JP2020514524A - 基板処理方法、真空処装置、及び真空処理システム - Google Patents

基板処理方法、真空処装置、及び真空処理システム Download PDF

Info

Publication number
JP2020514524A
JP2020514524A JP2019506719A JP2019506719A JP2020514524A JP 2020514524 A JP2020514524 A JP 2020514524A JP 2019506719 A JP2019506719 A JP 2019506719A JP 2019506719 A JP2019506719 A JP 2019506719A JP 2020514524 A JP2020514524 A JP 2020514524A
Authority
JP
Japan
Prior art keywords
substrate
mask
inspection device
deposition
optical inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019506719A
Other languages
English (en)
Inventor
セバスチャン グンター ザン,
セバスチャン グンター ザン,
マティアス ハイマンス,
マティアス ハイマンス,
トンマーゾ ヴェルチェージ,
トンマーゾ ヴェルチェージ,
シュテファン バンゲルト,
シュテファン バンゲルト,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2020514524A publication Critical patent/JP2020514524A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本開示は基板処理方法を提供する。方法は、複数の堆積開口を有するマスク(21)を処理チャンバへ搬送すること、バックプレーンパターン(11)を有する基板を処理チャンバへ搬送すること、基板(10)をマスク(20)に対して位置合わせすること(780)、及び、複数の堆積開口(21)とバックプレーンパターン(11)との間のずれを光学検査デバイス(440)で少なくとも局所的に検査すること(790)、を含む。【選択図】図7

