JP2020514957A - 荷電粒子ビームを使用した積層造形に関する改善 - Google Patents

荷電粒子ビームを使用した積層造形に関する改善 Download PDF

Info

Publication number
JP2020514957A
JP2020514957A JP2019531991A JP2019531991A JP2020514957A JP 2020514957 A JP2020514957 A JP 2020514957A JP 2019531991 A JP2019531991 A JP 2019531991A JP 2019531991 A JP2019531991 A JP 2019531991A JP 2020514957 A JP2020514957 A JP 2020514957A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
source
particles
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019531991A
Other languages
English (en)
Other versions
JP6973721B2 (ja
Inventor
デン バーグ、ヤコブ アルバート ヴァン
デン バーグ、ヤコブ アルバート ヴァン
ジェームス ハッセー、マーティン
ジェームス ハッセー、マーティン
レイドラー、イアン
トーマス リチャードソン、ウィリアム
トーマス リチャードソン、ウィリアム
Original Assignee
リライアンス プレシジョン リミテッド
リライアンス プレシジョン リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リライアンス プレシジョン リミテッド, リライアンス プレシジョン リミテッド filed Critical リライアンス プレシジョン リミテッド
Publication of JP2020514957A publication Critical patent/JP2020514957A/ja
Application granted granted Critical
Publication of JP6973721B2 publication Critical patent/JP6973721B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3128Melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

荷電粒子ビームを使用した積層造形に関する改善。荷電粒子ビーム(103)を使用して金属粉末床(123)内の金属粉末(122)を融合させて生成物を層ごとに形成する積層造形における電荷緩和の方法が提供される。この方法は、荷電粒子ビームを形成し、荷電粒子ビームを金属粉末の粉末床に入射するように誘導し、粉末を所望の層形状へと融合させるために粉末床にわたって走査すべく、荷電粒子ビーム光学システムを使用する段階を含む。この方法は、荷電粒子ビームを誘導している間に、荷電粒子ビームの近傍に荷電粒子とは反対の電荷の中和粒子を生成し、中和粒子が粉末床の粉末の荷電粒子へと引き付けられるように、中和粒子源(160)を使用する段階を含む。積層造形装置(100)もまた提供される。

