JP2020191542A - 伝送装置、伝送システム、及び伝送方法 - Google Patents

伝送装置、伝送システム、及び伝送方法 Download PDF

Info

Publication number
JP2020191542A
JP2020191542A JP2019095823A JP2019095823A JP2020191542A JP 2020191542 A JP2020191542 A JP 2020191542A JP 2019095823 A JP2019095823 A JP 2019095823A JP 2019095823 A JP2019095823 A JP 2019095823A JP 2020191542 A JP2020191542 A JP 2020191542A
Authority
JP
Japan
Prior art keywords
wavelength
light
excitation light
excitation
nonlinear medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019095823A
Other languages
English (en)
Other versions
JP7260771B2 (ja
Inventor
智明 竹山
Tomoaki Takeyama
智明 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019095823A priority Critical patent/JP7260771B2/ja
Priority to US16/876,254 priority patent/US11294258B2/en
Publication of JP2020191542A publication Critical patent/JP2020191542A/ja
Application granted granted Critical
Publication of JP7260771B2 publication Critical patent/JP7260771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02233Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range having at least two dispersion zero wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29386Interleaving or deinterleaving, i.e. separating or mixing subsets of optical signals, e.g. combining even and odd channels into a single optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0232Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission
    • H04J14/0234Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for downstream transmission using multiple wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • H04J14/0235Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for upstream transmission
    • H04J14/0236Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON] for upstream transmission using multiple wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 送信側及び受信側の波長多重信号光の波長帯のずれを低減することができる伝送装置、伝送システム、及び伝送方法を提供する。【解決手段】 伝送装置は、第1非線形媒質内の第1励起光及び波長多重光の四光波混合により波長多重光の波長帯を変換する他装置から波長多重光を受信し、第2非線形媒質内の第2励起光及び波長多重光の四光波混合により波長多重光の波長帯を変換する第1波長変換部と、第3非線形媒質内の第3及び第4励起光と波長多重光の四光波混合により波長多重光の波長帯を変換する第2波長変換部とを有し、第1励起光の波長は第1非線形媒質のゼロ分散波長に設定され、第1波長変換部は、第2励起光の波長を第2非線形媒質のゼロ分散波長に設定し、第2波長変換部は、第3及び第4励起光の各周波数差が、第1及び第2非線形媒質のゼロ分散波長を変換した周波数差に基づく値となるように、第3及び第4励起光の各波長を設定する。【選択図】図3

