JP2020196933A - Manufacturing method of aluminum alloy-based composite material - Google Patents

Manufacturing method of aluminum alloy-based composite material Download PDF

Info

Publication number
JP2020196933A
JP2020196933A JP2019104139A JP2019104139A JP2020196933A JP 2020196933 A JP2020196933 A JP 2020196933A JP 2019104139 A JP2019104139 A JP 2019104139A JP 2019104139 A JP2019104139 A JP 2019104139A JP 2020196933 A JP2020196933 A JP 2020196933A
Authority
JP
Japan
Prior art keywords
aluminum alloy
ceramic powder
intermediate molded
based composite
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104139A
Other languages
Japanese (ja)
Other versions
JP6821207B2 (en
Inventor
修平 勝亦
Shuhei Katsumata
修平 勝亦
仁 北村
Hitoshi Kitamura
仁 北村
義夫 高木
Yoshio Takagi
義夫 高木
林 睦夫
Mutsuo Hayashi
睦夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Composite Co Ltd
Original Assignee
Advance Composite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Composite Co Ltd filed Critical Advance Composite Co Ltd
Priority to JP2019104139A priority Critical patent/JP6821207B2/en
Publication of JP2020196933A publication Critical patent/JP2020196933A/en
Application granted granted Critical
Publication of JP6821207B2 publication Critical patent/JP6821207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

To provide a manufacturing method of an aluminum alloy-based composite material, which can obtain high quality aluminum alloy-based composite material at high yield.SOLUTION: A manufacturing method of an aluminum alloy-based composite material includes: a molding step for obtaining an intermediate molded body formed by containing an inorganic component derived from a binder with ceramic powder as a main material, by drying and/or calcinating a solidified body that is a deposit extracted from a vessel by removing a liquid, by sedimenting mixed particles, by filling the vessel with a raw material formed into a slurry by mixing a particulate binder having a particle size of 15 nm or larger and 200 nm or smaller in ceramic powder having a particle size of 3 μm or larger; and a high pressure impregnation step for impregnating a melt of the aluminum alloy at high pressure into the intermediate molded body, in which the binder contains an inorganic binder, and the inorganic binder is mixed at an amount where the inorganic binder is contained in the range such that, in terms of solid content, an inorganic component is contained within the range of 3 parts or more and 20 pats or smaller relative to 100 parts of the ceramic powder.SELECTED DRAWING: Figure 1

Description

本発明は、セラミックス粉末が全体に均一に分布したアルミニウム合金基複合材料の製造方法に関する。 The present invention relates to a method for producing an aluminum alloy-based composite material in which ceramic powder is uniformly distributed throughout.

従来、セラミックス粉末の充填体或いはセラミックス粉末をバインダーで固めた固化体に、アルミニウム合金を溶湯にして高圧で含浸させて、アルミニウム合金中に強化材としてのセラミックス粉末が複合化された複合材料を製造する方法が提案され、一部製品化されている。この製造方法では、高圧でアルミニウム合金の溶湯を、セラミックス粉末の充填体等に含浸させるので、セラミックス粉末の内部に存在するポアが潰れ、ポアが残存しないという利点があり、また、含浸後、溶湯が短時間で冷却されるので、アルミニウム合金の組織が均一になる。このため、製造される複合材料は、強度が高く、且つ、組織のバラツキが小さく、複合化させた、セラミックスとアルミニウムの性能を兼ね備えた特性に優れる素材が製造できるので、近年、注目されている。 Conventionally, a filler of ceramic powder or a solidified body obtained by solidifying ceramic powder with a binder is impregnated with an aluminum alloy as a molten metal at high pressure to produce a composite material in which the ceramic powder as a reinforcing material is composited in the aluminum alloy. A method to do this has been proposed and some have been commercialized. In this manufacturing method, since the molten aluminum alloy is impregnated into the filler of the ceramic powder at high pressure, there is an advantage that the pores existing inside the ceramic powder are crushed and the pores do not remain, and after the impregnation, the molten metal is melted. Is cooled in a short time, so that the structure of the aluminum alloy becomes uniform. For this reason, the produced composite material has been attracting attention in recent years because it can produce a composite material having high strength, small structure variation, and excellent characteristics having both ceramics and aluminum performance. ..

上記した高圧でアルミニウム合金の溶湯を含浸させる方法として、セラミックス粉末原料を鉄製容器に充填し、容器ごとアルミニウム合金の溶湯で高圧含浸する方法が提案されている(特許文献1参照)。また、アルミニウム合金などのマトリックス金属の溶湯の浸透を外部圧力に依存して行う場合の困難性を解決する目的で、セラミックス粉末を含む充填剤材料で形成した、形状一体性及び生強度を有する多孔質材料であるプリフォームを使用し、当該プリフォームの少なくとも一部分にアルミニウム合金などの溶湯を自発的に含浸させるようにした自発的浸透技術の利用に関する提案もある(特許文献2参照)。 As a method of impregnating the molten aluminum alloy with the above-mentioned high pressure, a method of filling an iron container with a ceramic powder raw material and impregnating the whole container with the molten aluminum alloy with a high pressure has been proposed (see Patent Document 1). Further, for the purpose of solving the difficulty in permeating the molten metal of a matrix metal such as an aluminum alloy depending on the external pressure, a porous material having shape integrity and raw strength formed of a filler material containing ceramic powder. There is also a proposal regarding the use of a voluntary permeation technique in which a preform, which is a quality material, is used and at least a part of the preform is spontaneously impregnated with a molten metal such as an aluminum alloy (see Patent Document 2).

特開2008−38172号公報Japanese Unexamined Patent Publication No. 2008-38172 特許第3370991号公報Japanese Patent No. 3370991

しかしながら、上記した従来技術の、セラミックス粉末原料を容器に入れ、アルミニウム合金の溶湯を高圧含浸する方法では、アルミニウム合金の溶湯がセラミックス粉末に含浸する際に、溶湯の流れに伴いセラミックス粉末が容器内で移動することがあり、溶湯の流れ痕跡が生じたり、セラミックス粉末全体に亀裂が入ることが生じる場合がある。これらのことが生じると、得られたアルミニウム合金基複合材料は、アルミニウム合金の筋が入ったり、作製した複合材料の一部が不均一になり、品質が劣るものになるだけでなく、製品の歩留まりが低減し、高品質のアルミニウム合金基複合材料を経済的に得る方法としては課題がある。 However, in the above-mentioned method of putting the ceramic powder raw material in a container and impregnating the molten aluminum alloy with high pressure, when the molten aluminum alloy impregnates the ceramic powder, the ceramic powder is contained in the container along with the flow of the molten metal. May cause traces of molten metal flow or cracks in the entire ceramic powder. When these things occur, the obtained aluminum alloy-based composite material not only becomes inferior in quality due to the streaks of the aluminum alloy and a part of the produced composite material becomes uneven, but also the product There is a problem as a method for economically obtaining a high-quality aluminum alloy-based composite material with a reduced yield.

また、上記したプリフォームに金属マトリックスの自発的浸透を可能にするための従来技術は、セラミックス粉末を含む充填剤材料で形成するプリフォームの作成などが煩雑であり、この点で未だ製造技術として確立したものとはいえず、実用上の問題がある。 Further, in the conventional technique for enabling the spontaneous penetration of the metal matrix into the above-mentioned preform, it is complicated to prepare a preform formed of a filler material containing ceramic powder, and in this respect, it is still a manufacturing technique. It cannot be said that it has been established, and there are practical problems.

本発明者らの検討によれば、上記した技術に記載されているような方法で、アルミナや炭化ケイ素などを含む材料で作成したプリフォームに、アルミニウム合金の溶湯を高圧含浸させると、プリフォームに亀裂が入ったり、均一にアルミニウム合金が含浸されなかったりすることが生じる。すなわち、未だ、アルミニウム合金の溶湯の高圧含浸に適したプリフォームの作成方法や、プリフォームに適したアルミニウム合金の溶湯の含浸方法等が確立されていないのが現状である。 According to the study by the present inventors, when a preform prepared of a material containing alumina, silicon carbide, etc. is impregnated with a molten aluminum alloy under high pressure by a method as described in the above technique, the preform is formed. It may crack or the aluminum alloy may not be uniformly impregnated. That is, the current situation is that a method for producing a preform suitable for high-pressure impregnation of a molten aluminum alloy and a method for impregnating a molten aluminum alloy for preform have not yet been established.

従って、本発明の目的は、アルミニウム合金の溶湯の高圧含浸に適した、セラミックス粉末を固化させたプリフォームの作成方法を確立し、さらに、得られたプリフォームに適したアルミニウム合金の溶湯の含浸方法を見出して、高品質のアルミニウム合金基複合材料を歩留まりよく得ることができるアルミニウム合金基複合材料の製造方法を提供することにある。 Therefore, an object of the present invention is to establish a method for producing a preform in which ceramic powder is solidified, which is suitable for high-pressure impregnation of a molten aluminum alloy, and further, impregnation with a molten aluminum alloy suitable for the obtained preform. It is an object of the present invention to find a method and to provide a method for producing an aluminum alloy-based composite material capable of obtaining a high-quality aluminum alloy-based composite material with a good yield.

