    光の第2部分が、プラズモン層および物体の少なくとも第2セクションを通過するようにし、
    光は、少なくともプラズモン層と相互作用し、
    透過光の第1部分は、1つ以上の第1表面プラズモン共鳴ピークによって特徴付けられ、
    透過光の第2部分は、物体がプラズモン層内を伝搬するプラズモンに影響を与える結果として、第1表面プラズモン共鳴ピークから波長シフトした、1つ以上の第2表面プラズモン共鳴によって特徴付けられる、ステップと、
    ・透過光の第1部分および第2部分から物体の画像を構築し、これにより物体を空間的に分解可能にするステップと、を含む方法。
  2. 画像を解析して物体を空間的に分解することをさらに含む、請求項1に記載の方法。
  3. 光は、200nm〜900nmの範囲の複数の波長を有する、請求項1または2に記載の方法。
  4. 第1および第2表面プラズモン共鳴ピークの少なくとも一方は、300nm〜800nmの範囲の波長でピーク強度を有する、請求項1〜3のいずれかに記載の方法。
  5. サブミクロン構造は、200nm〜500nmの範囲のサブミクロン構造間の間隔を備えた周期的アレイ状に配置される、請求項1〜4のいずれかに記載の方法。
  6. サブミクロン構造は、50nm〜300nmの範囲の最大寸法を有する、請求項1〜5のいずれかに記載の方法。
  7. サブミクロン構造は、プラズモン層を通るアパーチャである、請求項1〜6のいずれかに記載の方法。
  8. アパーチャは、円、トーラス、楕円、十字形、および複数の交差する細長いアームを含む形状のいずれか1つ以上として成形される、請求項7に記載の方法。
  9. 近接する細長いアーム間の角度は、30°〜90°の範囲である、請求項8に記載の方法。
  10. サンプルホルダおよび物体を、偏光した光に露出することをさらに含む、請求項1〜9のいずれかに記載の方法。
  11. 偏光した光は、アパーチャの周期的アレイの第1軸に対して第1偏光角で直線偏光しており、周期的アレイは、第1軸に沿ったサブミクロン構造の第1間隔を有し、第1間隔は、第2軸に沿ったサブミクロン構造の第2間隔とは異なり、第2軸は、第1軸に対してある角度で配向している、請求項10に記載の方法。
  12. 第1軸に対して第2偏光角で直線偏光した光にサンプルホルダおよび物体を露出することをさらに含む、請求項11に記載の方法。
  13. 該方法は、光学顕微鏡を用いて実施する、請求項1〜12のいずれかに記載の方法。
  14. プラズモン層は、Al,Ag,Au,Ni,PtおよびPdのいずれかから選択される1つ以上の金属から形成される、請求項1〜13のいずれかに記載の方法。
  15. プラズモン層は、20nm〜300nmの範囲の厚さを有する、請求項1〜14のいずれかに記載の方法。
  16. サンプルホルダは、プラズモン層のための機械的支持を提供するために、プラズモン層の第1表面の少なくとも一部に接続された基板を含む、請求項1〜15のいずれかに記載の方法。
  17. 基板は、光学的に透明であり、そのため基板を通る光透過率がゼロより大きく、基板は第1表面を化学的に隔離する、請求項16に記載の方法。
  18. サンプルホルダは、プラズモン層を隔離するために、プラズモン層の第2側に結合された光学的に透明な保護層を含む、請求項1〜17のいずれかに記載の方法。
  19. 光学的に透明な保護層は、150nm未満の厚さを有する、請求項18に記載の方法。
  20. 光学的に透明な保護層は、80nm未満の厚さを有する、請求項18に記載の方法。
  21. 光学的に透明な保護層は、酸化シリコン、窒化シリコン、透明金属酸化物およびポリマーのいずれか1つ以上を含む、請求項18〜20のいずれかに記載の方法。
  22. 物体は、均一な厚さ及び/又は密度を含むか、あるいは、物体は、不均一な厚さ及び/又は密度を含む、請求項1〜21のいずれかに記載の方法。
  23. 光学顕微鏡で使用するためのサンプルホルダであって、