Description

本開示の実施形態は、基板、より詳細には堆積材料で被覆した大面積基板の処理方法、装置、及びシステムに関する。本開示の実施形態はまた、基板の真空処理装置及び真空処理システムにも関する。具体的には、本開示の実施形態は、マスクと基板の互いに対する位置合わせを検査すること、具体的には、その場での位置合わせ検査に関する。
材料を基板に堆積する方法が幾つか知られている。一例として、基板は、蒸着、スパッタ、噴霧などの物理的気相堆積(PVD)処理、又は化学気相堆積(CVD)処理を使用して被覆され得る。処理は、被覆すべき基板が配置された堆積装置の処理チャンバ内で実施され得る。堆積材料が処置チャンバ内に供給される。有機材料、分子、金属、酸化物、窒化物、及び炭化物などの複数の材料が、基板への堆積に使用され得る。更に、エッチング、構造化(structuring)、アニール処理などといったその他のプロセスが、処理チャンバ内で実行され得る。
例えば、被覆処理は、ディスプレイ製造技術などにおける大面積基板向けのものとみなされ得る。被覆された基板は、いくつかの用途及びいくつかの技術分野において使用され得る。例えば、1つの用途は有機発光ダイオード(OLED)パネルであり得る。更なる用途は、絶縁パネル、半導体デバイスなどのマイクロエレクトロニクス、薄膜トランジスタ(TFT)付き基板、カラーフィルタなどを含む。OLEDは、電気の印加により光を発する(有機)分子の薄膜で構成された固体デバイスである。一例としては、OLEDディスプレイは、電子デバイスの高輝度ディスプレイを提供し、例えば液晶ディスプレイ(LCD)と比較して使用電力を低減することが可能である。処理チャンバ内で、有機分子が生成され(例えば蒸発、スパッタ、又は噴霧される等)、基板上に層として堆積される。粒子が、例えば境界又は特定のパターンを有するマスクを通過して、基板上の所望の位置に材料を堆積させて、例えば基板上にOLEDパターンを形成する。
処理された基板、具体的には堆積させた層の品質に関する一観点は、基板のマスクに対する位置合わせである。一例として、良好な処理結果を実現するために、位置合わせは正確かつ安定的であるべきである。そのためには、堆積処理の前にマスクを基板と正しく位置合わせすべく、基板及びマスク上に存在する基準点(認識マーク)が使用される。しかし、そのような基準点間の関係が、振動、製造上の公差、ハンドリング、温度及び/又は減圧による変形、マスクと基板の搬送などの外的要因に、左右されることがある。
堆積中に基板とマスクが本質的に垂直方向に維持される場合、マスクと基板、具体的にはディスプレイ製造用の大面積基板の位置合わせに、重力が影響を及ぼす。しかし、基板に最良の結果をもたらすために堆積処理は可能な限り正確でなければならない。
上記に鑑み、時間と材料を節約する、より効率的な位置合わせ検査を提供できる方法、装置、及びシステムが求められている。
上記に関し、基板処理方法、基板処理装置、及び基板の真空処理システムが提供される。本開示のさらなる態様、利点、及び特徴は、特許請求の範囲、明細書、及び添付図面から明らかとなる。
本開示の一態様によれば、基板処理方法が提供される。方法は、複数の堆積開口を有するマスクを処理チャンバへ搬送すること、バックプレーンパターンを有する基板を処理チャンバへ搬送すること、基板をマスクに対して位置合わせすること、及び、複数の堆積開口とバックプレーンパターンの間のずれを光学検査デバイスで少なくとも局所的に検査すること、を含む。
本開示の更なる態様によれば、基板の真空処理のための装置が提供される。装置は、バックプレーンパターンを有する基板を複数の堆積開口を有するマスクに対して位置合わせするように構成された位置合わせデバイス、複数の堆積開口とバックプレーンパターンとの間のずれを少なくとも局所的に判定するように構成された光学検査デバイス、及び、マスクの前側に配置され一以上の材料を基板上に堆積するように構成された堆積源、を含む。
本開示の更なる態様によれば、真空処理システムが提供される。真空システムは、本書に記載の実施形態による装置、位置合わせデバイスの第1のマウントに連結された基板、及び、位置合わせデバイスの第2のマウントに連結されたマスク、を含む。
本発明の上記の特徴を詳細に理解することができるように、実施形態を参照することによって、上で簡単に概説した本発明のより具体的な説明を得ることができる。添付の図面は本発明の実施形態に関連し、以下の記述において説明される。
本書に記載の実施形態による基板真空処理装置の概略図である。 本書に記載の実施形態による基板とマスクの概略図である。 本書に記載の実施形態による保持構成の概略図である。 本書に記載の実施形態による保持構成の概略図である。 本書に記載の実施形態による検査構成の概略図である。 本書に記載の実施形態による検査構成の概略図である。 本書に記載の実施形態による検査構成の概略図である。 位置合わせされたマスク・基板構成、及び、本書に記載の実施形態による基板の光学検査に関する種々の特徴部の正面図を概略的に示す。 本書に記載の実施形態による光学検査の検査システムを概略的に示す。 本書に記載の実施形態による基板処理方法を示すフロー図である。 本書に記載の実施形態による基板真空処理システムを概略的に示す。
ここで、本開示の様々な実施形態が詳細に参照されることになり、その1つ又は複数の実施例が図示される。図面についての以下の説明中、同じ参照番号は同じ構成要素を表している。概して、個々の実施形態に関する相違のみが説明される。各実施例は、本開示の説明のために提供されているが、本開示を限定することが意図されているわけではない。更に、1つの実施形態の部分として図示または記載された特徴を他の実施形態で使用し、或いは他の実施形態とともに使用して、別の実施形態を得ることができる。本記載には、このような修正例及び変形例が含まれることが意図されている。
OLEDデバイスの生産においては、高解像度OLED機器を達成するための蒸発材料の堆積に関する技術的な課題がある。具体的には、基板のマスクに対する精密な位置合わせは、例えば高解像度OLEDデバイスの製造など高品質なプロセス結果の達成に有益となる。また、堆積処理の時間的効率がよく高速であり且つOLEDデバイスを高スループットで製造できれば有益である。
例えば、垂直に配向させたマスクを垂直に配向させた基板に位置合わせすることは、ミクロンレンジの課題である。マスクのピクセルが重力の影響を受けたり、基板処理システム内のマスク搬送がマスクに影響したりすることがある。したがって、基板とマスクを処理チャンバに搬送した後、堆積処理を開始する前に、最終的なマスク構成が提供されることがある。マスクと基板の互いに対する最終的な位置合わせが処理チャンバ内で実施される。同時に、このプロセス段階は、マスク及び/又は基板の両方並びにプロセスに対して、例えば処理パラメータ、具体的にはマスクと基板の位置合わせについてのパラメータに対して最後の変更がなされ得る段階とみなされることがある。しかし、堆積処理ごとに或いはマスクごとにプロセスを中断して補正のためのアクションがなされなければならないため、位置合わせの検査は課題である。
本開示は、例えばカメラやビデオを含むイメージング技術に関する。本開示の実施形態では、真空環境内で一以上の物体を画像化する一以上の捕捉デバイスを用いる。具体的には、本書で提供する方法、装置、及びシステムは、位置合わせしたマスク・基板構成を、堆積処理を開始する前に自動で光学的に検査することを意図している。
したがって、光学検査デバイスを用いて、マスク・基板構成の一部を含む部分又は検査領域の画像を捕捉する。検査が、処理チャンバでの堆積処理と組み合わされ得る。
図1は、本書に記載の実施形態による基板真空処理装置の概略図である。
装置100は、バックプレーンパターンを有する基板を複数の堆積開口を有するマスク、すなわち、微細金属マスクに対して位置合わせするように構成された位置合わせデバイスを含む。光学検査デバイスが、複数の堆積開口と例えばバックプレーンパターンとの間のずれを少なくとも局所的に判定するように構成されている。堆積源が、基板に対して位置合わせしたマスクの前側に配置され、一以上の材料を基板上に堆積するように構成されている。
装置100は、側壁101と少なくとも1つの堆積源130を含む処理チャンバを含み得る。堆積源130は可動であり得る。可動式堆積源は基板10を通過して可動であり得る。例えば、堆積源が線形の堆積源であり得る。線形の堆積源は、本質的に垂直向きであり得る。装置は、少なくとも1つのトラック構成を更に含み得る。装置は典型的に、少なくとも2つのトラック構成を含む。
処理チャンバは真空チャンバであり得る。本開示全体で用いる用語「真空」は、例えば10mbar未満の真空圧を有する技術上の真空の意味に理解され得る。真空チャンバ内の圧力は、10−5mbarと約10−8mbarとの間、具体的には、10−5mbarと10−7mbarとの間、より具体的には、約10−6mbarと約10−7mbarとの間であってよい。一又は複数の真空ポンプ、例えば、真空チャンバ内で真空を発生させるために真空チャンバに連結されたターボポンプ及び/又はクライオポンプなどが設けられてもよい。
装置100は、支持面17を提供する支持構造又は支持体を含み得る基板キャリア15を含み得る。支持面は、基板10の裏面に接触するように構成された平坦な面であり得る。具体的には、基板10は、裏面の反対に前面(「処理面」ともいう)を有し得る。前面には、真空堆積処理などの真空処理中に層が堆積する。前面には例えば、前の処理ツールによって提供されてトランジスタやピクセル電極などの電子デバイスを含む、バックプレーンパターンが設けられ得る。有機材料を含むピクセルが、バックプレーンパターン上に所定のパターンで堆積させられる。本書に記載の他の実施形態と組み合わされ得るある実施形態では、基板キャリア15が、少なくとも基板10を基板キャリア15に、具体的には支持面17に保持する静電力を供給する静電チャック(Eチャック、ESC)であり得る。例えば、基板キャリア15は、基板10に作用する引力を供給するように構成された電極構成(図示せず)を含む。
用語「本質的に」は、特定の特徴が厳密な構造からの逸脱を含み得ることを示すと解され得る。例えば、「本質的に平坦な表面」は、小さな隆起及び/又は凹みを含み得るが全体として平坦な外観を有する表面と解される。
装置100はマスクキャリアを含み得る。マスクキャリアは、マスクを保持するように構成されたキャリアであると解される。例えば、マスクはエッジ除外マスク又はシャドウマスクであり得る。エッジ除外マスクとは、基板の被覆中に一以上の端部領域に材料が堆積しないよう、基板の一以上の端部領域をマスキングするように構成されたマスクである。シャドウマスク又は微細金属マスクは、基板上に堆積すべき複数の特徴部をマスキングするように構成されたマスクである。例えば、シャドウマスクは、複数の小さな開口又は堆積開口、例えば小開口のパターンを含み得る。微細金属マスクは、例えばミクロンレンジのサイズの複数の開口を有する。複数の微細開口は、ディスプレイ、例えばOLEDディスプレイのピクセルパターンに対応する。
大面積基板に対する微細金属マスク(FFM)を用いた堆積処理での本質的に垂直の配向は、垂直に配向している微細金属マスクの表面に沿って重力が作用するという意味で更に予測不能である。ミクロンレンジでのピクセルの位置決めや位置合わせは、垂直配向では水平配向に比べてより複雑である。したがって、大面積基板において、水平の真空堆積システムについて発展してきた概念が、垂直の真空堆積システム、特にFFMを用いた真空堆積システムにはそのまま当てはまらない。
装置100は、基板キャリア15を搬送するように構成された第1のトラック構成110、及び、マスクキャリア25を搬送するように構成された第2のトラック構成120を含み得る。第1のトラック構成110は、第1の部分、例えば基板キャリア15を基板10の第1の端部で支持するように構成された第1のトラック112と、第2の部分、例えば基板キャリア15を基板10の第1の端部に対向する基板10の第2の端部で支持するように構成された第2のトラック114と、を含む。第2のトラック構成120は、更なる第1の部分、例えばマスクキャリア25をマスク20の第1の端部で支持するように構成された更なる第1のトラック122と、更なる第2の部分、例えばマスクキャリア25をマスク20の第1の端部に対向するマスク20の第2の端部で支持するように構成された更なる第2のトラック124と、を含む。
真空チャンバはチャンバ壁を含み得る。図1に例示するように、第1のトラック構成110及び第2のトラック構成120は、真空チャンバの側壁101と一以上の可動堆積源130との間に配置され得る。一以上の堆積源130は、堆積材料を蒸発させる蒸発源として構成され得る。例えば、堆積源130を介して有機材料が堆積され得る。更に、堆積源は回転可能であってよく、蒸気ノズルが設けられた第1の側と、例えば対向する側の、堆積源に取り付けられた光学検査デバイスを含み得る第2の側と、を含み得る。
図3A及び3Bに示すように、処理チャンバは第1の方向(y方向)、第2の方向(z方向)、及び第3の方向(x方向)を用いて示すことができる。第1の方向は本質的に垂直、すなわち重力に対して平行であるか或いは約±15°の小さな偏差を有する。図1に例示するように、本書に記載の他の実施形態と組み合わされ得るある実施形態では、第1のトラック構成110及び第2のトラック構成120が第3の方向(図3A及び3Bのx方向)に延びており、これは本質的に水平の方向である。ある実装例では、第1のトラック構成110が、基板キャリア15を少なくとも第3の方向に搬送するように構成されている。同様に、第2のトラック構成120が、マスクキャリア25を少なくとも第3の方向に搬送するように構成され得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、装置100が、基板キャリア15及び/又はマスクキャリア25を非接触で浮上及び/又は非接触で搬送するように構成され得る。例えば、装置100が、基板キャリア15及び/又はマスクキャリア25を非接触で浮上させるように構成されたガイド構造を含み得る。装置100は、基板キャリア15及び/又はマスクキャリア25を非接触で搬送するように構成された駆動構造を更に含み得る。