Description

本発明は、電子ビームまたは荷電粒子積層造形における、金属粉末での電荷制御に関する。
積層造形とは、3次元物品を形成すべく、材料が複数の層として基板に選択的に堆積される製造プロセスである。このプロセスに使用される最も有名な技術のうちの1つは、粉末(通常は金属またはプラスチック)の薄層が、レーザまたは電子ビームのようなエネルギー源によって選択的に溶融される、粉末床溶融結合である。粉末層の溶融された領域は、物品の断面部分を形成し、他方、この層中の溶融されない粉末は廃棄され、通常、プロセスの最後にリサイクルされる。この層が選択的に溶融された後で、完成した物品が層ごとに構築されるように、粉末の新たな層が堆積され、次に、また選択的に溶融される。
本発明は、電子ビームによって加熱された金属粉末を使用した積層造形に主に関するものの、正に帯電したイオンのようなその他の荷電種が、金属粉末床を加熱するために使用されてよい。電子光学アセンブリが電子ビームを提供する。電子光学アセンブリは、電子源、並びに、電子ビームを形成し、調整し、誘導するための電場および/または磁場を含む。一般に、電子ビームは、粉末床にわたってパターンが走査または追跡され得るように、粉末床にわたって電子ビームを走査するように制御される電磁偏向器を使用して誘導される。同様な装置が、荷電粒子ビームを生成し、調整し、誘導するために使用されてよい。
電子ビームが粉末床にわたって走査されるに連れて、粉末中へとエネルギーが堆積され、その温度を上げる。最上層内の粉末粒子が一緒に融合するように、そして、最上層内の粉末粒子が前の層ともまた融合し、それにより固形生成物を形成するように、金属粉末の完全な溶融を確実にすべく、電子ビームに対する露出が慎重に制御される。
金属粉末は、通常、金属合金であり、様々な材料が積層造形に使用されてきた。アルミニウム合金およびチタン合金の両方が、それらの望ましい材料特性に起因して使用されているものの、これらの両方の材料は、酸化しやすく、絶縁性または半絶縁性の粉末になりやすいという欠点に両方とも悩まされている。この絶縁性または半絶縁性の状態にある場合、負に帯電した電子ビームの照射は、金属粉末粒子自身を帯電させ、その電荷またはそれらの一部を維持させる。正に帯電した粒子によって照射された場合にも、金属粉末粒子が負電荷よりもむしろ正味で正電荷を得るものの、同様な効果が生じる。
電荷の蓄積が増大するに連れて、空間電荷効果に起因して金属粉末粒子が互いに反発し、粉末床上に、または粉末床と共に、帯電した金属粒子のクラウドまたは領域を形成し得る。さらに、電子ビーム処理に必要な真空条件下では、帯電した金属粒子は、クーロン反発に起因して自由に移動する。真空チャンバ内では、通常、圧力は10−3から10−6mbarに維持されてよい。従って、可動性の帯電した金属粒子は、真空チャンバの周りを移動するが、これは、電子光学アセンブリへと移動することを含み、そこで電子光学アセンブリに悪影響を及ぼしかねない。さらに、荷電粒子は、通常は−60kVのような高電圧に保持されているであろう電子または荷電粒子源まで電子光学アセンブリの上部に移動し得る。電子光学アセンブリのこの領域へと金属性の粒子を導入することは、高電圧アーク放電を生じさせ、電子または荷電粒子放出器または高電圧電源自身を損傷させる可能性があるだろう。これらの金属粒子のカラムをきれいにするために、かなりの停止時間が必要である。実際に機械が依然として機能しているとしても、製造プロセスを継続することは低品質のパーツにつながりかねない。
第1の態様から、本発明は、荷電粒子ビームを使用して金属粉末床内の金属粉末を融合させて生成物を層ごとに形成する積層造形における電荷緩和の方法に存在する。この方法は、荷電粒子ビームを形成し、金属粉末の粉末床に入射するように荷電粒子ビームを誘導し、粉末を所望の層形状へと融合させるために粉末床にわたって走査すべく荷電粒子ビーム光学システムを使用する段階を含む。
この方法は、荷電粒子ビームを誘導する間に、荷電粒子ビームおよび/または粉末床の近傍に荷電粒子とは反対の電荷を持つ中和粒子を生成するための中和粒子源を使用する段階をさらに含む。例えば、荷電粒子ビームは正に帯電したイオンビームであってよく、中和粒子は電子であってよい。しかしながら、本発明のこの概要の以下の段落においては、荷電粒子ビームは電子ビームであることが仮定されており、中和粒子は正イオンであることが仮定されている。当業者は、以下の記載が、荷電粒子ビームが正に帯電したイオンビームであり、中和粒子が電子であるような代替的な装置に対して適応され得ること、および、本発明が本質的に同様に機能し、同じ利点を提供するであろうことを理解するだろう。
正イオンは、電子ビームおよび負に帯電した粉末の負の空間電荷へと引き付けられるだろう。電子ビームは、中和粒子源として作用するイオン源によって生成される可動性の正イオンを引き付け、捕捉する空間電荷を生成するものとみなされ得る。これらの「捕捉された」正イオンは、次に、電子ビームに沿って、相対的に負の電位に向かって移動するだろう。上述したように、粉末床に衝突する電子ビームは、粉末床中に、そして、潜在的には粉末床の近傍に、負に帯電した粉末粒子の領域を生成する。従って、正イオンは、電子ビームの管を通じて、および/または、ターゲットへと直接移動することによって、負に帯電した粉末粒子へと引き付けられるだろう。そこで、この負電荷の一部または全てを中和するのに役立つ。これは、次に、電子ビームに起因する負電荷の悪影響を軽減するのに役立ち、粉末粒子を、クーロン相互作用によってそれらが可動性になる電場しきい値以下に保つ。イオン源が正イオンを生成するレートは、負に帯電した粉末粒子の生成のレートとのバランスを保つことを支援すべく調整されてよい。
任意で、イオン源は、不活性ガス、例えば、ヘリウムまたはアルゴンのような不活性ガスの正イオンを生成するために使用される。これは、中和された不活性ガスが真空システムによってポンプで取り除かれ得るので、生じる金属生成物の金属格子の格子間汚染を起こさせないという利点を有する。
電荷制御は、本明細書ではプラズマフラッド源としてもまた呼ばれる、プラズマ源を使用するもののようなガス放電イオン源を使用して、または、イオンを生成するための放電を使用して達成されてよい。低エネルギーイオンが放電チャンバ中で生成される。ガス、通常はアルゴンまたはヘリウムが、低エネルギーイオンを供給することのできる閉鎖空間に封じ込められたプラズマをもたらす放電を持続させるために使用される。プラズマから発する正イオンは、正イオンのエネルギーを増加させるためにわずかに正の電位にバイアスされてよいソースからドリフトする。そして、それらの正イオンが捕捉される電子ビームの負の空間電荷へと引き付けられる、および/または、帯電した粉末粒子へと直接引き付けられる。正イオンは、負の電位に向かって移動しやすい。イオン源にて生成されたイオンは、このように、粉末の酸化物層と相互作用する電子ビームによって生成された負の電位に向かって引き寄せられる。それにより、このプロセスは、処理されている粉末に対して要求に応じて低エネルギーイオンを提供する。イオンエネルギーは、プラズマ源のバイアス電位によって制御され、粉末の融合プロセスを妨げないようにしつつ、帯電した粉末床に対するイオンのフラックスを最大化するように選択されてよい。
イオン源は、正イオンを生成するために動作されるガス放電イオン源であってよい。閉じ込め磁石が、アルゴンまたはヘリウムのようなソースガスから生成されたプラズマを閉じ込めるために使用されてよい。わずかに正の電位、または負の電位さえも、プラズマ電位によって設定されたエネルギーを有するプラズマ境界から逃れてきた後のイオンエネルギーを制御し、真空チャンバの本体へと移動させるために印加されてよい。正イオンは、次に、電子ビームの負の空間電荷電位に向かって移動し、電子ビームを遮断してよい。この構成において、正イオンはまた、ソースを出て、その負電荷が正イオンを引き付けるであろう粉末床へと直接移動する。イオン源は、DC磁場を利用し、プラズマ源のフィラメントを流れるDC電流を有するDCプラズマ源であってよい。磁気閉じ込めおよびプラズマ生成のためのDCソースの使用は、電子ビームを偏向させ、電子ビームが走査されているときの書込みエラーを引き起こし得るという、時間的に変化する磁場および電場が電子ビームに及ぼすであろう効果を最小化する。