Description

本件は、伝送装置、伝送システム、及び伝送方法に関する。
非線形ファイバ内で励起光と信号光の四光波混合を発生させることにより信号光の波長を変換する技術がある(例えば特許文献1及び2参照)。この技術によると、波長多重信号光の波長帯域を一括で変換することができるため、波長帯域の異なる複数の波長多重信号光を多重して1つの伝送路に伝送することにより大容量の伝送が可能となる。
特開平9−230404号公報 特開2001−75136号公報
波長変換に用いる四光波混合には、1つの励起光を用いる縮退四光波混合と、2つの励起光を用いる非縮退四光波混合とがある。非縮退四光波混合の場合、非線形ファイバ内で各励起光の偏波のなす角は、偏波モード分散(PMD: Polarization Mode Dispersion)の波長依存性のため、例えば直交状態から平衡状態まで変位する。このため、各励起光の波長差が大きいほど、多くの不要なクロストーク光が生じて波長多重信号光が劣化するおそれがある。
また、縮退四光波混合では1つの励起光だけが用いられるため、波長多重信号光の劣化のおそれは少ないが、励起光の波長と非線形ファイバのゼロ分散波長のずれによる変換帯域の減少の程度が非縮退四光波混合の場合より大きくなる。
これに対し、励起光の波長をゼロ分散波長に一致させれば、変換帯域の減少を抑制することができるが、ゼロ分散波長は非線形ファイバごとにばらつくため、波長多重信号光の送信側及び受信側において波長変換後の波長に目標値からの誤差が生ずる。このため、受信時の波長多重信号光に含まれる信号光の波長が、送信時の波長多重信号光に含まれる信号光の波長からずれてしまうという問題がある。
例えばITU(International Telecommunication Union)グリッドに対応する信号光を含む波長多重信号光を送信する場合、受信側の波長分離手段としてITUグリッドの波長に対応するアレイ導波路(AWG: Arrayed Waveguide Gratings)が設けられても、波長がずれているため、信号光を分離することができない。このため、汎用性の高いAWGを用いることができないという不便が生ずる。
そこで本件は、送信側及び受信側の波長多重信号光の波長帯のずれを低減することができる伝送装置、伝送システム、及び伝送方法を提供することを目的とする。
1つの態様では、伝送装置は、第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置からの前記波長多重信号光を受信する伝送装置において、第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送装置は、第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置に前記波長多重信号光を送信する伝送装置において、第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送装置は、他の伝送装置に第1波長多重信号光を送信する送信処理部と、前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、前記送信処理部は、第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、前記受信処理部は、第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3波長変換部は、前記他の伝送装置が前記第2波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送装置は、他の伝送装置に第1波長多重信号光を送信する送信処理部と、前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、前記受信処理部は、第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、前記送信処理部は、第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3波長変換部は、前記他の伝送装置が前記第1波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送システムは、波長多重信号光を送信する第1伝送装置と、前記波長多重信号光を受信する第2伝送装置とを有し、前記第1伝送装置は、第1励起光を出力する送信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する送信側波長変換部を有し、前記第2伝送装置は、第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、前記送信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送システムは、波長多重信号光を送信する第1伝送装置と、前記波長多重信号光を受信する第2伝送装置とを有し、前記第2伝送装置は、第1励起光を出力する受信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する受信側波長変換部を有し、前記第1伝送装置は、第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、前記受信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する。
1つの態様では、伝送方法は、波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、前記第1伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、前記第2伝送装置は、第2非線形媒質に入力された第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、第3非線形媒質に入力された第3励起光、第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、前記第1伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第2伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する方法である。
1つの態様では、伝送方法は、波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、前記第2伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、前記第1伝送装置は、第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、前記第2伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、前記第1伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定する方法である。
1つの側面として、送信側及び受信側の波長多重信号光の波長帯のずれを低減することができる。
比較例の伝送システムの一例を示す構成図である。 縮退四光波混合及び非縮退四光波混合を利用した波長変換の変換帯域の一例を示す図である。 第1実施例の伝送システムの一例を示す構成図である。 波長変換器による波長帯の変換の例を示す図である。 伝送システムの波長の設定処理の一例を示すフローチャートである。 第2実施例の伝送システムを示す構成図である。 第3実施例の伝送システムを示す構成図である ネットワーク監視制御装置の一例を示す構成図である。 第4実施例の伝送システムを示す構成図である。 波長変換器の光回路の一例を示す構成図である。 励起光からアイドラ光が生成される様子を示す図である。 第5実施例の伝送システムの一例を示す構成図である。 第6実施例の伝送システムの一例を示す構成図である。 第7実施例の伝送システムの一例を示す構成図である。 Sバンド、Cバンド及びLバンドの各波長多重信号光を合波して伝送する伝送システムの一例を示す構成図である。
(比較例)
図1は、比較例の伝送システムの一例を示す構成図である。伝送システムは、送信側の伝送装置1x及び受信側の伝送装置2xを有する。送信側の伝送装置1xは、光ファイバなどの伝送路90を介して波長多重信号光Smを送信する。受信側の伝送装置2xは、送信側の伝送装置1xから伝送路90を介して波長多重信号光Smを受信する。
伝送装置1xは、送信器10a〜10d、AWG11、及び波長変換器12を有する。送信器10a〜10dは、例えばトランスポンダであり、一例としてデジタルコヒーレント光伝送方式によりCバンド内の波長λa〜λdの信号光をAWG11に出力する。送信器10a〜10bは、例えば送信光の光源及び光変調器などを有する。
AWG11には、送信器10a〜10dから信号光がそれぞれ入力される。AWG11は、各信号光の波長λa〜λdに対応する光の入力ポートを有する。ここで、波長λa〜λdは、例えばITUグリッドに従った波長間隔を有する。AWG11は、各信号光を波長多重してCバンドの波長多重信号光Smを生成して波長変換器12に出力する。
波長変換器12は、波長多重信号光Smの波長帯を、一例としてCバンドからSバンドに変換する。波長変換器12は、波長多重信号光Sm及び励起光Lsの縮退四光波混合により波長多重信号光Smの波長帯を変換する。より具体的には、波長変換器12は、縮退四光波混合により生成されるアイドラ光をSバンドの波長多重信号光Smとして出力する。
波長変換器12は、非線形ファイバ120、WDM(Wavelength Divisional Multiplexing)カプラ121、レーザダイオード(LD: Laser Diode)122、設定処理部123、及びメモリ124を有する。レーザダイオード122は、波長λ1の励起光LsをWDMカプラ121に出力する。
WDMカプラ121には、励起光Ls及び波長多重信号光Smが入力される。WDMカプラ121の出力ポートは非線形ファイバ120に接続されている。励起光Ls及び波長多重信号光SmはWDMカプラ121により合波されて非線形ファイバ120に入力される。非線形ファイバ120内では励起光Ls及び波長多重信号光Smの四光波混合が発生する。これにより、波長多重信号光Smの波長帯がSバンドに変換される。Sバンドの波長多重信号光Smは非線形ファイバ120から伝送路90に出力される。
設定処理部123は、レーザダイオード122に励起光Lsの波長λ1を設定する。励起光Lsの波長λ1は、例えばメモリ124に事前に格納されている。設定処理部123は、メモリ124から波長λ1を読み出して設定する。波長多重信号光Smの波長帯は、波長軸上において波長λ1を挟んで対称な位置に変換される。
設定処理部123は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)などを含むCPU回路であってもよいし、FPGA(Field Programmable Gate Array)やASIC(Application Specified Integrated Circuit)などの論理回路であってもよい。
波長多重信号光Smは伝送路90から受信側の伝送装置2xに入力される。
伝送装置2xは、受信器20a〜20d、AWG21、及び波長変換器22を有する。
波長変換器22は、波長多重信号光Smの波長帯を、一例としてSバンドからCバンドに変換する。波長変換器22は、波長多重信号光Sm及び励起光Lsの縮退四光波混合により波長多重信号光Smの波長帯を変換する。より具体的には、波長変換器22は、縮退四光波混合により生成されるアイドラ光をCバンドの波長多重信号光Smとして出力する。
波長変換器12は、非線形ファイバ220、WDMカプラ221、レーザダイオード222、設定処理部223、及びメモリ224を有する。レーザダイオード222は、波長λ2の励起光LrをWDMカプラ221に出力する。
WDMカプラ221には、励起光Lr及び波長多重信号光Smが入力される。WDMカプラ221の出力ポートは非線形ファイバ220に接続されている。励起光Lr及び波長多重信号光SmはWDMカプラ221により合波されて非線形ファイバ220に入力される。非線形ファイバ220内では励起光Lr及び波長多重信号光Smの四光波混合が発生する。これにより、波長多重信号光Smの波長帯がCバンドに変換される。Cバンドの波長多重信号光Smは非線形ファイバ220からAWG21に出力される。
設定処理部223は、レーザダイオード222に励起光Lrの波長λ2を設定する。励起光Lrの波長λ2は、例えばメモリ224に事前に格納されている。波長多重信号光Smの波長帯は、波長軸上において波長λ2を挟んで対称な位置に変換される。
設定処理部223は、メモリ224から波長λ2を読み出して設定する。設定処理部223は、例えばCPU、ROM、及びRAMなどを含むCPU回路であってもよいし、FPGAやASICなどの論理回路であってもよい。
AWG21は、波長多重信号光Smを波長λa〜λdごとの信号光に分離する。AWG21は、各信号光の波長λa〜λdに対応する光の出力ポートを有する。波長λa〜λdの信号光はAWG21から受信器20a〜20dにそれぞれ入力される。
受信器20a〜20dは、一例としてデジタルコヒーレント光伝送方式に従って波長λa〜λdの信号光をそれぞれ受信する。受信器20a〜20dは、局発光の光源、フォトダイオード、及び復調器などを有する。
波長変換器12,22は、縮退四光波混合を利用するため、励起光Ls,Lrの波長λ1,λ2と非線形ファイバ120,220のゼロ分散波長のずれによる変換帯域の減少の程度が、非縮退四光波混合を利用した波長変換の場合より大きくなる。
図2は、縮退四光波混合及び非縮退四光波混合を利用した波長変換の変換帯域の一例を示す図である。横軸は、ゼロ分散波長と励起光の波長の波長差を示し、縦軸は変換帯域を示す。
符号p1は、非縮退四光波混合を利用した波長変換の場合の波長差に対する変換帯域の変化を示し、符号p2は、縮退四光波混合を利用した波長変換の場合の波長差に対する変換帯域の変化を示す。縮退四光波混合を利用した波長変換の場合、波長差に対する変換帯域の減少の程度が、非縮退四光波混合を利用した波長変換の場合より大きい。
これに対し、励起光Ls,Lrの波長を非線形ファイバ120,220のゼロ分散波長にそれぞれ一致させれば、変換帯域の減少を抑制することができるが、ゼロ分散波長は非線形ファイバ120,220ごとにばらつくため、各波長変換器12,22において波長変換後の波長に目標値からの誤差が生ずる。
このため、送信器10a〜10dが送信した波長多重信号光Smに含まれる信号光の波長λa〜λdが、受信側の伝送装置2xのAWG21に入力される波長多重信号光Smに含まれる信号光の波長λa〜λdからずれてしまう。このため、AWG11の入力ポート及びAWG21の出力ポートがITUグリッドの波長間隔に対応する場合、送信側及び受信側の波長λa〜λdのずれによって、AWG21が波長多重信号光Smから信号光を分離することができない。したがって、汎用性の高いAWG11,21を用いることができないという不便が生ずる。
(第1実施例)
そこで、本例では、受信側の伝送装置2に、非縮退四光波混合を利用して波長変換する波長変換器23が追加されている。波長変換器23は、波長多重信号光Smの各波長λa〜λdの間の送信側及び受信側のずれが低減されるように波長多重信号光Smの波長帯を変換する。
図3は、第1実施例の伝送システムの一例を示す構成図である。図3において、図1と共通する構成には同一の符号を付し、その説明は省略する。
伝送システムは、伝送路90を介して互いに接続された送信側の伝送装置1及び受信側の伝送装置2を有する。送信側の伝送装置1は、第1伝送装置の一例であり、波長多重信号光Smを送信する。受信側の伝送装置2は、第2伝送装置の一例であり、波長多重信号光Smを受信する。また、ネットワーク監視制御装置9は、不図示の管理ネットワークを介して伝送装置1,2を監視制御する。なお、受信側の伝送装置2は第1実施例の伝送装置である。