上記の目的は、下記の本発明によって達成される。すなわち、本発明は、下記のアルミニウム合金基複合材料の製造方法を提供する。
[1]アルミニウム合金の中にセラミックス粉末が複合されたアルミニウム合金基複合材料の製造方法であって、中心粒径が3μm以上であるセラミックス粉末を主原料とし、該主原料に、平均粒径が15nm以上、200nm以下の粒子状のバインダーを混合してスラリー状にしたものを原料に用い、該混合粒子からなるスラリー状の原料を所望形状の容器内に充填し、前記混合粒子を沈降させ、液を除き、前記容器から、沈降物である固化体を取り出し、該固化体を乾燥及び/又は仮焼して、セラミックス粉末を主原料とし、前記バインダーに由来する無機成分を含有してなる中間成型体を得るための成型工程と、前記成型工程で得た中間成型体に、高圧でアルミニウム合金の溶湯を含浸させる高圧含浸工程とを有し、前記バインダーが、前記成型工程で得られる中間成型体に無機成分を含有させるための無機系バインダーを含み、前記成型工程で、該無機系バインダーを、固形分換算で、前記主原料であるセラミックス粉末100質量部に対して、前記無機成分が3質量部以上、20質量部以下の範囲で含有するようになる量で混合することを特徴とするアルミニウム合金基複合材料の製造方法。
The above object is achieved by the following invention. That is, the present invention provides the following method for producing an aluminum alloy-based composite material.
[1] A method for producing an aluminum alloy-based composite material in which ceramic powder is composited in an aluminum alloy. Ceramic powder having a central particle size of 3 μm or more is used as a main raw material, and the main raw material has an average particle size. Using a slurry of a granular binder of 15 nm or more and 200 nm or less mixed as a raw material, the slurry-like raw material composed of the mixed particles is filled in a container having a desired shape, and the mixed particles are precipitated. The liquid is removed, the solidified body as a precipitate is taken out from the container, and the solidified body is dried and / or calcined, and the ceramic powder is used as the main raw material, and an intermediate component containing an inorganic component derived from the binder is contained. It has a molding step for obtaining a molded body and a high-pressure impregnation step of impregnating the intermediate molded body obtained in the molding step with a molten metal of an aluminum alloy at high pressure, and the binder is an intermediate molding obtained in the molding step. It contains an inorganic binder for containing an inorganic component in the body, and in the molding step, the inorganic component is 3 in terms of solid content with respect to 100 parts by mass of the ceramic powder which is the main raw material. A method for producing an aluminum alloy-based composite material, which comprises mixing in an amount that is contained in a range of 20 parts by mass or more and 20 parts by mass or less.

上記アルミニウム合金基複合材料の製造方法の好ましい形態としては、下記のものが挙げられる。
[2]前記無機系バインダーが、コロダルシリカ、コロイダルアルミナ及び水酸化アルミニウム微粉末からなる群から選択される少なくともいずれかである上記[1]に記載のアルミニウム合金基複合材料の製造方法。
[3]前記セラミックス粉末の中心粒径が、5μm以上、150μm以下である[1]又は[2]に記載のアルミニウム合金基複合材料の製造方法。
[4]前記成型工程で得た中間成型体は、かさ密度が容積率で40〜85%の範囲内にある[1]〜[3]のいずれかに記載のアルミニウム合金基複合材料の製造方法。
[5]前記容器が、吸水性を有する材料からなる[1]〜[4]のいずれかに記載のアルミニウム合金基複合材料の製造方法。
[6]前記スラリー状にする際に、水又はアルコールを用いる[1]〜[5]のいずれかに記載のアルミニウム合金基複合材料の製造方法。
[7]前記成型工程後に、前記中間成型体を鉄製容器に入れて容器と共に加温するか、前記中間成型体を鉄板に挟んで加温した後、加温した中間成型体を入れた鉄製容器又は加温した中間成型体を、前記高圧含浸工程で用いるアルミニウム合金の溶湯を注ぐための高圧プレス容器に入れて、前記高圧含浸工程を行う上記[1]〜[6]のいずれかに記載のアルミニウム合金基複合材料の製造方法。
Preferred forms of the method for producing the aluminum alloy-based composite material include the following.
[2] The method for producing an aluminum alloy-based composite material according to the above [1], wherein the inorganic binder is at least one selected from the group consisting of corodal silica, colloidal alumina, and fine aluminum hydroxide powder.
[3] The method for producing an aluminum alloy-based composite material according to [1] or [2], wherein the central particle size of the ceramic powder is 5 μm or more and 150 μm or less.
[4] The method for producing an aluminum alloy-based composite material according to any one of [1] to [3], wherein the intermediate molded body obtained in the molding step has a bulk density in the range of 40 to 85% in terms of floor area ratio. ..
[5] The method for producing an aluminum alloy-based composite material according to any one of [1] to [4], wherein the container is made of a water-absorbent material.
[6] The method for producing an aluminum alloy-based composite material according to any one of [1] to [5], wherein water or alcohol is used to form the slurry.
[7] After the molding step, the intermediate molded body is placed in an iron container and heated together with the container, or the intermediate molded body is sandwiched between iron plates and heated, and then the heated intermediate molded body is placed in the iron container. Alternatively, according to any one of [1] to [6] above, the heated intermediate molded body is placed in a high-pressure press container for pouring the molten aluminum alloy used in the high-pressure impregnation step, and the high-pressure impregnation step is performed. A method for manufacturing an aluminum alloy-based composite material.

本願発明によれば、アルミニウム合金の溶湯の高圧含浸に適した、比較的粗い粒径のセラミックス粉末を主原料とした固化体を乾燥及び/又は仮焼させることで、強度と特性に優れた中間成型体を得ることができる作成方法が確立され、確立した手法で得られた中間成型体を用いることで、アルミニウム合金の溶湯の高圧含浸が良好にでき、その結果、セラミックスが全体に均一に含有された高品質のアルミニウム合金基複合材料を歩留まりよく得ることができるアルミニウム合金基複合材料の製造方法が提供される。また、本発明の製造方法で得られたアルミニウム合金基複合材料は、セラミックス粉末がアルミニウム合金の全体に均一に含まれており、表面は勿論、内部にもアルミニウムの流れによるアルミニウム合金の筋が入るといったことがなく、しかも、複合化させたセラミックスのもつ性能が効果的に発現したものになるので、本発明によれば、良質で、所望する性能や機能を良好な状態で示すアルミニウム合金基複合材料の提供の実現が可能になる。 According to the present invention, a solidified body made of a ceramic powder having a relatively coarse particle size, which is suitable for high-pressure impregnation of a molten aluminum alloy, is dried and / or calcined to be an intermediate material having excellent strength and characteristics. A manufacturing method that can obtain a molded body has been established, and by using the intermediate molded body obtained by the established method, high-pressure impregnation of the molten aluminum alloy can be performed well, and as a result, the ceramics are uniformly contained throughout. Provided is a method for producing an aluminum alloy-based composite material, which can obtain a high-quality aluminum alloy-based composite material with good yield. Further, in the aluminum alloy-based composite material obtained by the production method of the present invention, the ceramic powder is uniformly contained in the entire aluminum alloy, and the aluminum alloy streaks are formed not only on the surface but also inside due to the flow of aluminum. In addition, the performance of the composited ceramics is effectively expressed. Therefore, according to the present invention, the aluminum alloy-based composite exhibits high quality and desired performance and function in good condition. It becomes possible to realize the provision of materials.

本発明の実施例1で得られたアルミニウム合金基複合材料の電顕写真の図である。It is a figure of the electron micrograph of the aluminum alloy-based composite material obtained in Example 1 of this invention. 本発明の比較例1で得られたアルミニウム合金基複合材料の電顕写真の図である。It is a figure of the electron micrograph of the aluminum alloy-based composite material obtained in Comparative Example 1 of this invention.

次に、本発明の好ましい形態を挙げて本発明を詳細に説明する。まず、本発明者らは、先に挙げた従来技術の課題を解決すべく検討する際に、セラミックス粉末とアルミニウム合金との複合体を均質なものにするためには、粒径の小さなセラミックス粉末を使用することが好ましいと予想した。しかしながら、本発明者らが検討した結果、粒径の小さなセラミックス粉末を用い従来の手法でプリフォームを作成し、得られたプリフォームに、アルミニウム合金の溶湯を高圧含浸して複合化させると、セラミックス粉末と、アルミニウム合金の溶湯との界面の面積が大きくなり過ぎてしまい、このことに起因して、得られた複合材料が、セラミックス本来の性能を発揮できず、複合化させたことのメリットが得られないことがわかった。例えば、セラミックス粉末にSiC粉末を用い、アルミニウム合金基複合体を作製する場合に、1〜2μm程度のSiC粉末を使用すると、界面が大きくなり過ぎて、得られる複合体において、複合化させたSiCのもつ高熱伝導性が十分に発揮されないことがわかった。 Next, the present invention will be described in detail with reference to preferred embodiments of the present invention. First, when the present inventors study to solve the problems of the prior art mentioned above, in order to make the composite of the ceramic powder and the aluminum alloy homogeneous, the ceramic powder having a small particle size Was expected to be preferable to use. However, as a result of studies by the present inventors, when a preform is prepared by a conventional method using a ceramic powder having a small particle size, and the obtained preform is impregnated with a molten aluminum alloy under high pressure and composited, it is determined. The area of the interface between the ceramic powder and the molten aluminum alloy becomes too large, and due to this, the obtained composite material cannot exhibit the original performance of the ceramic, and it is a merit that it is composited. Turned out not to be obtained. For example, when SiC powder is used as the ceramic powder to prepare an aluminum alloy-based composite, if SiC powder of about 1 to 2 μm is used, the interface becomes too large, and the obtained composite has a composite SiC. It was found that the high thermal conductivity of the material was not fully exhibited.