粉末床中および粉末床上の粉末粒子によって生じる負の電位に加え、電子光学システム、特に、電子源に印加される加速電圧に起因して、さらなる負の電位が生じ得る。これは、電子ビーム中の電子を、電子源から離れ、粉末床に向かうように加速すべく、電子光学システムがかなりの負の電位に保持されるからである。介入無しに、電子ビーム内に捕捉された正イオンは、また、電子源に向かって移動し、電子源の電子放出器に対して衝突損傷を引き起こし、性能を劣化させかねない。これを防止すべく、この方法は、イオン源の上流において正電位を設定するための電極を使用する段階を含んでよく、それにより、電極を越えて電子光学システムへと正イオンが移動することを防止する。
この方法は、制御信号を使用して電子ビームを誘導する段階を含んでよい。この制御信号は、例えば、粉末床における所望の層形状をトレースおよび充填するために、電子ビームを、予め定められた一連の位置を通って走査されるようにさせてよい。制御信号は、イオン源によって生じる電子ビームの乱れを補償するための補正を受けたものであってよい。例えば、プラズマ閉じ込めを達成するために、イオン源に関連する磁場が電子ビームを偏向させてよい。また、イオン源中の導線を通り抜ける電流、例えば、DCプラズマ源のフィラメント電流が、電子ビームを偏向させる磁場を生成してよい。
電子ビームのその意図された経路からの偏向は、プラズマ封じ込め磁石によって生成された磁場および電場、並びに、イオン源の高い励磁電流に由来し得る。これらの効果が生じる場合、それらは、概して、電子ビームの位置変化およびビーム品質(例えば、電子ビームの形状および/またはフォーカス)の変化の両方を含むだろう。多くの装置において、これらの効果は、電子ビームと生成された磁場および電場との相対位置に対する依存性を有するだろう。つまり、それらは、粉末床にわたる電子ビームの偏向された位置に対する依存性を有するだろう。
これらの効果は、イオン源の動作条件に対する依存性もまた有するであろうし、較正および補正の方式によって軽減されてよい。例えば、制御信号に適用される補正は、粉末床における与えられた所望の電子ビーム位置に対して必要な補正を提供するルックアップテーブルから得られてよい。較正は、粉末床における電子ビーム位置に対して観察される値と予想される値との間の差を、様々な電子ビーム偏向およびイオン源動作条件にわたって測定することによって達成され得る。較正の間、イオン源が動作している間に、電子ビームは、粉末床における一連の予想される電子ビーム位置を通って走査されてよい。走査の間、予想される電子ビーム位置のそれぞれに対する、粉末床における電子ビームの対応する実際の位置が測定される。予想される電子ビーム位置と実際の電子ビーム位置の各ペアの間の差が、イオン源によって生じる偏向およびディストーションを効果的に相殺する補正を計算するために使用されてよい。そのようにして見出されたこれらの補正は、ルックアップテーブルに格納されてよい。これらの補正は、生成物が形成されているときに適用されてよい。例えば、補正は、電子ビーム光学システムにおける偏向、フォーカス、および非点補正値に適用されてよく、横方向のビーム偏向、プラズマ源フィラメント電流、およびターゲット偏向値のような動作条件に基づくものであってよい。上述のように、これを実現するための簡便な手法は、偏向値によってインデックスが付されてよいルックアップテーブル(LUT)による。その他の方法もまた利用可能である。
第2の態様から、本発明は、電子光学アセンブリを含む積層造形装置に存在する。電子光学アセンブリは、電子源、電子源によって提供される電子からビームを形成するように動作可能な電子ビーム形成装置、および、電子ビーム形成装置によって形成された電子ビームを誘導するように動作可能な電子ビーム誘導装置を含む。この積層造形装置は、粉末を吐出(dispense)するように動作可能な少なくとも1つのホッパ、および、少なくとも1つのホッパによって電子ビームを受け取るための粉末床を画定する体積で吐出された粉末を受け取るように配置されたテーブルをさらに含む。電子ビーム誘導装置は、粉末床にわたって電子ビームを走査するように動作可能である。この積層造形装置は、粉末床に入射される前に電子ビームが通り抜ける真空チャンバ、並びに、正イオンが電子ビームおよび/または負に帯電した粉末粒子へ引き付けられるように、電子ビームおよび/または粉末床の近傍においてチャンバ中に正イオンを提供するように動作可能なイオン源をさらに含む。
積層造形装置のその他の任意の特徴が、添付の請求項に記載される。
本発明がより容易に理解され得るように、ここで、単なる例として、添付の図面に対する参照が成されるだろう。
これによって本発明が使用され得る積層造形装置を示す。 本発明の実施形態に係る、電子ビームを提供し、電子ビームを走査するように動作可能な電子光学アセンブリの概略図であり、側面図に対応する。 本発明の実施形態に係る、電子ビームを提供し、電子ビームを走査するように動作可能な電子光学アセンブリの概略図であり、図2aの線B−Bを通る図に対応する。 イオン放電またはプラズマ源の概略図である。 イオン源によって生成された正イオンがどのように電子ビームおよび金属粉末122と相互作用し得るかの概略図である。 プラズマ源によって生じるイオンビームの偏向を補償すべく付加製造装置を較正する方法を示す。 プラズマ源によって生じる電子ビームの偏向を補償することを含む、付加製造装置を動作させる方法を示す。
図1は、本発明の実施形態が実装され得る積層造形装置100を示す。図1に示される装置100は、電子ビームを使用して、金属粉末から生成物を積層造形するために構成される。
この目的を達成するために、以下により詳細に記載されるように、装置100は、電子ビーム103を形成、調整、および誘導する電子光学アセンブリ101を含む。装置100は、金属粉末122を含む粉末ホッパ121、および、移動可能なテーブル130をさらに含む。ホッパ121は、テーブル130に粉末の薄層を造成すべく粉末を吐出する。任意の数のホッパ121が使用されてよい。図1には2つ示されているが、単なる例である。テーブル130全体にわたって均等に粉末122を分散させるために、スクレーパまたはブレード(図示せず)のようなメカニズムが使用されてよい。電子光学アセンブリ101は、電子ビーム103が粉末床123全体にわたって走査され、粉末122を融合し、固形生成物150を形成するように、電子ビーム103を誘導する。装置100は、電子光学アセンブリ101と粉末床123との間に配置されたプラズマ源160もまた含む。
生成物150の各層が形成された後、テーブル130が矢印131で示される方向に下げられる。粉末床123の最上面が電子ビーム103に対して常に同じ高さで形成されるように、テーブル130は下げられる。粉末122をテーブル130と融合させかねないテーブル130への熱伝導を最小化するために、粉末床123の最初の層は、後に続く層よりも厚く堆積されてよい。従って、形成されるに連れて、融合していない粉末124の完全な層が生成物150の下に残る。
電子ビームを使用した付加製造は真空条件下で実行される。従って、装置100は、周りを囲む真空チャンバ140を含む。真空チャンバ140内の真空は、一般に利用可能な任意のポンプシステム、例えば、粗引きポンプによって支持されたターボ分子ポンプのようなポンプシステム144によって生成され、維持される。ポンプシステム144は、コントローラ110によって制御されてよい。図1に示されるように、ポンプシステム144は、電子光学アセンブリ101を収容する真空チャンバ140の一部分を排気するために使用されてよい。真空チャンバ140中の圧力は、1×10−3mbarから1×10−6mbarの範囲であってよい。
