JPH10102162A - Production of metal-ceramic composite material - Google Patents
Production of metal-ceramic composite materialInfo
- Publication number
- JPH10102162A JPH10102162A JP27522396A JP27522396A JPH10102162A JP H10102162 A JPH10102162 A JP H10102162A JP 27522396 A JP27522396 A JP 27522396A JP 27522396 A JP27522396 A JP 27522396A JP H10102162 A JPH10102162 A JP H10102162A
- Authority
- JP
- Japan
- Prior art keywords
- preform
- metal
- composite material
- ceramic composite
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 71
- 239000002131 composite material Substances 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000000843 powder Substances 0.000 claims abstract description 86
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 47
- 239000011230 binding agent Substances 0.000 claims abstract description 39
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000000084 colloidal system Substances 0.000 claims abstract description 23
- 239000003381 stabilizer Substances 0.000 claims abstract description 21
- 239000008119 colloidal silica Substances 0.000 claims abstract description 19
- 238000010304 firing Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 14
- 239000012779 reinforcing material Substances 0.000 claims description 39
- 229910045601 alloy Inorganic materials 0.000 claims description 29
- 239000000956 alloy Substances 0.000 claims description 29
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 21
- 238000000465 moulding Methods 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 238000005470 impregnation Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 10
- 239000002612 dispersion medium Substances 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 abstract description 7
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 1
- 229910004742 Na2 O Inorganic materials 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 26
- 238000011049 filling Methods 0.000 description 23
- 238000005452 bending Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 238000005245 sintering Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229920002379 silicone rubber Polymers 0.000 description 7
- 239000004945 silicone rubber Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 239000002518 antifoaming agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 4
- 229910001593 boehmite Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- 238000001354 calcination Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000007657 chevron notch test Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- -1 ductility Chemical class 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 125000000914 phenoxymethylpenicillanyl group Chemical group CC1(S[C@H]2N([C@H]1C(=O)*)C([C@H]2NC(COC2=CC=CC=C2)=O)=O)C 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、金属に強化材を複
合させる複合材料に関し、特に強化材にセラミックスを
用いる金属−セラミックス複合材料の製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material comprising a metal and a reinforcing material, and more particularly to a method for producing a metal-ceramic composite material using ceramics as the reinforcing material.
【0002】[0002]
【従来の技術】セラミックス繊維または粒子で強化され
た金属−セラミックスの複合材料は、金属とセラミック
スの両方の特性を兼ね備えており、例えばこの複合材料
は、剛性、低熱膨張性、耐摩耗性等のセラミックスの優
れた特性と、延性、高靱性、高熱伝導性等の金属の優れ
た特性を備えている。このように、従来から難しいとさ
れていたセラミックスと金属の両方の特性を備えている
ため、機械装置メーカ等の業界から次世代の材料として
注目されている。2. Description of the Related Art A metal-ceramic composite material reinforced with ceramic fibers or particles has both characteristics of a metal and a ceramic. For example, this composite material has rigidity, low thermal expansion property, abrasion resistance and the like. It has excellent properties of ceramics and excellent properties of metals such as ductility, high toughness, and high thermal conductivity. As described above, since it has both the characteristics of ceramics and metal, which have been considered difficult, it has been drawing attention as a next-generation material from industries such as mechanical device manufacturers.
【0003】この複合材料、特に金属としてアルミニウ
ムをマトリックスとする複合材料の作製方法は、粉末冶
金法、圧力鋳造法、真空鋳造法等の作製法がある。これ
らの内、粉末冶金法では、粉末状の金属に粒状のあるい
はウィスカー状もしくはファイバー状のセラミックスを
強化材として混合し、成形し、その成形体を非加圧、あ
るいは加圧下で焼成し作製していた。しかしこの方法で
作製された複合材料中の強化材の粉末充填率は、高くな
ると、言い換えれば強化材が多くなると焼結し難くなる
ため、粉末充填率は、ウィスカーやファイバー状の繊維
状のもので最大25%程度であり、粒子状のもので最大
40%程度であった。[0003] Methods for producing this composite material, particularly a composite material using aluminum as a matrix as a metal, include powder metallurgy, pressure casting, and vacuum casting. Among these, in powder metallurgy, powdered metal is mixed with granular or whisker-like or fiber-like ceramics as a reinforcing material, molded and fired under non-pressurized or pressurized conditions. I was However, when the powder filling rate of the reinforcing material in the composite material produced by this method is high, in other words, when the reinforcing material increases, sintering becomes difficult, so the powder filling rate is whisker or fibrous fibrous. The maximum was about 25%, and the maximum was about 40% in the form of particles.
【0004】前記粉末冶金法の他の圧力鋳造法、真空鋳
造法においても、溶解している金属がセラミックス粒子
に濡れ難いため、強化材を多くすると強化材の均一な混
合が難しくなり、強化材の粉末充填率は最大でやはり高
々40%程度であった。このように、従来の複合材料の
作製方法では強化材の含有量が低く剛性が小さいため、
剛性の高いものが要求される用途には用いることが難し
かった。そのため最近では強化材の粉末充填率を高くす
べく、強化材であるセラミックス繊維または粒子で構成
されたプリフォームをあらかじめ作製し、そのプリフォ
ームに基材である金属を含浸させる含浸法が採られてい
る。[0004] In the pressure casting method and vacuum casting method other than the powder metallurgy method, the molten metal is hard to wet the ceramic particles. Therefore, when the reinforcing material is increased, it is difficult to uniformly mix the reinforcing material. At the maximum was also about 40% at most. Thus, in the conventional method for producing a composite material, the content of the reinforcing material is low and the rigidity is small,
It has been difficult to use it for applications requiring high rigidity. Therefore, recently, in order to increase the powder filling rate of the reinforcing material, an impregnation method has been adopted in which a preform made of ceramic fibers or particles as the reinforcing material is prepared in advance, and the preform is impregnated with the metal as the base material. ing.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、この方
法も強化材の粉末充填率を60%以上と高くしても、プ
リフォームの強度が曲げ強度で1MPa未満と小さくな
るため、金属を含浸させる途中でプリフォームに亀裂や
割れが生じて複合化しなかったり、亀裂部分に金属が入
り込んで複合化が不均一となるなどの問題があった。ま
た、セラミックス粒子を結合するバインダーの種類や量
を代えてプリフォームの強度を上げることも試みられて
いるが、強度を上げるとプリフォームに閉気孔が生じて
金属の含浸に障害となり、複合化できないという問題も
あった。However, even in this method, even when the powder filling ratio of the reinforcing material is increased to 60% or more, the strength of the preform is reduced to less than 1 MPa in bending strength, so that the metal is impregnated during the impregnation. Thus, there were problems such as cracks and cracks occurring in the preform, which did not form a composite, and incorporation of metal into the cracks, resulting in non-uniform composite formation. Attempts have also been made to increase the strength of the preform by changing the type and amount of the binder that binds the ceramic particles, but increasing the strength creates closed pores in the preform, hindering the impregnation of the metal, resulting in a composite. There was also a problem that it could not be done.
【0006】本発明は、上述した含浸法による金属−セ
ラミックス複合材料の製造方法が有する課題に鑑みなさ
れたものであって、その目的は、粉末充填率が高く、か
つ金属を含浸するに十分な強度を有するプリフォームか
ら成る金属−セラミックス複合材料の製造方法を提供す
ることにある。The present invention has been made in view of the problems of the above-described method for producing a metal-ceramic composite material by the impregnation method, and has as its object to provide a high powder filling rate and sufficient metal impregnation. An object of the present invention is to provide a method for producing a metal-ceramic composite material comprising a preform having strength.
【0007】[0007]
【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、強化材であるセラミ
ックス粒子を結合するバインダーにコロイダルシリカ
液、アルミナ水和物のコロイド液、コロイダルシリカ液
とアルミナ水和物のコロイド液との混合液、微粉のSi
C粉末もしくは微粉のAl2O3粉末を用いれば、粉末充
填率が高く、かつ金属を含浸するに十分な強度を有する
プリフォームとすることができ、そのプリフォームを用
いて問題なく金属−セラミックス複合材料を得ることが
でき、さらに前記したバインダーの種類を選ぶことによ
り異なるレベルの曲げ強度や破壊靱性値を有した金属−
セラミックス複合材料が得られるとの知見を得て本発明
を完成した。以下詳細に説明する。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, colloidal silica liquid, colloid liquid of alumina hydrate, colloidal silica Mixed liquid of silica liquid and colloid liquid of alumina hydrate, fine powder Si
If C powder or fine powder of Al 2 O 3 powder is used, a preform having a high powder filling rate and sufficient strength for impregnating a metal can be obtained. A composite material can be obtained, and a metal having different levels of bending strength and fracture toughness can be obtained by selecting the type of the binder.
The present invention was completed based on the knowledge that a ceramic composite material was obtained. This will be described in detail below.