また、別の課題として、例えば、1〜2μm程度のアルミナ粉末を使用した場合は、粒子同士が凝集してダマ状になるという問題があり、ダマ状になると、セラミックス粉末とアルミニウム合金との均一な複合体を得ることはできない。本発明者らは、上記したような種々の課題に対応するためには、アルミニウム合金の溶湯の高圧含浸に供するプリフォームの作成に使用する主原料のセラミックス粉末は、一般的なセラミックス粉体の使用例と異なり、数μm以上、数百μm以下の比較的粗い原料粉末を使用する必要があることを見出した。 Further, as another problem, for example, when an alumina powder having a size of about 1 to 2 μm is used, there is a problem that the particles aggregate to form a lump, and when the lumps are formed, the ceramic powder and the aluminum alloy become uniform. Complex cannot be obtained. In order to deal with the various problems described above, the present inventors use general ceramic powder as the main raw material ceramic powder used for producing a preform to be subjected to high-pressure impregnation of molten aluminum alloy. It has been found that it is necessary to use a relatively coarse raw material powder of several μm or more and several hundred μm or less, unlike the usage example.

しかしながら、上記したような比較的粗いセラミックス粉末を使用したプリフォームの作成方法は、未だ確立されていない。上記した状況から、本発明者らは、セラミックス粉末を含む原料の選定や粒径の検討、プリフォームを作成するための製造プロセスについて鋭意研究を行い、アルミニウム合金の溶湯の高圧含浸に耐える強度を有し、しかも、良好な状態に溶湯が含浸するプリフォームの製造方法、及び、アルミニウム合金の溶湯を良好な状態に含浸できる方法、さらには、複合化させたセラミックスの性能が効果的に発現した複合材料を安定して提供できる方法について鋭意検討した結果、本発明に至った。 However, a method for producing a preform using a relatively coarse ceramic powder as described above has not yet been established. Based on the above situation, the present inventors have conducted intensive research on the selection of raw materials containing ceramic powder, examination of particle size, and the manufacturing process for preparing preforms, and have determined the strength to withstand high-pressure impregnation of molten aluminum alloy. In addition, a method for producing a preform in which the molten metal is impregnated in a good state, a method in which the molten metal of an aluminum alloy can be impregnated in a good state, and the performance of the composite ceramics are effectively exhibited. As a result of diligent studies on a method capable of stably providing a composite material, the present invention has been reached.

〔セラミックス粉末を主原料としてなる中間成型体の作成方法〕
本発明者らは、上記の課題に対し鋭意検討を行った結果、数μm以上の比較的粗いセラミックス粉末を使用し、この粗いセラミックス粉末を用い、特有の方法で作成した中間成型体は、アルミニウム合金の溶湯の高圧含浸に適した強固なものとなることを見出した。具体的には、セラミックス粉末を主原料とし、該主原料に、少なくとも、作成した中間成型体が、バインダーに由来する無機成分を特定量含有するものにできる粒子状のバインダーを混合させた材料を原料に用い、これらを含む混合原料をスラリー状にし、この混合粒子からなるスラリー状の原料を所望形状の容器内に充填し、充填した前記混合粒子を沈降させ、大部分の液を除くことで、沈降物からなる固化体を得る。そして、混合粒子を沈降させて得た固化体を乾燥及び/又は仮焼して、セラミックス粉末を主原料とし、前記バインダーに由来する無機成分を含有してなる中間成型体を、次の高圧でアルミニウム合金の溶湯を含浸させる高圧含浸工程で用いることが効果的であることを見出した。すなわち、本発明を特徴づける上記特有の構成の強度を満足する中間成型体に、アルミニウム合金の溶湯を高圧含浸させることで、アルミニウム合金とセラミックスが均一に複合化されて、セラミックスの性能が効果的に発現する良好な状態で複合化してなる材料を安定して得ることができる。
[Method of making an intermediate molded body using ceramic powder as the main raw material]
As a result of diligent studies on the above problems, the present inventors used a relatively coarse ceramic powder of several μm or more, and the intermediate molded body prepared by a unique method using this coarse ceramic powder was made of aluminum. It was found that the molten alloy is strong and suitable for high-pressure impregnation. Specifically, a material obtained by using ceramic powder as a main raw material and mixing the main raw material with a particulate binder that can at least make the produced intermediate molded product contain a specific amount of an inorganic component derived from the binder. By using as a raw material, a mixed raw material containing these is made into a slurry, a slurry-like raw material composed of the mixed particles is filled in a container having a desired shape, the filled mixed particles are precipitated, and most of the liquid is removed. , Obtain a solidified body consisting of sediment. Then, the solidified body obtained by precipitating the mixed particles is dried and / or calcined, and an intermediate molded body made of ceramic powder as a main raw material and containing an inorganic component derived from the binder is produced at the next high pressure. It has been found that it is effective to use it in a high-pressure impregnation step of impregnating a molten aluminum alloy. That is, by impregnating the intermediate molded body satisfying the strength of the above-mentioned peculiar configuration that characterizes the present invention with a molten aluminum alloy under high pressure, the aluminum alloy and the ceramics are uniformly composited, and the performance of the ceramics is effective. It is possible to stably obtain a composite material in a good state of expression.

本発明者らの検討によれば、本発明を特徴づける中間成型体のより好ましい形態としては、かさ密度が、容積率で約40%〜85%程度となるように構成することで、より安定して良好なアルミニウム合金基複合材料を得ることができるようになる。中間成型体のかさ密度は、約45%〜80%となるように構成することが、より好ましい。すなわち、このように構成することで、本発明を特徴づける中間成型体は、次のアルミニウム合金の溶湯を高圧で含浸させる高圧含浸工程で、十分な強度を示し、アルミニウム合金の溶湯が、中まで良好な状態に含浸するので、表面は勿論のこと、内部の全体にわたってセラミックスが均一に複合化された高品質のアルミニウム合金基複合材料を得ることができる。上記したかさ密度を有する中間成形体は、本発明で規定する中心粒径のセラミックス粉末に、本発明で規定する特有の粒子状のバインダーを、本発明で規定する量で併用し、これらの混合粒子をスラリー状の原料として、沈降手段を用いて得た固化体を用いることで、容易に得ることができる。 According to the studies by the present inventors, as a more preferable form of the intermediate molded body that characterizes the present invention, it is more stable by configuring the bulk density to be about 40% to 85% in terms of floor area ratio. It becomes possible to obtain a good aluminum alloy-based composite material. It is more preferable that the bulk density of the intermediate molded body is set to about 45% to 80%. That is, with this configuration, the intermediate molded body that characterizes the present invention exhibits sufficient strength in the next high-pressure impregnation step of impregnating the molten aluminum alloy with high pressure, and the molten aluminum alloy can reach the inside. Since it is impregnated in a good state, it is possible to obtain a high-quality aluminum alloy-based composite material in which ceramics are uniformly composited not only on the surface but also throughout the inside. In the intermediate molded product having the bulk density described above, the ceramic powder having the central particle size specified in the present invention is mixed with the specific particulate binder specified in the present invention in the amount specified in the present invention. It can be easily obtained by using the solidified body obtained by using the precipitation means as the raw material in the form of a slurry.

以下、本発明を特徴づけるこの特有の構成の中間成型体の作成方法、及び、該中間成型体に適したアルミニウム合金の溶湯の高圧含浸方法について説明する。 Hereinafter, a method for producing an intermediate molded body having this unique structure, which characterizes the present invention, and a method for high-pressure impregnation of a molten aluminum alloy suitable for the intermediate molded body will be described.

(主原料のセラミックス粉末)
本発明で使用するセラミックス粉末は、特に種類が限定されるものでなく、その中心粒径が3μm以上のものであればよく、一般的に使用されている殆どのセラミックス粉末を用いることができる。従って、例えば、下記に挙げるようなセラミックス粉末の中から、複合化させることで複合材料に発現させることを所望する性能に応じて、適宜な原料を選択すればよい。本発明で使用するセラミックス粉末としては、例えば、ホウ酸アルミニウム(9Al・2B)、アルミナ、ジルコニア、シリカ等の酸化物や、炭化けい素、窒化アルミニウム、窒化けい素等の非酸化物等が挙げられる。しかし、本発明は、これらのセラミックスに限定されるものではない。
(Ceramic powder as the main raw material)
The type of ceramic powder used in the present invention is not particularly limited, and any ceramic powder having a central particle size of 3 μm or more can be used, and most commonly used ceramic powders can be used. Therefore, for example, from the ceramic powders listed below, an appropriate raw material may be selected according to the performance desired to be expressed in the composite material by compounding. The ceramic powder used in the present invention, for example, aluminum borate (9Al 2 O 3 · 2B 2 O 3), alumina, zirconia, and oxides such as silica, silicon carbide, aluminum nitride, the silicon nitride arsenide Non-oxide and the like can be mentioned. However, the present invention is not limited to these ceramics.