    サブミクロン構造の周期的アレイを画定するプラズモン層を含み、
    サンプルホルダは、
    物体を支持する場合、サブミクロン構造の周期的アレイが物体に近接するように物体を支持し、
    光がプラズモン層を透過できるようにし、光は、少なくともプラズモン層と相互作用し、透過光からのスペクトルは、
    1つ以上の第1表面プラズモン共鳴ピークによって特徴付けられる第1部分と、
    物体がプラズモン層内を伝搬するプラズモンに影響を与える結果として、第1表面プラズモン共鳴ピークから波長シフトした、1つ以上の第2表面プラズモン共鳴によって特徴付けられる第2部分とを含み、
    これにより透過光から物体の画像を構築し、物体を該画像から空間的に分解可能にする ように構成される、サンプルホルダ。
  24. プラズモン層は、300nm〜800nmの範囲の波長でピーク強度を備えた少なくとも1つの表面プラズモン共鳴ピークを生成するように構成される、請求項23に記載のサンプルホルダ。
  25. サブミクロン構造は、200nm〜500nmの範囲のサブミクロン構造間の間隔を備えた周期的アレイ状に配置される、請求項23または24に記載のサンプルホルダ。
  26. サブミクロン構造は、50nm〜300nmの範囲の最大寸法を有する、請求項23〜24のいずれかに記載のサンプルホルダ。
  27. サブミクロン構造は、プラズモン層を通るアパーチャである、請求項23〜25のいずれかに記載のサンプルホルダ。
  28. アパーチャは、円、トーラス、楕円、十字形、および複数の交差する細長いアームを含む形状のいずれか1つ以上として成形される、請求項26に記載のサンプルホルダ。
  29. 近接する細長いアーム間の角度は、30°〜90°の範囲である、請求項28に記載のサンプルホルダ。
  30. プラズモン層は、Al,Ag,Au,Ni,PtおよびPdのいずれかから選択される1つ以上の金属から形成される、請求項23〜29のいずれかに記載のサンプルホルダ。
  31. プラズモン層は、20nm〜300nmの範囲の厚さを有する、請求項23〜30のいずれかに記載のサンプルホルダ。
  32. プラズモン層のための機械的支持を提供するために、プラズモン層の第1表面の少なくとも一部に接続された基板をさらに含む、請求項23〜31のいずれかに記載のサンプルホルダ。
  33. 基板を通る光透過率がゼロより大きく、基板は第1表面を化学的に隔離する、請求項32に記載のサンプルホルダ。
  34. プラズモン層を隔離するために、プラズモン層の第2側上に光学的に透明な保護層をさらに含む、請求項23〜33のいずれかに記載のサンプルホルダ。
  35. 光学的に透明な保護層は、150nm未満の厚さを有する、請求項34に記載のサンプルホルダ。
  36. 光学的に透明な保護層は、80nm未満の厚さを有する、請求項34に記載のサンプルホルダ。
  37. 光学的に透明な保護層は、酸化シリコン、窒化シリコン、透明金属酸化物およびポリマーのいずれか1つ以上を含む、請求項34〜36のいずれかに記載のサンプルホルダ。
  38. 光学顕微鏡で使用される場合に請求項1〜22のいずれかに記載の方法を実施する、請求項23〜37のいずれかに記載のサンプルホルダ。
JP2019565010A 2017-05-22 2018-05-22 光学顕微鏡の画像コントラスト増強 Active JP7189621B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2017901940A AU2017901940A0 (en) 2017-05-22 Image contrast enhancement for optical microscopy
AU2017901940 2017-05-22
PCT/AU2018/050496 WO2018213881A1 (en) 2017-05-22 2018-05-22 Image contrast enhancement for optical microscopy