送信側の伝送装置1は比較例の伝送装置1xと同様の構成を有する。波長変換器12は、送信側波長変換部の一例であり、非線形ファイバ120に入力された励起光Ls及び波長多重信号光Smの四光波混合により波長多重信号光Smの波長帯を励起光Lsの波長λ1に基づきCバンドからSバンドに変換する。なお、非線形ファイバ120は第1非線形媒質の一例であり、レーザダイオード122は送信側光源の一例である。また、励起光Lsは第1励起光の一例である。
また、設定処理部123は、励起光Lsの波長λ1を非線形ファイバ120のゼロ分散波長に設定する。このため、波長変換器12における変換帯域の減少が抑制される。設定処理部123は、非線形ファイバ120のゼロ分散波長をメモリ124から読み出して波長λ1として設定する。
受信側の伝送装置2は、比較例の伝送装置2xと同様の構成と、非縮退四光波混合を利用して波長変換する波長変換器23を有する。波長変換器23は、波長変換器22とAWG21の間に接続されている。
波長変換器22は、第1波長変換部の一例であり、非線形ファイバ220に入力された励起光Lr及び波長多重信号光Smの四光波混合により波長多重信号光Smの波長帯を励起光Lrの波長λ1に基づきSバンドからCバンドに変換する。しかし、波長変換器22による変換後の波長多重信号光Smに含まれる信号光の波長は、送信器10a〜10dが送信した信号光の波長λa〜λdからずれている。なお、非線形ファイバ220は第2非線形媒質の一例であり、レーザダイオード222は第1光源の一例である。
また、設定処理部223は、励起光Lrの波長λ2を非線形ファイバ220のゼロ分散波長に設定する。このため、波長変換器22における変換帯域の減少が抑制される。また、励起光Lrは第2励起光の一例である。設定処理部223は、非線形ファイバ220のゼロ分散波長をメモリ124から読み出して波長λ2として設定する。
波長多重信号光Smは、非線形ファイバ220から波長変換器23に入力される。波長変換器23は、波長多重信号光Smの各波長λa〜λdの間の送信側及び受信側のずれを低減するように波長帯を変換する。変換後の波長多重信号光SmはAWG21に入力される。
波長変換器23は、第2波長変換部の一例であり、非縮退四光波混合を利用して波長多重信号光Smの波長帯を変換する。波長変換器23は、非線形ファイバ230、WDMカプラ231、偏波ビームコンバイナ(PBC: Polarization Beam Combiner)232、レーザダイオード234,235、及び設定処理部233を有する。
レーザダイオード234は波長λ3の励起光L1rをPBC232に出力し、レーザダイオード235は波長λ4の励起光L2rをPBC232に出力する。レーザダイオード234は第2光源の一例であり、レーザダイオード235は第3光源の一例である。また、励起光L1rは第3励起光の一例であり、励起光L2rは第4励起光の一例である。
PBC232は、偏波が互いに直交する励起光L1r,L2rを合波してWDMカプラ231に出力する。WDMカプラ231は、励起光L1r,L2rの合波光と、波長変換器22からの波長多重信号光Smを合波する。励起光L1r,L2r及び波長多重信号光Smの合波光はWDMカプラ231から非線形ファイバ230に入力される。
非線形ファイバ230内の励起光L1r,L2r及び波長多重信号光Smの四光波混合により波長多重信号光Smの波長帯が変換される。このとき、波長の変換量は、励起光L1r,L2rの波長λ3,λ4の差分(|λ3−λ4|)に等しい。なお、非線形ファイバ230は第3非線形媒質の一例である。
設定処理部233は、レーザダイオード234に励起光L1rの波長λ3を設定し、レーザダイオード232に励起光L2rの波長λ4を設定する。設定処理部233は、励起光L1r,L2rの各周波数の差分が、非線形ファイバ120のゼロ分散波長(λ1)から変換される周波数と、非線形ファイバ220のゼロ分散波長(λ2)から変換される周波数との差分に基づく値となるように励起光L1r,L2rの各波長λ3,λ4を設定する。
後述するように、波長多重信号光Smの各波長λa〜λdの送信側及び受信側の間のずれ(以下、「波長ずれ」と表記)は、送信側の励起光Lsの波長λ1と受信側の励起光Lrの波長λ2の差分に基づく。このため、波長ずれが抑制される。
図4は、波長変換器12,22,23による波長帯の変換の例を示す図である。本例では、波長の変換を周波数の変換により行う例を挙げるが、直接的に波長を変換してもよい。
符号Gaは、波長変換器12による波長変換を示す周波数スペクトルである。変換前の波長多重信号光SmのスペクトルSaの周波数は、下限値f1dから上限値f1uまでの範囲を占める。変換後の波長多重信号光Smの周波数範囲は、励起光Lsの周波数f1pを挟んで対称な位置に変換される(矢印参照)。ここで、周波数f1pは、非線形ファイバ120のゼロ分散波長から変換された周波数(=C/λ1、Cは光速を示す。)に該当する。
f2d=f1p+Δfs=f1p+(f1p−f1u) ・・・(1)
f2u=f1p+Δfs+(f1u−f1d)=f1p+(f1p−f1d)
・・・(2)
変換後の波長多重信号光SmのスペクトルSbの周波数は下限値f2dから上限値f2uまでの範囲を占める。ここで、周波数f1pと上限値f1uの差分Δfs(>0)は周波数f1pと下限値f2dの差分Δfsに等しい。したがって、下限値f2d及び上限値f2uは上記の式(1)及び(2)からそれぞれ算出される。このように、波長変換器12は、波長多重信号光Smの波長帯を、周波数f1pまたは波長λ1に基づき変換する。
符号Gbは、波長変換器22による波長変換を示す周波数スペクトルである。波長多重信号光Smの周波数範囲は、励起光Lrの周波数f2pを挟んで対称な位置に変換される(矢印参照)。ここで、周波数f2pは、非線形ファイバ220のゼロ分散波長から変換された周波数(=C/λ2)に該当し、非線形ファイバ120のゼロ分散波長から変換された周波数f1pとは異なる。
f3d=f2p−Δfr−(f1u−f1d)
=f2p−(f2d−f2p)−(f1u−f1d)
=2(f2p−f1p)+f1d ・・・(3)
f3u=f2p−Δfr=f2p−(f2d−f2p)
=2(f2p−f1p)+f1u ・・・(4)
変換後の波長多重信号光SmのスペクトルSa’の周波数は、下限値f3dから上限値f3uまでの範囲を占める。ここで、周波数f2pと上限値f3uの差分Δfr(>0)は周波数f2pと下限値f2dの差分Δfrに等しい。したがって、下限値f3d及び上限値f3uは上記の式(3)及び(4)からそれぞれ算出される。このように、波長変換器22は、波長多重信号光Smの波長帯を、周波数f2pまたは波長λ2に基づき変換する。
非線形ファイバ120,220の各ゼロ分散波長は、ばらつきにより相違するため、励起光Ls,Lrの各周波数f1p,f2pも相違する。このため、変換後の波長多重信号光SmのスペクトルSa’の周波数範囲(f3d〜f3u)は、元の波長多重信号光SmのスペクトルSaの周波数範囲(f1d〜f1u)に一致しない。
符号Gcは、波長変換器23による波長変換を示す周波数スペクトルである。波長多重信号光Smの周波数範囲は、励起光L1rの周波数f3p(=C/λ3)と励起光L2rの周波数f4p(=1/λ4)の差分Δfp(=f4p−f3p)だけ低周波数側に移動する。これにより、変換後の波長多重信号光SmのスペクトルSa’’の周波数範囲は、元の波長多重信号光SmのスペクトルSaに一致する。
このため、差分Δfpは、元の波長多重信号光SmのスペクトルSa(Sa’’)の周波数範囲(f1d〜f1u)と、変換前の波長多重信号光SmのスペクトルSa’の周波数範囲(f3d〜f3u)との差分に一致する。すなわち、波長変換器23は、波長多重信号光Smの波長帯を、各周波数f1p,f2pの差分に基づき変換する。
Δfp=f3d−f1d=f3u−f1u=2(f2p−f1p) ・・・(5)
したがって、差分Δfpは、上記の式(1)〜(4)に基づき上記の式(5)から算出される。すなわち、励起光L1rの周波数f3pと励起光L2rの周波数f4pの差分Δfpは、励起光Lsの周波数f1pと励起光Lrの周波数f2pの差分(f2p−f1p)の2倍の値となる。
これにより、波長変換器23による波長変換後の波長多重信号光SmのスペクトルSa’’の周波数範囲が、元の波長多重信号光SmのスペクトルSaの周波数範囲(f1d〜f1u)に一致する。したがって、送信側の伝送装置1から送信された波長多重信号光Smの各信号光の波長λa〜λdと、受信側の伝送装置で受信される波長多重信号光Smの各信号光の波長λa〜λdとが一致する。
図3を参照すると、波長変換器23の設定処理部233は、ネットワーク監視制御装置9を介して他の波長変換器12,22から励起光Ls,Lrの波長λ1,λ2、つまり非線形ファイバ120,220のゼロ分散波長を取得する。このとき、波長変換器12,22は、ネットワーク監視制御装置9からの要求に応じてメモリ124,224から波長λ1,λ2を読み出してネットワーク監視制御装置9に通知する。ネットワーク監視制御装置9は、波長λ1,λ2を波長変換器23の設定処理部233に通知する。
設定処理部233は、波長λ1,λ2から励起光L1r,L2rの各周波数f1p,f2pの差分(f2p−f1p)を算出する。設定処理部223は、非線形ファイバ120,220のゼロ分散波長(λ1,λ2)を周波数(f1p,f2p)に変換する。設定処理部233は、励起光L1r,L2rの各周波数の差分が、非線形ファイバ120,220のゼロ分散波長から変換された各周波数f1p,f2pの差分(f2p−f1p)に基づく値となるように、励起光L1r,L2rの各波長λ3,λ4をレーザダイオード234,235にそれぞれ設定する。
例えば設定処理部233は、各レーザダイオード234,235に設定可能な波長の中から、波長の逆数に光速Cを乗じた値同士(つまり、周波数同士)の差分が、励起光Lsの周波数f1pと励起光Lrの周波数f2pの差分(f2p−f1p)の2倍の値に近い波長の組を選択する。これにより、波長変換器23による波長変換後の波長多重信号光Smの波長帯が、送信側の伝送装置1の元の波長多重信号光Smの波長帯に近づく。
したがって、送信側の伝送装置1から送信される波長多重信号光Smの波長多重信号光Smの波長帯と、受信側の伝送装置で受信される波長多重信号光Smの波長帯との間のずれが低減される。
もっとも、例えば、各レーザダイオード234,235に設定可能な波長の中から、波長の逆数に光速Cを乗じた値同士の差分が、励起光Lsの周波数f1pと励起光Lrの周波数f2pの差分(f2p−f1p)の2倍の値となる波長の組が選択可能である場合もあり得る。
この場合、設定処理部233は、励起光L1r,L2rの各周波数の差分が、非線形ファイバ120,220のゼロ分散波長から変換された各周波数f1p,f2pの差分(f2p−f1p)の2倍の値となるように、励起光L1r,L2rの各波長λ3,λ4をレーザダイオード234,235にそれぞれ設定する。これにより、送信側の伝送装置1から送信される波長多重信号光Smの波長多重信号光Smの波長帯と、受信側の伝送装置で受信される波長多重信号光Smの波長帯とを高精度に一致させることができる。
また、波長変換器23は、非縮退四光波混合を利用して波長帯を変換する。このため、各励起光L1r,L2rの波長差が大きいほど、多くの不要なクロストーク光が生じて波長多重信号光Smが劣化するおそれがある。しかし、波長変換器23は、図4を参照して述べたように、他の波長変換器12,22による波長変換後の波長ずれを低減するため、その波長の変換量は他の波長変換器12,22と比べると微小である。このため、各励起光L1r,L2rの波長差も微小であればよく、クロストーク光の発生は抑制される。
図5は、伝送システムの波長λ1〜λ4の設定処理の一例を示すフローチャートである。本処理は、伝送方法の一例であり、例えば伝送システムの運用の開始時または再開時の設定処理(プロビジョニング)において実行される。
送信側の伝送装置1において、波長変換器12の設定処理部133は、励起光Lsの波長λ1をメモリ124から読み出してレーザダイオード122に設定する(ステップSt1)。なお、メモリ124には、非線形ファイバ120のゼロ分散波長が格納されてもよいし、ゼロ分散周波数が格納されてもよい。ゼロ分散周波数が格納される場合、設定処理部133は、ゼロ分散周波数をゼロ分散波長に変換することにより波長λ1を算出する。
次に設定処理部133は、ネットワーク監視制御装置9を介して受信側の波長変換器23の設定処理部233に波長λ1を通知する(ステップSt2)。ここで、設定処理部133は、波長λ1に代えて非線形ファイバ120のゼロ分散周波数を通知してもよい。この場合、設定処理部233は、ゼロ分散波長をゼロ分散波長に変換することにより波長λ1を算出する。
次に受信側の伝送装置2において、縮退四光波混合を利用する波長変換器22の設定処理部223は、励起光Lrの波長λ2をメモリ224から読み出してレーザダイオード222に設定する(ステップSt3)。ここで、波長λ2は非線形ファイバ120のゼロ分散波長に一致する。
なお、メモリ224には、非線形ファイバ220のゼロ分散波長が格納されてもよいし、ゼロ分散周波数が格納されてもよい。ゼロ分散周波数が格納される場合、設定処理部233は、ゼロ分散周波数をゼロ分散波長に変換することにより波長λ2を算出する。
次に設定処理部223は、例えば装置内バスを介して、非縮退四光波混合を利用する波長変換器23の設定処理部233に波長λ2を通知する(ステップSt4)。ここで、設定処理部223は、波長λ2に代えて非線形ファイバ220のゼロ分散周波数を通知してもよい。この場合、設定処理部233は、ゼロ分散波長をゼロ分散波長に変換することにより波長λ2を算出する。なお、ステップSt1,St2の各処理とステップSt3,St4の各処理の順序は逆であってもよい。
次に波長変換器23の設定処理部233は、他の設定処理部123,223からそれぞれ通知された波長λ1,λ2を周波数f1p,f2pに変換し、各周波数f1p,f2pの差分Δfpを算出する(ステップSt5)。次に設定処理部233は、励起光L1r,L2rの各周波数f3p,f4pの差分が、各周波数f1p,f2pの差分Δfpの2倍の値または2倍に近い値となるように、各励起光L1r,L2rの波長λ3,λ4を決定する(ステップSt6)。
次に設定処理部233は、決定した波長λ3,λ4をレーザダイオード234,234にそれぞれ設定する(ステップSt7)。このように、伝送システムは波長λ1〜λ4の設定処理を実行する。
(第2実施例)
第1実施例において、受信側の伝送装置2の設定処理部233は、送信側の伝送装置1の設定処理部123からネットワーク監視制御装置9を介して波長λ1を取得するが、これに限定されない。波長λ1の情報は、例えば伝送装置1,2の監視制御に関する監視信号光Scにより通知されてもよい。
図6は、第2実施例の伝送システムを示す構成図である。図6において、図3と共通する構成には同一の符号を付し、その説明は省略する。
送信側の伝送装置1aは、波長多重信号光Smに監視信号光Scを合波して受信側の伝送装置2aに送信する。監視信号光Scには、励起光Lsの波長λ1、つまり非線形ファイバのゼロ分散波長を示す波長情報が含まれる。
送信側の伝送装置1aは、上記の伝送装置1の構成に加えて、監視信号送信部(OSC−Tx)14及びWDMカプラ13を有する。また、波長変換器12は、上記の設定処理部123に代えて設定処理部123aを有する。設定処理部123aは、ネットワーク監視制御装置9ではなく、監視信号送信部14に波長λ1を通知するが、他の機能は設定処理部123と同様である。
監視信号送信部14は、送信部の一例であり、設定処理部123aから入力された波長λ1の波長情報を含む監視信号光Scを生成してWDMカプラ13に出力する。なお、監視信号送信部14は、例えばSFP(Small Form-factor Pluggable)のような光送受信器である。
WDMカプラ13は、波長変換器12の非線形ファイバ120と伝送路90の間に接続されている。WDMカプラ13は、非線形ファイバ120から入力された波長多重信号光Smに、監視信号送信部14から入力された監視信号光Scを合波する。波長多重信号光Sm及び監視信号光Scの合波光は、伝送路90に出力され、伝送路90から受信側の伝送装置2aに入力される。