本発明で使用するセラミックス粉末は、中心粒径が3μm以上のものであることを要するが、セラミックス粉末の種類にもよるが、沈降性の点で、中心粒径が5μm以上のセラミックス粉末であることがより好ましい。本発明者らの検討によれば、中心粒径が3μm未満の微細なセラミックス粉末を用いた場合は、水又はアルコール中で混合して混合粒子からなるスラリー状の原料とし、沈降させた際に、使用したセラミックス粉末が十分に沈降しないため、得られる中間成型体が、所望のかさ密度のものにならない。すなわち、中心粒径が3μm未満の微細なセラミックス粉末を用いて得られた中間成型体は、高圧でアルミニウム合金の溶湯を含浸させた場合に、溶湯の高圧含浸に耐えられる強度が得られないことがわかった。なお、本発明で使用するセラミックス粉末の粒径の上限値は特に限定されないが、例えば、150μm以下、好ましくは100μm以下、の粒径のものを用いるとよい。本発明における中心粒径は、レーザー回折式粒度分布測定装置 Partica LA−960(商品名、堀場製作所社製)で測定できる。実施にあたっては、通常、セラミックス粉体の市販品に、粒子径或いは粒径として表示されている値を用いて設計すればよい。 The ceramic powder used in the present invention needs to have a central particle size of 3 μm or more, and although it depends on the type of ceramic powder, it is a ceramic powder having a central particle size of 5 μm or more in terms of sedimentation property. Is more preferable. According to the study by the present inventors, when fine ceramic powder having a central particle size of less than 3 μm is used, it is mixed in water or alcohol to form a slurry-like raw material composed of mixed particles, and when it is precipitated, it is formed. Since the ceramic powder used does not settle sufficiently, the obtained intermediate molded product does not have the desired bulk density. That is, the intermediate molded body obtained by using the fine ceramic powder having a central particle size of less than 3 μm cannot obtain the strength to withstand the high-pressure impregnation of the molten metal when the molten aluminum alloy is impregnated with the molten metal at high pressure. I understood. The upper limit of the particle size of the ceramic powder used in the present invention is not particularly limited, but for example, a ceramic powder having a particle size of 150 μm or less, preferably 100 μm or less may be used. The central particle size in the present invention can be measured by a laser diffraction type particle size distribution measuring device Partica LA-960 (trade name, manufactured by HORIBA, Ltd.). In carrying out the design, usually, a commercially available product of ceramic powder may be designed by using the value indicated as the particle size or the particle size.

(バインダー)
本発明では、本発明を特徴づける中間成型体の強度を得るため、上記したように、3μm以上の粒径のセラミックス粉末を用いることに加えて、平均粒径が15nm以上、200nm以下の粒子状のバインダーを併用する。本発明で使用するバインダーは、粒子状であることに加え、得られる中間成型体に、無機成分を含有させることができるバインダー(本発明では、このようなバインダーを無機系バインダーと呼ぶ)であることを必要とする。本発明に好適な無機系バインダーとしては、例えば、コロイダルシリカ、コロイダルアルミナ、水酸化アルミニウム微粉末等が挙げられる。その粒子径としては、後述するような理由から、平均粒径が15nm以上であることを要するが、好ましくは20nm以上のものを使用する。以下、これらについて説明する。
(binder)
In the present invention, in order to obtain the strength of the intermediate molded product that characterizes the present invention, as described above, in addition to using ceramic powder having a particle size of 3 μm or more, the average particle size is 15 nm or more and 200 nm or less. Binder is used together. The binder used in the present invention is a binder in which an inorganic component can be contained in the obtained intermediate molded product in addition to being in the form of particles (in the present invention, such a binder is referred to as an inorganic binder). Need that. Examples of the inorganic binder suitable for the present invention include colloidal silica, colloidal alumina, and fine powder of aluminum hydroxide. As the particle size, the average particle size needs to be 15 nm or more for the reason described later, but a particle size of 20 nm or more is preferably used. These will be described below.

本発明を構成するバインダーは、主原料であるセラミックス粉末とスラリーにして均一に混合させるため、水又はアルコール等に懸濁したコロイド状のものやスラリー状のものを使用することが好ましい。コロイドは、nm単位の微細な粒子が均一になっているため、本発明を構成するバインダーとして好適である。広い意味でのコロイド粒子の大きさは、直径が1nm〜1μm(1000nm)であるが、中でも15nm以上、200nm以下のものを使用することで、本発明の顕著な効果が得られる。このようなものは、コロイダルシリカ、コロイダルアルミナとして、粒子径毎に市販されている。これらのバインダーは、非常に細かい粒子からなるため、後述する方法で混合させることで、先に述べた主原料のセラミックス粉末に均一に混合されて、無機系バインダーとしての機能を十分発揮する。 As the binder constituting the present invention, it is preferable to use a colloidal binder or a slurry-like binder suspended in water or alcohol in order to make a slurry with ceramic powder as a main raw material and mix them uniformly. The colloid is suitable as a binder constituting the present invention because fine particles in nm units are uniform. The size of the colloidal particles in a broad sense has a diameter of 1 nm to 1 μm (1000 nm), and among them, those having a diameter of 15 nm or more and 200 nm or less can obtain a remarkable effect of the present invention. Such products are commercially available as colloidal silica and colloidal alumina for each particle size. Since these binders are composed of very fine particles, they are uniformly mixed with the ceramic powder of the main raw material described above by mixing by the method described later, and sufficiently exhibit the function as an inorganic binder.

本発明の技術において特に重要なことは、混合粒子からなるスラリー原料を沈降させて中間成形体を得る際に用いる、主原料のセラミックス粉末の粒径と、該主原料に混合させるバインダーの粒子径である。本発明では、バインダーに、平均粒径が15nm以上、200nm以下のものを使用する。望ましくは、平均粒径が20nm以上のバインダーを使用する。本発明者らの検討によれば、15nm未満とバインダーの粒径が小さすぎると、本発明で規定する方法で固化体を得た場合、固化体の乾燥途中に、バインダーであるコロイド状の微細な粒子が外側に移動して周辺部に集まり、固化体内部のバインダーが少なくなり、結果として、均一な強度を具備する中間成型体(プリフォーム)を得ることができなくなる。すなわち、比較的に粗い粒径の主原料のセラミックス粉末と、バインダーのコロイド状の微細な粒子からなる固化体を乾燥すると、周囲から乾燥し、内部に水又はアルコールが移動して順次乾燥していくが、バインダー粒子の粒子径が小さ過ぎると、バインダーも一緒に移動していく現象が生じ、セラミックス粉末にバインダーの粒子が均一に混合した状態とならなくなる。この現象を起こさないように、本発明では、15nm以上、望ましくは20nm以上の平均粒径のバインダーを使用する。一方、粒子径が200nmを超えると安定したコロイド状ではなくなるため、セラミックス原料との混合が不十分で、均一な中間成型体を得ることができない。 Particularly important in the technique of the present invention is the particle size of the ceramic powder as the main raw material used when the slurry raw material composed of the mixed particles is precipitated to obtain an intermediate molded product, and the particle size of the binder to be mixed with the main raw material. Is. In the present invention, a binder having an average particle size of 15 nm or more and 200 nm or less is used. Desirably, a binder having an average particle size of 20 nm or more is used. According to the study by the present inventors, if the particle size of the binder is less than 15 nm and the particle size of the binder is too small, when the solidified body is obtained by the method specified in the present invention, the colloidal fine particles of the binder are used during the drying of the solidified body. Particles move outward and gather in the peripheral portion, and the amount of binder inside the solidified body is reduced, and as a result, an intermediate molded body (preform) having uniform strength cannot be obtained. That is, when the solidified body composed of the ceramic powder as the main raw material having a relatively coarse particle size and the colloidal fine particles of the binder is dried, it is dried from the surroundings, and water or alcohol moves to the inside and is sequentially dried. However, if the particle size of the binder particles is too small, the binder also moves together, and the ceramic powder is not uniformly mixed with the binder particles. In order to prevent this phenomenon, in the present invention, a binder having an average particle size of 15 nm or more, preferably 20 nm or more is used. On the other hand, when the particle size exceeds 200 nm, the particle size is not stable and colloidal, so that the mixture with the ceramic raw material is insufficient and a uniform intermediate molded body cannot be obtained.

(中間成型体を得るための成型工程)
本発明の製造方法では、まず、下記のようにして固化体を得る。具体的には、本発明で規定する比較的粗い粒径のセラミックス粉末を主原料とし、該主原料に、上記した特定の範囲内の大きさの微細な粒子状のバインダーを添加混合してスラリー状にしたものを原料に用い、該混合粒子からなるスラリー状の原料を所望形状の容器内に充填し、前記混合粒子を沈降させ、スラリーに使用した水やアルコールなどの液を除き、前記容器内から、沈降物である固化体を取り出す。
(Molding process to obtain an intermediate molded body)
In the production method of the present invention, first, a solidified product is obtained as follows. Specifically, a ceramic powder having a relatively coarse particle size specified in the present invention is used as a main raw material, and a fine particle binder having a size within the above-mentioned specific range is added to and mixed with the main raw material to form a slurry. A slurry-like raw material composed of the mixed particles is filled in a container having a desired shape, the mixed particles are precipitated, and a liquid such as water or alcohol used for the slurry is removed from the container. The solidified body, which is a sediment, is taken out from the inside.

本発明で使用する、セラミックス粉末と、粒子状のバインダーとの混合粒子からなるスラリー状の原料は、一般的な混合ミル、撹拌機を用いて均一に混合することで容易に得ることができる。この際、セラミックス粉末に対する粒子状のバインダーの混合割合が、固形分換算で、セラミックス粉末100質量部に対して、無機成分が3質量部以上、20質量部以下の範囲で含有するようになる量で混合したものを使用する。望ましくは、5質量部以上、20質量部以下とするとよい。3質量部未満では、バインダーを添加した効果が十分に発揮できない。本発明者らの検討によれば、特に5質量部以上とした場合に、良好な沈降性が得られ、最終的に得られる中間成型体の強度をより十分なものにできる。一方、バインダーの使用量が20質量部を超えると、セラミックス本来の性能が十分発揮でないことと、得られる中間成型体の細孔が一部塞がれてしまうことが起こり、次の高圧でアルミニウム合金の溶湯を含浸させる高圧含浸工程で、アルミニウム含浸が阻害されて、良好な含浸を行うことができなくなる。 The slurry-like raw material used in the present invention, which is composed of mixed particles of a ceramic powder and a particulate binder, can be easily obtained by uniformly mixing them using a general mixing mill or a stirrer. At this time, the mixing ratio of the particulate binder to the ceramic powder is an amount in which the inorganic component is contained in the range of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the ceramic powder in terms of solid content. Use the mixture in. Desirably, it is 5 parts by mass or more and 20 parts by mass or less. If it is less than 3 parts by mass, the effect of adding the binder cannot be sufficiently exhibited. According to the study by the present inventors, good sedimentation property can be obtained, and the strength of the finally obtained intermediate molded body can be made more sufficient, particularly when the amount is 5 parts by mass or more. On the other hand, if the amount of the binder used exceeds 20 parts by mass, the original performance of the ceramics may not be sufficiently exhibited and the pores of the obtained intermediate molded body may be partially blocked, and aluminum may be used at the next high pressure. In the high-pressure impregnation step of impregnating the molten alloy, the aluminum impregnation is hindered and good impregnation cannot be performed.