本開示で、非接触で搬送を行うように構成されたトラック又はトラック構成とは、キャリア、具体的には基板キャリア又はマスクキャリアを非接触で搬送するように構成されたトラック又はトラック構成であると解され得る。用語「非接触」は、キャリアの、例えば基板キャリア又はマスクキャリアの重量が機械的な接触や機械的な力で保持されるのではなく、磁力で保持される意味と解され得る。具体的には、機械的な力ではなく磁力を用いてキャリアが浮上又は浮揚状態で保持され得る。
例えば、ある実装例では、特に基板キャリア及び/又はマスクキャリアの浮上、移動、及び位置決めの間、キャリアと搬送トラックの間に機械的接触が存在しない。搬送中に案内レールとの機械的接触などによる粒子が発生しないので、キャリア(一又は複数)の非接触の浮上及び/又は搬送は有益である。非接触の浮上及び/又は搬送を用いれば粒子の発生が最小限となるので、基板10上に堆積させた層の純度や均一性が向上し得る。
一又は複数の可動式堆積源130が真空チャンバ内に設けられ得る。基板キャリア15は、真空堆積処理中に基板10を保持するように構成可能である。真空処理は、例えば、OLEDデバイスの製造用に有機材料を蒸着させるように構成され得る。例えば、一以上の堆積源130は蒸発源、具体的には、一以上の有機材料を基板上に堆積させてOLEDデバイスの層を形成するための蒸発源であり得る。材料は一以上の堆積源130から放出方向に、被覆すべき基板10が位置している堆積領域に向けて放出され得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、キャリアが、基板及びマスクを実質的に垂直配向で保持又は支持するように構成されている。特に基板配向についていうとき、本開示全体で用いる「実質的に垂直」とは、垂直方向もしくは配向からの±20°以下、例えば±10°以下の偏差を許容する。例えば、垂直配向から幾らかの偏差を有する基板支持体がより安定した基板位置をもたらすことができるので、このような偏差が設けられ得る。さらに、基板が前方に傾いた場合、基板表面に達する粒子がより少なくなる。ただし、例えば、真空堆積処理中の基板配向は、実質的に垂直であるとされ、これは、水平の基板配向とは異なるとみなされる。水平の基板配向は、水平±20°以下であるとみなされ得る。
「垂直配向」又は「垂直方向」との用語は、「水平方向」又は「水平配向」と区別されると理解される。つまり、「垂直方向」又は「垂直配向」は、例えば基板とマスクの実質的に垂直な配向に関連し、正確な垂直方向又は垂直配向からの数度(例えば、10°まで、或いは20°までも可)のずれは、依然として「実質的に垂直な方向」又は「実質的に垂直な配向」と見なされる。垂直方向は、重力に対して実質的に平行であり得る。「本質的に垂直(方向)」及び/又は「本質的に水平(方向)」との用語も同様である。
装置100は、位置合わせデバイス(図1には図示せず。例示的な位置合わせデバイスを図3A及びBに示す)を更に含み得る。例えば、位置合わせしたマスク・基板構成を得るためにマスク構成(又はマスク20)と基板構成(又は基板10)を互いに対して位置合わせするように構成された位置合わせデバイスは、受け取った位置情報に基づいてマスク20と基板10を互いに対して位置合わせするように構成され得る。例えば、位置合わせデバイスが、捕捉デバイスから受け取った位置情報に基づき、相対的な位置合わせを実施することができる。受け取った位置情報は、互いに位置合わせされるマスク構成及び/又は基板の基準マーカー、例えば認識マークを分析することにより、抽出され得る。
装置100は、光学検査デバイス(図1には図示せず)を更に含む。本開示のある実施形態では、具体的には堆積源が基板を通過して可動である場合、光学検査デバイスが堆積源に取り付けられ得る。
ある実施形態で、光学検査デバイスは可動式に設置されていてもよい。例えば、光学検査デバイスが、堆積源とマスクもしくはマスクキャリアとの間に設けられた可動又は折り畳み可能なアームに固定されていてもよい。
ある実施形態で、光学検査デバイスが、真空チャンバ壁の側からの画像を捕捉するように配置されて構成され得る。画像は、基板を支持している基板キャリアの少なくとも1つの切り欠きを通じて捕捉され得る。
光学検査デバイスは、上述の位置のうち1つ、2つ、又は3つに設けられたカメラを有し得る。
光学検査デバイスは更に、1つ、2つ、又はそれ以上のカメラを含んでいてもよい。光学検査デバイスについては図4A〜Cと図6でより詳細に説明する。本開示で用語「検査デバイス」と「光学検査デバイス」が同じ意味で使用されることを理解されたい。
本開示全体で、マスク、マスク構成及び/又は基板、基板構成又はマスク・基板構成、について用いる際の用語「前側」、及び「後ろ側」もしくは「裏側」は、堆積源に関するものと解される。用語「前側」は、堆積源に面している側と解され得る。「前側」は処理側に相当し得る。「後ろ側」又は「裏側」は、前側の反対側又は堆積源のほうを向いていない側と解され得る。典型的に、後ろ側又は裏側は、真空チャンバの壁に向く側である。
堆積源について、「前側」は堆積が実施される側と解され得る。したがって、前側は材料を堆積するノズルが配置された側と解され得る。本開示全体で、前側は「第1の側」とも称され得る。堆積源の「後ろ側」又は「裏側」は、堆積源の前側と反対の側とみなされる。堆積源の後ろ又は裏側は、堆積源の堆積が実施されない側と解され得る。したがって、後ろ又は裏側は前側とは反対の側と解され得る。本開示全体で、後ろ又は裏側を「第2の側」ということもある。
実施形態によれば、装置100は少なくとも1つの制御部を含み得る。制御部は例えば、マスク20と基板10(及び/又はマスクと基板の各キャリア)の位置合わせを制御するのに用いられ得る。したがって、制御部は位置合わせデバイスを制御するように構成され得る。更に、制御部は、図4A−C及び図6で説明する検査デバイスを制御するように構成され得る。例えば、制御部は検査デバイスの位置を判定及び/又は制御するように構成され得る。制御部は更に、データを処理するように構成され得る。例えば制御部は、画像を処理してずれ値を算出可能であり得る。換言すれば、制御部が、光学検査デバイスによって捕捉された少なくとも1つの画像に基づいてずれ値を求め、ずれ値に基づいた再位置合わせ値を位置合わせデバイスに送るように構成され得る。
図2は、本書に記載の実施形態による基板とマスクの概略図である。
OLEDを製造するために、堆積源130によって有機分子が生成され(例えば、蒸発、スパッタ、噴霧される等)、基板10上に堆積する。マスク20を含むマスク構成が、基板10と堆積源130との間に位置付けられる。マスク20は、例えば複数の堆積開口21によって提供されるパターンを含むことで、堆積開口21を例えば通路32に沿って)通過した有機分子が基板10上に有機化合物の層又は膜を堆積する。堆積開口のパターンは図2に示すパターンに限定されなくともよい。マスクはマスク構成の部分であってよく、マスク構成はマスクを担持するマスクキャリアを含み得る。
種々のマスクを用いて基板10上に複数の層又は膜が堆積されて、例えば様々な色特性を有するピクセルが生成され得る。一例として、第1の材料を堆積させて赤のピクセルを生成し、第2の材料を堆積させて緑のピクセルを生成し、第3の材料を堆積させて青のピクセルを生成し得る。材料は例えば有機材料であり得、アノードとカソード(図示せず)などの2つの電極間に配置され得る。2つの電極のうち少なくとも1つの電極が透明であり得る。マスクは、数百万個のピクセルを生成する数百万個の堆積開口を含み得る。例えば、1億個以上の堆積開口がマスクに存在することがある。マスクは典型的に、100,000個以上の堆積開口を有する微細金属マスクであり得る。
堆積処理中、基板10及びマスク20は垂直配向で配置され得る。図2で、上述のように矢印は垂直方向(y方向)と水平方向(x方向)を示す。
本書に記載の実施形態は例えば、例えばディスプレイ製造において大面積の被覆基板を提供するのに利用され得る。本書に記載の装置及び方法において構成される基板又は基板受領領域は、例えば、1m以上のサイズを有した大面積基板であり得る。例えば、大面積基板又はキャリアは、約0.67mの基板(0.73×0.92m)に相当するGEN4.5、約1.4mの基板(1.1m×1.3m)に相当するGEN5、約4.29mの基板(1.95m×2.2m)に相当するGEN7.5、約5.7mの基板(2.2m×2.5m)に相当するGEN8.5、又は、約8.7mの基板(2.85m×3.05m)に相当するGEN10でもあり得る。GEN11及びGEN12などの更に大型の世代とそれに対応する基板領域も、同様に実装され得る。例えばOLEDディスプレイの製造で、上記の基板世代のうち例えばGEN6のハーフサイズの基板は、材料蒸発装置により蒸着によって被覆され得る。基板世代のハーフサイズは、フルサイズの基板に行われる幾つかの処理と、その前に処理された基板の半分に行われる後続の処理とによるものであり得る。
本書で用いる「基板」との用語は具体的には、例えば、ウエハ、透明なサファイアなどの結晶スライス、又はガラスプレートなどの実質的に非フレキシブルな基板を包含する。しかし、本開示は実質的に非フレキシブルな基板に限定されず、用語「基板」がウェブや箔などのフレキシブル基板フレキシブル基板を包含してもよい。用語「実質的に非フレキシブル」は「フレキシブル」以外を区別すると解されたい。具体的には、実質的に非フレキシブルな基板、例えば0.5mm以下の厚さを有するガラスプレートはある程度の可撓性を有してもよい。実質的に非フレキシブルな基板の可撓性はフレキシブル基板に比べて小さい。
基板は、材料堆積に好適な任意の材料で作製され得る。例えば、基板は、ガラス(例えばソーダ石灰ガラス、ホウケイ酸ガラスなど)、金属、ポリマー、セラミック、複合材料、炭素繊維材料、若しくは、堆積プロセスによってコーティングされうる他の任意の材料又は材料の組み合わせからなる群から選択された材料で、作製され得る。基板が透明であってもよい。
基板10はバックプレーンパターン11を含み得る。本書で用いるバックプレーンパターン11とは、堆積材料が基板上に堆積することになる所定の位置を定め得る。したがって、例えば堆積した材料を含むピクセルの位置がバックプレーンパターンによって決められ得る。マスク構成と基板構成がいかに良好に位置合わせされるかで、堆積処理の成功が左右されることがある。基板は基板構成の一部であるか、かつ/又はマスク・基板構成の一部であり得る。
図2に示すように、マスク20及び基板には更に基準マーカー547が角部に設けられていてもよい。基準マーカーは例えば認識マークであり得る。基準マーカーは、基板10をマスク20に対して位置合わせするために用いられ得る。認識マークを用いた位置合わせは堆積の前に実施される。
図3A及び3Bは、本書に記載の実施形態による保持構成の概略図である。保持構成は、真空チャンバ内で層を堆積する際に基板キャリア15及びマスクキャリア25を支持するのに用いられ、本書に記載の実施形態によるシステム及び装置で用いられ得る。図3Bは、図3Aに示す保持構成300の正面図である。
ある実装例では、本開示真空処理装置及び/又はシステムが、具体的には位置合わせ及び堆積処理中に基板キャリア15及びマスクキャリア25を保持する保持構成300を含み得る。保持構成300は一以上の保持デバイス、例えば、マスクキャリア25を保持するように構成された一以上の第1の保持デバイス326、及び/又は基板キャリア15を保持するように構成された一以上の第2の保持デバイス316を含み得る。一以上の保持デバイスは、基板搬送方向とは異なる移動方向に可動であるように構成可能である。例えば、一以上の保持デバイスは、基板表面の平面に対して実質的に直角の方向、例えば第1の方向及び第2の方向に可動であるように構成可能である。図3Aで、一以上の保持デバイスの移動方向は一以上の保持デバイスに記載の両矢印で示されている。
ある実装例では、マスクキャリア25が第2のトラック構成で所定の位置へと搬送され、その位置で保持構成300が提供される。一以上の第1の保持デバイス326は、例えば磁力や電磁力などのチャック力を用いてマスクキャリア25をチャックすることでマスクキャリア25を所定位置に保持するために、マスクキャリア25の方へ移動できる。その後、基板キャリア15が第1のトラック構成でマスクキャリア25に対応する所定位置へ搬送され得る。一以上の第2の保持デバイス316のうちの少なくとも1つの保持デバイスは、例えば磁気や電磁力などのチャック力を用いて基板キャリア15をチャックすることで基板キャリア15を所定位置で保持するために、基板キャリア15の方へ移動され得る。次いで、基板キャリア15がマスクキャリア25に対して、あるいはその逆に位置合わせされ得る。