Publications (2)

Publication Number Publication Date
JP2020521146A true JP2020521146A (ja) 2020-07-16
JP7189621B2 JP7189621B2 (ja) 2022-12-14

Family

ID=64395081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019565010A Active JP7189621B2 (ja) 2017-05-22 2018-05-22 光学顕微鏡の画像コントラスト増強

Country Status (7)

Country Link
US (1) US11506881B2 (ja)
EP (1) EP3631569A4 (ja)
JP (1) JP7189621B2 (ja)
CN (1) CN111051964B (ja)
AU (1) AU2018273795B2 (ja)
CA (1) CA3064358A1 (ja)
WO (1) WO2018213881A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426999B2 (ja) 2018-11-29 2024-02-02 ラ トローブ ユニバーシティ 構造を識別する方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220091307A1 (en) * 2018-11-29 2022-03-24 La Trobe University Microscopy method and system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133618A (ja) * 1999-11-05 2001-05-18 Nec Corp 光伝送装置
JP2007501391A (ja) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ 表面プラズモンを増強するナノ光学素子及びこの製造方法
JP2007192806A (ja) * 2005-12-22 2007-08-02 Canon Inc 標的物質検出素子用基板、標的物質検出素子、それを用いた標的物質の検出装置及び検出方法、並びにそのためのキット
JP2007538264A (ja) * 2004-05-19 2007-12-27 ブィピー ホールディング、エルエルシー Sersによる化学基の増強検出のための層状プラズモン構造をもつ光センサ
US20080252894A1 (en) * 2007-04-16 2008-10-16 Lakowicz Joseph R Subwavelength resolution optical microscopy
JP2009223123A (ja) * 2008-03-18 2009-10-01 Ricoh Co Ltd 偏光制御素子、偏光制御装置
JP2009222401A (ja) * 2008-03-13 2009-10-01 Tokyo Metropolitan Industrial Technology Research Institute 局所表面プラズモン共鳴イメージング装置
JP2010009025A (ja) * 2008-05-30 2010-01-14 Canon Inc 光学フィルタ
JP2011053151A (ja) * 2009-09-03 2011-03-17 Japan Aviation Electronics Industry Ltd 水素検出用表面プラズモン共鳴素子、表面プラズモン共鳴式光学水素検出器及び表面プラズモン共鳴を利用して光学的に水素を検出する方法
JP2011252928A (ja) * 2005-04-28 2011-12-15 Canon Inc プラズモン共鳴を利用して標的物質を検出する装置に用いられる標的物質検出素子用基板、これを用いた検出素子及び検出装置
JP2012159792A (ja) * 2011-02-02 2012-08-23 Ricoh Co Ltd 波長選択素子
US20140131559A1 (en) * 2012-11-14 2014-05-15 National Tsing Hua University Imaging metamaterial
JP2015012128A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 撮像装置及び電子機器
JP2016212126A (ja) * 2013-10-18 2016-12-15 シャープ株式会社 光電変換装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016173A (en) 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
AU2002245537B2 (en) 2001-02-23 2007-12-20 Genicon Sciences Corporation Methods for providing extended dynamic range in analyte assays
US20080099667A1 (en) 2001-08-14 2008-05-01 President And Fellows Of Harvard College Methods and apparatus for sensing a physical substance
US7122384B2 (en) 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
US8094314B2 (en) 2005-10-21 2012-01-10 The Regents Of The University Of California Optical sensing based on surface plasmon resonances in nanostructures
US8154722B2 (en) * 2006-03-03 2012-04-10 Canon Kabushiki Kaisha Sensor element structure, sensor element array, and manufacturing method of sensor element array
JP5771007B2 (ja) 2008-01-07 2015-08-26 マイスキン、インク. スペクトル畳み込みに基づく光と物質の相互作用の解析システムおよび方法
JP5195112B2 (ja) * 2008-07-18 2013-05-08 株式会社リコー 屈折率センサ、屈折率センサアレイおよびバイオセンサ
CN102460171A (zh) 2009-05-15 2012-05-16 Sru生物系统公司 细胞群和混合细胞群变化的检测
KR20130056886A (ko) 2010-06-25 2013-05-30 노스이스턴 유니버시티 스펙트럼 이미징에 의해 생물 표본을 분석하는 방법