本発明を構成するバインダーに好適なコロイダルシリカ及びコロイダルアルミナは、水又はアルコール中に分散した市販の製品を適宜に使用できる。例えば、質量基準で、固形分が10〜50%のものが使用できる。必要に応じて、水又はアルコールを添加してスラリーとして、セラミックス粉末に均一に混合する。水酸化アルミニウム微粉末は、粉末で市販されているため、水又はアルコールを添加し、粘度を調整してスラリー状にして、セラミックス粉末に均一に混合する。 As the colloidal silica and colloidal alumina suitable for the binder constituting the present invention, commercially available products dispersed in water or alcohol can be appropriately used. For example, one having a solid content of 10 to 50% on a mass basis can be used. If necessary, water or alcohol is added to form a slurry, which is uniformly mixed with the ceramic powder. Since the aluminum hydroxide fine powder is commercially available as a powder, water or alcohol is added to adjust the viscosity to form a slurry, which is uniformly mixed with the ceramic powder.

次に、上記のようにして得られる、均一に混合した主原料のセラミックス粉末と、微細な粒子状のバインダーとの混合物である原料スラリーを容器の中に充填し、混合粒子を沈降させる。その場合、振動機で容器全体を振動させると沈降が速く、また、沈降物は、かさ密度の高い所望の固化体になる。沈降に要する時間は、例えば、30分〜90分程度である。上記で使用する容器は特に限定されず、例えば、その後の操作を考えて、軽量で加工性に優れ、所望の形状とすることが可能な、汎用の発泡スチロール製の箱等を用いることができる。すなわち、沈降後、容器の上部の水やアルコール分(以下、液或いは水分と呼ぶ)を廃棄する必要があるが、軽量であるため廃棄操作が容易にできる。また、発泡スチロール製の容器を予め分解し易いようにしておくことも可能であり、容器を簡便に外して容器内の沈降物を乾燥させることができる。 Next, the raw material slurry, which is a mixture of the uniformly mixed main raw material ceramic powder obtained as described above and the fine particulate binder, is filled in a container, and the mixed particles are settled. In that case, when the entire container is vibrated with a vibrator, the sediment is quickly settled, and the sediment becomes a desired solidified body having a high bulk density. The time required for sedimentation is, for example, about 30 to 90 minutes. The container used above is not particularly limited, and for example, a general-purpose styrofoam box or the like that is lightweight, has excellent workability, and can be formed into a desired shape can be used in consideration of subsequent operations. That is, after settling, it is necessary to dispose of the water and alcohol content (hereinafter referred to as liquid or water) in the upper part of the container, but since it is lightweight, the disposal operation can be easily performed. It is also possible to make the styrofoam container easy to disassemble in advance, and the container can be easily removed to dry the sediment in the container.

また、上記に限定されず、本発明では、例えば、石膏のような吸水性の材料からなる容器を準備し、該容器に、混合粒子からなる原料スラリーを充填し、水分を容器に吸収させて、該容器内から、沈降物である固化体を得ることもできる。この場合も、振動機で容器全体を振動させて、沈降を速めることができるが、沈降させながら水分を容器に吸水させることができる。その後、容器を外して容器内の沈降物を乾燥させる。 Further, not limited to the above, in the present invention, for example, a container made of a water-absorbent material such as gypsum is prepared, the container is filled with a raw material slurry made of mixed particles, and water is absorbed in the container. , A solidified body which is a sediment can also be obtained from the inside of the container. In this case as well, the entire container can be vibrated by the vibrator to accelerate the settling, but the water can be absorbed into the container while settling. After that, the container is removed and the sediment in the container is dried.

上記したいずれの容器を使用した場合も、上記した原料スラリーを構成する混合粒子を沈降させる操作で特に重要になることは、主原料のセラミックス粉末の粒子径である。先に述べたように、セラミックス粉末の粒子径が3μm未満では、原料の沈降が不十分で、本発明で使用する固化体を得ることができない。 Regardless of which of the above containers is used, what is particularly important in the operation of precipitating the mixed particles constituting the above-mentioned raw material slurry is the particle size of the ceramic powder as the main raw material. As described above, if the particle size of the ceramic powder is less than 3 μm, the raw material does not settle sufficiently and the solidified material used in the present invention cannot be obtained.

上記したように、本発明の製造方法では、比較的に粒径の粗い主原料のセラミックス粉末と、本発明で規定する微細な粒子状のバインダーとをスラリー状の混合原料とし、得られた原料スラリーを容器内に入れて、必要に応じて振動機を用い、混合粒子を自重で沈降させ、水分(液)を除き、前記容器から沈降物である固化体を取り出す。次に、得られた固化体を、乾燥及び/又は仮焼して、セラミックス粉末を主原料とし、前記バインダーに由来する無機成分を特定量含有してなる中間成型体を得る。本発明を構成するバインダーは、得られる中間成型体に、バインダーに由来する特有の粒子径の無機成分を含有させるためのものであり、このように構成したことで、本発明の製造方法では、混合粒子を沈降させることで、セラミックス粉末を固化体にすることを可能にしている。そして、その後に、得られた固化体を乾燥及び/又は仮焼して得られる中間成型体を、次の高圧でアルミニウム合金の溶湯を含浸させる高圧含浸工程において、高圧に耐えられる十分な強度有するものになる。その結果、最終的に、セラミックスをアルミニウム合金に複合化させた場合に、本発明が目的としている、均一で、所望する性能が効果的に発現した、高品質のアルミニウム合金基複合材料を歩留まりよく得ることが実現できる。 As described above, in the production method of the present invention, a ceramic powder as a main raw material having a relatively coarse particle size and a fine particle-like binder specified in the present invention are used as a slurry-like mixed raw material, and the obtained raw material is obtained. The slurry is placed in a container, and if necessary, the mixed particles are settled by their own weight using a vibrator, water (liquid) is removed, and the solidified body which is a settling substance is taken out from the container. Next, the obtained solidified body is dried and / or calcined to obtain an intermediate molded body obtained by using ceramic powder as a main raw material and containing a specific amount of an inorganic component derived from the binder. The binder constituting the present invention is for allowing the obtained intermediate molded product to contain an inorganic component having a unique particle size derived from the binder, and with such a configuration, the production method of the present invention can be used. By precipitating the mixed particles, it is possible to solidify the ceramic powder. Then, after that, the intermediate molded body obtained by drying and / or calcining the obtained solidified body has sufficient strength to withstand high pressure in the next high-pressure impregnation step of impregnating the molten aluminum alloy with the molten aluminum alloy. Become a thing. As a result, when the ceramics are finally composited with the aluminum alloy, the high-quality aluminum alloy-based composite material, which is the object of the present invention and effectively exhibits the desired performance, has a high yield. It can be realized.

(中間成型体の作成方法)
本発明では、前記したセラミックス粉末を主原料とし、該主原料に、少なくとも上記に挙げたような無機系バインダーを添加混合させたスラリーを原料に用い、混合粒子を沈降させて、得られた沈降物である固化体を乾燥及び/又は仮焼して中間成型体を得る。
(How to make an intermediate molded body)
In the present invention, the ceramic powder described above is used as a main raw material, and a slurry obtained by adding and mixing at least the above-mentioned inorganic binder to the main raw material is used as a raw material, and the mixed particles are precipitated to obtain the precipitate. The solidified product is dried and / or calcined to obtain an intermediate molded product.

本発明者らの検討によれば、先に述べたような本発明で規定する比較的粗い粒径のセラミックス粉末を用い、本発明で規定する量で粒子状のバインダーを配合した原料をスラリーにし、混合粒子を沈降して得た固化体は、かさ密度が、容積率で約40%〜85%の高いものになるので、良好なアルミニウム合金基複合材料の製造が可能になる。すなわち、その後に乾燥・仮焼して得られる中間成型体も、かさ密度が、容積率で約40%〜85%程度の強度の十分なものになる。このため、次の高圧で、中間成型体にアルミニウム合金の溶湯を含浸させる高圧含浸工程において、良好な含浸を行うことができる。本発明者らの検討によれば、通常、50%〜60%、あるいはそれ以上のかさ密度の中間成型体を得ることは難しいが、本発明の方法によれば、容易に得ることができる。 According to the study by the present inventors, a raw material in which a ceramic powder having a relatively coarse particle size specified in the present invention as described above is used and a particulate binder is mixed in an amount specified in the present invention is made into a slurry. The solidified body obtained by precipitating the mixed particles has a high bulk density of about 40% to 85% by volume, so that a good aluminum alloy-based composite material can be produced. That is, the intermediate molded body obtained by subsequent drying and calcining also has a sufficient bulk density of about 40% to 85% in terms of floor area ratio. Therefore, good impregnation can be performed in the high-pressure impregnation step of impregnating the intermediate molded body with the molten aluminum alloy at the next high pressure. According to the studies by the present inventors, it is usually difficult to obtain an intermediate molded product having a bulk density of 50% to 60% or more, but it can be easily obtained by the method of the present invention.