図2aおよび図2bは、電子光学アセンブリ101をより詳細に示す。電子光学アセンブリ101は、電子を生成および放出するための電子源102、放出された電子から電子ビーム103を形成および調整するためのレンズ220、並びに、電子ビーム103を誘導するための1または複数の電磁偏向器240を含む。中央アパーチャ251が設けられた円柱電極250が、偏向器240の直下に配置される。この円柱電極250の目的は、以下に説明されるだろう。
電子源102、レンズ220、偏向器240、および円柱電極250の動作は、適切にプログラムされたコンピュータのような、コントローラ110によって制御される。電子源102、レンズ220、および偏向器240は任意の従来の装置が使用されてよいので、ここでは詳細には記載されないだろう。本質的に、電子源102およびレンズ220は、粉末床123にわたって電子ビーム103を走査すべく、電子光学アセンブリ101の中心軸202に沿って移動し、次に偏向器240によって偏向される、集束された電子ビーム103を供給する。円柱電極250に設けられるアパーチャ251は、中心軸202と位置合わせされ、電子ビーム103がこのアパーチャを通り抜け、電子ビーム103の偏向が完全に作動した状態でもアパーチャ251の縁部を切らないようにサイズ決めされる。
図1は、真空チャンバ140内に配置されたプラズマ源160を示す。本実施形態において、プラズマ源160はコントローラ110によって制御される。プラズマ源160は、例えば、フランジに取り付けられたフィードスルーを介して、真空チャンバ140に取り付けられる。フィードスルーは、プラズマ源160への電気的接続、例えば、電源のためおよびコントローラ110のための接続を提供してよい。
図3は、プラズマ源160をより詳細に示す。プラズマ源160は、プラズマが生成され、閉じ込められるアークチャンバ310を含む。ソースガス、通常はアルゴンまたはヘリウムが、ガス供給ライン312を介してアークチャンバ310へ供給される。ガス供給は、バルブ314を使用してオンとオフが切り替えられてよい。ソースガス分子をイオン化してプラズマを生成すべく、熱フィラメント320とアークチャンバ310の壁との間に流れるアーク放電が使用される。放電を生成すべく、フィラメント320は、アークチャンバ310に対して中程度の負の電位に保持される。熱フィラメント320とアークチャンバ310との間に電気アーク放電が生成されるように、フィラメント320に電流を提供するためにフィラメント電源322が使用され、ガス分子の電子衝突イオン化に必要とされるよりも大きな電位差をフィラメント320とアークチャンバ310との間に提供するために、アーク電源324が使用される。アークチャンバ310を接地電位に保持するよりもむしろ、粉末処理チャンバへと正イオンを流れ出させるべく、ソースバイアス供給326によってアークチャンバ310にわずかに正のバイアスがかけられる。
フィラメント320とアークチャンバ310との間で生成されるアーク放電は、アークチャンバ310内のガス分子をイオン化し、それにより、一組の磁石330およびフィラメント320により生成された磁場によってほとんど閉じ込められたプラズマを生成する。イオンの一定の流れが、アークチャンバ310に設けられたアパーチャ311を通り、次に、アパーチャ311を僅かに越えて延在するであろうプラズマ境界から逃れ得る。イオンは、アークチャンバ310に印加されるバイアス電位がない場合、プラズマ電位によって設定されるエネルギーを有するだろう。これらのイオンは、次に、真空チャンバ140における相対的に負の電位、例えば、電子ビーム103およびあらゆる帯電した粉末粒子122の負の電位へ引き付けられるだろう。
プラズマ源160は、電子光学アセンブリ101と粉末床123との間に配置される。プラズマ源160により生成された正イオンのフラックスが、図1に模式的に示され、参照番号162によって示される。正イオン162は、プラズマ源160から離れるように移動し、負に帯電した電子ビーム103および負に帯電した粉末粒子122へ引き付けられる。正イオンの分散された領域が粉末床123の近くに生成され、イオンの移動性は、システムが自己制御することを支援する。イオンは、負に帯電した粉末粒子122が粉末から放出されたときに、上昇する負の電位の領域へ移動する。ヘリウムがソースガスとして選択される場合、より小さなその原子質量に起因するより高いそのイオン移動性が、粉末122における電荷蓄積を中和するその能力の一助となり得る。
図4は、電子ビーム103および粉末122との正イオン162の相互作用を、より詳細に示す。上述したように、例えば、粉末粒子122が酸化されており、それにより絶縁性またはわずかに半伝導性であるような粉末粒子122との、負に帯電した電子ビーム103の相互作用は、粒子122を帯電させることができる。負に帯電した粉末粒子122は、図4における410で模式的に示されるように、粉末床123上に、負の空間電荷クラウドを形成する。図4はまた、負に帯電した電子ビーム103と、正イオン162が、第一に、電子ビーム103の負の空間電荷電位によってどのように閉じ込められ得るかとを模式的に示す。これらの正イオン162は、帯電した粉末粒子によって粉末床123中に生成されたより大きな負の電位によってもまた引き付けられ、それにより、矢印420で示される方向に移動する。負に帯電した粉末粒子122の空間電荷クラウド410および粉末床123中の粉末粒子122に到達する正イオン162は、粉末粒子における電荷を完全に、または部分的に補償する。このように、帯電した粉末粒子の電荷補償は、帯電した粉末粒子の悪影響を軽減する。特に、これは、帯電した粉末粒子が互いに反発し、真空チャンバ140の周りおよび電子光学アセンブリ101へと「広がる」効果を軽減する。この効果は、電子光学アセンブリ101における局所的な帯電および高電圧破壊、並びに、層融合プロセスに対する崩壊を引き起こす。
電子源102は、ビーム103中の電子を加速すべく、電子ビーム103に対して負の電位に保持される。しかしながら、この負の電位は、帯電した粉末粒子クラウド410の負の電位が行うのと同様に、正イオン162を引き付ける。何の修正措置も取らない場合、正イオン162は、電子光学アセンブリ101へと移動し、潜在的に電子源102へと加速され、追加的な加熱および電子放出器への損傷を引き起こしかねない。これを防止すべく、円柱電極250が設けられる。コントローラ110は、円柱電極250の電位を十分に正であるように設定して、あらゆる正イオン162が流れ上がることに対するバリアを形成する。その結果、円柱電極250は、いずれの正イオン162も電子光学アセンブリ101へと移動できないように、正イオン162をはね返す。これは、矢印430によって図4に模式的に示される。
プラズマ源160は、プラズマ閉じ込め磁石330およびフィラメント322中の電流により、静電磁場を生成する。これらの場の和は、電子ビーム103に作用し、電子ビーム103の偏向を引き起こすだろう。しかしながら、この偏向に対する補償が、例えば以下に記載されるように、積層造形装置100を較正することによって達成されてよい。
この較正は、後方散乱電子流における、既知で以前に測定された相対位置の振幅変化によって検出され得る「マーカ」の二次元配列を使用して、達成される。この配列における各マーカの観察された位置が測定され、それ以前の測定から予想される位置と比較される。これらの差から、補正値が計算され、適用される。
そのような較正方法500が、図5に示される。方法500は、図1のコントローラ110が設定ファイルを取得するステップ510で始まる。この設定ファイルは、電子ビーム103を粉末床123における所望の位置に位置付けるべく、電子光学アセンブリ101に対して必要とされる設定を提供する。これらの設定は、プラズマ源160が無いこと、または、プラズマ源160が動作していないことを仮定している。例えば、これらの設定は、プラズマ源160がオンに切り替えられること無しに装置100を動作させ、各電子ビーム103の位置を取得するために使用される設定を記録することにより得られてよい。この設定ファイルは、粉末床123における電子ビーム103のアドレスによってインデックスが付され、そのアドレスに電子ビーム103を位置付けるために見出される設定を提供するルックアップテーブルであってよい。