WO2013056137A1 (en) 2011-10-12 2013-04-18 Brown University Systems and methods enabling high-throughput, real time detection of analytes
WO2013089996A1 (en) 2011-12-13 2013-06-20 Konica Minolta Laboratory U.S.A., Inc. Nanohole sensor chip with reference sections
EP2653903A1 (en) 2012-04-20 2013-10-23 FOM Institute for Atomic and Molecular Physics Plasmonic microscopy
DE102012214932B4 (de) 2012-08-22 2023-08-24 Carl Zeiss Microscopy Gmbh Testprobenvorrichtung und Testverfahren für ein optisches, im Sub-Wellenlängenbereich auflösendes Mikroskop
US8976359B2 (en) 2012-12-15 2015-03-10 Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Nanostructure diffraction gratings for integrated spectroscopy and sensing
US9464985B2 (en) 2013-01-16 2016-10-11 The Board Of Trustees Of The University Of Illinois Plasmon resonance imaging apparatus having nano-lycurgus-cup arrays and methods of use
BR112015029784A2 (pt) * 2013-07-09 2017-07-25 Halliburton Energy Services Inc sistema, ferramenta de medição e método
EP3121587A1 (en) 2014-03-21 2017-01-25 Universidad De Cantabria Device and method for detecting biomarkers
US10908090B2 (en) 2015-03-13 2021-02-02 Chris Geddes Microarray slides that enhance fluorescent signals via plasmonic interaction
KR101704584B1 (ko) * 2015-04-16 2017-02-22 포항공과대학교 산학협력단 유기체 또는 생체 물질의 초고해상도 이미징이 가능한 현미경 장치 및 이를 이용한 유기체 또는 생체 물질의 초고해상도 이미징 방법
US11678802B2 (en) 2016-03-16 2023-06-20 Ohio State Innovation Foundation System and method for the discrimination of tissues using a fast infrared cancer probe
CN105700262B (zh) 2016-04-13 2019-04-30 深圳市华星光电技术有限公司 液晶显示装置及其制作方法
WO2018107038A1 (en) 2016-12-08 2018-06-14 Drinksavvy, Inc. Surface plasmon rensonance sensor comprising metal coated nanostructures and a molecularly imprinted polymer layer
TWI756365B (zh) 2017-02-15 2022-03-01 美商脫其泰有限責任公司 圖像分析系統及相關方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133618A (ja) * 1999-11-05 2001-05-18 Nec Corp 光伝送装置
JP2007501391A (ja) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ 表面プラズモンを増強するナノ光学素子及びこの製造方法
JP2007538264A (ja) * 2004-05-19 2007-12-27 ブィピー ホールディング、エルエルシー Sersによる化学基の増強検出のための層状プラズモン構造をもつ光センサ
JP2011252928A (ja) * 2005-04-28 2011-12-15 Canon Inc プラズモン共鳴を利用して標的物質を検出する装置に用いられる標的物質検出素子用基板、これを用いた検出素子及び検出装置
JP2007192806A (ja) * 2005-12-22 2007-08-02 Canon Inc 標的物質検出素子用基板、標的物質検出素子、それを用いた標的物質の検出装置及び検出方法、並びにそのためのキット
US20080252894A1 (en) * 2007-04-16 2008-10-16 Lakowicz Joseph R Subwavelength resolution optical microscopy
JP2009222401A (ja) * 2008-03-13 2009-10-01 Tokyo Metropolitan Industrial Technology Research Institute 局所表面プラズモン共鳴イメージング装置
JP2009223123A (ja) * 2008-03-18 2009-10-01 Ricoh Co Ltd 偏光制御素子、偏光制御装置
JP2010009025A (ja) * 2008-05-30 2010-01-14 Canon Inc 光学フィルタ
JP2011053151A (ja) * 2009-09-03 2011-03-17 Japan Aviation Electronics Industry Ltd 水素検出用表面プラズモン共鳴素子、表面プラズモン共鳴式光学水素検出器及び表面プラズモン共鳴を利用して光学的に水素を検出する方法
JP2012159792A (ja) * 2011-02-02 2012-08-23 Ricoh Co Ltd 波長選択素子
US20140131559A1 (en) * 2012-11-14 2014-05-15 National Tsing Hua University Imaging metamaterial
JP2015012128A (ja) * 2013-06-28 2015-01-19 ソニー株式会社 撮像装置及び電子機器
JP2016212126A (ja) * 2013-10-18 2016-12-15 シャープ株式会社 光電変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426999B2 (ja) 2018-11-29 2024-02-02 ラ トローブ ユニバーシティ 構造を識別する方法