受信側の伝送装置2aは、上記の伝送装置2の構成に加えて、監視信号受信部(OSC−Rx)25及びWDMカプラ24を有する。WDMカプラ24は、波長変換器22のWDMカプラ221と伝送路90の間に接続されている。WDMカプラ24は、伝送路90から入力された合波光から波長多重信号光Sm及び監視信号光Scを分離する。波長多重信号光SmはWDMカプラ221に入力され、監視信号光Scは監視信号受信部25に入力される。
監視信号受信部25は、受信部の一例であり、監視信号光Scを伝送装置1aから受信する。監視信号受信部25は、監視信号光Scを電気的な監視信号に変換して波長変換器23に出力する。なお、監視信号受信部25は、例えばSFPのような光送受信器である。
波長変換器23は、上記の設定処理部233に代えて設定処理部233aを有する。設定処理部233aは、ネットワーク監視制御装置9ではなく、監視信号光Scにより波長λ1の通知を受けるが、他の機能は設定処理部233と同様である。
設定処理部233aは、監視信号光に含まれる波長情報から励起光Lsの波長λ1を取得し、波長λ1を周波数f1pに変換する。また、設定処理部233aは、他の波長変換器22の設定処理部223から励起光Lrの波長λ2、つまり非線形ファイバ220のゼロ分散波長を取得して、波長λ2を周波数f2pに変換する。これにより、設定処理部233aは、励起光Ls,Lrの各周波数f1p,f2pの差分Δfpを算出する。
このように、本例において、設定処理部233aは、ネットワーク監視制御装置9を介さずに、送信側の伝送装置1aの波長変換器12の励起光Lsの波長λ1を取得することができる。このため、設定処理部233aは、低遅延で波長λ1を取得することができる。
(第3実施例)
第1及び第2実施例において、設定処理部233,233aは、励起光Ls,Lrの各周波数f1p,f2pの差分Δfpを算出するが、設定処理部233,233aに代えて、ネットワーク監視制御装置9aが差分Δfpを算出してもよい。
図7は、第3実施例の伝送システムを示す構成図である。図7において、図3と共通する構成には同一の符号を付し、その説明は省略する。
ネットワーク監視制御装置9aは、上記のネットワーク監視制御装置9と同様に波長変換器12,22から励起光Ls,Lrの波長λ1,λ2の通知を受ける。ネットワーク監視制御装置9aは、励起光Ls,Lrの波長λ1,λ2を周波数f1p,f2pに変換し、各周波数f1p,f2pの差分Δfpを算出する。ネットワーク監視制御装置9aは、受信側の伝送装置2bの波長変換器23に差分Δfpを通知する。
波長変換器23は、上記の設定処理部233に代えて設定処理部233bを有する。設定処理部233bは、ネットワーク監視制御装置9aから差分Δfpの通知を受けるが、他の機能は設定処理部233と同様である。設定処理部233は、差分Δfpに基づき励起光L1r,L2rの波長λ3,λ4を決定する。
次にネットワーク監視制御装置9aの構成を述べる。
図8は、ネットワーク監視制御装置9aの一例を示す構成図である。ネットワーク監視制御装置9aは、CPU90、ROM91、RAM92、及び通信ポート94を有する。CPU90は、互いに信号の入出力ができるように、ROM91、RAM92、及び通信ポート94と、バス99を介して接続されている。なお、CPU90は、プログラムに従って動作するコンピュータの一例である。
ROM91は、CPU90を駆動するプログラムが格納されている。RAM92は、CPU90のワーキングメモリとして機能する。通信ポート94は、例えば無線LAN(Local Area Network)カードやNIC(Network Interface Card)であり、各伝送装置1,2bの設定処理部123,223,233bと通信する。
CPU90は、ROM91からプログラムを読み込むと、機能として、波長取得部900、周波数差算出部901、及び周波数差通知部902を形成する。波長取得部900は、通信ポート94を介して各伝送装置1,2bの設定処理部123,223から波長λ1,λ2の通知を受けることにより波長λ1,λ2を取得する。波長取得部900は、取得した波長λ1,λ2の情報を周波数差算出部901に出力する。
周波数差算出部901は、波長λ1,λ2から周波数f1p,f2pの差分Δfpを算出する。この算出処理は、図5に示されたステップSt5の処理に該当する。周波数差算出部901は、差分Δfpの情報を周波数差通知部902に通知する。周波数差通知部902は、通信ポート94を介して差分Δfpを設定処理部233bに通知する。
このように、本例ではネットワーク監視制御装置9aが差分Δfpを算出するため、設定処理部233の算出処理の負荷が低減される。
(第4実施例)
第1〜第3実施例において、非縮退四光波混合を利用する波長変換器23は、受信側の伝送装置2,2a,2bに設けられているが、送信側の伝送装置1に設けられてもよい。
図9は、第4実施例の伝送システムを示す構成図である。図9において、図3と共通する構成には同一の符号を付し、その説明は省略する。
伝送システムは、送信側の伝送装置1c及び受信側の伝送装置2cを有する。送信側の伝送装置1cは波長多重信号光Smを送信する。受信側の伝送装置2cは波長多重信号光Smを受信する。なお、伝送装置2cは第2伝送装置の一例であり、伝送装置1cは第1伝送装置の一例である。
受信側の伝送装置2cは、第1実施例の伝送装置2から、非縮退四光波混合を利用する波長変換器23を除いた構成を有する。なお、縮退四光波混合を利用する波長変換器22は受信側波長変換部の一例である。
また、レーザダイオード222は受信側光源の一例であり、励起光Lrは第1励起光の一例である。非線形ファイバ220は第1非線形媒質の一例である。
また、送信側の伝送装置1cは、第1実施例の伝送装置1に、縮退四光波混合を利用する波長変換器15を追加した構成を有する。波長変換器15は、上記の波長変換器23と同様の構成を有する。
波長変換器15は、非線形ファイバ150、WDMカプラ151、PBC152、設定処理部153、及びレーザダイオード154,155を有する。レーザダイオード154は、第2光源の一例であり、第3励起光の一例である励起光L1sをPBC152に出力する。レーザダイオード155は、第3光源の一例であり、第4励起光の一例である励起光L2sをPBC152に出力する。PBC152は、互いに直交する偏波を有する励起光L1s,L2sを合波してWDMカプラ151に出力する。
WDMカプラ151は、AWG11と波長変換器12のWDMカプラ121の間に接続されている。WDMカプラ151は、AWG11から入力された波長多重信号光Smに、PBC152から入力された励起光L1s,L2sを合波する。波長多重信号光Sm及び励起光L1s,L2sは非線形ファイバ150に入力される。
非線形ファイバ150は、波長多重信号光Sm及び励起光L1s,L2sの四光波混合を発生させる。これにより、波長変換器15は、上記の波長変換器23と同様に波長多重信号光Smの波長帯を変換する。なお、波長変換器15は第2波長変換部の一例であり、非線形ファイバ150は第3非線形媒質の一例である。
設定処理部153は、レーザダイオード154,155に励起光L1s,L2sの波長λ3,λ4をそれぞれ設定する。設定処理部153は、上記の設定処理部233と同様に、励起光L1s,L2sの各周波数の差分が、非線形ファイバ120,220のゼロ分散波長(λ1,λ2)から変換される各周波数f1p,f2pの差分Δfsに基づく値となるように、励起光L1s,L2sの各波長λ3,λ4を設定する。
また、波長変換器12は、前段の波長変換器15から入力された波長多重信号光Smの波長帯を、非線形ファイバ120内の励起光Ls及び波長多重信号光Smの四光波混合により変換する。なお、波長変換器12は第1波長変換部の一例である。
また、レーザダイオード122は第1光源の一例であり、励起光Lsは第2励起光の一例である。非線形ファイバ120は第2非線形媒質の一例である。
本例の伝送システムは、上記の構成により、図4において励起光L1r,L2rを励起光L1s,L2sに置き換えた場合と同様の波長変換を行うことができる。ここで、波長変換の順序は、符号Gcの変換、符号Gaの変換、及び符号Gbの変換の順となる。
したがって、本例の伝送システムによると、上記の実施例と同様に、送信側及び受信側の波長多重信号光Smの波長帯のずれを低減することができる。なお、図4の符号Ga〜Gcの変換の順序に限定はないため、送信側の伝送装置1cにおいて、波長変換器12は波長変換器15とAWG11の間に設けられてもよい。
(波長変換器15,23の構成)
次に、非縮退四光波混合を利用する波長変換器15,23の構成のうち、光回路の部分の構成を述べる。
図10は、波長変換器23の光回路の一例を示す構成図である。なお、波長変換器15の光回路は、波長変換器23の光回路と同様の構成を有する。
符号H20〜H22,H31〜H35,H41〜H45,H61〜H65は、入力光Li、励起光L1r,L2r、及びアイドラ光Laの偏波方向を示す。偏波方向は、紙面横方向をX軸とし、紙面縦方向をY軸として示されている。ここで、矩形の枠Na内には、変換前の波長多重信号光Smである入力光Li、変換後の波長多重信号光Smであるアイドラ光La、及び励起光L1r,L2rの偏波方向を示す矢印が示されている。さらに矩形の枠Nb内には、励起光L1r,L2rと入力光LiのX軸方向及びY軸方向の偏波成分Lix,Liyの合波光を示す矢印、及び励起光L1r,L2rとアイドラ光LaのX軸方向及びY軸方向の偏波成分Lax,Layの合波光を示す矢印が示されている。
波長変換器23の光回路は、入力ポートPin、出力ポートPout、光サーキュレータ320、PBC232、偏波ビームスプリッタ(PBS: Polarization Beam Combiner)321、WDMカプラ231a,231b、非線形ファイバ230、偏波コントローラ325、光終端器326、光スプリッタ327,328、PD329、レーザダイオード234,235、及び偏波保持ファイバ380〜386を有する。なお、WDMカプラ231a,231bは上記のWDMカプラ231に該当する。
入力光Liは、入力ポートPinから入力されて光サーキュレータ320を通過してPBS321に入力される。入力ポートPinはAWG11の出力ポートに接続されている。入力光Liは、符号H20で示されるように、X軸方向及びY軸方向の各偏波成分Lix,Liyを含む。
PBS321は、入力光Liから互いに直交する2つの偏波成分Lix,Liyを分離する。X軸方向の偏波成分Lixは、符号H31で示されるように、PBS321から偏波保持ファイバ380を通過してWDMカプラ231bに入力される。Y軸方向の偏波成分Liyは、符号H41で示されるように、PBS321から偏波保持ファイバ382を通過してWDMカプラ231aに入力される。
レーザダイオード234は、符号H60で示されるように、X軸方向の偏波である励起光L1rを出力する。励起光L1rは、レーザダイオード234から偏波保持ファイバ385を通過してPBC232に入力される。
レーザダイオード235は、符号H61で示されるように、Y軸方向の偏波である励起光L2rを出力する。励起光L2rは、レーザダイオード235から偏波保持ファイバ386を通過してPBC232に入力される。
PBC232は励起光L1r,L2rを偏波合成する。PBC232は、符号H62で示されるように、励起光L1r,L2rの合波光を、偏波保持ファイバ384を介して光スプリッタ327に導く。
光スプリッタ327は、励起光L1r,L2rの合波光を2つの偏波保持ファイバ383,381に向けて分波する。励起光L1r,L2rの合波光の一方は、符号H63,H65で示されるように、偏波保持ファイバ383を通過してWDMカプラ231aに入力される。
励起光L1r,L2rの合波光の他方は、符号H64,H66で示されるように、偏波保持ファイバ381を通過してWDMカプラ231bに入力される。偏波保持ファイバ381は、励起光L1r,L2rの偏波方向を90度だけ回転させるため、光スプリッタ327側の接続端とWDMカプラ231b側の接続端の各接続角の差分が90度に設定されている。これにより、励起光L1r偏波方向は入力光LiのX軸方向の偏波成分Lixに一致する。
WDMカプラ231aは、励起光L1r,L2rの合波光と入力光LiのY軸方向の偏波成分Liyを波長多重する。ここで、Y軸方向では励起光L2r及び偏波成分Liyが波長多重される(符号Nb参照)。波長多重光は、符号H42で示されるように、偏波コントローラ325を通過して非線形ファイバ230に入力される。
非線形ファイバ230は、励起光L1r,L2rの合波光と入力光LiのY軸方向の偏波成分Liyの四光波混合を発生させることにより、励起光L1rから、励起光L1r,L2rの各周波数f3p,f4pの差分に応じた周波数のアイドラ光LaのX軸方向の偏波成分Laxを生成する。ここで、X軸方向では励起光L1r及び偏波成分Laxが波長多重される(符号Nb参照)。
励起光L1r,L2r及び偏波成分Liy,Laxは、符号H43で示されるように、非線形ファイバ230からWDMカプラ231bに入力される。WDMカプラ231bは、波長分離機能を有し、符号H44で示されるように、励起光L1r,L2rを分離して偏波保持ファイバ381に導く。残った偏波成分Liy,Laxは、符号H45で示されるように、偏波保持ファイバ380からPBS321に入力される。
WDMカプラ231bは、励起光L1r,L2rの合波光と入力光LiのX軸方向の偏波成分Lixを波長多重する。ここで、X軸方向では励起光L1r及び偏波成分Lixが波長多重される(符号Nb参照)。波長多重光は、符号H32で示されるように、非線形ファイバ230に入力される。
非線形ファイバ230は、励起光L1r,L2rの合波光と入力光LiのX軸方向の偏波成分Lixの四光波混合を発生させることにより、励起光L2rから、励起光L1r,L2rの各周波数f3p,f4pの差分に応じた周波数のアイドラ光LaのY軸方向の偏波成分Layを生成する。ここで、Y軸方向では励起光L2r及び偏波成分Layが波長多重される(符号Nb参照)。
励起光L1r,L2r及び偏波成分Lix,Layは、符号H33で示されるように、非線形ファイバ230から偏波コントローラ325に入力され、その後、WDMカプラ231aに入力される。WDMカプラ231aは、波長分離機能を有し、符号H34で示されるように、励起光L1r,L2rを分離して偏波保持ファイバ383に導く。残った偏波成分Lix,Layは、符号H35で示されるように、偏波保持ファイバ382からPBS321に入力される。
PBS321には、入力光LiのX軸方向及びY軸方向の各偏波成分Lix,Liy、及びアイドラ光LaのX軸方向及びY軸方向の各偏波成分Lax,Layが入力される。入力光LiのX軸方向及びY軸方向の各偏波成分Lix,Liyは、符号H21で示されるように、PBS321から光終端器326に導かれる。光終端器326は各偏波成分を終端する。これにより、不要な偏波成分Lix,Liyが除去される。
また、偏波成分Lax,Layの合成光であるアイドラ光Laは、符号H22で示されるように、PBS321から光サーキュレータ320に入力されて光スプリッタ328に導かれる。光スプリッタ328は、アイドラ光Laを出力ポートPoutとPD329に分岐する。出力ポートPoutは伝送路90に接続されている。
PD329は、アイドラ光Laのパワーを検出して偏波コントローラ325にフィードバックする。偏波コントローラ325は、アイドラ光LaがPBS321で損失しない偏波角とするため、パワーが最大となるように入力光Li及び励起光L1r,L2rの偏波角を制御する。なお、偏波コントローラ325は、例えばASICなどの回路と光導波路を含む。
図11は、励起光L1rからアイドラ光Laが生成される様子を示す図である。符号Gdは、図10の光回路において、偏波ダイバーシティループを時計回りに回る入力光LiのY軸方向の偏波成分Liyからアイドラ光LaのX軸方向の偏波成分Laxを生成する例を示す。
非線形ファイバ230には、WDMカプラ231aから励起光L1r,L2r及び入力光LiのY軸方向の偏波成分Liyが入力される(図10の符号H42参照)。このとき、励起光L1r及び偏波成分Liyの偏波方向はY軸方向であり、励起光L2rの偏波方向は偏波成分Liyに対して直交する。このため、励起光L1r,L2r及び入力光LiのY軸方向の偏波成分Liyの四光波混合により、励起光L1rからアイドラ光LaのX軸方向の偏波成分Laxが生成される。