【0008】プリフォームの原料として用いるセラミッ
クス粉末としては、1.0〜100μmの平均粒径を有
するSiCまたはAl2O3粉末とした。これ以外のセラ
ミックス粉末、例えばシリカ、ムライト等の酸化物、窒
化けい素、窒化アルミニウム、窒化チタン、窒化ジルコ
ニウム等の窒化物、炭化チタン、炭化ボロン等の炭化
物、ホウ化ジルコニウム、ホウ化チタン等のホウ化物等
も用いることができるが、SiC粉末としたのは、Si
C粉末を用いた複合体の熱膨張率が5〜10-6/℃、熱
伝導度が150w/mKと低熱膨張性と高熱伝導性を兼
ね備えており、機械部品として付加価値の高いものとな
ることによる。他方Al2O3粉末としたのは、安価でか
つ耐プラズマ性が高く、また高強度等の特性に優れてい
ることによる。それらの粒径を1.0〜100μmとし
たのは、平均粒径が1.0μmより小さいと粒子と粒子
との間隔が狭くなり、金属の含浸に支障を来たし、10
0μmより大きいとセラミックス粒子の充填率が55%
より低くなりプリフォームの強度が低下して好ましくな
い。The ceramic powder used as a raw material for the preform was SiC or Al 2 O 3 powder having an average particle size of 1.0 to 100 μm. Other ceramic powders, for example, oxides such as silica and mullite, silicon nitride, nitrides such as aluminum nitride, titanium nitride, zirconium nitride, titanium carbide, carbides such as boron carbide, zirconium boride, titanium boride, etc. Borides and the like can also be used.
The composite using C powder has a coefficient of thermal expansion of 5 to 10 -6 / ° C and a thermal conductivity of 150 w / mK, which has both low thermal expansion and high thermal conductivity, making it a high value-added machine part. It depends. On the other hand, Al 2 O 3 powder is used because it is inexpensive, has high plasma resistance, and has excellent properties such as high strength. The reason for setting the particle diameter to 1.0 to 100 μm is that if the average particle diameter is smaller than 1.0 μm, the distance between the particles becomes narrow, impairing the impregnation of the metal,
If it is larger than 0 μm, the filling rate of ceramic particles is 55%
However, the strength of the preform decreases, which is not preferable.
【0009】上記セラミックスの内、SiC粉末は、通
常研磨材、もしくは耐火物の原料として用いられている
ものでよく、研磨材であれば規格の#8000以上の大
きさの粒径のものを用いることができる。種類として
は、グリーン、ブラック等いずれの種類のものでもよ
い。また、Al2O3粉末もSiC粉末と同様研磨材、耐
火物の原料として用いられているものでよく、種類とし
ては、電融アルミナ、焼結アルミナ、仮焼アルミナ等い
ずれの種類のものでも使用可能であり、その中で電融ア
ルミナは、粉末充填率が高く好ましい。Among the above ceramics, the SiC powder may be one usually used as an abrasive or as a raw material for a refractory, and an abrasive having a particle size of # 8000 or more is used. be able to. The type may be any type such as green and black. Also, Al 2 O 3 powder may be used as a raw material for abrasives and refractories similarly to SiC powder, and may be any type such as electrofused alumina, sintered alumina, and calcined alumina. It can be used, and among them, fused alumina is preferable because of high powder filling rate.
【0010】上記SiC粉末またはAl2O3粉末に、前
記したシリカ、ムライト等の酸化物、窒化けい素、窒化
アルミニウム、窒化チタン、窒化ジルコニウム等の窒化
物、炭化チタン、炭化ボロン等の炭化物、ホウ化ジルコ
ニウム、ホウ化チタン等のホウ化物等の他の粉末を添加
しても構わないが、添加し過ぎると添加物によってはS
iCの低熱膨張性や高熱伝導性あるいはヤング率の低
下、もしくはSiO2であればマトリックスと反応して
マトリックス中にSiあるいはMg2Si等の生成が多
くなり、脆性的になって破壊靱性が低下し複合体の特性
を損なうことになるので、10%以上は好ましくない。The above-mentioned SiC powder or Al 2 O 3 powder is added to the above-mentioned oxides such as silica and mullite, nitrides such as silicon nitride, aluminum nitride, titanium nitride and zirconium nitride, and carbides such as titanium carbide and boron carbide. Other powders such as borides such as zirconium boride and titanium boride may be added.
Low thermal expansion, high thermal conductivity, or low Young's modulus of iC, or if it is SiO 2 , it reacts with the matrix to increase the production of Si or Mg 2 Si in the matrix, resulting in brittleness and reduced fracture toughness However, 10% or more is not preferable because the properties of the composite are impaired.
【0011】上記セラミックス粒子を結合するバインダ
ーとしては、水を分散媒とし、安定化剤をNa+、もし
くはNH4 +とするコロイドの大きさが5〜50nmのコ
ロイダルシリカ液とし、または安定化剤をCl-、CH3
COO-もしくはNO3 -とするコロイドの大きさが1〜
1000nmのアルミナ水和物のコロイド液とし、その
添加量をSiCまたはAl2O3粉末に対しコロイダルシ
リカ液では0.5〜25wt%(シリカとして0.1〜
5.0wt%)、アルミナ水和物のコロイド液では1.
0〜30wt%(アルミナとして0.1〜10wt%)
加えて成形し、焼成することとした。バインダーの添加
量が少なすぎるとプリフォームの強度が小さく複合化す
る際に支障が生じ、多すぎるとコロイダルシリカ液では
閉気孔が生じ複合化できず、アルミナ水和物のコロイド
液では密充填できなく粉末充填率が低くなり好ましくな
い。As the binder for binding the ceramic particles, a colloidal silica liquid having water as a dispersion medium and a colloid containing Na + or NH 4 + as a stabilizer and having a colloid size of 5 to 50 nm, or a stabilizer is used. the Cl -, CH 3
COO - or NO 3 - and the size of the colloid is 1
A colloidal solution of alumina hydrate of 1000 nm was used, and the amount of the colloidal silica solution was 0.5 to 25 wt% with respect to SiC or Al 2 O 3 powder (0.1 to 25 wt% as silica).
5.0 wt%), and 1.
0-30 wt% (0.1-10 wt% as alumina)
In addition, it was molded and fired. If the amount of the binder is too small, the strength of the preform is small and a problem occurs when the composite is formed.If the amount is too large, closed pores cannot be formed with the colloidal silica liquid and the compound cannot be formed. And the powder filling rate is low, which is not preferable.
【0012】また、上記コロイダルシリカ液とアルミナ
水和物のコロイド液とを混合使用してもよく、その混合
割合としては、シリカ成分がアルミナ成分に対し10〜
80%となる混合液とし、その混合液をSiCまたはA
l2O3粉末に対し1.0〜30wt%(シリカ+アルミ
ナとして0.1〜5.0wt%)加えて成形し、焼成す
ることとした。混合液の添加量が少なすぎるとプリフォ
ームの強度が小さく複合化する際に支障が生じ、多すぎ
てもスラリーの粘性が高くなって粉末充填率が下がり、
プリフォームの強度が小さくなり好ましくない。The colloidal silica solution and the colloidal solution of alumina hydrate may be mixed and used, and the mixing ratio is such that the silica component is 10 to the alumina component.
80%, and the mixture is SiC or A
l 2 O 3 1.0~30wt% to the powder (0.1 to 5.0% as the silica + alumina) was added and molding, it was firing. If the added amount of the mixed solution is too small, the strength of the preform becomes small and a problem occurs when forming a composite, and even if it is too large, the viscosity of the slurry becomes high and the powder filling rate decreases,
The strength of the preform is undesirably reduced.
【0013】上記バインダーのうち安定化剤をNa+と
するコロイダルシリカ液の場合については、バインダー
中のNa+濃度をNa2O換算で0.05〜0.4wt%
とした。0.05wt%より低いと効果が少なく、0.
4wt%を超えると複合体の特性、特に曲げ強度及び破
壊靱性が低下する。これはNa+濃度が高くなるとNa2
Oが残存し、プリフォームに含浸させたAl溶湯が酸化
しやすくなり、マトリックスが一部Al2O3化し、プリ
フォームは高強度になるが、複合体の特性、特に曲げ強
度及び破壊靱性が低下し好ましくなく、さらに強化材が
アルミナではAl2O3の粒界がガラス化して閉気孔とな
り易く含浸を阻害し好ましくない。In the case of a colloidal silica liquid containing Na + as a stabilizer among the above binders, the Na + concentration in the binder is 0.05 to 0.4 wt% in terms of Na 2 O.
And If it is lower than 0.05 wt%, the effect is small,
If it exceeds 4% by weight, the properties of the composite, particularly the bending strength and the fracture toughness, decrease. This becomes higher Na + concentrations when Na 2
O remains, the Al melt impregnated in the preform is easily oxidized, the matrix is partially converted to Al 2 O 3 , and the preform becomes high in strength, but the properties of the composite, particularly the bending strength and fracture toughness, are reduced. When the reinforcing material is alumina, the grain boundary of Al 2 O 3 is vitrified to form closed pores, which impairs the impregnation.