ある実施形態では、基板キャリア15のx方向の延在(例えば長さ)とマスクキャリア25のx方向の延在(例えば長さ)とが異なる。具体的には、基板キャリア15とマスクキャリア25が同じ高さを有するが長さが異なっていてもよい。具体的には、基板キャリア15の長さはマスクキャリア25の長さよりも短くてもよい。長さの違いは、真空チャンバの側壁に設置され得る一以上の第1の保持デバイス412が基板キャリア15の縁を通過してマスクキャリア25を把持して保持することができるようなものであり得る。具体的には、一以上の第1の保持デバイス412が、基板キャリア15に干渉せずに基板キャリア15を通過し得る。
ある実施形態では、保持構成300が、基板構成(又は基板キャリア15)をマスク構成(又はマスクキャリア25)に対して或いはその逆に位置合わせするように構成された、位置合わせデバイスを含み得る。具体的には、位置合わせデバイスが、基板キャリア15のマスクキャリア25に対する、或いはその逆の位置を調整するように構成可能である。位置合わせデバイスは例えば、材料、例えば有機材料の堆積中に基板10とマスク20の正確な位置合わせを提供するために、基板10を保持している基板キャリア15を、マスク20を保持しているマスクキャリア25に位置合わせするように構成され得る。
ある実装例では、位置合わせデバイスが、基板キャリア15とマスクキャリア25を互いに対して位置決めする一以上の位置合わせアクチュエータを含む。例えば、2つ以上の位置合わせアクチュエータが、基板キャリア15とマスクキャリア25を互いに対して位置決めする圧電式アクチュエータであり得る。しかし、本開示では圧電式アクチュエータに限定されない。例えば、2つ以上の位置合わせアクチュエータが電動又は空圧式アクチュエータであってもよい。2つ以上の位置合わせアクチュエータがリニア位置合わせアクチュエータであってもよい。ある実装例では、2つ以上の位置合わせアクチュエータが、ステッパアクチュエータ、ブラシレスアクチュエータ、DC(直流)アクチュエータ、ボイスコイルアクチュエータ、圧電アクチュエータ、及びそれらの任意の組み合わせからなる群から選択される少なくとも1つのアクチュエータを含み得る。
ある実施形態では、一以上の位置合わせアクチュエータが、第1のトラック構成と第2のトラック構成との間に設けられ得る。具体的には、一以上の位置合わせは、基板キャリア15とマスクキャリア25との間に設けられ得る。一以上の位置合わせアクチュエータは、場所を取らず装置の設置面積を抑えるよう実装され得る。
位置合わせデバイスは、基板の平面とマスク平面に対して本質的に平行な平面を画定する少なくとも2つの方向での相対的な位置合わせを行うように、構成され得る。例えば、位置合わせは、少なくとも、x方向及びy方向で、即ち、上記平行な平面を画定する2つのデカルト方向に行うことができる。典型的には、マスク及び基板は、本質的に互いに平行とすることができる。具体的には、位置合わせは更に、基板の平面及びマスクの平面に本質的に直角の方向に行うことができる。したがって、少なくともX−Yの位置合わせ、具体的にはマスク及び基板の互いに対するX−Y−Zの位置合わせを行うよう位置合わせ部が構成される。本書に記載の他の実施形態と組み合わせることができるある特定の例では、基板をマスクに対してx方向、y方向及びz方向に位置合わせし、マスクを真空チャンバ110内に静的に保持することができる。
実施形態によれば、マスクと基板、又はマスクキャリアと基板キャリアの位置合わせが、マスク及び/又は基板に設けられた基準マーカーや認識マークを用いて実施され得る。例えば、マスク20と基板10上の基準マーカー547を検査するのに可視化デバイスが用いられ得る。可視化デバイスは例えば、光学検査デバイスであり得る。可視化デバイスはマスク及び/又は基板上の認識マークなどの基準マーカーを通過してそれら基準マーカーの位置を判定し、上述のようにマスクの基板に対する位置合わせを実施し得る。
本書に記載の他の実施形態と組み合わされ得る実施形態によれば、マスクの基板に対する位置合わせが光学的に検査され得る。このような位置合わせチェックは、マスクの基板に対する位置合わせの後、及び堆積開始の前に実施され得る。チェックは光学検査デバイスによって行われ得る。光学検査デバイスは、基板の前に配置されたマスクの画像を捕捉し得る。光学検査デバイスの構成は図4A〜Cに示されている。
例えば、堆積の開始前に真空処理チャンバ内で基板10に対して光学検査が実施され得る。具体的には、検査デバイスは、本質的に垂直の位置にある基板10を光学的に検査するように構成され得る。検査デバイスはずれ値を検出し、このずれ値が基板10のマスク20に対する相対的な位置に対応する。本書に記載の他の実施形態と組み合わされ得るある実施形態では、ずれ値が、位置合わせされたマスクと基板のアセンブリの画像を検出することによって提供され得る。例えば、マスクと基板の位置合わせが、例えば処理チャンバ内の認識マークに基づいてもたらされる。認識マークに基づいた位置合わせの後、本書に記載の検査方法で、例えば、複数の堆積開口と基板のバックプレーンパターンの相対的な位置に基づき検査デバイスでずれ値を検出することで、位置合わせがチェックされ得る。
認識マークは、材料を実際に堆積させるバックプレーンパターンに隣接して設けられるのではなく、基板及び/又はマスクのエッジ領域に設けられるのが典型的である。したがって、例えば、認識マークとバックプレーンパターンの間の領域で、基板の温度が局所的に変化することなどにより、認識マークによる位置合わせが十分に正確でないことがある。本書に記載の実施形態によれば、バックプレーンパターンと堆積開口の相対的な位置を検査することで位置合わせがチェックされる。換言すれば、基板・マスク構成の位置合わせが、堆積が実際に行われる位置でチェックされる。位置合わせが正確かどうか、基板−マスク構成が堆積に向けて準備できているかが正確に検出され得る。
検査デバイスは、基板10を照射する光源、及び/又は基板10の少なくとも一部の一以上の画像を取得する一以上の画像捕捉デバイス、並びに捕捉した画像を処理する処理デバイスを含み得る。処理デバイスについては図6で説明する。
図4A、B、及びCは、本書に記載の実施形態による検査構成400、400’、及び400’’の概略図である。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、光学検査デバイス440が位置決めされて、真空状態に維持されている基板10を検査し得る。光学検査は静的或いは動的に行われ得る。
ある実施形態によれば、検査構成400が、検査デバイス440を含む。検査デバイス440は可動の堆積源130に取り付けられ得る。
堆積源は、蒸気ノズルが設けられた第1の側と、第1の側とは異なる第2の側を有し得る。光学検査デバイスは可動堆積源の第2の側に取り付けられ得る。例えば、第2の側は第1の側の反対側であり得る。例えば、検査デバイス440は堆積源の後ろ側に設置され得る。堆積源の後ろ側とは、堆積源の材料が堆積されない側と解され得る。換言すれば、堆積源の後ろ側は、材料堆積側に隣り合う側である。
本書に記載の他の実施と組み合わされ得る更なる実施形態によれば、2つのマスク・基板構成が処理チャンバ内に供給され得る。本書で用いる「マスク・基板構成」は、マスク構成と基板構成が互い対して位置合わせされたものであると解され得る。換言すれば、「マスク・基板構成」は、マスク20と基板10が組み合わされたものを示し得る。マスクと基板が互いに対して位置合わせされており、かつ/又は、各マスクキャリア25と基板キャリア15が互いに対して位置合わせされている。例えば、2つのマスク・基板構成が互いに対向し得る。基板キャリアの支持面17は堆積源の方向を向いている。
他の実施形態と組み合わされ得るある実施形態では、堆積源130が可動式であり得る。典型的に、堆積源は堆積源支持部831に設けられ得る。堆積源支持部831は、堆積源130をリニアガイドに沿って並進移動させるように構成され得る。堆積源の移動が回転移動を更に含んでもよい。堆積源は回転軸回りを回転し得る。回転は360度の回転を含み得る。回転が0から360°度のすべての回転角度を含んでよいことを理解されたい。換言すれば、堆積源は回転可能かつリニア移動も可能であり得る。回転は上記いずれの角度でも停止され得る。例えば、可動の堆積源が第1の基板・マスク構成に材料を堆積し得る。
例えば、堆積処理が終了すると、堆積源は例えば180度ターンして、第1のマスク・基板構成に対向する第2のマスク・基板構成に対して更なる堆積処理を行い得る。更に、堆積源は堆積源支持部831によって並進移動させられ得る。換言すれば、可動堆積源は、第2の基板(又は第2の基板構成もしくは第2のマスク・基板構成)と第1の基板(又は第1の基板構成もしくは第1のマスク・基板構成)との間に設けられた堆積源トラック又は支持部に沿って、移動し得る。ずれを(第2の基板で)検査している間に、第1の基板が堆積源によって被覆され得る。
したがって、ある実施形態によれば、可動堆積源が、蒸気ノズルが設けられた第1の側と、第1の側とは反対の第2の側を有し得る。光学検査デバイス440は可動堆積源の第2の側に取り付けられ得る。
更なる実施形態によれば、堆積源が第1のマスク・基板構成に材料を堆積している間、光学検査デバイスが第2のマスク・基板構成を検査し得る。光学検査デバイスは光学検査を、マスク・基板構成の前側(すなわち、堆積源が配置されている前側)から行うように構成され得る。したがって、検査デバイスは、位置合わせしたマスク・基板構成の前で検査位置をとり得る。
例えば、光学検査デバイスが堆積源に固定されていてもよい。可動堆積源は基板を通過して動き、検査デバイスが基板の画像を捕捉し得る。第1のマスク・基板構成に材料を堆積した後、第1の基板は処理チャンバから離れるように搬送され得る。新しい基板が処理チャンバに搬送され、マスクと位置合わせされ得る。オプションで、マスクが交換されてもよい。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、光学検査デバイス440が可動式であり得る。例えば、光学検査デバイスが、マスク・基板構成及び/又は、マスク構成、及び/又は基板構成に向けて、様々な方向に移動され得るように設置され得る。これに加えて又は代えて、堆積源は光学検査デバイスの位置を、マスク・基板構成及び/又はマスク構成及び/又は基板構成に関して適合させるように構成され得る。例えば、堆積源の位置が検査デバイスの位置に関連して変更され得る。
本書に記載の検査及び堆積には幾つかの利点が存在する。検査と堆積処理が高速化する。よって、より効率的な堆積処理が実現し得る。また、エネルギー消費やコスト面でもプロセスが最適化される。
図4Bは、図4Aに示す実施形態と同様の本書に記載の実施形態による検査構成400’を示す。
本書に記載の他の実施形態と組み合わされ得る実施形態によれば、検査構成400’は、可動式の及び/又は折り畳み可能なマウント442を含み得る。マウント442は例えば、(デカルト座標系の)x、y、及びz方向の様々な各位置に到達するように構成された「アーム」又は任意の可動マウントであり得る。マウント又はアームは制御部によって制御され得る。したがって、光学検査デバイスは可動に設置され得る。具体的には、光学検査デバイスが、マスクもしくはマスク・基板構成の前側に設けられた可動式又は折り畳み可能なアームに固定され得る。これに加えて又は代えて、検査デバイスは、位置合わせデバイス及び/又は基板の前側及び/又は後ろ側から、光学検査を行うように構成され得る。
マウントは処理チャンバに直接又は間接的に、例えば上壁402に取り付けられ得る。しかし代替的に、マウント442が処理チャンバのその他の壁に取り付けられてもよいことを理解されたい。マウント422の制御部は処理チャンバの外に設けられ得る。
これに加えて又は代えて、検査デバイスが堆積源に取り付けられてもよい。したがって、検査デバイスの移動は図4Aで示すように可能であり得る。
ある実施形態で、検査デバイス440はマウント442に固定され得る。これに加えて又は代えて、光学検査デバイスがアームとは独立に動くように、検査デバイスがアームに固定されてもよい。換言すれば、光学検査デバイスがアームに可動に固定されてもよい。例えば、検査デバイスが水平面において回転軸周りを回転(x方向に回転)し得る。
図4Cは、図4A及び図4Bに示す実施形態と同様の本書に記載の実施形態による検査構成400’’を示す。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、光学検査デバイスが、マスク・基板構成の後ろ側から、すなわち、例えば基板キャリアの背後から光学検査を行うように構成され得る。光学検査デバイス440は、基板キャリア 15の背後にある処理チャンバの側壁101に設置され得る。側壁101は、マスク・基板構成の後ろ側にあり得る。
ある実施形態で、検査デバイス440は処理チャンバに可動に設置され得る。例えば、検査デバイスがマウント442(図4Cに図示せず)に設置され得る。マウントは処理チャンバに接続され得る。図4Bに示すのと同様に、検査デバイスは(デカルト座標系の)x、y、及び/又はz方向に移動され得る。
ある実施形態で、基板キャリアが透明であるか、或いは透明な領域もしくは部分を有し得る。具体的には、基板キャリアが光に対して透明であり得る。透明性は種々の方法で達成され得る。例えば、基板キャリアの部分を除去し、かつ/又は基板キャリアに透明な材料を用いるなどである。例えば、基板キャリアが少なくとも1つの切り欠きを含むことで、光学検査デバイスは基板の後ろ側から当該少なくとも1つの切り欠きを通じて少なくとも1つの画像を捕捉し得る。更に、基板キャリアが基板の角部でのみ基板に取り付けられることにより、各取り付け領域間の画像の捕捉が可能となり得る。検査デバイスは、検査デバイスの視線が基板キャリアを後ろ側から通過して基板と、基板に対して位置合わせされるマスクとの画像を捕捉できるように、設置され得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、検査構成400、400’、400’’がその場での検査システムを提供できる。その場での検査システムでは処理チャンバ内で検査が可能となる。2つの処理チャンバ間でのインライン検査と比較して、各プロセス又は堆積の前に位置合わせが直接チェックされ得る。これにより処理システムの収率が向上することとなり得る。更に、処理中に用いられる材料を節約でき、かつ/又はより効率的に使用できる。また、光学検査とともに堆積処理も高速化する。