ステップ512において、コントローラ110は、電子ビーム103が始まるように電子光学アセンブリ101を指示する。ビームの開始時に、粉末床123を避けるように電子ビーム103は誘導される。
ステップ520において、コントローラ110は、設定ファイルからアドレスを取り出し、対応する設定を電子光学アセンブリ101に適用し、それにより、電子ビーム103の位置を設定する。次に、粉末床123における電子ビーム103の実際の位置が測定される。これは、従来の任意の技法、例えば、較正されたマーカプレートにおける電子ビーム103の画像をキャプチャし、ビーム位置を決定するための画像解析技法を使用して行われてよい。ステップ524において、測定された実際の位置が、そのアドレスの位置と一致するかどうか、すなわち、電子ビーム103が粉末床123における所望のアドレスにうまく設定されたかどうか、または、電子ビーム103が所望の位置から離れるように偏向されたかどうかを決定すべく、コントローラ110によって試験が実行される。実際の位置が所望のアドレス位置に一致する場合、この方法はステップ540へ直接進んでよく、この場合、このアドレスに使用される設定に対して調整が成される必要が無いことを示すゼロ調整因子が調整ファイルに格納される。しかしながら、実際の位置が所望のアドレス位置とは一致しないことが見出される場合、方法500はステップ526へと進む。ステップ526において、コントローラ110は、電子ビーム103が粉末床123における所望のアドレス位置へ戻されるのを確かめるべき設定に対する調整を計算する。これは、例えば、あるスケーリング係数によって所望の位置と実際の位置との間の差を乗算する線形補正係数を適用することにより行われてよい。このスケーリング係数は、経験的に決定されてよい。いずれにせよ、試験が実行され、この方法はループしてこの補正ステップへ戻り、それにより、補正係数が繰り返して改善されることが可能となり得るので、この補正は正確である必要はない。どのようにして調整が試験されるかがここで記載されるだろう。
この調整によって電子ビーム103が所望のアドレス位置に設定されることに確実に成功したかどうかを試験すべく、ステップ530では、コントローラ110がそれらの設定に調整を適用し、次に、調整された設定を電子光学アセンブリ101に適用し、それにより、電子ビーム103の位置を設定することを確かめる。次に、ステップ532において、粉末床123における電子ビーム103の実際の位置が、例えば、較正されたマーカプレートを使用してもう一度測定され、ステップ534において、測定された実際の位置が、そのアドレスの位置に一致するかどうかを決定するための試験が、コントローラ110によって繰り返される。実際の位置が所望のアドレス位置と一致しない場合、方法500は、ループ535を介してステップ526に戻り、残余誤差が許容値を下回るまで、調整が何度も再計算され、再適用され、再試験される。このように、必要な調整が繰り返して見出されてよい。実際の位置が粉末床123における所望のアドレス位置に一致することをひとたびコントローラ110が決定すると、方法500は、調整ファイルにこの調整が格納されるステップ540へ進んでよい。
この調整ファイルは、粉末床123におけるアドレスを、同じアドレスについて設定ファイルに格納されている設定に適用されるべき調整因子と関連付ける、ルックアップテーブルである。これらの調整因子は、所望の電子ビーム103の位置によってインデックスが付された2D配列でメモリに格納される。これらの調整因子から、調整因子を表す関係を記載する多項式の係数を決定するために、2Dカーブフィッティングが適用されてよい。例えば、X'=a+a.X+a+a.X.Y+a.Y+a.Y+・・・という形式の多項式が使用されてよい。ここで、a、aなどは多項式の係数であり、多項式の次数は、示されているような二次に限定されてよいし、または、限定されなくてもよい。限定されるものではないが、三次スプラインおよびラグランジェ多項式を含む、使用され得る多くのタイプのフィッティングが存在する。この多項式は、よりきめの細かいルックアップテーブルを生成するために使用され得る。または、代替的に、これらの係数は、所望の電子ビーム103の位置を生成するために、電子光学アセンブリ101に設定される所望の偏向値に直接適用されてよい。従って、調整因子がルックアップテーブルに格納されてよい。または、これらの係数が格納されてよい。理解されるように、電子光学アセンブリ101の設定に対して適用されるべき調整因子を格納するよりもむしろ、電子光学アセンブリ101に対して直接適用される補正された設定が格納されてよい。
プラズマ源160が動作中である場合、調整ファイルは、プラズマ源160によって生じる電子ビーム偏向を補償すべく、電子光学アセンブリ101に使用される設定に対して調整を適用するために使用されてよい。
図5の方法500に戻ると、ステップ540においてひとたび調整が格納されると、方法500は、全てのアドレスが較正されたかどうかをコントローラ110が確認するステップ550に進む。全てのアドレスが較正されていた場合、この方法は、電子ビーム103とプラズマ源160がオフに切り替えられるステップ560へと進む。さらなるアドレスが較正を必要とする場合、方法500は、次のアドレスに対する設定がコントローラ110によって取得され、電子光学アセンブリ101に適用されるステップ520へと、ループ555に沿って戻り続ける。次に、この方法は、そのアドレスに対する較正を完了すべく、上記のように、ステップ522、524、526、530、532、534、540、および550を経て続く。
図5の測定プロセスは、(上記したタイプの多項式であり得る)調整因子を含む一組のルックアップテーブルを構築すべく、動作していない場合を含め、プラズマ源160の様々な動作条件について繰り返されてよい。
図6は、プラズマ源160によって生じる電子ビーム103の偏向を、例えば、図5の方法500に従って見出される調整を使用することにより補償することを含む、付加製造装置を動作させる方法600を示す。
ステップ610において、コントローラ110は、適切な設定ファイルおよび粉末床123における各アドレスに必要な調整を提供するルックアップテーブルを含む適切な調整ファイルを取得する。取得された調整ファイルは、プラズマ源160の選択された動作設定に対して格納されたものと対応する。電子光学アセンブリ101に直接適用される調整ファイルに補正された設定が格納されている場合、ファイルされている調整のみ取得される必要がある。
コントローラ110は、生成物150がステップ612で形成されるための命令ファイルもまた取得する。この命令ファイルは、生成物150を形成するためにコントローラ110が従うべき命令、例えば、生成物150の各層を形成するために電子ビーム103を送るためのアドレスのシークエンスを含む。ステップ610とステップ612の順序は、逆であってよい。または、両方のステップが同時に実行されてよい。
ステップ614において、コントローラ110は、電子ビーム103およびプラズマ源160を始動させる。電子光学アセンブリ101およびプラズマ源160がひとたび定常動作に安定すると、コントローラ110は、以下のように、生成物を形成し始めてよい。
ステップ620において、コントローラ110は、命令ファイルから次のアドレスを取得する。このステップを通る1回目に対し、このアドレスは、生成物150の第1層に対する第1アドレスとなるであろう。次に、ステップ622において、コントローラ110は、そのアドレスに対する設定を設定ファイルから取得し、そのアドレスに対する調整因子もまた調整ファイルから取得する。これは、電子光学アセンブリ101の設定に適用されるべき調整因子を渡すだろう。所望のアドレスがルックアップテーブルのインデックスに入力を持たない場合、もっとも近いアドレスが使用され得るか、または、近くのアドレスに対する値が補間によってさらに改良され得るかのいずれかである。