【0014】また、安定化剤をCl-とするアルミナ水
和物のコロイド液の場合については、バインダー中のア
ルミナ水和物の結晶形を非晶質である無定形とした。結
晶質であるベーマイトにするとプリフォームの強度が弱
くなり好ましくない。In the case of a colloidal solution of alumina hydrate with Cl − as the stabilizer, the crystal form of alumina hydrate in the binder was made amorphous and amorphous. The use of crystalline boehmite is not preferred because the strength of the preform is reduced.
【0015】上記以外の他のバインダーとしては、1.
0μm以下のAl2O3微粉末、もしくはSiC微粉末と
し、それら粉末を強化材であるSiC粉末またはAl2
O3粉末に対し、1〜10wt%加え成形し焼成するこ
ととした。このバインダーを用いる場合には、強化材の
粒径が細かすぎると効果が少なくなるので、10μm以
上の平均粒径を有する強化材が好ましい。バインダーの
添加量が1wt%より少ないとプリフォームの強度が低
下して好ましくなく、10wt%より多いと閉気孔が生
じ金属の含浸に支障を来すので好ましくない。この粉末
の場合には、成形の際成形体が保形できるようにグリセ
リンやPVA系、アクリル系等の有機バインダーを加え
るのが望ましい。Other binders other than those described above include:
Al 2 O 3 fine powder or SiC fine powder of 0 μm or less, and these powders are used as reinforcing material SiC powder or Al 2
1 to 10 wt% was added to the O 3 powder, and the mixture was molded and fired. When this binder is used, the effect is reduced if the particle size of the reinforcing material is too small, and therefore, a reinforcing material having an average particle size of 10 μm or more is preferable. If the amount of the binder is less than 1% by weight, the strength of the preform is decreased, and if it is more than 10% by weight, closed pores are generated, which impairs the impregnation of the metal, which is not preferable. In the case of this powder, it is desirable to add an organic binder such as glycerin, PVA, or acrylic so that the molded body can retain its shape during molding.
【0016】以上のバインダーを加え成形した成形体の
焼成としては、バインダーがコロイダルシリカ液の場合
には、SiC粉末で800〜1100℃、1〜3時間、
Al2O3粉末で800〜1200℃、1〜3時間焼成す
ることとし、バインダーがアルミナ水和物のコロイド液
の場合には、SiC粉末で800〜1100℃、1〜3
時間、Al2O3粉末で1300〜1600℃、1〜3時
間焼成することとし、バインダーがコロイダルシリカ液
とアルミナ水和物のコロイド液との混合液の場合には、
SiC粉末で800〜1100℃、1〜3時間、Al2
O3粉末で800〜1200℃、1〜3時間焼成するこ
ととし、バインダーが微粉のSiCまたはAl2O3粉末
の場合には、SiC粉末で900〜1200℃、1〜3
時間、Al2O3粉末で1000〜1500℃、1〜3時
間焼成することとした。焼成温度あるいはその温度での
焼成時間がこれら範囲より低い、もしくは短いと十分に
焼成せず好ましくなく、焼成温度あるいは焼成時間がこ
れら範囲より高い、もしくは長いとSiC粉末ではSi
C粒子表面の酸化層が多くなり、その酸化層とAl溶湯
とが反応して生成したMg2SiがSiC表面にとどま
らず、マトリックス中にも多量に生成して機械的特性を
低下させ好ましくなく、Al2O3粉末では焼結が進行し
て閉気孔となり好ましくない。When the binder is a colloidal silica liquid, the compact is fired at 800 to 1100 ° C. for 1 to 3 hours at 800 to 1100 ° C.
Sintering is performed at 800 to 1200 ° C. for 1 to 3 hours with Al 2 O 3 powder, and when the binder is a colloidal solution of alumina hydrate, 800 to 1100 ° C. and 1 to 3 for SiC powder.
Time, 1300 to 1600 ° C. with Al 2 O 3 powder for 1 to 3 hours, and when the binder is a mixed liquid of colloidal silica liquid and colloid liquid of alumina hydrate,
800-1100 ° C. for 1-3 hours with SiC powder, Al 2
Sintering is performed at 800 to 1200 ° C. for 1 to 3 hours with O 3 powder, and when the binder is fine SiC or Al 2 O 3 powder, the binder is 900 to 1200 ° C. and 1 to 3 for SiC powder.
Calcination was performed at 1000 to 1500 ° C. for 1 to 3 hours using Al 2 O 3 powder. If the sintering temperature or the sintering time at that temperature is lower or shorter than these ranges, the sintering is not sufficient because the sintering is not sufficiently performed.
The oxide layer on the surface of the C particles increases, and Mg 2 Si generated by the reaction between the oxide layer and the molten Al does not remain on the SiC surface, but is also generated in a large amount in the matrix to deteriorate the mechanical properties, which is not preferable. On the other hand, in the case of Al 2 O 3 powder, sintering proceeds to form closed pores, which is not preferable.
【0017】上記プリフォームに金属を含浸させる方法
としては、アルミニウムを主成分とする合金を700〜
1000℃の温度で含浸させるとした。金属をアルミニ
ウム合金としたのは、アルミニウム合金は鋳鉄等の材料
より剛性が高く、比重も低いので比剛性が高く好まし
く、さらに、強化材がSiC粉末の場合には特に濡れ性
がよく好ましいことなどによる。この合金の含浸温度
は、この範囲より低いと合金が溶解せず、この範囲より
高いとアルミニウムとSiC粉末とが反応し、炭化アル
ミニウムを生成するので好ましくない。含浸後の冷却
は、小型部品であれば急冷でも構わないが、大型部品で
は亀裂、割れが発生し易いので徐冷することが望まし
い。また、Siを多く含むアルミニウム合金の場合に
は、冷却中にMg2Siが生成し、そのMg2Siにより
延性が低下し破壊靱性を低下させるが、この生成したM
g2Siを徐冷することによりSiC粒子表面近傍に集
結し易くさせSiC粒子表面近傍に止めることで、延性
の低下を抑えることができるので、小型部品を含め徐冷
することが好ましい。As a method for impregnating the preform with a metal, an alloy mainly composed of aluminum is
The impregnation was performed at a temperature of 1000 ° C. The reason why the metal is made of aluminum alloy is that aluminum alloy has higher rigidity and lower specific gravity than materials such as cast iron, and therefore has high specific rigidity. In addition, when the reinforcing material is SiC powder, the wettability is particularly good and preferable. by. If the impregnation temperature of this alloy is lower than this range, the alloy will not melt, and if it is higher than this range, aluminum will react with the SiC powder to produce aluminum carbide, which is not preferable. The cooling after the impregnation may be rapid cooling for small components, but it is preferable to gradually cool large components because cracks and cracks are likely to occur. Further, in the case of an aluminum alloy containing a large amount of Si, Mg 2 Si is generated during cooling, and the ductility is reduced by the Mg 2 Si to lower the fracture toughness.
By gradually cooling g 2 Si, it is easy to concentrate near the surface of the SiC particles, and by stopping near the surface of the SiC particles, it is possible to suppress a decrease in ductility.
【0018】[0018]
【発明の実施の形態】本発明の金属−セラミックス複合
材料の製造方法を述べると、先ず強化材として1.0〜
100μmの平均粒径を有するSiC、Al2O3のセラ
ミック粉末、またはこれに他の粉末を10wt%以下含
む粉末を用いる。セラミックス粉末は単一の粒径のもの
でもよいが、2種類の粒径の粉末を混合した方が充填率
が高くなり成形体の強度が増加するので望ましい。成形
方法は、鋳込法、射出法、プレス法等の慣用の方法で成
形でき、以下に鋳込法による例を述べる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a metal-ceramic composite material of the present invention will be described.
A ceramic powder of SiC or Al 2 O 3 having an average particle diameter of 100 μm, or a powder containing 10 wt% or less of other powder is used. The ceramic powder may have a single particle size, but it is desirable to mix powders having two types of particle sizes since the filling rate increases and the strength of the compact increases. The molding method can be a conventional method such as a casting method, an injection method, a pressing method, etc., and an example of the casting method will be described below.
【0019】そのセラミックス粉末に対し、イオン交換
水10〜50wt%程度、そしてバインダーとして前述
のコロイダルシリカ液、アルミナ水和物のコロイド液、
その混合液または微粉のSiCあるいはAl2O3粉末を
所要量配合し、そのほかに必要があれば消泡剤を2wt
%程度以下、尿素を2wt%程度以下加える。About 10 to 50% by weight of ion-exchanged water with respect to the ceramic powder, and the above-mentioned colloidal silica liquid and alumina hydrate colloid liquid as a binder;
A required amount of the mixed liquid or fine powder of SiC or Al 2 O 3 powder is blended, and if necessary, an antifoaming agent of 2 wt.