図5は、位置合わせしたマスク・基板構成、及び、本書に記載の実施形態による基板の光学検査に関する種々の特徴部を概略的に示す。
ある実施形態で、マスク構成と基板構成(すなわちマスクと基板)は互いに位置合わせされ得る。位置合わせの後、マスクの基板に対する位置合わせが堆積処理の開始前にチェックされ得る。
図5は、マスク20と位置合わせされた基板10を例示的に示す。例えば、マスクと基板が有機材料の堆積のために位置合わせされて、本開示による装置及びシステムで用いられる種々の位置にあるピクセルなどを有したデバイスが形成され得る。ある実施形態で、マスク・基板構成の種々の領域又は部分(マスク・基板構成の検査領域ともいう)が、上述の検査デバイスによって検査され得る。
図5で更に示すように、マスク20及び/又は基板には、例えば各角部に基準マーカー547が設けられ得る。基準マーカーは例えば認識マークであり得る。認識マークは、堆積処理の前に基板10をマスク20に位置合わせするのに用いられ得る。
本書で用いる用語「認識マーク(fiducial)」は、パターン認識マーカーであると解され、例えば中央に丸い地金の銅を備えた、基板及び/又はマスク上の開口やマークなどであり得る。具体的には、認識マークは、マスク及び/又は基板のエッジ領域にエッチング形成されるか電鋳され得る。認識マークは例えば、基板/マスクのエッジ付近に位置し得る。認識マークは、検出した画像を例えば保存されている情報データと比較し得る、可視化デバイス及び/又は検査デバイスを用いて、検出され得る。マスク認識マークの基板認識マークに対する位置についてのデータ(例えばシステムのメモリに保存される)を取得することで、正確な位置決めを確保するために部品例えばマスクを基板に対して動かすべき程度を計算することができる。
ある実施形態で、位置合わせしたマスク・基板構成が検査領域545(図5の点線)に分割され得る。例えば、検査領域545は、位置合わせした基板・マスク構成の角部及び/又は該構成の中央に位置し得る。検査領域がマスクの表面全体に分布していてもよい。例えば、4x6又は8x10の検査領域アレイが設けられ得る。しかし、検査領域545の位置は図5に示すものに限定されない。
用語「検査領域」は、マスク・基板構成の画像を捕捉するために光学検査デバイスが配置され得る領域と解され得る。検査領域は位置合わせの局所的検査を含み得る。それら領域の数や位置は、用いられるマスク及び/又は基板に応じて適合され得る。したがって、領域は2次元座標(デカルト座標系)によって定められ得る。検査領域は、ずれ値算出の基になる領域と解され得る。
ある実施形態によれば、検査デバイス440は、少なくとも1つの検査領域 545から少なくとも1つの画像を捕捉し得る。典型的に、1つよりも多い画像が1つの検査領域から捕捉され得る。光学検査デバイスは典型的に、1つ、2つ、又はそれ以上のカメラを含み得る。ある実施形態によれば、光学検査デバイスは基板の少なくとも4つの角部領域から画像を捕捉し得る。
実施形態では、少なくとも1つの検査領域の画像を捕捉することで、マスクの複数の堆積開口と基板のバックプレーンパターンとの間のずれが局所的に検査される。
ある実施形態で、マスク20の基板10に対する位置調整を行うには、光学検査が実施されて、正しい位置合わせに対して起こり得るばらつきや偏差がチェックされる。認識基準マーカーはこの目的のために考慮され得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、検査デバイス440が、マスクずれ値を検出するように構成され得る。このマスクずれ値は基板10のマスク20に対する相対的な位置に対応する。ずれ値は、検査デバイスで捕捉した画像から求められ得る。
本書で用いるずれ又はずれ値とは、マスクの基板に対する位置合わせの偏差及び/又はばらつきの直接もしくは間接的な測定値と解され得る。したがって、ずれ値は、堆積開口 21の基板バックプレーンパターン11に対する偏移の直接の測定値である(図5の斜線付き円)と解され得る。したがって、この直接のずれ値は距離を示し得る。例えば、ずれ値が各検査領域について提供され得る。これに加えて又は代えて、ずれが、この偏移を間接的に示していてもよい。間接的な測定値とは、ずれの判定のために捕捉され得る幾つかの画像に関するものと解され得る。したがって、ずれ値は、互いに独立して測定された幾つかの単一の直接的な値を組み合わせた値であり得る。ゆえにずれ値は平均又は中央値であると解され得る。検査デバイスは、直接及び/又は間接値を求めるように構成され得る。
本開示によれば、基板10上のずれ値を検査デバイス440を用いて検出することで、マスク20の基板10に対する位置合わせを堆積の開始前に制御することができる。捕捉した画像は、ずれ値を求めるために処理され得る。ずれ値は処理された画像から算出されてもよい。ずれ値は種々の値を取り得る。位置合わせがずれている場合、ずれ値が所定の許容値を超えるか或いはそれ未満となり得る。許容値は各堆積処理に基づいて決定され得る。1つのマスク・基板構成について1つのずれ値、又は、各検査領域及び/又は用いられる認識マークについて1つのずれ値、を算出することが可能である。全体のずれ値は例えば、求めた幾つかのずれ値の中央値又は平均値であり得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態によれば、ずれ値が、マスクを基板に対して(又はマスク構成を基板構成に対して、それぞれ)再度位置合わせするのに用いられ得る。例えば、ずれ値が算出されたところ所定の許容値又はレンジを超えているとする。そこでずれは例えば、マスクの基板に対する位置座標に変換され得る。位置合わせデバイス及び/又は位置合わせアクチュエータのそれぞれに作用することで、ずれ値、又はそこから求められた位置合わせ値によって基板がマスクに対して再度位置合わせされ得る。このようにしてずれが検査後に補償され得る。例えば、制御部が、光学検査デバイスが捕捉した少なくとも1つの画像に基づいてずれ値を求めるように構成され得る。制御部は更に、ずれ値に基づいて再位置合わせ値を位置合わせデバイスに送るように構成され得る。再位置合わせ値は例えば、既に求めたずれを補償するためにマスクが基板に対してシフトされるべき補正値と解され得る。
所定の許容値は、検出されたずれ値が最終製品にも容認可能であり得るように、或いは、当該ずれ値が最終製品には容認できないものであるように、設定され得る。いずれの場合でも、位置合わせデバイスは処理チャンバ内に存在する基板キャリア又はマスクキャリアに対して作用し得る。キャリアは例えば、検出したずれを補償すべく(位置合わせデバイスにより)駆動され得る。
このようにして、マスク20及び/又は基板10の位置合わせアクチュエータにリアルタイムで直接作用することで、マスク・基板構成の位置合わせを微調整又は再調整することができる。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、検査デバイスが種々の検査領域から画像を捕捉し得る。画像は例えば、幾つかの堆積開口 21及び基板のバックプレーンパターン11を示し得る。図5で示すように、再位置合わせは、堆積開口と各バックプレーンパターンの間のずれによるものであり得る。
一例では、バックプレーンパターンが完全に視認できる。堆積開口とバックプレーンパターンの間にずれが全くないかほとんどないことが、検査デバイスで検査可能であり得る。再位置合わせが不必要であり得る。
更なる例では、バックプレーンパターンが視認できるものの堆積開口とバックプレーンパターンの間のずれが検出されることがある。10μm以下、詳細には5μm以下、より詳細には3μm以下のずれ値は容認可能とみなされ得る。再位置合わせが不必要であり得る。
更なる例では、バックプレーンパターンが部分的にのみ視認でき、堆積開口と各バックプレーンパターンの間のずれが検出されることがある。例えば、ずれ値が10μm以上、詳細には20μm以上であり得る。検出したずれ値に基づき、基板のマスクに対する再位置合わせが実施され得る。
光学検査の結果がリアルタイムで使用され、例えば位置合わせパラメータなどの堆積パラメータが材料堆積の開始前に調整されるのが利点である。したがって、堆積が実際に行われる前にマスクと基板の位置合わせが再調整され得ることで不良が減り、プロセス時間を削減できる。
本書で用いる用語「リアルタイムで」とは、光学検査が基板のマスクに対する位置合わせの後、基板への堆積の前に実施されることを示す意図がある。したがって、マスクのずれの再位置合わせ値が、例えば対応する位置合わせアクチュエータへ直接転送され得る。また、フィードバックが、例えば1つの特定のチャンバ内の特定のマスクに関するものであり得る。
図6は、本書に記載の実施形態による光学検査の検査システム600を概略的に示す。検査システム600は、基板10を光学的に検査するように構成可能である。例えば図4A〜4Cで説明したように、検査システム600は光学検査を実施する検査デバイス構成を含み得る。
検査システム600は、例えば、マスク20の基板10に対する相対的な位置を光学的に検査する、検査デバイス440を含む。マスク20は処理チャンバ内で基板10を処理するのに用いられる。マスクと基板は互いに対して位置合わせされ得る。
ある実施形態によれば、基板10が真空条件下に維持されており、検査デバイス440の幾つかの部品、例えば光源644と画像捕捉デバイス646が通常の気圧条件又はより低真空条件にある別の空間に位置していてもよい。検査デバイス440のこれら部品のメンテナンス手順が簡略化され得るため有利である。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、検査デバイス440が、基板10又はマスク20をそれぞれ照射する光源644、基板10及びマスク20の少なくとも一部の一以上の画像を取得する一以上の画像捕捉デバイス646、並びに/又は捕捉した画像を処理する処理デバイス650、を含み得る。
光源644及び/又は画像捕捉デバイス646は、検査すべき基板10の部分を正しく照射しその画像を捕捉するために(予め)定められた位置に応じて配置され得る。これに加えて又は代えて、入射光及び測定光が光ファイバによって基板へ又は基板から案内されてもよい。
画像捕捉デバイス646は、マスク・基板構成の部分をスキャンするように構成されたフォトカメラ又はビデオカメラであり得る。検査デバイス440は、画像捕捉デバイスを1つ有するシングルカメラシステム、又は複数の画像捕捉デバイス646を有するマルチカメラシステムを含み得る。具体的には、本開示の一実施形態による検査デバイス440は4つの画像捕捉デバイス646を含み得る。換言すれば、光学検査デバイスは、1つ、2つ、又はそれよりも多い捕捉デバイス、具体的には1つ、2つ、又はそれよりも多いカメラを含み得る。
処理デバイス650は、画像捕捉デバイス646が捕捉した画像を処理かつ/又は解析し、かつ/又は光源644の照射条件を制御し得る。したがって、処理デバイス650は、光源及び画像捕捉デバイス646に接続されたCPUなどの処理部を含み得る。具体的には、処理デバイス650が、捕捉した画像を、保存されているデータ又は他の捕捉画像と比較して、マスク20の基板10に対する位置合わせの質について、例えばずれ値による情報データを得る。換言すれば、処理デバイス650は1つの画像又は複数の捕捉画像からずれ値を算出するように構成され得る。
処理デバイス650は、取得した情報データをマスクの基板に対する再位置合わせのために提供し得る。該情報が位置合わせデバイスに影響を及ぼし得る。この場合、位置合わせデバイスは、検査デバイス440から情報データを受け取る専用の制御部を備えている。制御部は、マスク20の基板10に対する位置を調整するために、基板キャリア及び/又はマスクキャリア上で位置合わせデバイスを直接制御し得る。制御部が処理チャンバの外側に位置していてもよいことに留意されたい。
図7は、本書に記載の実施形態による基板処理方法700を示すフロー図である。方法700では本書に記載の実施形態による構成、装置、及びシステムを利用できる。同様に、装置及びシステムで方法700が利用されてもよい。
方法は例えば、基板に材料を堆積するのに用いられ得る。堆積源が材料堆積を実施し得る。材料は基板上の定められた領域に堆積させられ得る。典型的には有機材料を基板上に堆積させ得る。有機材料は例えば、ピクセルの形成に用いられ得る。ピクセルは種々の色を含み得る。したがって、方法700は基板に対して幾度か実施され得る。例えば、1つの色(赤、緑、又は青)の堆積の材料を1つの処理チャンバ内で基板に堆積する。その後、他の色(赤、緑、又は青)の堆積材料を別の処理チャンバ内で堆積し得る。
方法700は、ボックス760で、複数の堆積開口を有するマスクを処理チャンバ内に搬送することを含む。
マスクは、各パターンで配置され得る堆積開口を含み得る。マスクは典型的に、100,000個以上の堆積開口を有する微細金属マスクであり得る。
方法700は、ボックス770で、バックプレーンパターンを有する基板を処理チャンバに搬送することを更に含む。