各偏波成分Liy,Laxの周波数の差分は、各励起光L1r,L2rの周波数f3p,f4pの差分Δfpと等しくなる。このため、入力光Liとして波長多重信号光Smが入力されると、変換後の波長多重信号光Smとしてアイドラ光Laが得られる。
また、符号Geは、図10の光回路において、偏波ダイバーシティループを反時計回りに回る信号光のX軸方向の偏波成分Lixからアイドラ光LaのY軸方向の偏波成分Layを生成する例を示す。
非線形ファイバ230には、WDMカプラ231bから励起光L1r,L2r及び入力光LiのX軸方向の偏波成分Lixが入力される(図10の符号H32参照)。励起光L1rは、上述したように偏波保持ファイバ381を通ることにより偏波方向が偏波成分Lixに一致し、励起光L2rは、偏波保持ファイバ381を通ることにより偏波方向が偏波成分Lixに対して直交する(図10の符号H66参照)。このため、励起光L1r,L2r及び入力光LiのX軸方向の偏波成分Lixの四光波混合により、励起光L1rからアイドラ光LaのY軸方向の偏波成分Layが生成される。
符号Gd,Geの何れの例においても、変換前の波長多重信号光Smである入力光Liが残るが、PBS321により除去されるため(図10の符号H21参照)、不要なクロストーク光の発生が抑制される。
このように、一方の励起光L1rの偏波方向と入力光Liの偏波成分Liy,Lixの偏波方向を平行にすることともに、他方の励起光L2rの偏波方向と入力光Liの偏波成分Liy,Lixの偏波方向を直交させることで、符号Gd,Geの何れの例においても同様の変換帯域及び変換効率が得られる。
(第5実施例)
上記の各実施例の伝送システムは、一方向に波長多重信号光Smを伝送するが、双方向に伝送することもできる。
図12は、第5実施例の伝送システムの一例を示す構成図である。図12において、図3と共通する構成には同一の符号を付し、その説明は省略する。
伝送システムは、2つの伝送路90,91を介して互いに接続された一組の伝送装置1d,2dと、伝送装置1d,2dを監視制御するネットワーク監視制御装置9とを有する。伝送装置1dは送信ユニット50及び受信ユニット51を有し、伝送装置2dは送信ユニット61及び受信ユニット60を有する。なお、伝送装置1d,2dは第1伝送装置及び第2伝送装置の一例である。
送信ユニット50,61は、送信処理部の一例であり、互いに同一の構成を有する。送信ユニット50,61は、それぞれ、波長変換器12、AWG11、及び送信器10a〜10dを有する。送信ユニット50,61は、波長多重信号光Sm,Sm’をそれぞれ他の伝送装置2d,1dに送信する。
受信ユニット51,60は、受信処理部の一例であり、互いに同一の構成を有する。受信ユニット51,60は、それぞれ、波長変換器22,23、AWG21、及び受信器20a〜20dを有する。受信ユニット51,60は、他の伝送装置2d,1dから波長多重信号光Sm,Sm’をそれぞれ受信する。
送信ユニット50,61は、AWG11から出力された波長多重信号光Sm,Smの波長帯を波長変換器12により例えばCバンドからSバンドにそれぞれ変換する。送信ユニット50,61は、Sバンドの波長多重信号光Sm,Sm’を伝送路90,91にそれぞれ出力する。なお、波長多重信号光Sm,Sm’は第1波長多重信号光及び第2波長多重信号光の一例である。
受信ユニット60,51には伝送路90,91から波長多重信号光Sm,Sm’がそれぞれ入力される。受信ユニット60,51は、波長多重信号光Sm,Sm’の波長帯を波長変換器22,23により例えばSバンドからCバンドにそれぞれ変換する。
ネットワーク監視制御装置9は、送信ユニット50の波長変換器12から波長λ1を取得して、受信ユニット60の波長変換器23に通知する。また、ネットワーク監視制御装置9は、送信ユニット61の波長変換器12から波長λ1を取得して、受信ユニット51の波長変換器23に通知する。
受信ユニット60の波長変換器23は、ネットワーク監視制御装置9から波長λ1の通知を受け、波長変換器22から波長λ2の通知を受ける。受信ユニット60の波長変換器23は、上述したように波長λ1,λ2から励起光L1r,L2rの波長λ3,λ4を設定する。
受信ユニット51の波長変換器23は、ネットワーク監視制御装置9から波長λ1の通知を受け、波長変換器22から波長λ2の通知を受ける。受信ユニット51の波長変換器23は、上述したように波長λ1,λ2から励起光L1r,L2rの波長λ3,λ4を設定する。
送信ユニット50,61において、波長変換器12は、第1変換部の一例であり、上述したように、非線形ファイバ120に入力された励起光Ls及び波長多重信号光Sm,Sm’の四光波混合により波長多重信号光Sm,Sm’の波長帯を励起光Lsの波長λ1に基づき変換する。なお、LD122は第1光源の一例であり、励起光Lsは第1励起光の一例である。また、非線形ファイバ120は第1非線形媒質の一例である。
受信ユニット60,51において、波長変換器22は、第2変換部の一例であり、上述したように、非線形ファイバ220に入力された励起光Lr及び波長多重信号光Sm,Sm’の四光波混合により波長多重信号光Sm,Sm’の波長帯を励起光Lrの波長λ2に基づき変換する。なお、LD222は第2光源の一例であり、励起光Lrは第2励起光の一例である。また、非線形ファイバ220は第2非線形媒質の一例である。
受信ユニット60,51において、波長変換器23は、第3変換部の一例であり、上述したように、非線形ファイバ230に入力された励起光L1r,L2r、及び波長多重信号光Sm,Sm’の四光波混合により波長多重信号光Sm,Sm’の波長帯を励起光L1r,L2rの各周波数の差分に基づき変換する。なお、LD234,235は第3光源及び第4光源の一例であり、励起光L1r,L2rは第3励起光及び第4励起光の一例である。また、非線形ファイバ230は第3非線形媒質の一例である。
また、受信ユニット60,51において、波長変換器23の設定処理部233は、第1実施例と同様に、他の伝送装置1d,2dが波長多重信号光Sm,Sm’の波長帯の変換に用いる非線形ファイバ120のゼロ分散波長(励起光Lsの波長λ1)をネットワーク監視制御装置9を介して取得する。なお、他の伝送装置1d,2dの非線形ファイバ120は第4非線形媒質の一例である。
設定処理部233は、上述したように、励起光L1r,L2rの各周波数f3p,f4pの差分Δfpが、周波数f1p,f2pとの差分に基づく値となるように、励起光L1r,L2rの各波長λ3,λ4を設定する。ここで、設定処理部233は、非線形ファイバ120のゼロ分散波長(波長λ1)を周波数f1pに変換し、非線形ファイバ220のゼロ分散波長(波長λ2)を周波数f2pに変換する。
このため、波長多重信号光Sm,Sm’が双方向に伝送される伝送システムにおいて、伝送装置1d,2dは、他の伝送装置2d,1dとの波長多重信号光Sm,Sm’の波長帯のずれを低減することができる。
また、図5を参照して述べたように、設定処理部233は、励起光L1r,L2rの各周波数f3p,f4pの差分Δfpが、周波数f1p,f2pとの差分の2倍の値となるように、励起光L1r,L2rの各波長λ3,λ4を設定してもよい。これにより、伝送装置1d,2dの間において波長多重信号光Sm,Sm’の波長帯を高精度に一致させることができる。
(第6実施例)
第5実施例において、各伝送装置1d,2dの設定処理部233は、他の伝送装置2d,1dの設定処理部123からネットワーク監視制御装置9を介して波長λ1を取得するが、これに限定されない。波長λ1の情報は、第2実施例と同様に、例えば伝送装置1d,2dの監視制御に関する監視信号光Scにより通知されてもよい。
図13は、第6実施例の伝送システムの一例を示す構成図である。図13において、図6及び図12と共通する構成には同一の符号を付し、その説明は省略する。
伝送システムは、2つの伝送路90,91を介して互いに接続された一組の伝送装置1e,2eとを有する。伝送装置1eは送信ユニット52及び受信ユニット53を有し、伝送装置2eは送信ユニット63及び受信ユニット62を有する。なお、伝送装置1d,2dは第1伝送装置及び第2伝送装置の一例である。
送信ユニット52,63は、送信処理部の一例であり、互いに同一の構成を有する。送信ユニット52,63は、それぞれ、送信ユニット50,61の構成に加えて、監視信号送信部(Tx)14及びWDMカプラ13を有する。送信ユニット52,63は、波長多重信号光Sm,Sm’をそれぞれ他の伝送装置2e,1eに送信する。なお、送信器10a〜10d及びAWG11の図示は省略する。
受信ユニット62,53は、受信処理部の一例であり、互いに同一の構成を有する。受信ユニット62,53は、上記の受信ユニット60,51の構成に加えて、監視信号受信部(Rx)25及びWDMカプラ24を有する。受信ユニット62,53は、他の伝送装置2d,1dから波長多重信号光Sm,Sm’をそれぞれ受信する。なお、受信器20a〜20d及びAWG21の図示は省略する。
送信ユニット52,63は、波長多重信号光Sm,Sm’に監視信号光Sc,Sc’を合波して受信ユニット62,53に送信する。監視信号光Sc,Sc’には、励起光Lsの波長λ1、つまり非線形ファイバのゼロ分散波長を示す波長情報が含まれる。
送信ユニット52,63は、監視信号送信部14は、送信部の一例であり、波長変換器12の設定処理部123aから入力された波長λ1の波長情報を含む監視信号光Scを生成してWDMカプラ13に出力する。WDMカプラ13は、波長変換器12の非線形ファイバ120と伝送路90,91の間に接続されている。WDMカプラ13は、非線形ファイバ120から入力された波長多重信号光Sm,Sm’に、監視信号送信部14から入力された監視信号光Scを合波する。波長多重信号光Sm及び監視信号光Scの合波光は、伝送路90,91に出力され、伝送路90,91から受信ユニット62,53に入力される。
受信ユニット62,53において、WDMカプラ24は、波長変換器22のWDMカプラ221と伝送路90,91の間に接続されている。WDMカプラ24は、伝送路90,91から入力された合波光から波長多重信号光Sm,Sm’及び監視信号光Sc,Sc’を分離する。波長多重信号光Sm,Sm’は波長変換器22のWDMカプラ221に入力され、監視信号光Sc,Sc’は監視信号受信部25に入力される。
監視信号受信部25は、受信部の一例であり、監視信号光Scを伝送装置1aから受信する。波長変換器23の設定処理部233aは、監視信号光に含まれる波長情報から励起光Lsの波長λ1を取得し、波長λ1を周波数f1pに変換する。
また、設定処理部233aは、他の波長変換器22の設定処理部223から励起光Lrの波長λ2、つまり非線形ファイバ220のゼロ分散波長を取得して、波長λ2を周波数f2pに変換する。これにより、設定処理部233aは、励起光Ls,Lrの各周波数f1p,f2pの差分Δfpを算出する。
このように、本例において、設定処理部233aは、ネットワーク監視制御装置9を介さずに、送信側の伝送装置1aの波長変換器12の励起光Lsの波長λ1を取得することができる。このため、設定処理部233aは、低遅延で波長λ1を取得することができる。
(第7実施例)
第5及び第6実施例において、非縮退四光波混合を利用する波長変換器23は、受信ユニット51,53,60,62に設けられているが、第5実施例と同様に、送信ユニット50,52,61,63に設けられてもよい。
図14は、第7実施例の伝送システムの一例を示す構成図である。図14において、図9及び図12と共通する構成には同一の符号を付し、その説明は省略する。
伝送システムは、2つの伝送路90,91を介して互いに接続された一組の伝送装置1f,2fと、伝送装置1f,2fを監視制御するネットワーク監視制御装置9とを有する。伝送装置1fは送信ユニット54及び受信ユニット56を有し、伝送装置2fは送信ユニット65及び受信ユニット64を有する。なお、伝送装置1f,2fは第1伝送装置及び第2伝送装置の一例である。
送信ユニット54,65は、送信処理部の一例であり、互いに同一の構成を有する。送信ユニット54,65は、それぞれ、送信ユニット50,61の構成に加えて、波長変換器15を有する。波長変換器15は、AWG11と波長変換器12の間に接続されている。送信ユニット54,65は、波長多重信号光Sm,Sm’をそれぞれ他の伝送装置2f,1fに送信する。
受信ユニット64,56は、受信処理部の一例であり、互いに同一の構成を有する。受信ユニット64,56は、上記の受信ユニット60,51の構成から波長変換器23を除いた構成を有する。受信ユニット64,56は、他の伝送装置1f,2fから波長多重信号光Sm,Sm’をそれぞれ受信する。
ネットワーク監視制御装置9は、受信ユニット56の波長変換器22から波長λ2を取得して、送信ユニット65の波長変換器15に通知する。また、ネットワーク監視制御装置9は、受信ユニット64の波長変換器22から波長λ2を取得して、送信ユニット54の波長変換器15に通知する。
送信ユニット65の波長変換器15は、ネットワーク監視制御装置9から波長λ2の通知を受け、波長変換器12から波長λ2の通知を受ける。送信ユニット65の波長変換器15は、上述したように波長λ1,λ2から励起光L1s,L2sの波長λ3,λ4を設定する。
送信ユニット54の波長変換器15は、ネットワーク監視制御装置9から波長λ2の通知を受け、波長変換器12から波長λ1の通知を受ける。送信ユニット54の波長変換器15は、上述したように波長λ1,λ2から励起光L1s,L2sの波長λ3,λ4を設定する。
このように、波長変換器15の設定処理部153は、他の伝送装置1f,2fが波長多重信号光Sm,Sm’の波長帯の変換に用いる非線形ファイバ220のゼロ分散波長を、ネットワーク監視制御装置9を介して取得する。なお、非線形ファイバ220は第4非線形媒質の一例である。設定処理部153は、上述したように、励起光L1s,L2sの各周波数の差分が、非線形ファイバ120,220のゼロ分散波長(λ1,λ2)から変換される各周波数f1p,f2pの差分Δfsに基づく値となるように、励起光L1s,L2sの各波長λ3,λ4を設定する。
このため、本例の伝送システムでも、第5実施例と同様に、伝送装置1f,2fは、他の伝送装置2f,1fとの波長多重信号光Sm,Sm’の波長帯のずれを低減することができる。
なお、受信ユニット64,56の波長変換器22は、第1波長変換部の一例である。LD222は第1光源の一例であり、励起光Lrは第1励起光の一例である。また、非線形ファイバ220は第1非線形媒質の一例である。
また、送信ユニット54,65の波長変換器12は、第2波長変換部の一例である。LD122は第1光源の一例であり、励起光Lsは第2励起光の一例である。また、非線形ファイバ120は第2非線形媒質の一例である。
また、送信ユニット54,65の波長変換器15は、第3波長変換部の一例である。LD152,155は第3光源及び第4光源の一例であり、励起光L1s,L2sは第3励起光及び第4励起光の一例である。また、非線形ファイバ150は第3非線形媒質の一例である。
(波長変換器12,22,23の適用例)
次にSバンド、Cバンド及びLバンドの各波長多重信号光を合波して伝送する伝送システムに波長変換器12,22,23の適用した例を説明する。
図15は、Sバンド、Cバンド及びLバンドの各波長多重信号光を合波して伝送する伝送システムの一例を示す構成図である。伝送システムは、送信側の伝送装置1gと、受信側の伝送装置2gと、伝送装置1g,2gを監視制御するネットワーク監視制御装置9とを有する。送信側の伝送装置1gは、点線で示されるように、Cバンド、Lバンド、及びSバンドの各波長多重信号光Sa〜Scを合波して合波光Smuxを生成し、伝送路90を介して受信側の伝送装置2gに送信する。
送信側の伝送装置1gは、送信器19a〜19cと、AWG11a〜11cと、光増幅器16a〜16c,17a,17cと、波長変換器(CNV)12a,12cと、合波器18とを有する。波長変換器12aは、上記の波長変換器12と同様の構成を有し、波長多重信号光Saの波長帯をCバンドからLバンドに変換する。波長変換器12cは、上記の波長変換器12と同様の構成を有し、波長多重信号光Scの波長帯をCバンドからSバンドに変換する。
送信器19a、AWG11a、光増幅器16a,17a、及び波長変換器12aは、波長多重信号光Saの経路上に設けられている。各送信器19aは、送信器10a〜10dと同様の構成を有し、Cバンド内の波長の主信号光Daを生成しAWG11aに出力する。