% Or less, and about 2 wt% or less of urea.
【0020】得られた配合物をポットミルなどで1時間
程度以上混合する。ポットミルにボールを入れる場合
は、ボールによって強化材が潰れるため、混合時間は長
くても100時間程度以下とし、ボールを入れない場合
には、特に限定しない。混合したスラリーは、振動を印
加して沈降成形する。スラリーの粘度は、粘性が高いと
粉末が沈降しないため、100ポイズ以下が望ましい。
通常はシリコーンゴム型を使用するが、プラスチック、
アルミニウム等の型であってもよく、特に限定はない。
粒子が沈降する間はなるべく振動を加え充填をよくす
る。得られた成形体は冷凍して脱型する。冷凍は水が凍
ればよく温度に限定はない。脱型した成形体を前記範囲
の焼成温度で大気中で1〜3時間焼成してプリフォーム
を作製する。The obtained composition is mixed for about 1 hour or more using a pot mill or the like. When a ball is put in a pot mill, the reinforcing material is crushed by the ball, so that the mixing time is at most about 100 hours or less. The mixed slurry is subjected to sedimentation molding by applying vibration. The viscosity of the slurry is preferably 100 poise or less because the powder does not settle if the viscosity is high.
Normally a silicone rubber mold is used, but plastic,
A type such as aluminum may be used, and there is no particular limitation.
During the sedimentation of the particles, vibration is applied as much as possible to improve the filling. The obtained compact is frozen and demolded. Freezing is not limited as long as the water is frozen. The demolded molded body is fired in the air at the firing temperature in the above range for 1 to 3 hours to produce a preform.
【0021】得られたプリフォームに窒素気流中で非加
圧、あるいは加圧して700〜1000℃の温度でAl
−Si−Mg系またはAl−Mg系のアルミニウム合金
を含浸させた後、炉内で徐冷して金属−セラミックス複
合材料を作製する。The obtained preform is unpressurized or pressurized in a nitrogen stream at a temperature of 700 to 1000 ° C.
-Impregnating with a Si-Mg-based or Al-Mg-based aluminum alloy and then slowly cooling in a furnace to produce a metal-ceramic composite material.
【0022】以上の方法で金属−セラミックス複合材料
を作製すれば、粉末充填率が高く、強度が高い密で堅固
なプリフォームとすることができ、そのプリフォームに
アルミニウム合金を含浸させれば、亀裂や割れのない金
属−セラミックス複合材料が得られる。If the metal-ceramic composite material is produced by the above method, a dense and rigid preform having a high powder filling rate and high strength can be obtained. If the preform is impregnated with an aluminum alloy, A metal-ceramic composite material free of cracks and cracks is obtained.
【0023】[0023]
【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.
【0024】(実施例1〜3) (1)プリフォームの形成 強化材として平均粒径が表1のSiC粉末に対し、イオ
ン交換水を25wt%、表1の安定化剤で安定化したコ
ロイドの大きさが10〜20nmのコロイダルシリカ液
(シリカ液中の固形分濃度は20%)を表1の量添加
し、それに消泡剤(サンノブコ製 フォーマスターV
L)を1.2wt%加え、ボールを入れてないポットミ
ルで5時間混合した。得られたスラリーを25×25×
180mmの大きさのシリコーンゴム型に流し込み、4
時間振動を印加して強化材を沈降させ成形した。成形
後、ゴム型ごと−25℃に冷却し冷凍して脱型した。脱
型後、50℃/hの昇温速度で大気雰囲気中で表1に示
す焼成温度と焼成時間で焼成した後、50℃/hの降温
速度で室温まで冷却してプリフォームを作製した。(Examples 1 to 3) (1) Formation of preform A colloid obtained by stabilizing 25 wt% of ion-exchanged water and a stabilizer of Table 1 with respect to a SiC powder having an average particle size of Table 1 as a reinforcing material. A colloidal silica liquid having a size of 10 to 20 nm (solid content in the silica liquid is 20%) was added in the amount shown in Table 1, and an antifoaming agent (Formaster V manufactured by Sannobuco) was added thereto.
L) was added in an amount of 1.2% by weight, and mixed in a pot mill without balls for 5 hours. 25 × 25 ×
Pour into a 180 mm silicone rubber mold, 4
The reinforcing material was settled by applying vibration for a time to form. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, the preform was fired at a heating rate of 50 ° C./h in the air atmosphere at the firing temperature and firing time shown in Table 1, and then cooled to room temperature at a cooling rate of 50 ° C./h to produce a preform.
【0025】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−14Si−2Mgの
合金をプリフォームと同量置き、820℃窒素気流中
(2リットル/min:炉内容積0.03m3)でプリ
フォームに合金を含浸した後、炉内で100℃/hで7
00℃まで冷却し、その温度で5時間保持してから再度
100℃/hで室温まで冷却して金属ーセラミックス複
合材料を作製した。(2) Preparation of Metal-Ceramic Composite Material An Al-14Si-2Mg alloy was placed on the obtained preform in the same amount as the preform, and placed in a nitrogen stream at 820 ° C. (2 l / min: furnace volume) 0.03 m 3 ) after impregnating the preform with the alloy at 100 ° C./h in a furnace.
It was cooled to 00 ° C., kept at that temperature for 5 hours, and then cooled again to room temperature at 100 ° C./h to produce a metal-ceramic composite material.
【0026】(3)評価 得られたプリフォームの嵩密度をアルキメデス法で測定
し、プリフォームの粉末充填率を求め、さらにJIS
R1601によりプリフォームの曲げ強度を求めた。ま
た、得られた複合材料の曲げ強度をJIS R1601
により求め、さらに別にシェブロンノッチを導入した試
験片を作製し、JIS R1601により曲げ強度を求
め、その値から破壊靱性値を求めた。なお、下部支点間
距離は100mmとした。それらの結果を表1に示す。(3) Evaluation The bulk density of the obtained preform was measured by the Archimedes method to determine the powder filling rate of the preform.
The bending strength of the preform was determined by R1601. Further, the bending strength of the obtained composite material was measured according to JIS R1601.
, And further, a test piece having a chevron notch introduced therein was prepared, the bending strength was determined according to JIS R1601, and the fracture toughness value was determined from the value. The distance between the lower fulcrums was 100 mm. Table 1 shows the results.
【0027】(実施例4〜6) (1)プリフォームの形成 強化材として平均粒径が表1のAl2O3粉末に対し、イ
オン交換水を28wt%、表1の安定化剤で安定化した
コロイドの大きさが10〜20nmのコロイダルシリカ
液(シリカ液中の固形分濃度は20%)を表1の量添加
し、それに消泡剤(サンノブコ製 フォーマスターV
L)を1.2wt%加え、ボールを入れてないポットミ
ルで5時間混合した。得られたスラリーを25×25×
180mmの大きさのシリコーンゴム型に流し込み、4
時間振動を印加して強化材を沈降させ成形した。成形
後、ゴム型ごと−25℃に冷却し冷凍して脱型した。脱
型後、50℃/hの昇温速度で大気雰囲気中で表1に示
す焼成温度と焼成時間で焼成した後、50℃/hの降温
速度で室温まで冷却してプリフォームを作製した。(Examples 4 to 6) (1) Formation of preform As a reinforcing material, 28% by weight of ion-exchanged water and a stabilizer of Table 1 were stabilized with respect to Al 2 O 3 powder having an average particle diameter of Table 1. A colloidal silica liquid having a size of the formed colloid of 10 to 20 nm (solid content in the silica liquid is 20%) was added in the amount shown in Table 1, and an antifoaming agent (Formaster V manufactured by Sannobuco) was added thereto.
L) was added in an amount of 1.2% by weight, and mixed in a pot mill without balls for 5 hours. 25 × 25 ×
Pour into a 180 mm silicone rubber mold, 4
The reinforcing material was settled by applying vibration for a time to form. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, the preform was fired at a heating rate of 50 ° C./h in the air atmosphere at the firing temperature and firing time shown in Table 1, and then cooled to room temperature at a cooling rate of 50 ° C./h to produce a preform.
【0028】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−2Mgの合金をプリ
フォームと同量置き、860℃窒素気流中(2リットル
/min:炉内容積0.03m3)でプリフォームに合
金を含浸した後、炉内で100℃/hで700℃まで冷
却し、その温度で5時間保持してから再度100℃/h
で室温まで冷却して金属ーセラミックス複合材料を作製
した。(2) Preparation of Metal-Ceramic Composite Material An Al-2Mg alloy was placed on the obtained preform in the same amount as the preform, and placed in a nitrogen gas stream at 860 ° C. (2 liters / min; 03m 3 ), the preform was impregnated with the alloy, cooled in a furnace at 100 ° C./h to 700 ° C., kept at that temperature for 5 hours, and then again at 100 ° C./h.