次に、ステップ624において、調整が格納されている場合に、調整因子が電子光学アセンブリ101に対する設定に適用され得るか、または、補正された値が調整ファイルに格納されている場合に、このステップが省略され得るかのいずれかである。代替的に、調整ファイルに係数が格納されている場合には、ステップ624において所望の電子ビーム103の位置を提供すべく、電子光学アセンブリ101の設定を計算するために多項式の係数が使用されてよい。電子光学アセンブリの設定に対してこれらの係数を適用すべく、そして全体を一緒に合計すべく、この計算は、(より早くに、または、ここで記載されるように、その値が使用されようとしているときのいずれかに)ソフトウェアで適用されてよく、または、多項式の項を生成するための乗算器および加算器のネットワークを使用したハードウェアで適用されてよい。このハードウェア実装は、アナログ回路、専用のデジタル回路、またはプログラマブルロジックを使用してよい。
次に、コントローラ110は、ステップ626において、調整された設定を電子光学アセンブリ101に対して適用することができる。これは、電子ビームを、命令ファイルによって特定されるアドレスへと移動させるだろう。
コントローラ110は、次に、ステップ628において、全てのアドレスが処理されたかどうかを決定する。全てのアドレスが処理された場合、方法600は、コントローラ110が電子ビーム103およびプラズマ源160をオフにするステップ640に進む。しかしながら、全てのアドレスが処理されていない場合、方法600は、次のアドレスが命令ファイルから取得されるステップ620へと、ループ629に沿って戻る。この方法は、次に、電子ビーム103が次のアドレスへと走査されるのを確かめるべく、ステップ622、624、626および628を経て進んでよい。次のアドレスが、形成されるべき次の層に属するものとしてフラグ設定されている場合、ステップ620とステップ626との間において、テーブル130が下げられ、生成物150の次の層のための粉末床123を形成するために、新たな粉末122を広げるさらなるステップが実行されてよい。
このように、電子ビーム103は、積層造形によって生成物150が形成されるように、生成物150の各層に対し、命令ファイルに特定される全てのアドレスを通って走査されてよい。プラズマ源160を使用すること、および、調整を適用することにより、電子ビーム103の位置は、形成される生成物150の品質が優れたものであるように、正確に制御され得る。
当業者は、添付の請求項によって画定される本発明の範囲から逸脱することなく、上記の実施形態に対して変更が成され得ることを理解するであろう。
例えば、アークチャンバ310を使用するプラズマ源160を上記した。プラズマを生成するために、他のタイプの電子衝突が使用されてよい。また、十分なイオンのフラックスを供給することが可能なRF(ラジオ周波数)またはECR(電子サイクロトロン共鳴)イオン源またはプラズマ源もまた使用されてよく、そのような実施形態において、その構成は、チャンバ140に対してボルトで留められた、イオンフラックスを空間電荷クラウド410へと誘導するためのイオンドリフト管が装備された装置である。
装置100は、電子ビーム103を生成し、金属粉末122を融合するために、粉末床123にわたって電子ビーム103を走査するように構成される。上述したように、正に帯電したイオンのビームが、電子ビーム103の代わりに使用されてよい。この場合、粉末床123中および粉末床123上で蓄積された負電荷を中和するために使用される正イオンは、電子で置き換えられてよい。従って、プラズマ源160のような、適切なバイアス極性を有する適切な電子源が使用されてよい。また、電子光学アセンブリ101の電子源102を置き換えるべく、適切な正イオン源が使用されてよい。そのような実施形態において、電子光学アセンブリは、荷電粒子光学アセンブリまたはシステムと呼ばれる。ビームが負に帯電するよりもむしろ正に帯電するということ、および、荷電粒子はより大な質量を有するということが考慮されるものの、荷電粒子光学アセンブリ101は、正イオンビームを形成および調整するためのレンズ220、および、正イオンビームを誘導するための1または複数の電磁偏向器240を依然として含んでよい。ここでは中和電子をはね返すべく負の電位にバイアスされるだろうが、円柱電極250もまた維持されてよい。
上記の実施形態においては、プラズマ源160が真空チャンバ内に配置されるものとして記載されているが、本発明の実施形態においては、プラズマ源160が、粉末床123を含むメイン真空チャンバ内のサブチャンバに配置されることが可能である。プラズマ源160は、プラズマアパーチャを介してメイン真空チャンバへ接続される。イオンは、プラズマアパーチャを通ってメインチャンバへと出ることが可能である。
本発明の代替的な実施形態において、プラズマ源160は、真空チャンバの外部に配置され、ドリフト管を介してそれに接続される。そのような構成は、例えば、プラズマ源がECRまたはRF励起されたプラズマ源であるような場合に適切だろう。
メイン真空チャンバとプラズマ源160(それ自身が、メインチャンバ圧力と同様に真空圧力である)との間のこのドリフト空間は、いくつかの実施形態において、プラズマ源の本体から、およびメイン真空チャンバからもまた電気的に絶縁された導電性の管である。これは、メイン真空チャンバへのイオンの通過に最適な電位でドリフト管がバイアスされることを可能にするだろう。
いくつかの実施形態において、ドリフト管は、複数の(例えば、2個または3個の)静電的に独立してバイアスされた要素、または代替的に、単一の静電的にバイアスされた要素を含む集束するドリフト管であるように適応され得る。これは、粉末床123へのより効率的なイオンの搬送を可能にし得る。
メイン真空容器の外部にプラズマ源160を有する場合、少なくとも2つのさらなる改善が得られる。まず、フラッドガンフィラメントを加熱するために必要なd.c.電流が重要であり、それをdc磁場と関連付ける。電子ビームを妨げるほど十分に磁場が大きい場合、電子ビームの較正手順を強制することができる。メイン真空チャンバの外部にプラズマ源160を置くことにより、それは、電子ビームからさらに離れるように除かれることができ、従って、ビームに及ぼす影響がより小さい。
プラズマ源160が加熱されたタングステンフィラメントを有する場合、それは徐々に燃え尽き、やがて、その寿命の最後には壊れるだろう。さらに、フィラメントの表面からタングステン原子が継続的に蒸発して行く。メイン真空チャンバの外部にプラズマ源160を置くことにより、動作の間および壊れているときの両方において、フィラメントからの汚染物質が粉末床123と混ざることが防止されるだろう。逆に、真空チャンバ内にプラズマ源を有することは、粉末床123への放電電流を増大させて、より高い電荷中和収率をおそらく与える。
プラズマ源160がメイン真空チャンバの内部にあろうと、または外部にあろうと、その関連した供給(不活性ガス、冷却水回路、電気的接続)は、電気的に接地電位にあるとみなされる真空チャンバの本体から絶縁される。
いくつかの実施形態において、メイン真空チャンバ内は、電気的に絶縁された金属シートであってよく、これは熱シールドとして作用し、粉末床123の放出された熱を反射して粉末床123へ戻す。粉末床123へのイオン電流を増大させるべく、正のバイアス電位がこれらの熱シールドに印加され得る。
同様に、コーンのような集束手段、または、独立した電位にそれぞれバイアスされた一連の集束静電要素(例えば、二重または三重円筒静電レンズシステム)が、(プラズマ源160がメインチャンバに対して外部の場合は)ドリフト管の出口に、または、プラズマフラッド源がメインチャンバ内にある場合には、フラッドガンの出口アパーチャに配置され得る。集束コンポーネントは、イオンが粉末床123に向かって流れ出ることを促進する。バイアス電位の大きさは、それ自身のバイアス供給によってプラズマ源160の本体に供給されるバイアス電位の大きさに依存するだろう。