マスク及び基板は、各マスク及び/又は基板キャリアによって搬送され得る。したがって、マスク構成及び基板構成が処理チャンバに搬送され得る。マスク構成及び/又は基板構成は図1に示すものに限定されない。例えば、基板10が処理チャンバに、第1のトラック構成で搬送され得る。同じ処理チャンバに第2のトラック構成で、マスク20が搬送され得る。
上述のように、トラック構成はまた、基板及び/又はマスクを処理チャンバ内へ又はチャンバ外へ搬送するのに用いられ得る。具体的には、基板が第1、第2、及び/又は第3の処理チャンバへ次々に搬送されてもよい。基板及び/又はマスクは垂直配向で搬送され得る。或いは、基板及びマスクが水平配向で搬送されてもよい。
方法700はボックス780を更に含む。ボックス780では基板をマスクに対して位置合わせする。
マスク構成及び基板構成、又はマスク・基板構成が互いに対して位置合わせされ得る。例えば、基板がマスクに対して位置合わせされ得る。
マスク及び基板は、構成を図3A及びBに示すように保持することで、位置合わせの前及び/又は位置合わせ中に定位置に保持され得る。マスク及び基板のうちの少なくとも1つに設けられた基準マーカー、具体的には認識マークが位置合わせの基準点として用いられ得る。したがって、マスク及び/又は基板の角部の認識マークに基づいて位置合わせが行われ得る。位置合わせは位置合わせデバイスによって実施され得る。保持構成が位置合わせデバイスを含んでいてもよい。位置合わせデバイスは、マスク及び/又は基板の互いに対する位置を変更し得る位置合わせアクチュエータを含み得る。マスク・基板構成は具体的には垂直配向で位置合わせされ得る。
方法700はボックス790を更に含む。ボックス790では、光学検査デバイスを用いて複数の堆積開口とバックプレーンパターンとの間のずれを少なくとも局所的に検査する。
マスクと基板の間のずれを検査するのに検査デバイスが幾つかの構成を利用し得る。これに加えて又は代えて、検査デバイスを処理チャンバ内で動かしてもよい。光学検査デバイスは可動式に設置され得る。光学検査デバイスは例えば処理チャンバに取り付けられ、具体的には処理チャンバの上壁又は側壁101に設置され得る。
ある実施形態によれば、光学検査デバイスが可動マウントに取り付けられ得る。可動マウントは、図4Bで示したように可動式又は折り畳み可能なアームを含み得る。光学検査デバイスは可動マウントに固定され得る。可動マウントは処理チャンバに取り付けられ得る。可動マウントはマスク・基板構成の前側で可動であり得る。或いは、マウントがチャンバの別の位置、例えば堆積源に又は処理チャンバの側壁に取り付けられてもよい。
ある実施形態によれば、検査デバイスが可動の堆積源に取り付けられ得る。例えば、光学検査デバイスが可動堆積源の、堆積材料が放出されない裏側に設置され得る。光学検査デバイスは直接的に或いは間接的に、堆積源に可動に取り付けられるか、或いは可動に固定され得る。間接的に堆積源に固定されることは、堆積源に可動固定された可動式アームに可動に、固定されることを含み得る。典型的に、光学検査デバイスは可動の堆積源に固定され得る。したがって、方法は、可動堆積源を基板を通過して動かすことと、基板の画像を光学検査デバイスで捕捉することを更に含み得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態によれば、光学検査デバイスが基板前側の検査位置へと移動させられて、複数の堆積開口の背後のバックプレーンパターンの部分を示す少なくとも1つの画像を捕捉し得る。例えば、検査デバイスが堆積源に固定され、堆積源がマスク・基板構成の前側に配置され得る。したがって、「マスク−基板」又は「堆積開口−バックプレーンパターン」視点を含み得る少なくとも1つの画像が捕捉され得る。
ある実施形態によれば、図4Cで示すように、検査デバイスが基板キャリアの後ろ側に取り付けられ得る。基板キャリアは少なくとも1つの切り欠きを備えていてよく、光学検査デバイスは基板の後ろ側から該少なくとも1つの切り欠きを通じて少なくとも1つの画像を捕捉し得る。基板は少なくとも部分的に透明であり得る。したがって、光学検査デバイスは「基板−マスク」及び/又は「バックプレーンパターン−堆積開口」視点で画像を捕捉し得る。
方法700は、図5で示すように、マスクに対して位置合わせした基板もしくはその逆の一以上の部分の画像を捕捉して、捕捉した画像を処理して少なくとも1つのずれ値を求める、光学検査デバイスを更に含み得る。
捕捉した画像の処理は制御部が実施し得る。捕捉した画像の処理によりマスクずれ値(一又は複数)を含むデータを得ることができる。このマスクずれ値(一又は複数)は基板10のマスク20に対する相対的な位置に対応する。
算出したマスクずれ値は、有機層の堆積が処理チャンバで始まる前にマスク20の基板10に対する位置合わせを再調整するためのフィードバックデータとして用いられ得る。
方法700は、少なくとも1つのずれ値に基づいて基板をマスクに対して再度位置合わせすることを更に含み得る。このようにマスクの基板に対する位置合わせがチェックかつ/又は監視され得る。位置合わせのチェック後に材料堆積が開始され得る。
ある実施形態によれば、方法700は、マスク・基板構成を照射すること、基板、具体的にはマスク・基板構成の少なくとも一部、例えば検査領域の画像を捕捉すること、及び、様々な光条件で取得したマスク・基板構成の画像を処理すること、を更に含み得る。
方法700は、マスク及び基板が搬送、位置合わせ、及び検査のうち少なくとも1つにおいて本質的に垂直配向であることを更に含み得る。更に、マスク及び基板は材料の堆積中に本質的に垂直配向であり得る。典型的に、複数の堆積開口を通じて基板上に一以上の材料を堆積し得る。このようにして特定のパターンが実現し得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態で、方法700は、複数の画像捕捉デバイスが取得した、基板・マスク構成又はマスクと基板のそれぞれの複数の部分についての捕捉画像からの情報データを平均することで、ずれ値を算出することを更に含み得る。このようにして、マスクと基板の位置合わせに関するより正確なデータを得ることができる。
複数の画像捕捉デバイス646を用いることにより、基板10の様々な部分の画像を集め、また同時に、例えば同じ視点の画像を集めるという利点がある。これは例えば、複数の画像捕捉デバイス646が基板10から同じ距離、同じ視野で位置している場合に可能である。或いは、基板10又は基板10の部分を異なる視点で捕捉するために、複数の画像捕捉デバイス646が基板10から異なる距離、異なる視野で配置されていてもよい。例えば基板10上を機械式アームで移動できる単一の画像捕捉デバイスで同様の結果が得られる。
記載されている方法において各実施形態を利用することがあるため、方法は、図1〜6で示した装置及び構成にも関連した利点を含む。
図8は、本書に記載の実施形態による基板の真空処理システム800を概略的に示す。
本開示による構成、装置、システム、及び方法は、システム800又は同様の製造システムの一部であり得る。
システム800は一般に本書に記載の装置を含み得る。基板は位置合わせデバイスの第1のマウントに連結され、マスクは位置合わせデバイスの第2のマウントに連結され得る。マウントは、図3A及びBに示す保持構成の部分であり得る。更に、位置合わせデバイスは図3A及びBに示す位置合わせデバイスであり得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、システム800が、本書に記載の実施形態による検査デバイスと位置合わせデバイスを有した真空チャンバ(例えば、真空処理チャンバ805)を含む。システム800は、図1に示すトラック構成を有する少なくとも1つの更なるチャンバ802を含み得る。少なくとも1つの更なるチャンバ802は回転モジュール、トランジットモジュール、又はそれらの組み合わせであり得る。回転モジュールで、トラック構成とそこに配置されたキャリア(一又は複数)は、垂直の回転軸などの回転軸周りで回転させられ得る。例えば、キャリア(一又は複数)は、システム800の左側からシステム800の右側へ、或いはその逆に移送され得る。トランジットモジュールは、横断トラックを含み得る。それにより、トランジットモジュールを通して、1つ又は複数のキャリアを種々の方向(例えば、互いに対して垂直な複数の方向)で搬送することができる。
真空処理チャンバ805は有機材料を堆積するように構成され得る。堆積源130、具体的には蒸発源が真空処理チャンバ805に設けられ得る。図8に示すように、堆積源130はトラック又はリニアガイド438に設けられ得る。リニアガイド438は堆積源130を並進移動させるように構成され得る。更に、堆積源130の並進移動をもたらすためのドライバを設けてもよい。具体的には、堆積源130を搬送する非接触の搬送装置が設けられ得る。
堆積源130をリニアガイド438に沿って並進移動させるよう構成された堆積源支持部831が設けられ得る。堆積源支持部831は蒸発るつぼ834と、蒸発るつぼ834の上方に設けられた分配アセンブリ836とを支持し得る。したがって、蒸発るつぼで生成された蒸気は上方向に移動して、分配アセンブリの一以上の出口から出る。分配アセンブリ836は、蒸発した有機材料、具体的には蒸発した蒸発源材料のプルームを分配アセンブリから基板へ供給するように構成され得る。
図8に例示するように、真空処理チャンバ805はゲート弁807を有し得る。真空処理チャンバ805は、ゲート弁807を介して、隣接する別のチャンバ802、例えば経路モジュール又は隣接するサービスモジュールに接続され得る。具体的には、ゲート弁807が、隣接する別のチャンバに対する真空封止を可能とし、基板及び/又はマスクを真空処理チャンバ805から出入りさせるべく開けたり閉じたりできる。
図8に例示するように、本書に記載の他の実施形態と組み合わされ得るある実施形態では、2つの基板、例えば第1の基板10Aと第2の基板10Bが、本書に記載の各第1のトラック構成110のような各搬送トラックで支持され得る。更に、2つのトラック、例えば本書に記載のマスクキャリア25を載せる2つの第2のトラック構成120が設けられ得る。ある実施形態で、基板を被覆することは、例えばエッジexclusionマスク又はシャドウマスクなどの各マスクを用いて基板をマスキングすることを含み得る。ある実施形態では、マスク、例えば第1の基板10Aに対応する第1のマスク20Aと、第2の基板10Bに対応する第2のマスク20Bとがマスクキャリア25に設けられて、所定の位置合わせ位置にマスクを保持し得る。
本書に記載の他の実施形態と組み合わされ得るある実施形態では、基板が基板キャリアによって支持される。基板キャリアは保持構成828に接続され得る。保持構成828は図3A及びBに示す構成であり得る。具体的には、保持構成828が、基板のマスクに対する位置を調整するように構成された位置合わせデバイスを含み得る。有機材料の堆積前及び/又は堆積中に基板とマスクの正確な位置合わせを提供するために、基板はマスクに対して移動可能であり得ることを理解されたい。本書に記載の他の実施形態と組み合わされ得る更なる実施形態によれば、上記に加えて又は代えて、マスクを保持しているマスクキャリア25が保持構成828に接続され得る。したがって、マスクが基板に対して位置決めされ得るか、或いはマスクと基板の双方が互いに対して位置決めされ得る。本書に記載の位置合わせシステムにより堆積処理中のマスキングの正確な位置合わせが可能となるので、高品質のOLED製造に有益である。
図8では1つの真空処理チャンバが示されているが、システムが2つ以上の真空処理チャンバを含んでもよいことを理解されたい。基板上に種々の材料又は材料層を堆積させる種々の真空処理チャンバが構成されてもよい。
例えば様々な色特性を有するピクセルを生成するために、例えば、様々なマスク、又はマスクの基板に対する位置を用いて、基板上に複数の層や膜が堆積され得る。一例として、第1の層又は膜を堆積させて赤のピクセルを生成し、第2の層又は膜を堆積して緑のピクセルを生成、第3の層又は膜を堆積させて青のピクセルを生成し得る。
各色のピクセルの堆積が異なる真空チャンバで実施され得る。基板はトラック構成によって、各チャンバ間又は各チャンバに搬送され得る。したがって、未被覆の基板又は既に被覆した基板がマスクに対して、或いはその逆に、位置合わせされることがあり得る。本開示の検査構成によってそのような異なる真空処理チャンバでの位置合わせが向上することで、基板上に堆積させた複数の層の相対的な位置合わせ向上し得る。
例えば、本開示の実施形態は少なくとも±3μmの位置合わせ精度を提供できる。
本開示による実施形態は幾つかの利点を有する。例えば、本質的に垂直の姿勢で維持されている基板に対して自動の光学検査を行うことで、微細金属マスクなどのマスクと基板との位置合わせを特に有機層の堆積前に効率よくチェックできることである。
更に、本開示による実施形態は、位置合わせしたマスクと基板の光学検査を、生産ラインに干渉せず、有機層の堆積中に存在する同じ条件(例えば基板の向きや圧力)下で実施するという利点を有する。
また、本開示による実施形態は、マスクの基板に対する再位置合わせを堆積処理の開始前に可能にするという利点を有しているため、堆積処理の材料が節約され得る。これが可能なのは光学検査の結果がリアルタイムで利用できるためである。したがって、堆積の実施前にマスクと基板の位置合わせが再調整され、プロセス時間の削減になる。
上記は本開示の実施形態に向けられた記載であるが、本開示の本質的な範囲を逸脱することなく他の或いは更なる実施形態が想起可能であろう。本開示の範囲は下記の特許請求の範囲に定められている。