送信器19b、AWG11b、及び光増幅器16bは、波長多重信号光Sbの経路上に設けられている。各送信器19bは、Cバンド内の波長の主信号光Dbを生成しAWG11bに出力する。
送信器19c、AWG11c、光増幅器16c,17c、及び、波長変換器12cは、波長多重信号光Scの経路上に設けられている。各送信器19cは、Cバンド内の波長の主信号光Dcを生成しAWG11cに出力する。送信器19a〜19cは、それぞれ、クライアント側のLAN(Local Area Network)などに接続され、例えばイーサネット(登録商標、以下同様)信号などのクライアント信号から主信号光Da〜Dcを生成する。
AWG11aは、各送信器19aから入力された主信号光Daを合波してCバンドの波長多重信号光Saを生成し光増幅器16aに出力する。また、AWG11aと同様に、AWG11bは、主信号光DbからCバンドの波長多重信号光Sbを生成して光増幅器16bに出力し、AWG11cは、主信号光DcからCバンドの波長多重信号光Scを生成して光増幅器16cに出力する。
光増幅器16aは波長多重信号光Saを増幅して波長変換器12aに出力する。光増幅器16bは波長多重信号光Sbを増幅して合波器18に出力する。光増幅器16cは波長多重信号光Scを増幅して波長変換器12cに出力する。光増幅器16a〜16cは、例えばEDFA(Erbium Doped optical Fiber Amplifier)である。
波長変換器12aは波長多重信号光Saの波長帯をCバンドからLバンドに変換し、波長変換器12cは波長多重信号光Scの波長帯をCバンドからSバンドに変換する。波長変換器12a,12cは波長多重信号光Sa,Scを合波器18にそれぞれ出力する。
合波器18は、波長変換器12a,12cからそれぞれ入力された波長多重信号光Sa,Scと、光増幅器16bから入力された波長多重信号光Sbとを合波し、その合波光Smuxを伝送路92に出力する。なお、合波器18は例えば光カプラである。
このように、送信側の伝送装置1gは、複数の主信号光Da〜Dcがそれぞれ波長多重されたLバンドの波長多重信号光Sa、Cバンドの波長多重信号光Sb、及びSバンドの波長多重信号光Scを合波して、その合波光Smuxを受信側の伝送装置2gに送信する。
受信側の伝送装置2gは、受信器29a〜29c、AWG21a〜21cと、光増幅器27a,27c,28a〜28cと、分波器26と、波長変換器22a,22c,23a,23cを有する。波長変換器22a,22cは上記の波長変換器22と同様の構成を有し、波長変換器23a,23cは上記の波長変換器23と同様の構成を有する。波長変換器22a,23aは波長多重信号光Saの波長帯をLバンドからCバンドに変換する。波長変換器22c,23cは波長多重信号光Scの波長帯をSバンドからCバンドに変換する。
合波光Smuxは伝送路92から分波器26に入力される。分波器26は、合波光Smuxを波長帯ごとに分波して別々のポートから出力する。分波器26は例えば光スプリッタである。
Lバンドの波長多重信号光Saは分波器26から光増幅器27aに入力される。光増幅器27aは波長多重信号光Saを増幅する。波長多重信号光Saは、光増幅器27aから波長変換器22aに入力され、波長変換器22aから波長変換器23aに入力される。波長変換器22a,22bは、波長多重信号光Saの波長帯をLバンドからCバンドに変換して、Cバンドの波長多重信号光Saを光増幅器28aに出力する。光増幅器28aは波長多重信号光Saを増幅してAWG21aに出力する。
Sバンドの波長多重信号光Scは分波器26から光増幅器27cに入力される。光増幅器27cは波長多重信号光Scを増幅する。波長多重信号光Scは、光増幅器27cから波長変換器22cに入力され、波長変換器22cから波長変換器23cに入力される。波長変換器23cは、波長多重信号光Scの波長帯をSバンドからCバンドに変換して、Cバンドの波長多重信号光Scを光増幅器28cに出力する。光増幅器28cは波長多重信号光Scを増幅してAWG21cに出力する。
Cバンドの波長多重信号光Sbは分波器26から光増幅器28bに入力される。光増幅器28bは波長多重信号光Sbを増幅してAWG21bに出力する。なお、光増幅器27a,27c,28a〜28cは、例えばEDFAである。
AWG21aは、波長多重信号光Saを波長ごとの主信号光Daに分波し、各主信号光Daを受信器29aに出力する。AWG21bは、波長多重信号光Sbを波長ごとの主信号光Dbに分波し、各主信号光Dbを受信器29bに出力する。AWG21cは、波長多重信号光Scを波長ごとの主信号光Dcに分波し、各主信号光Dcを受信器29cに出力する。
受信器29a〜29cは、上記の受信器20a〜20dと同様の構成を有し、主信号光Da〜Dcをそれぞれ受信する。受信器29a〜29cは、クライアント側のLANなどに接続され、例えば主信号光Da〜Dcからクライアント信号を生成してLANに送信する。
ネットワーク監視制御装置9は、波長変換器12aから波長λ1を取得して波長変換器23aに通知する。また、ネットワーク監視制御装置9は、波長変換器12cから波長λ1を取得して波長変換器23cに通知する。
波長変換器23aは、ネットワーク監視制御装置9から波長λ1の通知を受け、波長変換器22aから波長λ2の通知を受ける。波長変換器23aは、上述したように波長λ1,λ2から励起光L1r,L2rの波長λ3,λ4を設定する。
このため、上記の各実施例と同様に、送信器19aと受信器29aの間で波長多重信号光Saの波長帯のずれが低減される。
また、波長変換器23cは、ネットワーク監視制御装置9から波長λ1の通知を受け、波長変換器22cから波長λ2の通知を受ける。波長変換器23cは、上述したように波長λ1,λ2から励起光L1r,L2rの波長λ3,λ4を設定する。
このため、上記の各実施例と同様に、送信器19cと受信器29cの間で波長多重信号光Scの波長帯のずれが低減される。なお、本実施例では、ネットワーク監視制御装置9が、波長変換器12a,12cから波長λ1を取得して波長変換器23a,23cに通知するが、これに限定されない。例えば第2実施例のように、伝送装置1gにWDMカプラ13及び監視信号送信部14を設け、伝送装置2gにWDMカプラ24及び監視信号受信部25を設け、監視信号送信部14が、監視信号光Scを監視信号受信部25に送信することにより波長λ1を通知してもよい。
また、本実施例では、非縮退四光波混合を利用する波長変換器23a,23cが受信側の伝送装置2gに設けられたが、第4実施例と同様に、送信側の伝送装置1gに設けられてもよい。また、ネットワーク監視制御装置9は、第3実施例のように、周波数f1p,f2pの差分Δfpを算出して波長変換器23a,23cに通知してもよい。
また、上記の各実施例では、四光波混合を発生させる手段として、非線形ファイバ120,220,230が用いられるが、これに限定されず、シリコンフォトニクスなどの他の非線形媒質が用いられてもよい。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形して実施可能である。
なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置からの前記波長多重信号光を受信する伝送装置において、
第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、
前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
(付記2) 前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記1に記載の伝送装置。
(付記3) 前記波長多重信号光に合波された監視信号光を前記他の伝送装置から受信する受信部を有し、
前記監視信号光には、前記第1非線形媒質のゼロ分散波長を示す波長情報が含まれ、
前記第2波長変換部は、前記波長情報が示す前記第1非線形媒質のゼロ分散波長を周波数に変換することを特徴とする付記1または2に記載の伝送装置。
(付記4) 第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置に前記波長多重信号光を送信する伝送装置において、
第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、
前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
(付記5) 前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記4に記載の伝送装置。
(付記6) 他の伝送装置に第1波長多重信号光を送信する送信処理部と、
前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、
前記送信処理部は、
第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、
前記受信処理部は、
第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、
第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、
前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第3波長変換部は、
前記他の伝送装置が前記第2波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、
前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
(付記7) 前記第3波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記6に記載の伝送装置。
(付記8) 前記受信処理部は、前記第2波長多重信号光に合波された監視信号光を前記他の伝送装置から受信する受信部を有し、
前記監視信号光には、前記第4非線形媒質のゼロ分散波長を示す波長情報が含まれ、
前記第3波長変換部は、前記波長情報が示す前記第4非線形媒質のゼロ分散波長を周波数に変換することを特徴とする付記6または7に記載の伝送装置。
(付記9) 他の伝送装置に第1波長多重信号光を送信する送信処理部と、
前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、
前記受信処理部は、
第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、
前記送信処理部は、
第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、
第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、
前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第3波長変換部は、
前記他の伝送装置が前記第1波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、
前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
(付記10) 波長多重信号光を送信する第1伝送装置と、
前記波長多重信号光を受信する第2伝送装置とを有し、
前記第1伝送装置は、
第1励起光を出力する送信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する送信側波長変換部を有し、
前記第2伝送装置は、
第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
前記送信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送システム。
(付記11) 前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記10に記載の伝送システム。
(付記12) 前記波長多重信号光に合波された監視信号光を前記他の伝送装置から受信する受信部を有し、
前記監視信号光には、前記第1非線形媒質のゼロ分散波長を示す波長情報が含まれ、
前記第2波長変換部は、前記波長情報が示す前記第1非線形媒質のゼロ分散波長を周波数に変換することを特徴とする付記10または11に記載の伝送システム。
(付記13) 波長多重信号光を送信する第1伝送装置と、
前記波長多重信号光を受信する第2伝送装置とを有し、
前記第2伝送装置は、
第1励起光を出力する受信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する受信側波長変換部を有し、
前記第1伝送装置は、
第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
前記受信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送システム。
(付記14) 前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記13に記載の伝送システム。
(付記15) 波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、
前記第1伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、
前記第2伝送装置は、
第2非線形媒質に入力された第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、
第3非線形媒質に入力された第3励起光、第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、
前記第1伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第2伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送方法。
(付記16) 前記第1伝送装置は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記15に記載の伝送方法。
(付記17) 前記第1伝送装置は、前記第1非線形媒質のゼロ分散波長を示す波長情報を含む監視信号光を前記波長多重信号光に合波して送信し、
前記第2伝送装置は、前記波長多重信号光に合波された前記監視信号光を受信し、前記波長情報が示す前記第1非線形媒質のゼロ分散波長を周波数に変換することを特徴とする付記15または16に記載の伝送方法。
(付記18) 波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、
前記第2伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、
前記第1伝送装置は、
第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、
第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、
前記第2伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
前記第1伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送方法。
(付記19) 前記第1伝送装置は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする付記18に記載の伝送方法。
1,1x,1a,1c〜1g,2,2x,2a〜2g 伝送装置
14 監視信号送信部
25 監視信号受信部
12,12a,12c,15 波長変換器
22,22a,22c,23,23a,23c 波長変換器
120,150,220,230 非線形ファイバ
122,154,155,223,234,232,235 レーザダイオード
123,153,222,233 設定処理部