Claims (25)

  1. 荷電粒子ビームを使用して金属粉末床内の金属粉末を融合させて生成物を層ごとに形成する積層造形における電荷緩和の方法であって、
    荷電粒子ビームを形成し、前記荷電粒子ビームを金属粉末の粉末床に入射するように誘導し、粉末を所望の層形状へと融合させるために前記粉末床にわたって走査するように、荷電粒子ビーム光学システムを使用する段階と、
    前記荷電粒子ビームを誘導している間に、前記荷電粒子ビームの近傍に荷電粒子とは反対の電荷の中和粒子を生成し、前記中和粒子が前記粉末床の粉末の前記荷電粒子へと引き付けられるように、中和粒子源を使用する段階と、
    前記中和粒子源によって生じる前記荷電粒子ビームの乱れを補償するための補正が適用された制御信号を使用して、前記荷電粒子ビームを誘導する段階と
    を備える、方法。
  2. 前記荷電粒子ビームは電子ビームであり、前記中和粒子は正に帯電したイオンである、請求項1に記載の方法。
  3. 前記中和粒子源はイオン源であり、前記方法は、不活性ガスの正イオンを生成すべく前記イオン源を使用する段階を備える、請求項2に記載の方法。
  4. 前記不活性ガスはヘリウムである、請求項3に記載の方法。
  5. 前記正に帯電したイオンを生成すべく、前記中和粒子源としてプラズマ源を使用する段階を備える、請求項2から請求項4のいずれか1項に記載の方法。
  6. 前記荷電粒子ビームは正に帯電したイオンビームであり、前記中和粒子は電子である、請求項1に記載の方法。
  7. 前記中和粒子源は電子源であり、前記方法は、電子を生成すべく前記電子源を使用する段階を備える、請求項6に記載の方法。
  8. 前記中和粒子源の上流において前記中和粒子と同じ極性の電位を設定するための電極を使用する段階を備え、それにより、中和粒子が前記電極を越えて前記荷電粒子ビーム光学システムまで移動することを防止する、請求項1から請求項7のいずれか1項に記載の方法。
  9. 前記補正は、前記粉末床における与えられた所望の荷電粒子ビーム位置に対する必要な補正を提供するルックアップテーブルから得られる、請求項1から請求項8のいずれか1項に記載の方法。
  10. 前記中和粒子源が動作している間に、前記粉末床における一連の予想される荷電粒子ビーム位置を通るように前記荷電粒子ビームを走査する最初の段階と、
    前記予想される荷電粒子ビーム位置のそれぞれに対し、前記粉末床における前記荷電粒子ビームの対応する実際の位置を測定する段階と、
    予想される荷電粒子ビーム位置と実際の荷電粒子ビーム位置との対応する各ペアの間の差を補償するための補正を計算する段階と、
    ルックアップテーブルに前記補正を格納する段階と
    をさらに備える、請求項9に記載の方法。
  11. 荷電粒子源、前記荷電粒子源により提供される荷電粒子からビームを形成するように動作可能な荷電粒子ビーム形成装置、および、前記荷電粒子ビーム形成装置により形成された荷電粒子ビームを誘導するように動作可能な荷電粒子ビーム誘導装置を有する荷電粒子光学アセンブリと、
    粉末を吐出するように動作可能な少なくとも1つのホッパと、
    前記少なくとも1つのホッパにより前記荷電粒子ビームを受け取るための粉末床を画定する体積で吐出された前記粉末を受け取るように配置されたテーブルであって、前記荷電粒子ビーム誘導装置は、前記粉末床にわたって前記荷電粒子ビームを走査するように動作可能である、テーブルと、
    前記粉末床に入射される前に前記荷電粒子ビームが通り抜けるチャンバと、
    前記荷電粒子ビームの近傍に前記チャンバ中の前記荷電粒子とは反対の電荷の中和粒子を提供するように動作可能な中和粒子源であって、前記中和粒子が、前記荷電粒子ビームおよび前記荷電粒子ビームによって生じた帯電した粉末粒子に引き付けられる、中和粒子源と、
    前記荷電粒子光学アセンブリの動作を制御するように動作可能なコントローラであって、前記荷電粒子ビーム誘導装置に制御信号を提供し、前記制御信号によって、前記荷電粒子ビーム誘導装置に前記粉末床にわたって前記荷電粒子ビームを走査させて、所望の層形状へと粉末を融合するように動作可能なコントローラと
    を備え、
    前記コントローラは、前記中和粒子源によって生じる前記荷電粒子ビームの乱れを補償するために、前記制御信号に対して補正を適用するように動作可能である、積層造形装置。
  12. 前記荷電粒子ビームは電子ビームであり、前記中和粒子は正に帯電したイオンである、請求項11に記載の積層造形装置。
  13. 前記チャンバ内の熱シールドおよび電極プレートが、電気的に絶縁され、前記中和粒子を集束および拘束すべく印加されたバイアス電位を有する、請求項12に記載の積層造形装置。
  14. 前記中和粒子源は、前記チャンバの外部に配置され、ドリフト管によって前記チャンバに連結される、請求項13に記載の積層造形装置。
  15. 前記ドリフト管は集束手段を有する、請求項14に記載の積層造形装置。
  16. 前記中和粒子源はプラズマ源である、請求項12から請求項15のいずれか1項に記載の積層造形装置。
  17. 前記正に帯電したイオンはヘリウムのイオンである、請求項12から請求項16のいずれか1項に記載の積層造形装置。
  18. 前記中和粒子源は、前記正に帯電したイオンを封じ込めるためのDC磁場を生成するように動作可能なDCプラズマ源である、請求項12から請求項17のいずれか1項に記載の積層造形装置。
  19. 前記中和粒子源はECRまたはRFイオン源である、請求項12から請求項15のいずれか1項に記載の積層造形装置。
  20. 前記荷電粒子ビームは正に帯電したイオンビームであり、前記中和粒子は電子である、請求項11に記載の積層造形装置。
  21. 前記荷電粒子光学アセンブリと前記中和粒子源との間の、前記荷電粒子ビームが移動する経路に配置され、前記荷電粒子光学アセンブリへの移動に対して中和粒子をはね返すよう配置された電極をさらに備える、請求項11から請求項20のいずれか1項に記載の積層造形装置。
  22. 前記電極は、前記中和粒子と同じ電荷でバイアスされるように構成される、請求項21に記載の積層造形装置。
  23. 前記電極は、貫通したアパーチャが設けられた金属プレートであって、前記荷電粒子ビーム誘導装置が前記荷電粒子ビームを誘導して前記アパーチャを通り抜けさせるよう動作可能なように配置された金属プレートを有する、請求項22に記載の積層造形装置。
  24. 前記コントローラは、前記粉末床における与えられた所望の荷電粒子ビーム位置に対する必要な補正を提供するルックアップテーブルから前記補正を取得する、請求項11から請求項23のいずれか1項に記載の積層造形装置。
  25. 前記ルックアップテーブルに格納された前記補正は、前記中和粒子源が動作している間に、前記粉末床における一連の予想される荷電粒子ビーム位置を通るように前記荷電粒子ビームを走査すること、前記予想される荷電粒子ビーム位置のそれぞれに対し、前記粉末床における前記荷電粒子ビームの対応する実際の位置を測定すること、および、予想される荷電粒子ビーム位置と実際の荷電粒子ビーム位置との対応する各ペア間の差を補償するための補正を計算することによって得られたものである、請求項24に記載の積層造形装置。
JP2019531991A 2016-12-16 2017-12-15 荷電粒子ビームを使用した積層造形に関する改善 Active JP6973721B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1621508.9 2016-12-16
GBGB1621508.9A GB201621508D0 (en) 2016-12-16 2016-12-16 Improvements relating to additive manufacture using charged particle beams
PCT/GB2017/053760 WO2018109489A1 (en) 2016-12-16 2017-12-15 Improvements relating to additive layer manufacture using charged particle beams