Claims (15)

  1. 基板処理方法であって、
    複数の堆積開口を有するマスク(21)を処理チャンバへ搬送すること(760)、
    バックプレーンパターン(11)を有する基板を前記処理チャンバへ搬送すること(770)、
    前記基板(10)を前記マスク(20)に対して位置合わせすること(780)、及び
    前記複数の堆積開口(21)と前記バックプレーンパターン(11)との間のずれを光学検査デバイス(440)で少なくとも局所的に検査すること(790)
    を含む、方法。
  2. 前記複数の堆積開口(21)を通じて前記基板(10)に一以上の材料を堆積することを更に含む、請求項1に記載の方法。
  3. 前記光学検査デバイス(440)が、前記マスク(20)に対して位置合わせされた前記基板(10)の一以上の部分の画像を捕捉し、少なくとも1つのずれ値を求めるために前記捕捉した画像を処理する、請求項1又は2に記載の方法。
  4. 前記少なくとも1つのずれ値に基づいて、前記基板(10)を前記マスク(20)に対して再度位置合わせすることを更に含む、請求項3に記載の方法。
  5. 前記光学検査デバイス(440)が前記基板(10)の前側の検査位置へと動かされて、前記複数の堆積開口(21)の背後の前記バックプレーンパターン(11)の部分を示す少なくとも1つの画像を捕捉する、請求項1から4の何れか一項に記載の方法。
  6. 前記光学検査デバイス(440)が可動堆積源(130)に固定されており、前記方法が、前記可動堆積源(130)を、前記基板(10)を通過するように動かして、前記光学検査デバイス(440)で前記基板の画像を捕捉することを含む、請求項1から5の何れか一項に記載の方法。
  7. 前記基板(10)が、少なくとも1つの切り欠きが設けられた基板キャリア(15)上で支持され、前記光学検査デバイスが、前記基板(10)の後ろ側から前記少なくとも1つの切り欠きを通じて少なくとも1つの画像を捕捉する、請求項1から5の何れか一項に記載の方法。
  8. 搬送、位置合わせ、及び検査のうちの少なくとも1つの間、前記マスク(20)と前記基板が本質的に垂直に配向されている、請求項1から7の何れか一項に記載の方法。
  9. 前記マスク(20)及び前記基板(10)のうち少なくとも一方に設けられた基準マーカー(547)、具体的には認識マーカーが、前記位置合わせにおける基準点として用いられる、請求項1から8の何れか一項に記載の方法。
  10. 基板の真空処理装置(100)であって、
    バックプレーンパターン(11)を有する基板(10)を、複数の堆積開口(21)を有するマスク(20)に対して位置合わせするように構成された、位置合わせデバイス、
    前記複数の堆積開口(21)と前記バックプレーンパターン(11)との間のずれを少なくとも局所的に判定するように構成された、光学検査デバイス(440)、及び
    前記マスクの前側に配置されて、前記基板(10)に一以上の材料を堆積するように構成された、堆積源(130)
    を含む、装置(100)。
  11. 前記光学検査デバイス(440)が前記堆積源(130)に取り付けられており、具体的には前記堆積源が前記基板を通過するように可動である、請求項10に記載の装置(100)。
  12. 前記光学検査デバイス(440)が可動に設置されており、具体的には、前記光学検査デバイスが、前記マスクの前記前側に設けられた可動式又は折り畳み可能なアーム(442)に固定されている、請求項10又は11に記載の装置(100)。
  13. 前記光学検査デバイス(440)が前記位置合わせデバイスの後ろ側に配置され、前記マスク(20)に対して位置合わせされた前記基板(10)の部分(545)の画像を、前記基板を支持している基板キャリア(15)の少なくとも1つの切り欠きを通じて、捕捉するように構成されており、かつ/又は、前記光学検査デバイス(440)が、1つ、2つ、又はそれよりも多いカメラを含む、請求項10から12の何れか一項に記載の装置(100)。
  14. 前記光学検査デバイス(440)が捕捉した少なくとも1つの画像に基づいてずれ値を求め、前記ずれ値に基づいて前記位置合わせデバイスに再位置合わせ値を送るように構成された、制御部を更に含む、請求項10から13の何れか一項に記載の装置(100)。
  15. 真空処理システムであって、
    請求項10から14の何れか一項に記載の装置(100)、
    前記位置合わせデバイスの第1のマウントに連結された基板(10)、及び
    前記位置合わせデバイスの第2のマウントに連結されたマスク(20)
    を含む、システム。
JP2019506719A 2018-03-14 2018-03-14 基板処理方法、真空処装置、及び真空処理システム Pending JP2020514524A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/056415 WO2019174726A1 (en) 2018-03-14 2018-03-14 Method for processing a substrate, apparatus for vacuum processing and vacuum processing system