And cooled to room temperature to produce a metal-ceramic composite material.
【0029】(3)評価 得られたプリフォームの粉末充填率、曲げ強度、複合材
料の曲げ強度、破壊靱性値を実施例1と同様に求めた。
それらの結果を表1に示す。(3) Evaluation The powder filling rate, bending strength, bending strength and fracture toughness value of the obtained preform were determined in the same manner as in Example 1.
Table 1 shows the results.
【0030】(実施例7〜9) (1)プリフォームの形成 強化材として平均粒径が表1のSiC粉末に対し、イオ
ン交換水を25wt%、表1の安定化剤で安定化したコ
ロイドの大きさが10〜20nmのアルミナ水和物のコ
ロイド液(コロイド液中の固形分濃度は20%)を表1
の量添加し、それに消泡剤(サンノブコ製 フォーマス
ターVL)を1.2wt%加え、ボールを入れてないポ
ットミルで5時間混合した。得られたスラリーを25×
25×180mmの大きさのシリコーンゴム型に流し込
み、4時間振動を印加して強化材を沈降させ成形した。
成形後、ゴム型ごと−25℃に冷却し冷凍して脱型し
た。脱型後、50℃/hの昇温速度で大気雰囲気中で表
1に示す焼成温度と焼成時間で焼成した後、50℃/h
の降温速度で室温まで冷却してプリフォームを作製し
た。(Examples 7 to 9) (1) Formation of Preform Colloid stabilized with ion-exchanged water of 25 wt% and a stabilizer of Table 1 based on SiC powder having an average particle diameter of Table 1 as a reinforcing material Table 1 shows a colloidal solution of alumina hydrate having a size of 10 to 20 nm (solid concentration in the colloidal solution is 20%).
And an antifoaming agent (Fourmaster VL manufactured by Sannobuco) was added to the mixture in an amount of 1.2 wt%, followed by mixing for 5 hours in a pot mill without balls. 25 ×
The mixture was poured into a silicone rubber mold having a size of 25 × 180 mm, and vibrations were applied for 4 hours to settle the reinforcing material and to mold.
After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After releasing from the mold, sintering was performed at a heating rate of 50 ° C./h in an air atmosphere at a sintering temperature and a sintering time shown in Table 1, and then at 50 ° C./h.
Then, the preform was cooled to room temperature at a temperature lowering rate.
【0031】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−12Si−1Mgの
合金をプリフォームと同量置き、850℃窒素気流中
(2リットル/min:炉内容積0.03m3)でプリ
フォームに合金を含浸した後、炉内で100℃/hで7
00℃まで冷却し、その温度で5時間保持してから再度
100℃/hで室温まで冷却して金属ーセラミックス複
合材料を作製した。(2) Preparation of Metal-Ceramic Composite Material An Al-12Si-1Mg alloy was placed on the obtained preform in the same amount as the preform, and placed in a nitrogen stream at 850 ° C. (2 l / min: furnace volume) 0.03 m 3 ) after impregnating the preform with the alloy at 100 ° C./h in a furnace.
It was cooled to 00 ° C., kept at that temperature for 5 hours, and then cooled again to room temperature at 100 ° C./h to produce a metal-ceramic composite material.
【0032】(3)評価 得られたプリフォームの粉末充填率、曲げ強度、複合材
料の曲げ強度、破壊靱性値を実施例1と同様に求めた。
それらの結果を表1に示す。(3) Evaluation The powder filling ratio, bending strength, bending strength and fracture toughness of the obtained preform were determined in the same manner as in Example 1.
Table 1 shows the results.
【0033】(実施例10〜12) (1)プリフォームの形成 強化材として平均粒径が表1のAl2O3粉末に対し、イ
オン交換水を30wt%、表1の安定化剤で安定化した
コロイドの大きさが10〜100nmのアルミナ水和物
のコロイド液(コロイド液中の固形分濃度は20%)を
表1の量添加し、それに消泡剤(サンノブコ製 フォー
マスターVL)を1.2wt%加え、ボールを入れてな
いポットミルで5時間混合した。得られたスラリーを2
5×25×180mmの大きさのシリコーンゴム型に流
し込み、4時間振動を印加して強化材を沈降させ成形し
た。成形後、ゴム型ごと−25℃に冷却し冷凍して脱型
した。脱型後、50℃/hの昇温速度で大気雰囲気中で
表1に示す焼成温度と焼成時間で焼成した後、50℃/
hの降温速度で室温まで冷却してプリフォームを作製し
た。(Examples 10 to 12) (1) Formation of preform As a reinforcing material, 30% by weight of ion-exchanged water was used with respect to Al 2 O 3 powder having an average particle diameter of Table 1 and stabilized with a stabilizer shown in Table 1. A colloid solution of alumina hydrate having a size of the formed colloid of 10 to 100 nm (solid content concentration in the colloid solution is 20%) was added in the amount shown in Table 1, and an antifoaming agent (Sannobuco Formaster VL) was added thereto. 1.2 wt% was added and mixed for 5 hours in a pot mill without balls. The resulting slurry is
The mixture was poured into a silicone rubber mold having a size of 5 × 25 × 180 mm, and vibration was applied for 4 hours to set the reinforcing material to settle and to mold. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, after firing at the temperature of 50 ° C./h in the air atmosphere at the firing temperature and firing time shown in Table 1, 50 ° C./h
A preform was produced by cooling to room temperature at a temperature lowering rate of h.
【0034】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−5Mgの合金をプリ
フォームと同量置き、820℃窒素気流中(2リットル
/min:炉内容積0.03m3)でプリフォームに合
金を含浸した後、炉内で100℃/hで700℃まで冷
却し、その温度で5時間保持してから再度100℃/h
で室温まで冷却して金属ーセラミックス複合材料を作製
した。(2) Preparation of Metal-Ceramic Composite Material An Al-5Mg alloy was placed on the obtained preform in the same amount as the preform, and placed in a nitrogen stream at 820 ° C. (2 liters / min; 03m 3 ), the preform was impregnated with the alloy, cooled in a furnace at 100 ° C./h to 700 ° C., kept at that temperature for 5 hours, and then again at 100 ° C./h.
And cooled to room temperature to produce a metal-ceramic composite material.
【0035】(3)評価 得られたプリフォームの粉末充填率、曲げ強度、複合材
料の曲げ強度、破壊靱性値を実施例1と同様に求めた。
それらの結果を表1に示す。(3) Evaluation The powder filling rate, bending strength, bending strength and fracture toughness value of the obtained preform were determined in the same manner as in Example 1.
Table 1 shows the results.
【0036】(実施例13〜15) (1)プリフォームの形成 強化材として平均粒径が表1のSiCまたはAl2O3粉
末に対し、イオン交換水を30wt%、表1のSiCま
たはAl2O3微粉を表1の量添加し、ボールを入れてな
いポットミルで5時間混合した。得られたスラリーを2
5×25×180mmの大きさのシリコーンゴム型に流
し込み、3時間振動を印加して強化材を沈降させ成形し
た。成形後、ゴム型ごと−25℃に冷却し冷凍して脱型
した。脱型後、50℃/hの昇温速度で大気雰囲気中で
表1に示す焼成温度と焼成時間で焼成した後、50℃/
hの降温速度で室温まで冷却してプリフォームを作製し
た。(Examples 13 to 15) (1) Formation of preform As a reinforcing material, 30 wt% of ion-exchanged water was added to SiC or Al 2 O 3 powder having an average particle diameter of Table 1, and SiC or Al of Table 1 was used. 2 O 3 fine powder was added in the amount shown in Table 1 and mixed in a pot mill without balls for 5 hours. The resulting slurry is
The mixture was poured into a silicone rubber mold having a size of 5 × 25 × 180 mm, and vibration was applied for 3 hours to set the reinforcing material to settle and to mold. After molding, the entire rubber mold was cooled to -25 ° C, frozen, and demolded. After demolding, after firing at the temperature of 50 ° C./h in the air atmosphere at the firing temperature and firing time shown in Table 1, 50 ° C./h
A preform was produced by cooling to room temperature at a temperature lowering rate of h.
【0037】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上に強化材がSiC粉末の場合
にはAl−14Si−5Mgの合金を、Al2O3粉末の
場合にはAl−4Mgの合金をプリフォームと同量置
き、850℃窒素気流中(2リットル/min:炉内容
積0.03m3)でプリフォームに合金を含浸した後、
炉内で100℃/hで700℃まで冷却し、その温度で
5時間保持してから再度100℃/hで室温まで冷却し
て金属ーセラミックス複合材料を作製した。(2) Production of Metal-Ceramic Composite Material On the obtained preform, an alloy of Al-14Si-5Mg is used when the reinforcing material is SiC powder, and an Al-Si alloy is used when the reinforcing material is Al 2 O 3 powder. 4Mg alloy was placed in the same amount as the preform, and the preform was impregnated with the alloy in a nitrogen stream at 850 ° C. (2 L / min: furnace volume 0.03 m 3 ).