Publications (2)

Publication Number Publication Date
JP2020514957A true JP2020514957A (ja) 2020-05-21
JP6973721B2 JP6973721B2 (ja) 2021-12-01

Family

ID=58284499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531991A Active JP6973721B2 (ja) 2016-12-16 2017-12-15 荷電粒子ビームを使用した積層造形に関する改善

Country Status (8)

Country Link
US (1) US10879039B2 (ja)
EP (1) EP3555903B1 (ja)
JP (1) JP6973721B2 (ja)
CN (1) CN110301027B (ja)
CA (1) CA3057719A1 (ja)
ES (1) ES2811105T3 (ja)
GB (1) GB201621508D0 (ja)
WO (1) WO2018109489A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4324577A1 (en) 2015-12-16 2024-02-21 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
GB201617693D0 (en) * 2016-10-19 2016-11-30 Reliance Rg Limited Charged particle beam steering arrangement
JP7293588B2 (ja) * 2018-08-27 2023-06-20 三菱電機株式会社 積層造形装置及び積層造形方法
JP7107146B2 (ja) * 2018-10-03 2022-07-27 株式会社Ihi 積層造形装置
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
CN111957959A (zh) * 2020-08-11 2020-11-20 天津清研智束科技有限公司 一种电子束增材制造装置及方法
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
GB2602458B (en) * 2020-12-22 2023-01-18 Wayland Additive Ltd Additive manufacturing using powder bed fusion
US11958111B2 (en) * 2021-02-22 2024-04-16 General Electric Company Gaseous ionization detectors for monitoring and controlling energy beams used to additively manufacture three-dimensional objects
CN112974854A (zh) * 2021-04-28 2021-06-18 天津清研智束科技有限公司 一种电子束增材制造装置及方法
US20230001375A1 (en) * 2021-06-30 2023-01-05 6K Inc. Systems, methods, and devices for producing a material with desired characteristics using microwave plasma
CN114523116B (zh) * 2022-01-24 2023-03-28 中国科学院福建物质结构研究所 一种解决激光球化设备沾粉问题的方法及装置
GB2623957A (en) * 2022-10-31 2024-05-08 Wayland Additive Ltd Additive manufacturing using powder bed fusion and high efficiency charge neutralisation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174763A (ja) * 1991-12-18 1993-07-13 Nissin Electric Co Ltd 空間電荷中和装置
JP2006344931A (ja) * 2005-04-15 2006-12-21 Leibniz-Inst Fuer Oberflaechenmodifizierung Ev パルスイオンビームによる表面改質のための局所エッチングまたは堆積の制御
JP2007149449A (ja) * 2005-11-25 2007-06-14 Horon:Kk 帯電汚染防止装置および帯電汚染防止方法
US20100163405A1 (en) * 2007-05-15 2010-07-01 Arcam Ab Method and device for producing three-dimensional objects
JP2015507092A (ja) * 2011-12-28 2015-03-05 ア−カム アーベー 積層造形法による三次元物品の解像度を向上させるための方法および装置
JP2016529389A (ja) * 2013-06-28 2016-09-23 ア−カム アーベー 付加製造のための方法および装置
JP2019062069A (ja) * 2017-09-26 2019-04-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム照射装置及び基板の帯電低減方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305553B2 (ja) * 1995-11-17 2002-07-22 株式会社荏原製作所 高速原子線源
US8747956B2 (en) * 2011-08-11 2014-06-10 Ati Properties, Inc. Processes, systems, and apparatus for forming products from atomized metals and alloys
US9406483B1 (en) * 2015-01-21 2016-08-02 Arcam Ab Method and device for characterizing an electron beam using an X-ray detector with a patterned aperture resolver and patterned aperture modulator
DE102015203873A1 (de) * 2015-03-04 2016-09-08 Airbus Operation GmbH 3D-Druckverfahren und Pulvermischung zum 3D-Drucken
CN105945279A (zh) * 2015-11-17 2016-09-21 中研智能装备有限公司 一种选区等离子熔化快速成型设备及成型方法
US10549348B2 (en) * 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174763A (ja) * 1991-12-18 1993-07-13 Nissin Electric Co Ltd 空間電荷中和装置
JP2006344931A (ja) * 2005-04-15 2006-12-21 Leibniz-Inst Fuer Oberflaechenmodifizierung Ev パルスイオンビームによる表面改質のための局所エッチングまたは堆積の制御
JP2007149449A (ja) * 2005-11-25 2007-06-14 Horon:Kk 帯電汚染防止装置および帯電汚染防止方法
US20100163405A1 (en) * 2007-05-15 2010-07-01 Arcam Ab Method and device for producing three-dimensional objects
JP2010526694A (ja) * 2007-05-15 2010-08-05 アルカム アーベー 3次元物体を作るための方法及び装置
JP2015507092A (ja) * 2011-12-28 2015-03-05 ア−カム アーベー 積層造形法による三次元物品の解像度を向上させるための方法および装置
JP2016529389A (ja) * 2013-06-28 2016-09-23 ア−カム アーベー 付加製造のための方法および装置
JP2019062069A (ja) * 2017-09-26 2019-04-18 株式会社ニューフレアテクノロジー 荷電粒子ビーム照射装置及び基板の帯電低減方法

Also Published As

Publication number Publication date
US10879039B2 (en) 2020-12-29
CN110301027B (zh) 2022-01-25
CA3057719A1 (en) 2018-06-21
EP3555903B1 (en) 2020-05-27
JP6973721B2 (ja) 2021-12-01
CN110301027A (zh) 2019-10-01
ES2811105T3 (es) 2021-03-10
US20190362936A1 (en) 2019-11-28
WO2018109489A1 (en) 2018-06-21
EP3555903A1 (en) 2019-10-23
GB201621508D0 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6973721B2 (ja) 荷電粒子ビームを使用した積層造形に関する改善
JP6931686B2 (ja) イオン注入システムにおける抽出電極アセンブリの電圧変調
JP2010503964A (ja) イオン注入装置におけるビーム角調整システムおよびその調整方法
US10840054B2 (en) Charged-particle source and method for cleaning a charged-particle source using back-sputtering
JP2016524277A5 (ja)
TW200531119A (en) Modulating ion beam current
JP2011503801A (ja) イオンビーム注入装置用のプラズマ電子フラッドシステム
KR20110015573A (ko) 조정가능한 통공을 구비한 이온 소스
KR20140113301A (ko) 리본 이온빔의 에너지 변경 시스템 및 이온 주입 시스템
US11114277B2 (en) Dual cathode ion source
US20200022247A1 (en) Method and apparatus for directing a neutral beam
US20130287963A1 (en) Plasma Potential Modulated ION Implantation Apparatus
US20240058869A1 (en) Additive manufacturing using powder bed fusion
KR102652202B1 (ko) 대전 입자 소스 및 후방산란을 이용한 대전 입자 소스를 세정하는 방법
JP6428726B2 (ja) イオン注入システム
JPH11329336A (ja) イオン注入装置
GB2623957A (en) Additive manufacturing using powder bed fusion and high efficiency charge neutralisation
JPH0234429B2 (ja)
JPH0316736B2 (ja)
JPH07316792A (ja) 電子ビーム・アブレーション製膜方法およびその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211022

R150 Certificate of patent or registration of utility model

Ref document number: 6973721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350