本発明の製造方法では、上記のようにして沈降させることで得られる固化体を、乾燥及び/又は仮焼して、セラミックス粉末を主原料としてなる中間成型体を得る。通常、固化体の乾燥と仮焼は、同じ電気炉又は焼成炉で行う。無機系バインダーとして、コロイダルシリカ或いはコロイダルアルミナを使用した場合、これらのバインダーは、通常、数百℃以上の高温で強度を発揮するため、乾燥工程の終了だけではハンドリングできない場合がある。このため、乾燥後、引き続き、例えば、800℃以上の温度まで昇温し、数時間、この温度を保持して仮焼すれば、その後の高圧含浸工程に供するのに十分な強度の中間成型体を得ることができる。 In the production method of the present invention, the solidified body obtained by precipitating as described above is dried and / or calcined to obtain an intermediate molded body using ceramic powder as a main raw material. Usually, the solidified body is dried and calcined in the same electric furnace or firing furnace. When colloidal silica or colloidal alumina is used as the inorganic binder, these binders usually exhibit strength at a high temperature of several hundred degrees Celsius or higher, and therefore may not be handled only by the completion of the drying step. Therefore, after drying, for example, if the temperature is raised to 800 ° C. or higher and the temperature is maintained for several hours for calcining, the intermediate molded body having sufficient strength to be subjected to the subsequent high-pressure impregnation step. Can be obtained.

また、無機系バインダーとして、水酸化アルミニウムの微粉末を使用した場合は、水と架橋反応が起こり、100℃程度でバインダーの効果が得られる。しかし、アルミニウム合金の注湯温度で脱水反応が起こり、ガスが発生するので、無機系バインダーに水酸化アルミニウムの微粉末を使用した場合も、600℃以上の温度で固化体を仮焼して、本発明を構成する中間成型体を得ることが好ましい。 When fine powder of aluminum hydroxide is used as the inorganic binder, a cross-linking reaction occurs with water, and the effect of the binder can be obtained at about 100 ° C. However, a dehydration reaction occurs at the pouring temperature of the aluminum alloy and gas is generated. Therefore, even when fine powder of aluminum hydroxide is used as the inorganic binder, the solidified body is calcined at a temperature of 600 ° C. or higher. It is preferable to obtain an intermediate molded body constituting the present invention.

本発明のより好ましい製造方法では、上記した本発明を特徴づける中間成型体を得るための成型工程後に、得られた中間成型体を、鉄製容器に入れて容器と共に加温するか、中間成型体を鉄板に挟んで加温をした後、次の高圧含浸工程に供するようにする。しかし、必ずしも加温する必要はなく、本発明において重要なことは、前記したようにして得た中間成型体を用い、この十分な強度を有する中間成型体に、高圧でアルミニウム合金の溶湯を含浸させる構成とした点にある。 In a more preferable manufacturing method of the present invention, after the molding step for obtaining the intermediate molded body characteristic of the present invention described above, the obtained intermediate molded body is placed in an iron container and heated together with the container, or the intermediate molded body is heated. Is sandwiched between iron plates and heated, and then subjected to the next high-pressure impregnation step. However, it is not always necessary to heat the mixture, and what is important in the present invention is to use the intermediate molded body obtained as described above and impregnate the intermediate molded body having sufficient strength with a molten aluminum alloy at high pressure. The point is that it is configured to be used.

本発明の製造方法では、加温した中間成型体を入れた鉄製容器又は加温した中間成型体を、高圧含浸工程で用いるアルミニウム合金の溶湯を注ぐための高圧プレス容器に入れて、高圧含浸工程を行う。具体的には、先のようにして得た中間成型体を、簡単な鉄箱に入れるか、鉄板に挟んで、数百度℃で加温して、高圧含浸工程で使用する高圧プレス容器の中に入れ、この状態の高圧プレス容器にアルミニウム合金の溶湯を注湯し、その後に高圧プレスして、中間成型体内にアルミニウム合金の溶湯を浸透させる。このようにすることで、前記した、セラミックス粉末とアルミニウム合金の高品質の複合材料が簡便に製造される。本発明の製造方法で得られた複合材料には、従来の製法で見られたアルミニウムの流れ痕跡や、亀裂が入ったアルミニウム筋が見られない、均一なセラミックス/アルミニウムの複合材料になる。 In the production method of the present invention, the iron container containing the heated intermediate molded body or the heated intermediate molded body is placed in a high-pressure press container for pouring the molten aluminum alloy used in the high-pressure impregnation step, and the high-pressure impregnation step is performed. I do. Specifically, the intermediate molded body obtained as described above is placed in a simple iron box or sandwiched between iron plates and heated at several hundred degrees Celsius in a high-pressure press container used in the high-pressure impregnation process. The molten aluminum alloy is poured into the high-pressure press container in this state, and then the molten aluminum alloy is permeated into the intermediate molded body by high-pressure pressing. By doing so, the above-mentioned high-quality composite material of ceramic powder and aluminum alloy can be easily produced. The composite material obtained by the production method of the present invention is a uniform ceramic / aluminum composite material in which the aluminum flow traces and cracked aluminum streaks seen in the conventional production method are not observed.

本発明の製造方法を構成する高圧含浸工程では、アルミニウム合金の融点よりも高い温度で溶融した溶湯に、200kg/cm2以上、具体的には、1000〜3000kg/cm2の圧力をかけることで、スラリー状の混合原料を用いて上記のようにして得た、かさ密度が容積率で40〜85%の中間成型体に存在する気孔に、強制的にアルミニウム合金の溶湯を圧入・含浸し、その後冷却することにより、アルミニウム合金中にセラミックス粉末が均一に分布(分散)したアルミニウム合金基複合材料を得る。 The high pressure impregnation steps constituting the production method of the present invention, the molten metal melted at a temperature higher than the melting point of the aluminum alloy, 200 kg / cm 2 or more, specifically, by applying a pressure of 1000~3000kg / cm 2 , The pores existing in the intermediate molded body having a bulk density of 40 to 85% by volume, which were obtained as described above using a slurry-like mixed raw material, were forcibly press-fitted and impregnated with a molten aluminum alloy. Then, by cooling, an aluminum alloy-based composite material in which the ceramic powder is uniformly distributed (dispersed) in the aluminum alloy is obtained.

次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。なお、文中「部」及び「%」とあるのは、特に断りのない限り質量基準である。
[実施例1]
(中間成型体の作製)
中心粒径25μmのホウ酸アルミニウム粉末を2.4kg、平均粒径25nmのシリカが懸濁したコロイダルシリカのSi−50(商品名、日揮触媒化成社製、シリカ分:48%)を0.5kg、水1.3kgをポットミルで1時間混合して、混合粒子からなるスラリー状にした原料を調製した。以下、これを原料スラリーと呼ぶ。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, "part" and "%" in the text are based on mass unless otherwise specified.
[Example 1]
(Making an intermediate molded body)
2.4 kg of aluminum borate powder with a central particle size of 25 μm and 0.5 kg of colloidal silica Si-50 (trade name, manufactured by Nikki Catalyst Kasei Co., Ltd., silica content: 48%) in which silica with an average particle size of 25 nm is suspended. , 1.3 kg of water was mixed in a pot mill for 1 hour to prepare a raw material in the form of a slurry composed of mixed particles. Hereinafter, this is referred to as a raw material slurry.

上記で得られた原料スラリーを、発泡スチロール製の箱に充填して振動機の上で60分間沈降させた。振動後、上部の水分を除去し、箱を壊して外側の発泡スチロールを外して箱内に沈降・固化したことで形成された固化体を得た。これを200℃まで30℃/hrの速度で昇温後、200℃の温度を2時間維持して乾燥し、続いて、100℃/hrの速度で1100℃まで昇温し、1000℃の温度を4時間維持して焼成して中間成型体を得た。得られた中間成型体の大きさは200mm×300mm×60mmであり、重さと形状から求めた中間成型体のかさ密度は、容積率で約40%であった。 The raw material slurry obtained above was filled in a styrofoam box and settled on a vibrator for 60 minutes. After the vibration, the water in the upper part was removed, the box was broken, the outer styrofoam was removed, and the solidified body was obtained by settling and solidifying in the box. This is heated to 200 ° C. at a rate of 30 ° C./hr, maintained at a temperature of 200 ° C. for 2 hours to dry, and then heated to 1100 ° C. at a rate of 100 ° C./hr to a temperature of 1000 ° C. Was maintained for 4 hours and fired to obtain an intermediate molded body. The size of the obtained intermediate molded body was 200 mm × 300 mm × 60 mm, and the bulk density of the intermediate molded body obtained from the weight and shape was about 40% in terms of floor area ratio.

(複合体の作製)
上記で得た中間成型体を300mm×300mの鉄板で挟み、焼成炉で500℃に予熱した。そして、予めガスバーナーで約300℃に予熱した高圧プレス機の容器内に、上記のように加温した中間成型体を装填した。次に、高圧プレス容器内に、650℃で溶解させたアルミニウム合金番号AC3A(鋳物用、Al−Si系、Si量:11.5%)を注湯した。その後、高圧プレス機で、約1000kg/cm2の高圧で加圧し、20分間保持した後、取り出して高圧加圧体を得た。
(Preparation of complex)
The intermediate molded body obtained above was sandwiched between iron plates of 300 mm × 300 m and preheated to 500 ° C. in a firing furnace. Then, the intermediate molded body heated as described above was loaded into the container of the high-pressure press machine preheated to about 300 ° C. with a gas burner. Next, aluminum alloy No. AC3A (for casting, Al—Si system, Si amount: 11.5%) melted at 650 ° C. was poured into a high-pressure press container. Then, it was pressurized with a high pressure press machine at a high pressure of about 1000 kg / cm 2 , held for 20 minutes, and then taken out to obtain a high pressure pressurizer.