It was cooled in a furnace at 100 ° C./h to 700 ° C., kept at that temperature for 5 hours, and then cooled again to room temperature at 100 ° C./h to produce a metal-ceramic composite material.
【0038】(3)評価 得られたプリフォームの粉末充填率、曲げ強度、複合材
料の曲げ強度、破壊靱性値を実施例1と同様に求めた。
それらの結果を表1に示す。(3) Evaluation The powder filling ratio, bending strength, bending strength and fracture toughness of the obtained preform were determined in the same manner as in Example 1.
Table 1 shows the results.
【0039】(比較例1) (1)プリフォームの形成 強化材として平均粒径が表2のグリーンSiC粉末に対
し、イオン交換水を21wt%、固形分濃度が30%の
リン酸アルミニウム溶液を4wt%加え、ボールを入れ
てないポットミルで4時間混合した。得られたスラリー
を25×25×180mmの大きさのシリコーンゴム型
に流し込み、4時間振動を印加して強化材を沈降させ成
形した。成形後、ゴム型ごと−40℃に冷却し冷凍して
脱型した。脱型後、70℃/hの昇温速度で大気雰囲気
中で1200℃×2h焼成し、50℃/hの降温速度で
室温まで冷却してプリフォームを作製した。(Comparative Example 1) (1) Formation of preform As a reinforcing material, an aluminum phosphate solution having 21% by weight of ion-exchanged water and a solid concentration of 30% was added to a green SiC powder having an average particle diameter of Table 2. 4 wt% was added and mixed for 4 hours in a pot mill without balls. The obtained slurry was poured into a silicone rubber mold having a size of 25 × 25 × 180 mm, and vibration was applied for 4 hours to set a reinforcing material and settle. After the molding, the whole rubber mold was cooled to -40 ° C, frozen, and demolded. After demolding, the resultant was fired at 1200 ° C. for 2 hours in an air atmosphere at a temperature rising rate of 70 ° C./h, and cooled to room temperature at a temperature decreasing rate of 50 ° C./h to produce a preform.
【0040】(2)金属−セラミックス複合材料の作製 得られたプリフォームの上にAl−14Si−2Mgの
合金をプリフォームと同量置き、820℃窒素気流中
(2リットル/min:炉内容積0.03m3)でプリ
フォームに合金を含浸した後、炉内で100℃/hで7
00℃まで冷却し、その温度で5時間保持してから再度
100℃/hで室温まで冷却して金属ーセラミックス複
合材料を作製した。(2) Preparation of Metal-Ceramic Composite Material An Al-14Si-2Mg alloy was placed on the obtained preform in the same amount as the preform, and placed in a nitrogen stream at 820 ° C. (2 l / min: furnace volume) 0.03 m 3 ) after impregnating the preform with the alloy at 100 ° C./h in a furnace.
It was cooled to 00 ° C., kept at that temperature for 5 hours, and then cooled again to room temperature at 100 ° C./h to produce a metal-ceramic composite material.
【0041】(3)評価 得られたプリフォームの粉末充填率、曲げ強度、複合材
料の曲げ強度、破壊靱性値を実施例1と同様に求めた。
それらの結果を表2に示す。(3) Evaluation The powder filling rate, bending strength, bending strength and fracture toughness value of the obtained preform were determined in the same manner as in Example 1.
Table 2 shows the results.
【0042】(比較例2〜4)比較例2では、実施例1
のNa+濃度を表2に示す濃度とし、比較例3では、実
施例1の焼成温度とその時間を表2の温度と時間とし、
比較例4では、実施例2のバインダーの添加量を表2と
する他は実施例1と同様にプリフォームを作製し、合金
を含浸させ、得られた複合材料の評価をした。それらの
結果を表2に示す。(Comparative Examples 2 to 4) In Comparative Example 2,
The Na + concentration to a concentration shown in Table 2, in Comparative Example 3, the sintering temperature and its time of Example 1 to a temperature and time shown in Table 2,
In Comparative Example 4, a preform was prepared and impregnated with an alloy in the same manner as in Example 1 except that the amount of the binder added in Example 2 was changed to Table 2, and the obtained composite material was evaluated. Table 2 shows the results.
【0043】(比較例5〜7)比較例5では、実施例4
のNa+濃度を表2に示す濃度とし、比較例6では、実
施例4の焼成温度とその時間を表2の温度と時間とし、
比較例7では、実施例4のバインダーの添加量を表2と
する他は実施例4と同様にプリフォームを作製し、合金
を含浸させ、得られた複合材料の評価をした。それらの
結果を表2に示す。(Comparative Examples 5 to 7) In Comparative Example 5, Example 4
The Na + concentration to a concentration shown in Table 2, in Comparative Example 6, the sintering temperature and its time of Example 4 and the temperature and time shown in Table 2,
In Comparative Example 7, a preform was prepared and impregnated with an alloy in the same manner as in Example 4 except that the amount of the binder added in Example 4 was changed to Table 2, and the obtained composite material was evaluated. Table 2 shows the results.
【0044】(比較例8〜10)比較例8では、実施例
7のバインダーの添加量を表2にとし、比較例9では、
実施例8の焼成温度とその時間を表2の温度と時間と
し、比較例10では、実施例8のアルミナ水和物の結晶
形を結晶質のベーマイトとする他は実施例8と同様にプ
リフォームを作製し、合金を含浸させ、得られた複合材
料の評価をした。それらの結果を表2に示す。(Comparative Examples 8 to 10) In Comparative Example 8, the amount of the binder added in Example 7 is shown in Table 2, and in Comparative Example 9,
The firing temperature and time in Example 8 were set to the temperature and time in Table 2. In Comparative Example 10, except that the crystalline form of the alumina hydrate of Example 8 was changed to crystalline boehmite, the same procedure as in Example 8 was repeated. A reform was produced, the alloy was impregnated, and the obtained composite material was evaluated. Table 2 shows the results.
【0045】(比較例11〜13)比較例11では、実
施例10のバインダーの添加量を表2にとし、比較例1
2では、実施例11の焼成温度とその時間を表2の温度
と時間とし、比較例13では、実施例11のアルミナ水
和物の結晶形を結晶質のベーマイトとする他は実施例1
1と同様にプリフォームを作製し、合金を含浸させ、得
られた複合材料の評価をした。それらの結果を表2に示
す。Comparative Examples 11 to 13 In Comparative Example 11, Table 2 shows the amounts of the binders added in Example 10 and Comparative Example 1
In Example 2, the firing temperature and time in Example 11 were set to the temperature and time in Table 2, and in Comparative Example 13, Example 1 was changed except that the crystalline form of the alumina hydrate in Example 11 was changed to crystalline boehmite.
A preform was prepared and impregnated with an alloy in the same manner as in Example 1, and the obtained composite material was evaluated. Table 2 shows the results.
【0046】(比較例14〜15)比較例14では、実
施例13の焼成温度とその時間を表2の温度と時間と
し、比較例15では、実施例14の焼成温度とその時間
を表2の温度と時間とする他は実施例13、14と同様
にプリフォームを作製し、合金を含浸させ、得られた複
合材料の評価をした。それらの結果を表2に示す。(Comparative Examples 14 and 15) In Comparative Example 14, the firing temperature and time in Example 13 were set as the temperature and time in Table 2, and in Comparative Example 15, the firing temperature and time in Example 14 were compared in Table 2. A preform was prepared and impregnated with an alloy in the same manner as in Examples 13 and 14 except that the temperature and the time were set as described above, and the obtained composite material was evaluated. Table 2 shows the results.
【0047】[0047]
【表1】 [Table 1]
【0048】[0048]
【表2】 [Table 2]
【0049】表1から明らかなように、実施例において
は、粉末充填率はいずれも60%前後以上であり、曲げ
強度も1.5MPaより大きく堅固なプリフォームとな
っていた。また、そのプリフォームから作製されたアル
ミニウムをマトリックスとする金属−セラミックスの複
合材料には亀裂や割れが生じていなかった。As is clear from Table 1, in each of the examples, the powder filling ratio was about 60% or more, and the bending strength was more than 1.5 MPa, and the solid preform was solid. In addition, no cracks or cracks occurred in the metal-ceramic composite material using aluminum as a matrix produced from the preform.