Also Published As

Publication number Publication date
CA3064358A1 (en) 2018-11-29
CN111051964A (zh) 2020-04-21
NZ759918A (en) 2023-11-24
JP7189621B2 (ja) 2022-12-14
EP3631569A4 (en) 2021-03-24
AU2018273795B2 (en) 2023-08-31
EP3631569A1 (en) 2020-04-08
AU2018273795A1 (en) 2020-01-02
WO2018213881A1 (en) 2018-11-29
CN111051964B (zh) 2022-03-11
US11506881B2 (en) 2022-11-22
US20200142173A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
Wang et al. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry
US7362440B2 (en) Far-field optical microscope with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritions
Kuppe et al. Measuring optical activity in the far-field from a racemic nanomaterial: diffraction spectroscopy from plasmonic nanogratings
JP7189621B2 (ja) 光学顕微鏡の画像コントラスト増強
Shi et al. Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy
Bryche et al. k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts
Bouillard et al. Shaping plasmon beams via the controlled illumination of finite-size plasmonic crystals
Ueno et al. Nano-structured materials in plasmonics and photonics
Smolyaninov A far-field optical microscope with nanometre-scale resolution based on in-plane surface plasmon imaging
Lovera et al. Elliptical nanohole array in thin gold film as micrometer sized optical filter set for fluorescent-labelled assays
Maslov et al. Theoretical foundations of super-resolution in microspherical nanoscopy
Kim et al. Advanced optical characterization of micro solid immersion lens
JP6648888B2 (ja) 表面増強ラマン散乱分析用基板、その製造方法およびその使用方法
George et al. Wafer-scale plasmonic and photonic crystal sensors
Di Palma et al. Metallic-Dielectric colloidal photonic crystal on the multimode optical fiber tip: preliminary results as optical fiber SERS probe
Shashi Design, Fabrication and Characterization of Narrowband Aluminum Plasmonic Grating Filter Array for Spectroscopy in Visible Light Range
Jiang Realization and optimization of plasmonic structures for directional control of light
Si et al. Plasmonic coaxial Fabry-Pérot nanocavity color filter
Cervantes Téllez Engineering in the optimization of resolution of nanohole arrays in metal films for refractive index sensing
Brettin Microspherical photonics for enhancing resolution of optical microscopy and sensitivity of focal plane arrays
Ponsetto Plasmonics for Super Resolution Optical Imaging
Vedeler Optical properties of metal nanoparticles investigated using polarised light.
Paul Improving Sensitive Microscopy Techniques: SERS, SIM, and Spinning Disks
CN117269001A (zh) 基于周期孔洞超表面的反射式高灵敏度干涉散射显微成像装置和方法
Heilmann Fabrication and characterisation of dielectric nanoparticle arrays-Tuning the light-matter interaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221125

R150 Certificate of patent or registration of utility model

Ref document number: 7189621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150