上記で得た高圧加圧体を冷却後、金属切断機のバンドソーで取り出し、フライス盤で表面を加工して、表面及び内部を観察した。その結果、アルミニウムの流れ痕や、亀裂が入ったアルミニウム筋が全く見られず、均一な複合体であった。図1は、得られた複合体の電子顕微鏡による拡大写真の図である。 After cooling the high-pressure pressurizing body obtained above, it was taken out with a band saw of a metal cutting machine, the surface was processed with a milling machine, and the surface and the inside were observed. As a result, no aluminum flow marks or cracked aluminum streaks were observed, and the composite was uniform. FIG. 1 is an enlarged photograph of the obtained complex by an electron microscope.

[実施例2]
中心粒子径が60μmの炭化ケイ素(SiC)粉末を2.1kgと、中心粒径が14μmのSiC粉末0.9kgに、実施例1で使用したと同じ平均粒径25nmのコロイダルシリカ溶液のSi−50(商品名、日揮触媒化成社製、シリカ分48%)を0.25kgに、水1.2kgを加え、ポットミルで1時間混合して、混合粒子からなる原料スラリーを調製した。
[Example 2]
To 2.1 kg of silicon carbide (SiC) powder having a central particle size of 60 μm and 0.9 kg of SiC powder having a central particle size of 14 μm, Si- of a colloidal silica solution having the same average particle size of 25 nm as used in Example 1 50 (trade name, manufactured by Nikki Catalyst Kasei Co., Ltd., silica content 48%) was added to 0.25 kg, 1.2 kg of water was added, and the mixture was mixed with a pot mill for 1 hour to prepare a raw material slurry composed of mixed particles.

上記で得られた原料スラリーを、内寸が200mm×200mm×深さ100mmの石膏製の容器に充填し、振動しながら粒子を沈降させ、同時に水分を石膏型に吸収させた。約20分で、混合粒子を沈降固化させて固化体を得た。石膏型を壊して外して石膏型から固化体を得、実施例1で行ったと同様にして、乾燥・焼成して中間成型体を得た。得られた中間成型体のかさ密度は、容積率で約60%であった。 The raw material slurry obtained above was filled in a gypsum container having an inner size of 200 mm × 200 mm × depth of 100 mm, the particles were settled while vibrating, and at the same time, water was absorbed into a gypsum mold. In about 20 minutes, the mixed particles were precipitated and solidified to obtain a solidified body. The gypsum mold was broken and removed to obtain a solidified body from the gypsum mold, which was dried and fired in the same manner as in Example 1 to obtain an intermediate molded body. The bulk density of the obtained intermediate molded product was about 60% by floor area ratio.

上記で得た中間成型体を用い、実施例1と同じ材料及び方法で、溶解したアルミニウム合金を高圧含浸して高圧加圧体を得た。得られた高圧加圧体を冷却後、実施例1と同様の加工をして、表面及び内部を観察した。その結果、得られたものは、実施例1の場合と同様に、アルミニウム流れ痕や、アルミニウム筋が見られない均一な複合材料であることが確認できた。 Using the intermediate molded body obtained above, a high-pressure pressurized body was obtained by impregnating the molten aluminum alloy with high pressure using the same materials and methods as in Example 1. After cooling the obtained high-pressure pressurizing body, the same processing as in Example 1 was performed, and the surface and the inside were observed. As a result, it was confirmed that the obtained product was a uniform composite material in which no aluminum flow marks or aluminum streaks were observed, as in the case of Example 1.

[比較例1](中間成型体を使用しない比較例)
(中間成型体を使用しない比較例)
実施例1で使用したと同じ粒径25μmのホウ酸アルミニウム粉末4kgを、内寸200mm×200mm×深さ100mmの鉄箱に入れ、振動をかけて充填した。得られた充填体を実施例1の場合と同様の温度で予熱して、鉄箱ごと高圧プレス容器内に装填した。そして、実施例1で使用したと同じアルミニウム合金を用い、溶解した合金を高圧プレス容器内に注湯後、高圧プレスして高圧含浸して加圧体を得た。鉄箱から加圧体を取り出す作業後に、実施例で行ったと同様にして、得られた加圧体の表面及び内部を観察した。その結果、アルミニウムの流れ痕と、アルミニウム筋が多数見られた。図2は、その電子顕微鏡による拡大写真の図である。
[Comparative Example 1] (Comparative Example without using an intermediate molded body)
(Comparative example without using an intermediate molded body)
4 kg of aluminum borate powder having the same particle size of 25 μm as used in Example 1 was placed in an iron box having an inner size of 200 mm × 200 mm × depth of 100 mm and filled with vibration. The obtained filler was preheated at the same temperature as in Example 1 and loaded together with the iron box into the high-pressure press container. Then, using the same aluminum alloy used in Example 1, the melted alloy was poured into a high-pressure press container, and then high-pressure pressed to obtain a pressurized body. After the work of taking out the pressurizing body from the iron box, the surface and the inside of the obtained pressurizing body were observed in the same manner as in the examples. As a result, a lot of aluminum flow marks and aluminum streaks were observed. FIG. 2 is a magnified photograph of the electron microscope.

[比較例2](コロイダルシリカの粒径が範囲外の比較例)
実施例1と同様の、中心粒径25μmのホウ酸アルミニウム2.4kgに、平均粒子径が5nmのコロイダルシリカ溶液Si−550(商品名、日揮触媒化成社製、シリカ分20%)1.0kgと、水0.5kを、ポットミルで1時間混合して、混合粒子からなるスラリー状にした原料を調製した。そして、実施例1と同様に、調製したスラリー原料を発泡スチロール製の箱に充填して振動機の上で60分間沈降させた。その後、実施例1と同様の操作を行って中間成型体を得た。得られた中間成型体を用いて実施例1と同様にして、アルミニウムを含浸させて高圧加圧体を得た。得られた高圧加圧体の内部外部を観察したところ、外部(表面)にはアルミニウム筋がみられ、内部には、少量のアルミニウム流痕が見られた。上記したと同様な工程で得た中間成型体を割って観察したところ、中間成型体の外周部はコロイダルシリカが多く硬くなっているが、中心部はバインダーが少なく、手で触って容易にくずれる位にもろいことが確認された。
[Comparative Example 2] (Comparative Example in which the particle size of colloidal silica is out of the range)
Similar to Example 1, 2.4 kg of aluminum borate having a central particle size of 25 μm and 1.0 kg of colloidal silica solution Si-550 (trade name, manufactured by Nikki Catalyst Kasei Co., Ltd., silica content 20%) having an average particle size of 5 nm. And 0.5 k of water were mixed in a pot mill for 1 hour to prepare a raw material in the form of a slurry composed of mixed particles. Then, in the same manner as in Example 1, the prepared slurry raw material was filled in a styrofoam box and settled on a vibrator for 60 minutes. Then, the same operation as in Example 1 was carried out to obtain an intermediate molded body. The obtained intermediate molded body was impregnated with aluminum in the same manner as in Example 1 to obtain a high-pressure pressurized body. When the inside and outside of the obtained high-pressure pressurizing body were observed, aluminum streaks were observed on the outside (surface), and a small amount of aluminum flow marks were observed on the inside. When the intermediate molded body obtained in the same process as described above was cracked and observed, the outer peripheral portion of the intermediate molded body contained a large amount of colloidal silica and was hard, but the central portion had a small amount of binder and was easily broken by touch. It was confirmed that it was fragile.

<実施例で得られたアルミニウム合金基複合材料の特徴>
図1、2に示されているように、本発明の実施例の製造方法で得られたアルミニウム合金基複合材料(図1参照)は、従来の製造方法で得られた材料(図2参照)と異なり、アルミニウム合金マトリックス中に強化材であるセラミックス粉末が均一に分散、分布してなるものであることから、本発明者らは、このことによって生じる材料特性の違いについて検討を行った。その結果、まず、母材のアルミニウムの振動減衰特性は、振動がなかなか減衰しないものであり、また、従来の製造方法で得られたアルミニウム基複合材料は、減衰波形に多くのノイズが生じるものになっていたのに対し、本発明の実施例の製造方法で得たセラミックス粉末が均一に分散、分布してなるアルミニウム合金基複合材料は、振動減衰特性が、アルミニウムの振動減衰特性と比べて減衰が早くなり、加えて、減衰波形にノイズが少ない、という従来の材料では達成できていない有用な特性を有するものになることを確認した。本発明者らは、その理由を、従来の製造方法で得られたアルミニウム基複合材料は、図2に示した通り、組織内の結合が不十分な部分があり、結合強度が全体として不均一になっており、このことが原因して減衰波形に多くのノイズが生じるものになっていたのに対し、本発明の製造方法で得た複合材料では、上記の点が改善できた結果、上記した優れた特性を有するものになったと考えている。
<Characteristics of aluminum alloy-based composite material obtained in Examples>
As shown in FIGS. 1 and 2, the aluminum alloy-based composite material (see FIG. 1) obtained by the production method of the embodiment of the present invention is a material obtained by the conventional production method (see FIG. 2). Unlike this, the ceramic powder as a reinforcing material is uniformly dispersed and distributed in the aluminum alloy matrix, and the present inventors have investigated the difference in material properties caused by this. As a result, first of all, the vibration damping characteristic of the base material aluminum is such that the vibration is not easily damped, and the aluminum-based composite material obtained by the conventional manufacturing method causes a lot of noise in the damping waveform. On the other hand, in the aluminum alloy-based composite material in which the ceramic powder obtained by the production method of the embodiment of the present invention is uniformly dispersed and distributed, the vibration damping characteristic is attenuated as compared with the vibration damping characteristic of aluminum. In addition, it was confirmed that the damping waveform has useful characteristics that cannot be achieved by conventional materials, such as less noise. The reason for this is that the aluminum-based composite material obtained by the conventional manufacturing method has a part where the bond in the structure is insufficient and the bond strength is non-uniform as a whole, as shown in FIG. As a result of improving the above points, the composite material obtained by the production method of the present invention causes a lot of noise in the decay waveform due to this. We believe that it has excellent characteristics.

本発明によって提供されるアルミニウム合金基複合材料は、上記の特性に加え、従来技術で得られていたアルミニウム合金基複合材料に比較して、軽量で、高ヤング率、高熱伝導性及び高耐摩耗性、易加工性を有するものにできることから、高い機能性が求められる、例えば、ボンディングマシンのX−Yテーブル用や、電気自動車のディスクブレーキローター、半導体製造装置のロボットアーム用などの材料として特に好適であり、工業上の極めて有用な材料になる。

In addition to the above properties, the aluminum alloy-based composite material provided by the present invention is lighter in weight, has a higher Young's modulus, higher thermal conductivity, and higher wear resistance than the aluminum alloy-based composite material obtained in the prior art. High functionality is required because it can be made easily and easily processed, for example, as a material for XY tables of bonding machines, disc brake rotors of electric vehicles, robot arms of semiconductor manufacturing equipment, etc. It is a suitable and extremely useful material in industry.

Claims (7)

アルミニウム合金の中にセラミックス粉末が複合されたアルミニウム合金基複合材料の製造方法であって、
中心粒径が3μm以上であるセラミックス粉末を主原料とし、該主原料に、平均粒径が15nm以上、200nm以下の粒子状のバインダーを混合してスラリー状にしたものを原料に用い、該混合粒子からなるスラリー状の原料を所望形状の容器内に充填し、前記混合粒子を沈降させ、液を除き、前記容器から、沈降物である固化体を取り出し、該固化体を乾燥及び/又は仮焼して、セラミックス粉末を主原料とし、前記バインダーに由来する無機成分を含有してなる中間成型体を得るための成型工程と、
前記成型工程で得た中間成型体に、高圧でアルミニウム合金の溶湯を含浸させる高圧含浸工程とを有し、
前記バインダーが、前記成型工程で得られる中間成型体に無機成分を含有させるための無機系バインダーを含み、前記成型工程で、該無機系バインダーを、固形分換算で、前記主原料であるセラミックス粉末100質量部に対して、前記無機成分が3質量部以上、20質量部以下の範囲で含有するようになる量で混合することを特徴とするアルミニウム合金基複合材料の製造方法。
A method for manufacturing an aluminum alloy-based composite material in which ceramic powder is composited in an aluminum alloy.
A ceramic powder having a central particle size of 3 μm or more is used as a main raw material, and a slurry having a granular binder having an average particle size of 15 nm or more and 200 nm or less is mixed with the main raw material as a raw material, and the mixture is used. A slurry-like raw material composed of particles is filled in a container having a desired shape, the mixed particles are settled, a liquid is removed, a solidified body which is a sediment is taken out from the container, and the solidified body is dried and / or temporarily. A molding process for obtaining an intermediate molded product obtained by baking using ceramic powder as a main raw material and containing an inorganic component derived from the binder.
It has a high-pressure impregnation step of impregnating the intermediate molded body obtained in the molding step with a molten aluminum alloy at high pressure.
The binder contains an inorganic binder for incorporating an inorganic component into the intermediate molded body obtained in the molding step, and in the molding step, the inorganic binder is used as a solid content of the ceramic powder as the main raw material. A method for producing an aluminum alloy-based composite material, which comprises mixing the inorganic component in an amount of 3 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass.
前記無機系バインダーが、コロダルシリカ、コロイダルアルミナ及び水酸化アルミニウム微粉末からなる群から選択される少なくともいずれかである請求項1に記載のアルミニウム合金基複合材料の製造方法。 The method for producing an aluminum alloy-based composite material according to claim 1, wherein the inorganic binder is at least one selected from the group consisting of corodal silica, colloidal alumina, and fine aluminum hydroxide powder. 前記セラミックス粉末の中心粒径が、5μm以上、150μm以下である請求項1又は2に記載のアルミニウム合金基複合材料の製造方法。 The method for producing an aluminum alloy-based composite material according to claim 1 or 2, wherein the central particle size of the ceramic powder is 5 μm or more and 150 μm or less. 前記成型工程で得た中間成型体は、かさ密度が容積率で40〜85%の範囲内にある請求項1〜3のいずれか1項に記載のアルミニウム合金基複合材料の製造方法。 The method for producing an aluminum alloy-based composite material according to any one of claims 1 to 3, wherein the intermediate molded body obtained in the molding step has a bulk density in the range of 40 to 85% in terms of floor area ratio. 前記容器が、吸水性を有する材料からなる請求項1〜4のいずれか1項に記載のアルミニウム合金基複合材料の製造方法。 The method for producing an aluminum alloy-based composite material according to any one of claims 1 to 4, wherein the container is made of a material having water absorption. 前記スラリー状にする際に、水又はアルコールを用いる請求項1〜5のいずれか1項に記載のアルミニウム合金基複合材料の製造方法。 The method for producing an aluminum alloy-based composite material according to any one of claims 1 to 5, wherein water or alcohol is used to form the slurry. 前記成型工程後に、前記中間成型体を鉄製容器に入れて容器と共に加温するか、前記中間成型体を鉄板に挟んで加温した後、加温した中間成型体を入れた鉄製容器又は加温した中間成型体を、前記高圧含浸工程で用いるアルミニウム合金の溶湯を注ぐための高圧プレス容器に入れて、前記高圧含浸工程を行う請求項1〜6のいずれか1項に記載のアルミニウム合金基複合材料の製造方法。 After the molding step, the intermediate molded body is placed in an iron container and heated together with the container, or the intermediate molded body is sandwiched between iron plates and heated, and then the iron container or heating containing the heated intermediate molded body is placed. The aluminum alloy-based composite according to any one of claims 1 to 6, wherein the intermediate molded body is placed in a high-pressure press container for pouring the molten aluminum alloy used in the high-pressure impregnation step, and the high-pressure impregnation step is performed. How to make the material.
JP2019104139A 2019-06-04 2019-06-04 Manufacturing method of aluminum alloy-based composite material Active JP6821207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104139A JP6821207B2 (en) 2019-06-04 2019-06-04 Manufacturing method of aluminum alloy-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104139A JP6821207B2 (en) 2019-06-04 2019-06-04 Manufacturing method of aluminum alloy-based composite material

Publications (2)

Publication Number Publication Date
JP2020196933A true JP2020196933A (en) 2020-12-10
JP6821207B2 JP6821207B2 (en) 2021-01-27

Family

ID=73647711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104139A Active JP6821207B2 (en) 2019-06-04 2019-06-04 Manufacturing method of aluminum alloy-based composite material

Country Status (1)

Country Link
JP (1) JP6821207B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102162A (en) * 1996-09-27 1998-04-21 Nippon Cement Co Ltd Production of metal-ceramic composite material
WO2017022012A1 (en) * 2015-07-31 2017-02-09 電気化学工業株式会社 Aluminum-silicon-carbide composite and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10102162A (en) * 1996-09-27 1998-04-21 Nippon Cement Co Ltd Production of metal-ceramic composite material
WO2017022012A1 (en) * 2015-07-31 2017-02-09 電気化学工業株式会社 Aluminum-silicon-carbide composite and method of manufacturing same

Also Published As

Publication number Publication date
JP6821207B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JPH05504599A (en) Shape containing inorganic short fibers
US8303889B2 (en) Method for making a SiC based ceramic porous body
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
JP6821207B2 (en) Manufacturing method of aluminum alloy-based composite material
JP5601833B2 (en) Method for producing metal-ceramic composite material
JP6837685B2 (en) Manufacturing method of aluminum alloy-based composite material
CN112645713B (en) High-strength and high-toughness ceramic composite material and preparation method thereof
JP2008207238A (en) Casting mold
KR102394020B1 (en) Structure for producing cast
JPH11172348A (en) Metal-ceramics composite and its production
JP6984926B1 (en) Method for manufacturing metal-based composite material and method for manufacturing preform
JPH11157965A (en) Metal-ceramic composite material and its production
JP3628198B2 (en) Preform for metal matrix composite and manufacturing method thereof
JP4217278B2 (en) Method for producing metal-ceramic composite material
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
RU2730092C1 (en) Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics
CN112778006B (en) Light mullite sagger and preparation method and application thereof
JP4217279B2 (en) Method for producing metal-ceramic composite material
JP2012144389A (en) SiC/Si COMPOSITE MATERIAL
JP2002194456A (en) Method for manufacturing large-size thick-walled ceramics/metal composite material
JPH1129831A (en) Preform for metal matrix composite, and its production
JP3828622B2 (en) Method for producing metal-ceramic composite material
JPH1180860A (en) Production of metal-ceramics composite material
JPH1143728A (en) Production of metal-ceramics composite
JP2011057535A (en) Porous ceramic body and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200907

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6821207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250