【0050】これに対して比較例1では、粉末充填率、
曲げ強度とも実施例と同じような値であるが、本発明の
バインダーでないため、複合材料の機械的特性が低下し
た。また、比較例2、5では、安定化剤のNa+濃度が
高いため、比較例3、6、9、12、14、15では、
焼成温度とその時間が高かったり、低かったり、長かっ
たりするため、比較例10、13では、バインダーのア
ルミナ水和物の結晶形が非晶質でなく、結晶質のベーマ
イトであるためいずれも複合材料の機械的特性が低下し
たり、金属の含浸が不可となったりした。さらに、比較
例4、7、8、11では、バインダーの添加量が多いた
め、閉気孔が生じたり、プリフォームの強度が弱く亀裂
が入ったりして金属を含浸できなかった。On the other hand, in Comparative Example 1, the powder filling rate,
The flexural strength was similar to that of the example, but the mechanical properties of the composite material were deteriorated because it was not the binder of the present invention. In Comparative Examples 2 and 5, since the Na + concentration of the stabilizer was high, in Comparative Examples 3, 6, 9, 12, 14, and 15,
Since the calcination temperature and the calcination time are high, low, or long, in Comparative Examples 10 and 13, since the crystal form of the alumina hydrate of the binder is not amorphous but crystalline boehmite, both are complex. The mechanical properties of the material deteriorated, and impregnation with metal became impossible. Furthermore, in Comparative Examples 4, 7, 8, and 11, since the amount of the binder added was large, closed pores were formed, or the strength of the preform was low, and cracks were formed, so that the metal could not be impregnated.
【0051】[0051]
【発明の効果】以上の方法で金属−セラミックス複合材
料を作製すれば、粉末充填率が高く、強度が高い密で堅
固なプリフォームとすることができ、そのプリフォーム
にアルミニウム合金を含浸させれば、亀裂や割れのない
金属−セラミックス複合材料が得られるようになった。
また、プリフォームの粉末の種類、粉末充填率、バイン
ダーの種類等を選んで作製すれば、それらに応じた必要
とする強度や破壊靱性値を有した金属−セラミックスの
複合材料が得られるようになった。このように、必要な
破壊靱性値や強度を選ぶことができるので、機械部品の
設計に十分に役立つ。According to the above-mentioned method, a metal-ceramic composite material is produced, whereby a dense and rigid preform having a high powder filling rate and high strength can be obtained, and the preform can be impregnated with an aluminum alloy. For example, a metal-ceramic composite material free from cracks and cracks can be obtained.
In addition, if a preform powder type, a powder filling rate, and a binder type are selected and produced, a metal-ceramic composite material having a necessary strength and a fracture toughness value corresponding thereto is obtained. became. Thus, the required fracture toughness value and strength can be selected, which is sufficiently useful for designing mechanical parts.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 平四郎 千葉県松戸市松戸新田314−1 (72)発明者 林 睦夫 埼玉県浦和市大牧560 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Heishiro Takahashi 314-1 Matsudo Nitta, Matsudo City, Chiba Prefecture (72) Mutsui Hayashi 560 Omaki, Urawa City, Saitama Prefecture
Claims (10)
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するSiC粉末に対し、バ
インダーとして水を分散媒とし、Na+、もしくはNH4
+を安定化剤とするコロイドの大きさが5〜50nmの
コロイダルシリカ液を0.5〜25wt%(シリカとし
て0.1〜5.0wt%)加え成形した後、その成形体
を800〜1100℃の温度で1〜3時間焼成する方法
であることとし、その形成されたプリフォームにアルミ
ニウムを主成分とする合金を700〜1000℃の温度
で含浸させることとすることを特徴とする金属−セラミ
ックス複合材料の製造方法。1. A method for producing a metal-ceramic composite material in which a preform is formed using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material. .0
Water is used as a binder as a binder for the SiC powder having an average particle size of about 100 μm, and Na + or NH 4 is used.
A colloidal silica liquid having a size of 5 to 50 nm with + as a stabilizer is added in an amount of 0.5 to 25% by weight (0.1 to 5.0% by weight as silica) and molded, and then the molded body is 800 to 1100%. Metal for 1 to 3 hours at a temperature of 700 ° C., and an alloy containing aluminum as a main component is impregnated in the formed preform at a temperature of 700 to 1000 ° C. Manufacturing method of ceramic composite material.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するAl2O3粉末に対し、
バインダーとして水を分散媒とし、Na+、もしくはN
H4 +を安定化剤とするコロイドの大きさが5〜50nm
のコロイダルシリカ液を0.5〜25wt%(シリカと
して0.1〜5.0wt%)加え成形した後、その成形
体を800〜1200℃の温度で1〜3時間焼成する方
法であることとし、その形成されたプリフォームにアル
ミニウムを主成分とする合金を700〜1000℃の温
度で含浸させることとすることを特徴とする金属−セラ
ミックス複合材料の製造方法。2. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material and the preform is impregnated with a metal serving as a base material, wherein the method for forming the preform is as follows. .0
For Al 2 O 3 powder having an average particle size of 100100 μm,
Water is used as a binder as a dispersion medium, and Na + or N
Colloid having H 4 + as stabilizer is 5 to 50 nm in size
After adding 0.5 to 25% by weight (0.1 to 5.0% by weight of silica) of the colloidal silica liquid and molding, the molded body is fired at a temperature of 800 to 1200 ° C. for 1 to 3 hours. And a method of manufacturing a metal-ceramic composite material, wherein the formed preform is impregnated with an alloy containing aluminum as a main component at a temperature of 700 to 1000 ° C.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するSiC粉末に対し、バ
インダーとして水を分散媒とし、Cl-、CH3COO-
もしくはNO3 -を安定化剤とするコロイドの大きさが1
〜1000nmのアルミナ水和物のコロイド液を1.0
〜30wt%(アルミナとして0.1〜10wt%)加
え成形した後、その成形体を800〜1100℃の温度
で1〜3時間焼成する方法であることとし、その形成さ
れたプリフォームにアルミニウムを主成分とする合金を
700〜1000℃の温度で含浸させることとすること
を特徴とする金属−セラミックス複合材料の製造方法。3. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the preform is formed by the following method. .0
With respect to SiC powder having an average particle size of about 100 μm, water is used as a binder as a dispersion medium, and Cl − , CH 3 COO −
Alternatively, the size of the colloid using NO 3 - as a stabilizer is 1
-1000 nm alumina hydrate colloid solution
After molding by adding 3030 wt% (0.1 to 10 wt% as alumina), the formed body is fired at a temperature of 800 to 1100 ° C. for 1 to 3 hours, and aluminum is applied to the formed preform. A method for producing a metal-ceramic composite material, comprising impregnating an alloy as a main component at a temperature of 700 to 1000C.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するAl2O3粉末に対し、
バインダーとして水を分散媒とし、Cl-、CH3COO
-もしくはNO3 -を安定化剤とするコロイドの大きさが
1〜1000nmのアルミナ水和物のコロイド液を1.
0〜30wt%(アルミナとして0.1〜10wt%)
加え成形した後、その成形体を1300〜1600℃の
温度で1〜3時間焼成する方法であることとし、その形
成されたプリフォームにアルミニウムを主成分とする合
金を700〜1000℃の温度で含浸させることとする
ことを特徴とする金属−セラミックス複合材料の製造方
法。4. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the preform is formed by the following method. .0
For Al 2 O 3 powder having an average particle size of 100100 μm,
Using water as a dispersion medium as a binder, Cl − , CH 3 COO
- or NO 3 - in the colloid stabilizing agent magnitude colloidal solution of alumina hydrate of 1 to 1,000 nm 1.
0-30 wt% (0.1-10 wt% as alumina)
After the addition and molding, the molded body is fired at a temperature of 1300 to 1600 ° C for 1 to 3 hours, and an alloy containing aluminum as a main component is formed on the formed preform at a temperature of 700 to 1000 ° C. A method for producing a metal-ceramic composite material, characterized in that the composite material is impregnated.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するSiC粉末に対し、バ
インダーとして水を分散媒とし、Na+、もしくはNH4
+を安定化剤とするコロイドの大きさが5〜50nmの
コロイダルシリカ液と、Cl-、CH3COO-もしくは
NO3 -を安定化剤とするコロイドの大きさが1〜100
0nmのアルミナ水和物のコロイド液とをシリカ成分が
アルミナ成分に対し10〜80%となるべく混合し、そ
の混合液を1.0〜30wt%(シリカ+アルミナとし
て0.1〜5.0wt%)加え成形した後、その成形体
を800〜1100℃の温度で1〜3時間焼成する方法
であることとし、その形成されたプリフォームにアルミ
ニウムを主成分とする合金を700〜1000℃の温度
で含浸させることとすることを特徴とする金属−セラミ
ックス複合材料の製造方法。5. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material. .0
Water is used as a binder as a binder for the SiC powder having an average particle size of about 100 μm, and Na + or NH 4 is used.