Claims (12)

  1. 第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置からの前記波長多重信号光を受信する伝送装置において、
    第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
    第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
    前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、
    前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
  2. 前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする請求項1に記載の伝送装置。
  3. 前記波長多重信号光に合波された監視信号光を前記他の伝送装置から受信する受信部を有し、
    前記監視信号光には、前記第1非線形媒質のゼロ分散波長を示す波長情報が含まれ、
    前記第2波長変換部は、前記波長情報が示す前記第1非線形媒質のゼロ分散波長を周波数に変換することを特徴とする請求項1または2に記載の伝送装置。
  4. 第1非線形媒質に入力された第1励起光及び波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する他の伝送装置と接続され、前記他の伝送装置に前記波長多重信号光を送信する伝送装置において、
    第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
    第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
    前記第1励起光の波長は、前記第1非線形媒質のゼロ分散波長に設定され、
    前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
  5. 他の伝送装置に第1波長多重信号光を送信する送信処理部と、
    前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、
    前記送信処理部は、
    第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、
    前記受信処理部は、
    第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、
    第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、
    前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第3波長変換部は、
    前記他の伝送装置が前記第2波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、
    前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
  6. 前記第3波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分の2倍の値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする請求項5に記載の伝送装置。
  7. 前記受信処理部は、前記第2波長多重信号光に合波された監視信号光を前記他の伝送装置から受信する受信部を有し、
    前記監視信号光には、前記第4非線形媒質のゼロ分散波長を示す波長情報が含まれ、
    前記第3波長変換部は、前記波長情報が示す前記第4非線形媒質のゼロ分散波長を周波数に変換することを特徴とする請求項5または6に記載の伝送装置。
  8. 他の伝送装置に第1波長多重信号光を送信する送信処理部と、
    前記他の伝送装置から第2波長多重信号光を受信する受信処理部とを有し、
    前記受信処理部は、
    第1励起光を出力する第1光源と、第1非線形媒質とを有し、第1非線形媒質に入力された前記第1励起光及び前記第2波長多重信号光の四光波混合により前記第2波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する第1波長変換部を有し、
    前記送信処理部は、
    第2励起光を出力する第2光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第2波長変換部と、
    第3励起光を出力する第3光源と、第4励起光を出力する第4光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記第1波長多重信号光の四光波混合により前記第1波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第3波長変換部とを有し、
    前記第1波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第3波長変換部は、
    前記他の伝送装置が前記第1波長多重信号光の波長帯の変換に用いる第4非線形媒質のゼロ分散波長を取得し、
    前記第3励起光及び前記第4励起光の各周波数の差分が、前記第4非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送装置。
  9. 波長多重信号光を送信する第1伝送装置と、
    前記波長多重信号光を受信する第2伝送装置とを有し、
    前記第1伝送装置は、
    第1励起光を出力する送信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する送信側波長変換部を有し、
    前記第2伝送装置は、
    第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
    第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
    前記送信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送システム。
  10. 波長多重信号光を送信する第1伝送装置と、
    前記波長多重信号光を受信する第2伝送装置とを有し、
    前記第2伝送装置は、
    第1励起光を出力する受信側光源と、第1非線形媒質とを有し、前記第1非線形媒質に入力された前記第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換する受信側波長変換部を有し、
    前記第1伝送装置は、
    第2励起光を出力する第1光源と、第2非線形媒質とを有し、前記第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換する第1波長変換部と、
    第3励起光を出力する第2光源と、第4励起光を出力する第3光源と、第3非線形媒質とを有し、前記第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換する第2波長変換部とを有し、
    前記受信側波長変換部は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第1波長変換部は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、
    前記第2波長変換部は、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送システム。
  11. 波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、
    前記第1伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、
    前記第2伝送装置は、
    第2非線形媒質に入力された第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、
    第3非線形媒質に入力された第3励起光、第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、
    前記第1伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第2伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送方法。
  12. 波長多重信号光を第1伝送装置から第2伝送装置に伝送する伝送方法において、
    前記第2伝送装置は、第1非線形媒質に入力された第1励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第1励起光の波長に基づき変換し、
    前記第1伝送装置は、
    第2非線形媒質に入力された前記第2励起光及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第2励起光の波長に基づき変換し、
    第3非線形媒質に入力された前記第3励起光、前記第4励起光、及び前記波長多重信号光の四光波混合により前記波長多重信号光の波長帯を前記第3励起光及び前記第4励起光の各周波数の差分に基づき変換し、
    前記第2伝送装置は、前記第1励起光の波長を前記第1非線形媒質のゼロ分散波長に設定し、
    前記第1伝送装置は、前記第2励起光の波長を前記第2非線形媒質のゼロ分散波長に設定し、前記第3励起光及び前記第4励起光の各周波数の差分が、前記第1非線形媒質のゼロ分散波長から変換される周波数と、前記第2非線形媒質のゼロ分散波長から変換される周波数との差分に基づく値となるように、前記第3励起光及び前記第4励起光の各波長を設定することを特徴とする伝送方法。
JP2019095823A 2019-05-22 2019-05-22 伝送装置、伝送システム、及び伝送方法 Active JP7260771B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019095823A JP7260771B2 (ja) 2019-05-22 2019-05-22 伝送装置、伝送システム、及び伝送方法
US16/876,254 US11294258B2 (en) 2019-05-22 2020-05-18 Transmission device and transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095823A JP7260771B2 (ja) 2019-05-22 2019-05-22 伝送装置、伝送システム、及び伝送方法

Publications (2)

Publication Number Publication Date
JP2020191542A true JP2020191542A (ja) 2020-11-26
JP7260771B2 JP7260771B2 (ja) 2023-04-19

Family

ID=73454725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095823A Active JP7260771B2 (ja) 2019-05-22 2019-05-22 伝送装置、伝送システム、及び伝送方法

Country Status (2)

Country Link
US (1) US11294258B2 (ja)
JP (1) JP7260771B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260771B2 (ja) * 2019-05-22 2023-04-19 富士通株式会社 伝送装置、伝送システム、及び伝送方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301009A (ja) * 2004-04-14 2005-10-27 Furukawa Electric Co Ltd:The 光ファイバ型波長変換器
JP2019070725A (ja) * 2017-10-06 2019-05-09 富士通株式会社 光伝送装置、波長変換装置、光伝送方法、および波長変換方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419510B2 (ja) * 1992-10-16 2003-06-23 富士通株式会社 波長分散を補償した光通信システム及び該システムに適用可能な位相共役光発生装置
JPH09230404A (ja) 1996-02-20 1997-09-05 Hitachi Ltd 光周波数変換装置
JP4550187B2 (ja) 1999-09-07 2010-09-22 古河電気工業株式会社 光ファイバ型波長変換方法
JP5504946B2 (ja) * 2010-02-12 2014-05-28 富士通株式会社 光増幅器
JP6776596B2 (ja) * 2016-04-20 2020-10-28 富士通株式会社 光周波数シフト装置及び光周波数シフト方法
JP7119331B2 (ja) * 2017-10-13 2022-08-17 富士通株式会社 伝送システム及び伝送方法
JP7047338B2 (ja) * 2017-11-16 2022-04-05 富士通株式会社 光伝送装置、光伝送システム、及び励起光周波数の制御方法
JP7099045B2 (ja) * 2018-05-18 2022-07-12 富士通株式会社 波長変換装置、伝送装置、及び伝送システム
JP7183581B2 (ja) * 2018-06-15 2022-12-06 富士通株式会社 光伝送システム、制御装置、光伝送方法及び伝送装置
JP7147626B2 (ja) * 2019-02-25 2022-10-05 富士通株式会社 伝送装置及び伝送システム
JP7260771B2 (ja) * 2019-05-22 2023-04-19 富士通株式会社 伝送装置、伝送システム、及び伝送方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301009A (ja) * 2004-04-14 2005-10-27 Furukawa Electric Co Ltd:The 光ファイバ型波長変換器
JP2019070725A (ja) * 2017-10-06 2019-05-09 富士通株式会社 光伝送装置、波長変換装置、光伝送方法、および波長変換方法

Also Published As

Publication number Publication date
US11294258B2 (en) 2022-04-05
JP7260771B2 (ja) 2023-04-19
US20200371292A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN1734312B (zh) 基于偏振复用技术的光通信系统
US10644823B2 (en) Optical transfer system, control device, optical transfer method, and transfer device
US9503186B2 (en) Space division multiplexing apparatus including multi-core fiber and selfhomodyne detection method
JP2015091131A (ja) 偏波依存損失を監視するシステム及び方法
US8571419B2 (en) Method and system for flexible optical signal aggregation and transmission
EP2501067B1 (en) System and method for reducing interference of a polarization multiplexed signal
US9837788B2 (en) Optical phase-sensitive amplifier with raman amplifier intermediate stage
KR20100092853A (ko) 저잡음 다파장 광원을 구비한 저잡음 광신호의 전송 장치, 저잡음 다파장 광원을 이용한 방송 신호 전송 장치, 및 이를 구비한 광가입자망
US9705593B2 (en) Communications device and method
US11106111B2 (en) Multiple Kerr-frequency-comb generation using different lines from a remote Kerr comb
JP7260771B2 (ja) 伝送装置、伝送システム、及び伝送方法
JP5751015B2 (ja) 光信号処理装置および光通信システム
JP7099045B2 (ja) 波長変換装置、伝送装置、及び伝送システム
JP2015089123A (ja) 偏波多重システムのためのインバンド振幅変調監督信号伝達のためのシステムおよび方法
WO2013128556A1 (ja) 光信号分岐装置および光伝送システム
US11942755B2 (en) Optical transmission system and filter penalty reduction method
KR100444077B1 (ko) 다중파장레이저빔을사용한무선공간광통신장치
JP4699413B2 (ja) 波長多重装置
JP5028555B2 (ja) 波長多重伝送システム
JP2016167762A (ja) 光伝送システム、光送信装置及びその制御方法、並びに光受信装置及びその制御方法
JP7147961B2 (ja) 光伝送システム、光送信機および光通信方法
CN114696913B (zh) 光通信设备与系统
KR20080057596A (ko) 편광 조절된 시드광을 이용한 wdm-pon 시스템 및 그광신호 전송 방법
KR20120096966A (ko) 파장 가변 광송수신기
JP2950814B1 (ja) 光副搬送波伝送システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7260771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150