Publications (1)

Publication Number Publication Date
JP2020514524A true JP2020514524A (ja) 2020-05-21

Family

ID=61655800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019506719A Pending JP2020514524A (ja) 2018-03-14 2018-03-14 基板処理方法、真空処装置、及び真空処理システム

Country Status (4)

Country Link
JP (1) JP2020514524A (ja)
KR (1) KR102217879B1 (ja)
CN (1) CN110494587B (ja)
WO (1) WO2019174726A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114525474A (zh) * 2022-03-10 2022-05-24 武汉华星光电半导体显示技术有限公司 蒸镀坩埚及蒸镀装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024956A (ja) * 2006-07-18 2008-02-07 Ulvac Japan Ltd アライメント装置及びアライメント方法
JP2010140840A (ja) * 2008-12-15 2010-06-24 Hitachi High-Technologies Corp 有機elデバイス製造装置及び成膜装置並びに液晶表示基板製造装置
JP2016102255A (ja) * 2014-11-28 2016-06-02 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited 光学位置合わせ補償装置、貼り合わせ度検出装置、蒸着システム及びその方法
US20170250379A1 (en) * 2016-11-28 2017-08-31 Applied Materials, Inc. Evaporation source having multiple source ejection directions
JP2018504526A (ja) * 2015-01-12 2018-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 処理チャンバ内での層堆積中に基板キャリアとマスクキャリアを支持するための保持装置、基板を支持する基板キャリアとマスクキャリアを位置合わせするための方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031181A (ja) * 2002-06-27 2004-01-29 Sony Corp パターン成膜装置およびパターン成膜方法
US20070137568A1 (en) * 2005-12-16 2007-06-21 Schreiber Brian E Reciprocating aperture mask system and method
EP2418545B1 (en) * 2010-08-12 2018-10-10 Applied Materials, Inc. Mask handling module
US20120237682A1 (en) * 2011-03-18 2012-09-20 Applied Materials, Inc. In-situ mask alignment for deposition tools
JP2013124373A (ja) * 2011-12-13 2013-06-24 V Technology Co Ltd 蒸着装置
JP2013209700A (ja) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp 真空蒸着装置及びその方法
JP6273178B2 (ja) * 2014-08-13 2018-01-31 東京エレクトロン株式会社 基板処理装置および基板処理方法
TWM526177U (zh) * 2014-11-03 2016-07-21 應用材料股份有限公司 視覺化系統及具有其之製程腔室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024956A (ja) * 2006-07-18 2008-02-07 Ulvac Japan Ltd アライメント装置及びアライメント方法
JP2010140840A (ja) * 2008-12-15 2010-06-24 Hitachi High-Technologies Corp 有機elデバイス製造装置及び成膜装置並びに液晶表示基板製造装置
JP2016102255A (ja) * 2014-11-28 2016-06-02 上海和輝光電有限公司Everdisplay Optronics (Shanghai) Limited 光学位置合わせ補償装置、貼り合わせ度検出装置、蒸着システム及びその方法
JP2018504526A (ja) * 2015-01-12 2018-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 処理チャンバ内での層堆積中に基板キャリアとマスクキャリアを支持するための保持装置、基板を支持する基板キャリアとマスクキャリアを位置合わせするための方法
US20170250379A1 (en) * 2016-11-28 2017-08-31 Applied Materials, Inc. Evaporation source having multiple source ejection directions

Also Published As

Publication number Publication date
CN110494587B (zh) 2021-12-07
WO2019174726A1 (en) 2019-09-19
CN110494587A (zh) 2019-11-22
KR102217879B1 (ko) 2021-02-18
KR20190109378A (ko) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2012173692A1 (en) Cvd mask alignment for oled processing
WO2019174710A1 (en) Apparatus and method for an automated optical inspection of a substrate
JP7290988B2 (ja) アライメント装置、成膜装置、アライメント方法、成膜方法および電子デバイスの製造方法
KR20180114888A (ko) 기판 캐리어 및 마스크 캐리어를 위한 포지셔닝 어레인지먼트, 기판 캐리어 및 마스크 캐리어를 위한 이송 시스템, 및 이를 위한 방법들
JP7159238B2 (ja) 基板キャリア、成膜装置、及び成膜方法
JP2021080563A (ja) アライメント装置、アライメント方法、成膜装置、成膜方法および電子デバイスの製造方法
JP2021102812A (ja) 成膜装置、電子デバイスの製造装置、成膜方法、及び電子デバイスの製造方法
KR20190010138A (ko) 상향식 증착장치 및 기판 얼라인 방법
JP6814879B2 (ja) 基板をアライメントする装置、システム及び方法
CN110494587B (zh) 用于处理基板的方法、用于真空处理的设备和真空处理系统
JP2022114212A (ja) 成膜装置
CN110557955B (zh) 用于支撑基板或掩模的载体
WO2021197621A1 (en) Material deposition apparatus, vacuum deposition system and method of processing a large area substrate
KR20200048841A (ko) 마스크 교환시기 판정장치, 성막장치, 마스크 교환시기 판정방법, 성막방법 및 전자 디바이스의 제조방법
KR102184501B1 (ko) 마스크 어레인지먼트를 핸들링하는 방법, 마스크 어레인지먼트의 광학 검사를 위한 기준 기판, 및 진공 증착 시스템
KR20210057117A (ko) 재료 증착 장치, 진공 증착 시스템, 및 대면적 기판을 프로세싱하는 방법
CN109891618B (zh) 用于在真空腔室中成像的设备、用于真空处理基板的系统、和用于使真空腔室中的至少一个对象成像的方法
WO2023210464A1 (ja) 成膜装置、成膜方法、電子デバイスの製造方法、およびコンピュータプログラム記録媒体
WO2023238478A1 (ja) 成膜装置、成膜方法、アライメント装置及びアライメント方法
CN111010877A (zh) 具有掩模对准器的沉积设备、用于遮蔽基板的掩模布置和用于遮蔽基板的方法
JP2023178622A (ja) 成膜装置、成膜方法、アライメント装置及びアライメント方法
JP2023178641A (ja) 成膜装置、成膜方法、アライメント装置及びアライメント方法
CN112771688A (zh) 基板处理装置
JP2021145096A (ja) 基板キャリア、成膜装置、基板キャリアの搬送方法、及び成膜方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210209