+ A colloidal silica solution the size of 5~50nm colloid stabilizing agent, Cl -, CH 3 COO - or NO 3 - the size of the colloid stabilizing agent 1 to 100
A colloidal solution of 0 nm alumina hydrate is mixed with the silica component so that the silica component is 10 to 80% with respect to the alumina component, and the mixed solution is 1.0 to 30 wt% (0.1 to 5.0 wt% as silica + alumina). After the addition molding, the molded body is fired at a temperature of 800 to 1100 ° C. for 1 to 3 hours, and an alloy containing aluminum as a main component is formed on the formed preform at a temperature of 700 to 1000 ° C. A method for producing a metal-ceramic composite material, characterized by impregnating with a metal.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、1.0
〜100μmの平均粒径を有するAl2O3粉末に、バイ
ンダーとして水を分散媒とし、Na+、もしくはNH4 +
を安定化剤とするコロイドの大きさが5〜50nmのコ
ロイダルシリカ液と、Cl-、CH3COO-もしくはN
O3 -を安定化剤とするコロイドの大きさが1〜1000
nmのアルミナ水和物のコロイド液とをシリカ成分がア
ルミナ成分に対し10〜80%となるべく混合し、その
混合液を1.0〜30wt%(シリカ+アルミナとして
0.1〜5.0wt%)加え成形した後、その成形体を
800〜1200℃の温度で1〜3時間焼成する方法で
あることとし、その形成されたプリフォームにアルミニ
ウムを主成分とする合金を700〜1000℃の温度で
含浸させることとすることを特徴とする金属−セラミッ
クス複合材料の製造方法。6. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the preform is formed by the following method. .0
Water is used as a binder as a binder in Al 2 O 3 powder having an average particle size of about 100 μm, and Na + or NH 4 +
Colloidal silica solution 5~50nm the magnitude of the colloid stabilizing agent, Cl -, CH 3 COO - or N
The size of the colloid having O 3 - as a stabilizer is 1 to 1000
and a colloidal solution of alumina hydrate having a particle size of 10 nm to 80% with respect to the alumina component. After the addition molding, the molded body is fired at a temperature of 800 to 1200 ° C. for 1 to 3 hours, and an alloy containing aluminum as a main component is formed on the formed preform at a temperature of 700 to 1000 ° C. A method for producing a metal-ceramic composite material, characterized by impregnating with a metal.
中のNa+濃度が、Na2O換算で0.05〜0.4wt
%であることを特徴とする請求項1、2、5または6記
載の金属−セラミックス複合材料の製造方法。7. Na + concentration in the binder was stabilizers the Na + is, 0.05~0.4Wt in terms of Na 2 O
%. The method for producing a metal-ceramic composite material according to claim 1, 2, 5 or 6.
中のアルミナ水和物の結晶形が、無定形であることを特
徴とする請求項3、4、5または6記載の金属−セラミ
ックス複合材料の製造方法。8. The metal-ceramic composite according to claim 3, wherein the crystal form of the alumina hydrate in the binder containing Cl − as a stabilizer is amorphous. Material manufacturing method.
してプリフォームを形成し、そのプリフォームに基材で
ある金属を含浸させる金属−セラミックス複合材料の製
造方法において、該プリフォームの形成方法が、10〜
100μmの平均粒径を有するSiC粉末に対し、バイ
ンダーとして平均粒径が1.0μm以下のAl2O3粉末
またはSiC粉末を1.0〜10wt%加え成形した
後、その成形体を900〜1200℃の温度で1〜3時
間焼成する方法であることとし、その形成されたプリフ
ォームにアルミニウムを主成分とする合金を700〜1
000℃の温度で含浸させることとすることを特徴とす
る金属−セラミックス複合材料の製造方法。9. A method for producing a metal-ceramic composite material in which a preform is formed by using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal as a base material, wherein the method for forming the preform comprises: ~
After adding 1.0 to 10 wt% of an Al 2 O 3 powder or an SiC powder having an average particle diameter of 1.0 μm or less to a SiC powder having an average particle diameter of 100 μm as a binder, and molding the resultant, 900 to 1200 The method is to bake at a temperature of 1 to 3 hours, and an alloy containing aluminum as a main component is 700 to 1 in the formed preform.
A method for producing a metal-ceramic composite material, comprising impregnating at a temperature of 000 ° C.
としてプリフォームを形成し、そのプリフォームに基材
である金属を含浸させる金属−セラミックス複合材料の
製造方法において、該プリフォームの形成方法が、10
〜100μmの平均粒径を有するAl2O3粉末に対し、
バインダーとして平均粒径が1.0μm以下のAl2O3
粉末またはSiC粉末を1.0〜10wt%加え成形し
た後、その成形体を1000〜1500℃の温度で1〜
3時間焼成する方法であることとし、その形成されたプ
リフォームにアルミニウムを主成分とする合金を700
〜1000℃の温度で含浸させることとすることを特徴
とする金属−セラミックス複合材料の製造方法。10. A method for producing a metal-ceramic composite material in which a preform is formed using ceramic fibers or particles as a reinforcing material, and the preform is impregnated with a metal serving as a base material.
For Al 2 O 3 powder having an average particle size of 100100 μm,
Al 2 O 3 having an average particle size of 1.0 μm or less as a binder
After adding 1.0 to 10 wt% of powder or SiC powder and molding, the molded body is heated at a temperature of 1000 to 1500 ° C. for 1 to 1%.
It is a method of firing for 3 hours, and an alloy containing aluminum as a main component is 700
A method for producing a metal-ceramic composite material, characterized in that the impregnation is performed at a temperature of from 1000 ° C to 1000 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27522396A JP4217278B2 (en) | 1996-09-27 | 1996-09-27 | Method for producing metal-ceramic composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27522396A JP4217278B2 (en) | 1996-09-27 | 1996-09-27 | Method for producing metal-ceramic composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10102162A true JPH10102162A (en) | 1998-04-21 |
JP4217278B2 JP4217278B2 (en) | 2009-01-28 |
Family
ID=17552428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27522396A Expired - Lifetime JP4217278B2 (en) | 1996-09-27 | 1996-09-27 | Method for producing metal-ceramic composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4217278B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010260116A (en) * | 2009-04-30 | 2010-11-18 | Mitsui Seiki Kogyo Co Ltd | Method of finishing solid-like member containing ceramics material by using scraper, and scraper therefor |
JP2020196933A (en) * | 2019-06-04 | 2020-12-10 | アドバンスコンポジット株式会社 | Manufacturing method of aluminum alloy-based composite material |
CN114321291A (en) * | 2021-11-17 | 2022-04-12 | 亚超特工业有限公司 | Aluminum-based composite material gear ring for gear device |
-
1996
- 1996-09-27 JP JP27522396A patent/JP4217278B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010260116A (en) * | 2009-04-30 | 2010-11-18 | Mitsui Seiki Kogyo Co Ltd | Method of finishing solid-like member containing ceramics material by using scraper, and scraper therefor |
JP2020196933A (en) * | 2019-06-04 | 2020-12-10 | アドバンスコンポジット株式会社 | Manufacturing method of aluminum alloy-based composite material |
CN114321291A (en) * | 2021-11-17 | 2022-04-12 | 亚超特工业有限公司 | Aluminum-based composite material gear ring for gear device |
Also Published As
Publication number | Publication date |
---|---|
JP4217278B2 (en) | 2009-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5990025A (en) | Ceramic matrix composite and method of manufacturing the same | |
US9546114B2 (en) | SiAlON bonded silicon carbide material | |
JPH05105521A (en) | Carbon-fiber reinforced silicon nitride-based nano-composite material and its production | |
US5464583A (en) | Method for manufacturing whisker preforms and composites | |
JP5601833B2 (en) | Method for producing metal-ceramic composite material | |
JPH10102162A (en) | Production of metal-ceramic composite material | |
CN108329040B (en) | Sialon combined fused quartz prefabricated member for aluminum water flow groove and manufacturing method thereof | |
JP7130903B2 (en) | Refractory materials for low-melting non-ferrous metals | |
JP2617086B2 (en) | Silicon carbide casting material | |
JPH0520381B2 (en) | ||
US5510304A (en) | Coarse reaction bonded silicon nitride | |
JP4907777B2 (en) | Metal-ceramic composite material | |
JPH0520382B2 (en) | ||
JP3828622B2 (en) | Method for producing metal-ceramic composite material | |
JPH10140263A (en) | Production of metal-ceramics composite | |
JP3661958B2 (en) | Refractory for casting | |
JP4217279B2 (en) | Method for producing metal-ceramic composite material | |
JP3672476B2 (en) | Silicon iron nitride powder and refractory | |
JPH10251773A (en) | Metal-ceramics composite material and its production | |
JPH1088255A (en) | Production of metal-ceramics composite material | |
JPH0753256A (en) | Aluminous composite sintered compact and its production | |
JPH06157152A (en) | Fiber reinforced composite gradient material and it production | |
JP3944871B2 (en) | Carbon-containing ceramic sintered body | |
JP3108362B2 (en) | High-strength inorganic fiber molded body | |
JP4167318B2 (en) | Method for producing metal-ceramic composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060830 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081021 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |