JP2020187401A - Monitoring system and detector - Google Patents

Monitoring system and detector Download PDF

Info

Publication number
JP2020187401A
JP2020187401A JP2019089590A JP2019089590A JP2020187401A JP 2020187401 A JP2020187401 A JP 2020187401A JP 2019089590 A JP2019089590 A JP 2019089590A JP 2019089590 A JP2019089590 A JP 2019089590A JP 2020187401 A JP2020187401 A JP 2020187401A
Authority
JP
Japan
Prior art keywords
failure sign
detector
test
failure
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019089590A
Other languages
Japanese (ja)
Other versions
JP7358071B2 (en
Inventor
泰周 杉山
Yasunori Sugiyama
泰周 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2019089590A priority Critical patent/JP7358071B2/en
Publication of JP2020187401A publication Critical patent/JP2020187401A/en
Priority to JP2023164250A priority patent/JP2023171849A/en
Application granted granted Critical
Publication of JP7358071B2 publication Critical patent/JP7358071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

To provide a monitoring system that can properly grasp a failure sign due to aged deterioration of a detector at the time of testing of the detector without being affected by fluctuation of a light receiving signal level caused by changes of environmental factors over time.SOLUTION: A disaster prevention reception board 10 monitors a fire in a detection area with a fire detector 12 connected, and performs a fire treatment based on a fire signal from the fire detector. The disaster prevention reception board determines a failure sign of the fire detector based on a light receiving signal when a test light source of the fire detector is driven, when prescribed failure sign determination conditions are satisfied, and changes the failure sign determination conditions on the basis of the change tendency of a light receiving signal level at the time of testing, which is acquired from information about the test result of the fire detector.SELECTED DRAWING: Figure 5

Description

本発明は、防災受信盤から引き出された信号線に接続された火災検知器により火災を監視する防災システム等の監視システム及び検知器に関する。 The present invention relates to a monitoring system and a detector such as a disaster prevention system that monitors a fire by a fire detector connected to a signal line drawn from a disaster prevention receiving panel.

従来、例えば、トンネル内の火災を監視する監視システムとして、トンネル防災システムがある。 Conventionally, for example, there is a tunnel disaster prevention system as a monitoring system for monitoring a fire in a tunnel.

このようなトンネル防災システムは、自動車専用道路等のトンネルに、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されて火災を監視するものである。 In such a tunnel disaster prevention system, a fire detector that monitors the fire is installed in a tunnel such as a motorway to protect people and vehicles from a fire accident that occurs in the tunnel, and is pulled out from the disaster prevention receiver. It is connected to a signal line to monitor fires.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detector has detection areas in both the left and right directions, and the detection areas with the adjacent fire detectors overlap each other along the longitudinal direction of the tunnel, for example, at intervals of 25 m or 50 m. They are arranged continuously at intervals.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を点検するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, the fire detector monitors the radiation from the fire flame generated in the tunnel through the translucent window, for example, infrared rays, and in order to check the sensitivity of the light receiving element in order to maintain the flame monitoring function. Sensitivity test and dirt test to monitor dirt on transparent windows are conducted.

しかしながら、このような従来の火災検知器にあっては、運用期間が長くなって火災検知器の劣化が進んだ場合、感度試験による感度障害や汚れ試験による汚れ障害が検出されることなく正常に運用されていると思われる状態でも、火災検知器が火災検知信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、交通渋滞を招くなどの影響が小さくない。 However, in such a conventional fire detector, when the operation period becomes long and the fire detector deteriorates, the sensitivity failure by the sensitivity test and the dirt failure by the dirt test are not detected normally. Even in a state where it seems to be in operation, there is a possibility that the fire detector outputs a fire detection signal and a non-fire alarm is issued from the disaster prevention receiver. In such a case, it is a non-fire alarm. Until it is confirmed that it is, it is necessary to issue an entry prohibition warning by using an alarm display board equipment etc. to prohibit the vehicle from passing through the tunnel, and the person in charge must go to the site to check it, and it takes time to resume the tunnel passage. It takes time, and the impact of causing traffic congestion is not small.

このため、防災受信盤で火災検知器の温度、湿度、衝撃振動及び電気的ノイズ等の環境ストレスに基づいて劣化の度合いを判定して報知するようにしたトンネル防災システムが提案されており、火災検知器の劣化の進み具合が把握できることで、非火災報が出されてしまう前に、火災検知器を予備の火災検知器に交換する等の対応を可能としている。 For this reason, a tunnel disaster prevention system has been proposed in which the degree of deterioration is determined and notified based on environmental stress such as temperature, humidity, shock vibration, and electrical noise of the fire detector on the disaster prevention receiver. By grasping the progress of deterioration of the detector, it is possible to take measures such as replacing the fire detector with a spare fire detector before a non-fire report is issued.

また、従来のトンネル防災システムは、防災受信盤が火災検知器からの火災信号を受信したときに、非火災報を防止するために、所定時間後に火災検知器を一旦復旧し、再度、所定時間以内に火災信号を受信したときに火災と判断して警報表示板設備などにより進入禁止警報を行っている。 Further, in the conventional tunnel disaster prevention system, when the disaster prevention receiver receives a fire signal from the fire detector, the fire detector is temporarily restored after a predetermined time in order to prevent a non-fire alarm, and then again for a predetermined time. When a fire signal is received within the time, it is judged as a fire and an entry prohibition warning is issued by the alarm display board equipment.

特開2002−246962号公報JP-A-2002-246962 特開2016−128796号公報JP-A-2016-1287796 特開2018−169893号公報JP-A-2018-169893

ところで、上記のような従来のトンネル防災システムは、火災検知器の試験時の受光信号レベルに基づいて劣化の度合いを判定しているものがあるが、この場合、試験による受光信号レベルは例えば季節による環境温度等の影響を受けて緩やかに変動しており、例えば環境温度が大きく異なる冬場と夏場では試験動作に係る各部の温度特性等の影響によって試験時の受光信号レベルが異なる可能性がある。 By the way, in some conventional tunnel disaster prevention systems as described above, the degree of deterioration is determined based on the received signal level at the time of testing the fire detector. In this case, the received signal level in the test is, for example, seasonal. The received signal level at the time of the test may differ due to the influence of the temperature characteristics of each part related to the test operation in winter and summer when the environmental temperature is significantly different, for example. ..

このため、時期的な環境要因を考慮した火災検知器の故障予兆等の把握が求められる。故障予兆とは、検知器の検出センサ(後述する実施形態の場合には受光センサ)や回路部品が劣化することによってノイズ信号の発生や感度が不足する等の故障状態に至る可能性が高まっている状態、即ち、近い将来故障に至り得る前兆を示す概念である。 For this reason, it is necessary to grasp the signs of failure of the fire detector in consideration of the environmental factors of the time. A failure sign is an increased possibility that a failure state such as noise signal generation or insufficient sensitivity due to deterioration of the detector detection sensor (light receiving sensor in the case of the embodiment described later) or circuit parts is increased. It is a concept that indicates a state of being present, that is, a sign that a failure may occur in the near future.

本発明は、検知器の試験に際して、環境的要因の継時変化等に起因した受光信号レベルの変動があっても、その影響を受けることなく、検知器の経年劣化による故障予兆を適切に把握可能な監視システムを提供することを目的とする。 According to the present invention, even if there is a change in the received signal level due to a change over time due to environmental factors or the like during a detector test, the sign of failure due to aged deterioration of the detector can be appropriately grasped without being affected by the change. The purpose is to provide a possible monitoring system.

(監視システム)
本発明は、受信盤に検知器を接続して異常を監視する監視システムに於いて、
検知器の試験光源を駆動した際の受光信号に基づき、所定の故障予兆判定条件を充足した場合に検知器の故障予兆と判断する故障予兆判断部と、
試験による受光信号に基づく試験結果情報を生成し、試験結果情報に基づき、故障予兆判断条件を変更する故障予兆判断条件変更部と、
を備えたことを特徴とする。
(Monitoring system)
The present invention is a monitoring system in which a detector is connected to a receiver to monitor an abnormality.
A failure sign determination unit that determines a failure sign of the detector when a predetermined failure sign determination condition is satisfied based on the received signal when the test light source of the detector is driven.
A failure sign judgment condition change unit that generates test result information based on the received signal from the test and changes the failure sign judgment condition based on the test result information.
It is characterized by being equipped with.

(試験時受光信号レベルの変化傾向に応じた故障予兆判断条件の変更)
故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて故障予兆判断条件を変更する。
(Change of failure sign judgment conditions according to the change tendency of the received signal level during the test)
The failure sign determination condition changing unit changes the failure sign determination condition based on the change tendency of the level of the received light signal obtained from the test result information.

(故障予兆判断条件を変更するための基準値の変更)
故障予兆判断部は、試験による受光信号のレベルが所定の基準値に基づき正常でもなく故障でもないことに基づいて火災検知器の故障予兆と判断し、
故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて基準値を変更する。
(Change of reference value to change failure sign judgment condition)
The failure sign judgment unit determines that the fire detector is a failure sign based on the fact that the level of the received signal in the test is neither normal nor failure based on the predetermined reference value.
The failure sign determination condition change unit changes the reference value based on the change tendency of the level of the received light signal obtained from the test result information.

(故障予兆判断条件を変更するための基準値の変更詳細)
故障予兆判断部は、試験による受光信号のレベルが基準値を含む所定の正常範囲になく、且つ正常範囲を下回る所定の故障範囲にもないことに基づいて検知器の故障予兆と判断し、
故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて基準値及び正常範囲を変更する。
(Details of changing the reference value to change the failure sign judgment conditions)
The failure sign determination unit determines that the detector is a failure sign based on the fact that the level of the received signal in the test is not within the predetermined normal range including the reference value and is not within the predetermined failure range below the normal range.
The failure sign determination condition change unit changes the reference value and the normal range based on the change tendency of the level of the received light signal obtained from the test result information.

(故障予兆判断部と故障予兆判断条件変更部を受信盤に配置)
故障予兆判断部と故障予兆判断条件変更部は防災受信盤に配置され、検知器は、試験光源を駆動した際の受光信号に基づく試験結果情報を受信盤に送信する。
(Failure sign judgment unit and failure sign judgment condition change unit are placed on the receiving panel)
The failure sign determination unit and the failure sign determination condition change unit are arranged on the disaster prevention receiver, and the detector transmits the test result information based on the received signal when the test light source is driven to the receiver.

(試験結果情報を受信盤で生成)
故障予兆判断部と故障予兆判断条件変更部は受信盤に配置され、検知器は、試験光源を駆動した際の受光信号に基づく受光信号情報を受信盤に送信し、受信盤は受光信号情報に基づき試験結果情報を生成する。
(Test result information is generated on the receiving panel)
The failure sign judgment unit and the failure sign judgment condition change unit are arranged on the receiving panel, and the detector transmits the light receiving signal information based on the light receiving signal when the test light source is driven to the receiving panel, and the receiving panel uses the light receiving signal information. Generate test result information based on.

(故障予兆判断部と故障予兆判断条件変更部を検知器に配置)
故障予兆判断部と故障予兆判断条件変更部は検知器に配置され、
受信盤は所定のタイミングで検知器に故障予兆判断条件の変更を指示する。
(Failure sign judgment unit and failure sign judgment condition change unit are placed in the detector)
The failure sign judgment unit and the failure sign judgment condition change unit are located on the detector.
The receiving panel instructs the detector to change the failure sign judgment condition at a predetermined timing.

(基本的な効果)
本発明は、受信盤に検知器を接続して火災を監視する監視システムに於いて、検知器の試験光源を駆動した際の受光信号に基づき、所定の故障予兆判定条件を充足した場合に検知器の故障予兆と判断する故障予兆判断部と、試験による受光信号に基づく試験結果情報を生成し、試験結果情報に基づき、故障予兆判断条件を変更する故障予兆判断条件変更部とを備えたため、例えば火災検知器を設置したトンネル防災システムの場合、トンネル内の環境温度が季節により変動した場合、試験による受光信号に基づく試験結果情報により故障予兆判断条件が変更され、その結果、例えば季節的な環境要因等により試験時の受光信号レベルが変動しても、この変動に追従して故障予兆判断条件が変更され、年間を通じて試験による受光信号レベルから故障予兆を正確に判断することが可能となり、運用管理者等は、経年劣化等に伴い故障予兆(の状態)と判断された火災検知器を重点的に点検することで、故障予兆が判断された火災検知器に対し適切な対処を行い、非火災報を防止し、例えばトンネル防災システムの場合には、これによってトンネルの進入禁止警報を伴う火災処理によりトンネル通行を止めてしまうといった二次的影響を従来に比べ抑制可能とする。
(Basic effect)
The present invention is a monitoring system that monitors a fire by connecting a detector to a receiver, and detects when a predetermined failure sign determination condition is satisfied based on a received signal when the test light source of the detector is driven. Since it is equipped with a failure sign judgment unit that determines the failure sign of the device and a failure sign judgment condition change unit that generates test result information based on the received signal from the test and changes the failure sign judgment condition based on the test result information. For example, in the case of a tunnel disaster prevention system equipped with a fire detector, when the environmental temperature in the tunnel fluctuates depending on the season, the failure sign judgment conditions are changed based on the test result information based on the received signal from the test, and as a result, for example, seasonally. Even if the received signal level at the time of the test fluctuates due to environmental factors, the failure sign judgment conditions are changed according to this change, and it becomes possible to accurately judge the failure sign from the received signal level in the test throughout the year. The operation manager, etc. will focus on inspecting the fire detectors that are judged to be (state) of failure due to deterioration over time, and take appropriate measures for the fire detectors that are judged to be failure signs. Non-fire alarms can be prevented, for example, in the case of a tunnel disaster prevention system, this makes it possible to suppress secondary effects such as stopping tunnel traffic due to fire treatment accompanied by a tunnel entry prohibition warning.

(試験時受光レベルの傾向に応じた故障予兆判断条件の変更の効果)
また、故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて故障予兆判断条件を変更するようにしたため、試験時受光信号レベルが季節変化等に伴って例えば増加傾向にあれば、この増加傾向に合わせて故障予兆条件が変更され、また、試験時受光信号レベルが減少傾向にあれば、この減少傾向に合わせて故障予兆条件が変更され、変動する環境要因の影響を受けることなく適切に故障予兆を判断することを可能とする。
(Effect of changing failure sign judgment conditions according to the tendency of light reception level during test)
In addition, since the failure sign judgment condition change unit changes the failure sign judgment condition based on the change tendency of the received signal level obtained from the test result information, the received signal level during the test changes with the seasonal change and the like. For example, if there is an increasing trend, the failure sign condition is changed according to this increasing trend, and if the received signal level during the test is decreasing, the failure sign condition is changed according to this decreasing trend, and the environment fluctuates. It makes it possible to appropriately judge the failure sign without being affected by the factors.

ここで、受光信号レベルは1回の試験において例えば所定時間試験光源を駆動した際の試験時の受光信号のピークレベル、平均レベル、積分レベル等を採用できるが、これに限定されない。なお、一回の試験における試験光源の駆動は間欠的駆動や1パルスの駆動としても良い。また、試験時受光信号の変化傾向としては例えば、所定期間に実施した複数回の試験における各受光信号レベルの積算、平均、移動平均等の増加、停滞、減少等の傾向とすることができるが、これに限定されない。 Here, as the received light signal level, for example, the peak level, average level, integration level, etc. of the received light signal at the time of the test when the test light source is driven for a predetermined time can be adopted in one test, but the present invention is not limited to this. The drive of the test light source in one test may be an intermittent drive or a one-pulse drive. Further, as the change tendency of the received light signal during the test, for example, the tendency of the integration, average, moving average, etc. of each received signal level in a plurality of tests conducted in a predetermined period can be set to increase, stagnation, decrease, etc. , Not limited to this.

(故障予兆判断条件を変更するための基準値の変更の効果)
また、故障予兆判断部は、試験による受光信号のレベルが所定の基準値に基づき正常でもなく故障でもないことに基づいて火災検知器の故障予兆と判断し、故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて基準値を変更するようにしたため、将来に起こり得る故障を予測させる状態を意味し、検知器の故障のきざし、故障の前兆、故障の前ぶれ等とも言える故障予兆を、季節変化等に影響されることなく正確に把握することができる。
(Effect of changing the reference value to change the failure sign judgment condition)
In addition, the failure sign judgment unit determines that the fire detector is a failure sign based on the fact that the level of the received signal received by the test is neither normal nor failure based on a predetermined reference value, and the failure sign judgment condition change unit tests. Since the reference value is changed based on the change tendency of the level of the received signal obtained from the result information, it means a state that predicts a failure that may occur in the future, and it means a failure sign of the detector, a sign of failure, and a failure. It is possible to accurately grasp the signs of failure, which can be said to be a precursor to the above, without being affected by seasonal changes.

具体的には例えば、工場出荷時の試験時受光信号レベルに基づく基準値を設定し、例えば運用中の試験における試験時受光信号レベルと基準値との差が所定の正常判断条件を充足すれば正常であり、基準値との差が所定の故障判断条件を充足すれば故障とする一方、試験時受光レベルが正常でもなく故障でもない場合に、これに基づき(例えば所定の試験実施回数中において試験時受光レベルが正常でもなく故障でもないケースが所定の故障予兆判断閾値回数(割合)を充足したとき、或いは試験時受光レベルが正常でもなく故障でもないケースが所定回数連続したとき等に)検知器の故障予兆と判断し、故障予兆と判断する故障予兆判断条件を設定する。 Specifically, for example, if a reference value is set based on the received signal level at the time of testing at the time of shipment from the factory, for example, if the difference between the received signal level at the time of testing and the reference value in the test during operation satisfies a predetermined normal judgment condition. If it is normal and the difference from the reference value satisfies the predetermined failure judgment conditions, it is considered as a failure, but if the light receiving level at the time of the test is neither normal nor a failure, based on this (for example, during the predetermined number of test executions). When the light receiving level during the test is neither normal nor faulty meets the predetermined number of failure sign judgment thresholds (ratio), or when the light receiving level during the test is neither normal nor faulty continues a predetermined number of times, etc.) Set the failure sign judgment condition to judge that it is a failure sign of the detector and judge it as a failure sign.

この故障条件判断条件を構成する上記基準値を試験時受光信号レベルの変化傾向に基づいて変更することで、実質的に試験時受光信号レベルの変化傾向に基づいて故障予兆判断条件を変更することができる。このため、季節変化等に影響されない故障予兆判断が可能となる。 By changing the above-mentioned reference value constituting the failure condition judgment condition based on the change tendency of the received light signal level during the test, the failure sign judgment condition is substantially changed based on the change tendency of the received light signal level during the test. Can be done. Therefore, it is possible to determine a failure sign that is not affected by seasonal changes.

(故障予兆判断条件を変更するための基準値の変更詳細による効果)
また、故障予兆判断部は、試験による受光信号のレベルが基準値を含む所定の正常範囲になく、且つ正常範囲を下回る所定の故障範囲にもないことに基づいて検知器の故障予兆と判断し、故障予兆判断条件変更部は、試験結果情報から得られた受光信号のレベルの変化傾向に基づいて基準値及び正常範囲を変更するようにしたため、基準値を試験時受光信号レベルの傾向に基づいて変更することで、基準値に基づく正常範囲及び、故障予兆の範囲である故障予兆範囲も変更され、故障予兆を判断するための故障予兆判断条件を試験時受光レベルの傾向に応じて変更することができる。
(Effect of change details of reference value for changing failure sign judgment conditions)
In addition, the failure sign determination unit determines that the detector is a failure sign based on the fact that the level of the received signal in the test is not within the predetermined normal range including the reference value and is not within the predetermined failure range below the normal range. Since the failure sign judgment condition change unit changes the reference value and the normal range based on the change tendency of the received signal level obtained from the test result information, the reference value is based on the tendency of the received signal level during the test. By changing the above, the normal range based on the reference value and the failure sign range, which is the failure sign range, are also changed, and the failure sign judgment conditions for judging the failure sign are changed according to the tendency of the light receiving level during the test. be able to.

(故障予兆判断部と故障予兆判断条件変更部を受信盤に配置する効果)
また、故障予兆判断部と故障予兆判断条件変更部は受信盤に配置され、検知器は、試験光源を駆動した際の受光信号に基づく試験結果情報を受信盤に送信するようにしたため、例えば、受信盤は検知器から受信した試験結果情報から試験時の受光信号(受光信号レベル)を取得することで、検知器の故障予兆の判断と故障予兆判断条件の変更の両方を受信盤で行い、検知器の処理負担を低減可能とする。
(Effect of arranging the failure sign judgment unit and the failure sign judgment condition change unit on the receiving panel)
Further, the failure sign determination unit and the failure sign determination condition change unit are arranged on the receiving panel, and the detector transmits the test result information based on the light receiving signal when the test light source is driven to the receiving panel. By acquiring the light receiving signal (light receiving signal level) at the time of the test from the test result information received from the detector, the receiving board can judge the failure sign of the detector and change the failure sign judgment condition on the receiving board. It is possible to reduce the processing load of the detector.

(試験結果情報を受信盤で生成する効果)
また、故障予兆判断部と故障予兆判断条件変更部は受信盤に配置され、検知器は、験光源を駆動した際の受光信号に基づく受光信号情報を受信盤に送信し、受信盤は受光信号情報に基づき試験結果情報を生成するようにしたため、検知器は、試験ごとに受光信号情報として例えば試験時の受光信号そのもの(例えば受光アナログ信号波形のAD変換サンプリング値)、或いは受光信号レベル(ピークレベル等)を受信盤へ送信するだけで良く、検知器の処理負担を一層低減することができる。
(Effect of generating test result information on the receiver)
In addition, the failure sign judgment unit and the failure sign judgment condition change unit are arranged on the receiving panel, and the detector transmits the light receiving signal information based on the light receiving signal when the test light source is driven to the receiving board, and the receiving board transmits the light receiving signal. Since the test result information is generated based on the information, the detector uses the light-receiving signal information at the time of the test, for example, the light-receiving signal itself (for example, the AD conversion sampling value of the light-receiving analog signal waveform) or the light-receiving signal level (peak) for each test. It is only necessary to transmit the level, etc.) to the receiving panel, and the processing load of the detector can be further reduced.

(故障予兆判断部と故障予兆判断条件変更部を検知器に配置する効果)
また、故障予兆判断部と故障予兆判断条件変更部は検知器に配置され、受信盤は所定のタイミングで検知器に故障予兆判断条件の変更を指示するようにしたため、故障予兆の判断と故障予兆判断条件の変更の両方が検知器側で行われ、この場合には受信盤の処理負担を低減可能とする。
(Effect of arranging the failure sign judgment unit and the failure sign judgment condition change unit on the detector)
In addition, the failure sign judgment unit and the failure sign judgment condition change unit are arranged in the detector, and the receiving panel instructs the detector to change the failure sign judgment condition at a predetermined timing, so that the failure sign judgment and the failure sign can be determined. Both of the judgment conditions are changed on the detector side, and in this case, the processing load on the receiving panel can be reduced.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 火災検知器の検知エリアを示した説明図Explanatory drawing showing the detection area of the fire detector 火災検知器の外観を示した説明図Explanatory drawing showing the appearance of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver 故障予兆判断条件の設定と試験時の受光レベルに基づく故障予兆の判断動作を示した説明図Explanatory drawing showing the failure sign judgment operation based on the setting of the failure sign judgment condition and the light receiving level at the time of the test. 故障予兆判断条件変更部による故障予兆判断条件の変更動作を示した説明図Explanatory drawing showing the operation of changing the failure sign judgment condition by the failure sign judgment condition change unit.

[監視システム]
本発明の監視システムの実施形態として、トンネル内の火災を監視するトンネル防災システムを例にとって説明する。即ち、監視対象空間をトンネル内、監視対象としての異常を火災、検知器を火災検知器、受信盤を防災受信盤(火災信号受信装置)とした場合を説明する。
[Monitoring system]
As an embodiment of the monitoring system of the present invention, a tunnel disaster prevention system for monitoring a fire in a tunnel will be described as an example. That is, a case will be described in which the monitoring target space is inside a tunnel, the abnormality as a monitoring target is a fire, the detector is a fire detector, and the receiver is a disaster prevention receiver (fire signal receiver).

なお、本発明における検知器は、自己搭載の試験光源を駆動して発生する試験光を、自己搭載の受光素子によって受光した受光信号に基づいて自己の正常性を試験する機能を有するものであり、以下の実施形態における火災検知器も同機能を有する The detector in the present invention has a function of testing the normality of the test light generated by driving the self-mounted test light source based on the light receiving signal received by the self-mounted light receiving element. , The fire detectors in the following embodiments also have the same function.


[トンネル防災システム]
[実施形態の基本的な概念]
図1はトンネル防災システムの概要を示した説明図である。本実施形態におけるトンネル防災システムの基本的な概念は、トンネル内に設置された火災検知器12を信号線14を介して防災受信盤10に接続して監視対象空間内の検知エリア15の火災を監視し、防災受信盤10は災検知器12からの火災信号に基づいて所定の火災処理を行うものであり、トンネル防災システムは、火災検知器12の試験光源を駆動した際の受光信号に基づき、所定の故障予兆判断条件を充足した場合に火災検知器12の故障予兆と判断し、火災検知器12の試験による受光信号のレベルに基づく試験結果情報を生成し、試験結果情報に基づき、故障予兆判断条件を変更する、というものである。
..
[Tunnel disaster prevention system]
[Basic concept of the embodiment]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system. The basic concept of the tunnel disaster prevention system in the present embodiment is to connect a fire detector 12 installed in the tunnel to the disaster prevention receiving panel 10 via a signal line 14 to detect a fire in the detection area 15 in the monitored space. The disaster prevention receiver 10 monitors and performs predetermined fire processing based on the fire signal from the disaster detector 12, and the tunnel disaster prevention system is based on the received signal when the test light source of the fire detector 12 is driven. , When the predetermined failure sign judgment condition is satisfied, it is judged as a failure sign of the fire detector 12, test result information based on the level of the received signal by the test of the fire detector 12 is generated, and the failure is based on the test result information. It is to change the predictive judgment conditions.

これにより、試験による受光信号のレベルに基づく試験結果情報により故障予兆判断条件が変更され、その結果、例えば季節的な環境要因により試験時の受光信号レベルが変動しても、この変動に追従して故障予兆判断条件が適正化され、年間を通じて火災検知器の故障予兆を適切に把握することが可能となり、運用管理者等は、故障予兆が判断された火災検知器に対し点検、修理、交換等の適切な対処を行い、例えば経年による火災検知器の緩やかな劣化に伴う非火災報の発生を未然に防止可能とする。 As a result, the failure sign judgment condition is changed based on the test result information based on the received signal level in the test, and as a result, even if the received signal level at the time of the test fluctuates due to seasonal environmental factors, the fluctuation is followed. The conditions for determining the failure sign have been optimized, and it has become possible to appropriately grasp the failure sign of the fire detector throughout the year, and the operation manager, etc. inspects, repairs, and replaces the fire detector for which the failure sign has been determined. By taking appropriate measures such as, for example, it is possible to prevent the occurrence of non-fire alarms due to the gradual deterioration of the fire detector over time.

また、故障予兆判断条件の変更は、火災検知器12の試験結果情報から得られた受光信号のレベルの変化傾向に基づいて故障予兆判断条件を変更するものであり、例えば増加傾向にあれば、この増加傾向に合わせて故障予兆判断条件が変更され、また、減少傾向にあれば、この減少傾向に合わせて故障予兆判断条件が変更されるので、変動する環境要因の影響を受けることなく適切に故障予兆を判断することを可能とする。以下詳細に説明する。 Further, the change of the failure sign determination condition is to change the failure sign determination condition based on the change tendency of the level of the received light signal obtained from the test result information of the fire detector 12, and if there is an increasing tendency, for example, The failure sign judgment conditions are changed according to this increasing trend, and if there is a decreasing trend, the failure sign judgment conditions are changed according to this decreasing trend, so it is appropriate without being affected by fluctuating environmental factors. It is possible to judge the sign of failure. This will be described in detail below.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路の上り線トンネル1aと下り線トンネル1bの内部にはトンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置され、管理室等に設置された防災受信盤10から引き出された信号線14に接続され、火災検知器12には固有のアドレスが設定されている。信号線14は、電源線を含んで良い。
[Overview of tunnel disaster prevention system]
As shown in FIG. 1, fire detectors 12 are installed inside the up line tunnel 1a and the down line tunnel 1b of the motorway along the wall surface in the longitudinal direction of the tunnel, for example, at intervals of 25 meters or 50 meters, and a control room is provided. It is connected to the signal line 14 drawn from the disaster prevention receiving panel 10 installed in the fire detector 12 and the like, and a unique address is set for the fire detector 12. The signal line 14 may include a power line.

図2は火災検知器の検知エリアを示した説明図である。図2に示すように、火災検知器12は右眼、左眼の2組の火災検知部を備えることで、監視対象空間であるトンネル内の長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12との検知エリアが例えば右眼13Rと左眼13Lで相互補完的に重なるように連続的に配置され、検知エリア15内で起きた火災に伴う炎からの赤外線を観測して火災を検知する。 FIG. 2 is an explanatory diagram showing a detection area of the fire detector. As shown in FIG. 2, the fire detector 12 includes two sets of fire detection units, a right eye and a left eye, so that the detection areas 15 can be detected in both the longitudinal ascending side and the descending side in the tunnel which is the monitoring target space. The detection area is continuously arranged so that the detection areas with the fire detectors 12 arranged adjacent to each other along the longitudinal direction of the tunnel overlap with each other, for example, the right eye 13R and the left eye 13L. The fire is detected by observing the infrared rays from the flame accompanying the fire that occurred in 15.

また防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14を介して、所謂R型(Record−type)伝送方式で通信する。 For the disaster prevention receiver 10, the fire extinguishing pump equipment 16, the cooling pump equipment 18 for ducts, the IG slave station equipment 20, the ventilation equipment 22, the alarm display board equipment 24, the radio rebroadcasting equipment 26, the television monitoring equipment 28, and the like. Lighting equipment 30 and the like are provided, and the fire detector 12 and the disaster prevention receiver 10 communicate with each other via the signal line 14 in a so-called R-type (Record-type) transmission method.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。換気設備22は、トンネル内の天井側に設置されているジェットファンの運転によってトンネル長手方向に換気流を発生する設備である。警報表示板設備24は、利用者に対して、火災に伴う進入禁止警報等の情報を電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導をしたりする場合のトンネル内状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 Here, the IG slave station equipment 20 is a communication equipment that connects the disaster prevention receiving panel 10 and the remote monitoring control equipment 32, which is a higher-level equipment provided outside, via a network. The ventilation equipment 22 is equipment that generates a ventilation flow in the longitudinal direction of the tunnel by operating a jet fan installed on the ceiling side in the tunnel. The alarm display board equipment 24 is equipment that displays information such as an entry prohibition warning due to a fire on an electric display board to notify the user. The radio rebroadcasting facility 26 is a facility for allowing a driver or the like to receive information from a road administrator in a tunnel. The TV monitoring facility 28 is a device for confirming the scale and position of a fire, operating a water spray facility, and grasping the situation inside a tunnel when guiding evacuation. The lighting equipment 30 is equipment that drives and manages the lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。図3に示すように、火災検知器12は、筐体48の上部に設けられたセンサ収納部49に、左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に対応して、センサ部が内蔵されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector. As shown in FIG. 3, in the fire detector 12, two sets of translucent windows 50R and 50L are provided on the left and right in the sensor storage portion 49 provided in the upper part of the housing 48, and the translucent windows are provided. A sensor unit is built in corresponding to each of the 50R and 50L. Further, two sets of translucent windows for test light sources 52R in which an external test light source used for a stain test of the translucent windows 50R and 50L are housed in a position near the translucent windows 50R and 50L where the sensor unit can be seen. , 52L is provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be referred to as a right-eye translucent window 50R, and the translucent window 50L may be referred to as a left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部76、感度試験に用いられる内部試験光源78R,80R,82Rと内部試験光源78L,80L,82L、汚れ試験に用いられる外部試験光源84R,84Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Outline configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control unit 54, a transmission unit 56, a power supply unit 58, two sets of left and right fire detection units 60R and 60L, a test light emission drive unit 76, and a sensitivity test. Internal test light sources 78R, 80R, 82R, internal test light sources 78L, 80L, 82L, and external test light sources 84R, 84L used for a stain test are provided. In the following description, the fire detection unit 60R may be referred to as a right eye fire detection unit 60R, and the fire detection unit 60L may be referred to as a left eye fire detection unit 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is, for example, a function realized by executing a program, and as hardware, a computer circuit having a CPU, a memory, various input / output ports, and the like is used.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10に接続され、各種信号がR型伝送により送受信される。 The transmission unit 56 is connected to the disaster prevention receiving panel 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R-type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部76に対し所定の電源電圧が供給されている。 The power supply unit 58 receives power from the disaster prevention receiving panel 10 shown in FIG. 1 by the power supply line B and the power supply common line BC included in the signal line 14, for example, the detector control unit 54, the transmission unit 56, and two sets of fires on the left and right. A predetermined power supply voltage is supplied to the detection units 60R and 60L and the test light emission drive unit 76.

試験発光駆動部76には、試験に使用する内部試験光源78R,80R,82R,78L,80L,82Lが接続され、また、汚れ試験に使用する外部試験光源84R,84Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。 Internal test light sources 78R, 80R, 82R, 78L, 80L, 82L used for the test are connected to the test light emitting drive unit 76, and external test light sources 84R, 84L used for the dirt test are connected to each of the light emitting elements. A krypton lamp is provided as a light source.

(火災検知部)
火災検知部60R,60Lはそれぞれ、センサ部64,68,72と増幅処理部66,70,74を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68,72の前面(はセンサ収納部46に設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーがセンサ部64,68,72に入射される。
(Fire detection unit)
The fire detection units 60R and 60L include sensor units 64, 68 and 72 and amplification processing units 66, 70 and 74, respectively. Taking the right eye fire detection unit 60R as an example, the right eye translucent window 50R provided on the front surface of the sensor units 64, 68, 72 (is arranged in the sensor storage unit 46) is arranged, and the right eye translucent window is arranged. Infrared energy from the external detection area is incident on the sensor units 64, 68, 72 via the 50R.

右眼火災検知部60Rは、例えば3波長式の炎観測により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.5μm帯の赤外線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該赤外線を受光して光電変換したうえで、増幅処理部66により増幅等所定の処理を施して受光エネルギー量に対応する炎受光信号E1Rとして検知器制御部54へ出力する。 The right eye fire detection unit 60R monitors a fire by, for example, a three-wavelength flame observation. The sensor unit 64 selectively transmits infrared rays in the 4.5 μm band, which is a resonance radiation band of CO 2 peculiar to flames, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. After (passing), the infrared ray is received by the light receiving sensor and photoelectrically converted, and then a predetermined process such as amplification is performed by the amplification processing unit 66 to obtain a flame light receiving signal E1R corresponding to the amount of light receiving energy. Output to.

センサ部68は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第1の非炎波長帯域となる、例えば5.0μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部70により増幅等所定の処理を施して受光エネルギー量に対応する第1の非炎受光信号E2Rとして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits infrared energy in the first non-flame wavelength band, for example, 5.0 μm band, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. After (passing), the light is received by the light receiving sensor, photoelectric conversion is performed, and then a predetermined process such as amplification is performed by the amplification processing unit 70, and the detector control unit is used as the first non-flame light receiving signal E2R corresponding to the amount of light receiving energy. Output to 54.

センサ部72は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第2の非炎波長帯域となる、例えば2.3μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部74により増幅等所定の処理を施して受光エネルギー量に対応する第2の非炎受光信号E3Rとして検知器制御部54へ出力する。 The sensor unit 72 selectively transmits infrared energy in the second non-flame wavelength band, for example, 2.3 μm band, from the infrared energy incident through the right eye translucent window 50R by an optical wavelength band path filter. After (passing), the light is received by the light receiving sensor and photoelectrically converted, and then a predetermined process such as amplification is performed by the amplification processing unit 74, and the detector control unit is used as the second non-flame light receiving signal E3R corresponding to the amount of light receiving energy. Output to 54.

増幅処理部66,70,74には、プリアンプ、炎のゆらぎ周波数を含む所定の周波数帯域を選択通過させる周波数フィルタ及びメインアンプ等が設けられている。 The amplification processing units 66, 70, 74 are provided with a preamplifier, a frequency filter that selectively passes a predetermined frequency band including the fluctuation frequency of the flame, a main amplifier, and the like.

検知器制御部54は、炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3Rに基づき公知手法により火災を判断(検知)している。 The detector control unit 54 determines (detects) a fire by a known method based on the flame light receiving signal E1R, the first non-flame light receiving signal E2R, and the second non-flame light receiving signal E3R.

また検知器制御部54は、防災受信盤10から自己アドレス指定の試験指示信号を受信した場合に外部試験光源84R,84Lを順番に発光駆動して、例えばこのときの炎受光信号E1Rのレベルと、工場出荷時の無汚損の状態において同様にして取得した炎受光信号E1Rのレベルとを比較することにより、透光性窓50Rの汚れ度合いを評価して汚れ障害(汚れにより赤外線透過性能が低下する異常)を検出する汚れ試験を行い、また、内部試験光源78R,80R,82Rを順番に発光駆動して、例えばこのときの炎受光信号E1Rのレベルと、工場出荷時において同様にして取得した炎受光信号E1Rのレベルとを比較することによって、右眼火災検知部60Rの感度を評価して感度障害(センサ故障等により感度が低下する等適切な範囲に無い異常)を検出する感度試験を行う。 Further, the detector control unit 54 drives the external test light sources 84R and 84L to emit light in order when receiving the test instruction signal of the self-address designation from the disaster prevention receiver 10, for example, the level of the flame light receiving signal E1R at this time. By comparing with the level of the flame light receiving signal E1R obtained in the same manner in the state of no stain at the time of shipment from the factory, the degree of contamination of the translucent window 50R is evaluated and the stain obstacle (infrared transmission performance deteriorates due to contamination). A stain test was performed to detect abnormalities), and the internal test light sources 78R, 80R, and 82R were driven to emit light in order, and the level of the flame light receiving signal E1R at this time was obtained in the same manner as at the time of shipment from the factory. By comparing with the level of the flame light receiving signal E1R, a sensitivity test is conducted to evaluate the sensitivity of the right eye fire detection unit 60R and detect a sensitivity failure (abnormality that is not within an appropriate range such as a decrease in sensitivity due to a sensor failure, etc.). Do.

なお、内部試験光源78R,80R,82Rと内部試験光源78L,80L,82Lは、それぞれ1つの光源で共用しても良い。左眼火災検知部60Lも同様となる。また、第1の非炎受光信号E2R,E2L、第2の非炎受光信号E3R,E3Lについても同様に行うことができる。 The internal test light sources 78R, 80R, 82R and the internal test light sources 78L, 80L, 82L may be shared by one light source, respectively. The same applies to the left eye fire detection unit 60L. Further, the same can be performed for the first non-flame receiving signals E2R and E2L and the second non-flame receiving signals E3R and E3L.

[防災受信盤]
(防災受信盤の概略)
図5は防災受信盤の機能構成の概略を示したブロック図である。図5に示すように、防災受信盤10は盤制御部34を備え、盤制御部34はCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等で構成され、例えばプログラムの実行により実現される火災監視制御部45、故障予兆判断部46及び故障予兆判断条件変更部47の機能が設けられる。
[Disaster prevention receiver]
(Outline of disaster prevention receiver)
FIG. 5 is a block diagram showing an outline of the functional configuration of the disaster prevention receiver. As shown in FIG. 5, the disaster prevention receiving panel 10 includes a panel control unit 34, and the panel control unit 34 is composed of a computer circuit or the like provided with a CPU, memory, various input / output ports, etc., and is realized by executing a program, for example. The functions of the fire monitoring control unit 45, the failure sign determination unit 46, and the failure sign determination condition changing unit 47 are provided.

盤制御部34に対しては伝送部36a,36bが設けられ、伝送部36a,36bから引き出した信号線14に上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the panel control unit 34, and a plurality of fire detectors 12 installed in the up line tunnel 1a and the down line tunnel 1b are connected to the signal line 14 drawn from the transmission units 36a and 36b. Has been done.

また、盤制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部41、IG子局設備20を接続するモデム42が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部43が設けられている。 Further, the panel control unit 34 is connected to an alarm unit 38 equipped with a speaker, an alarm indicator, etc., a display unit 40 equipped with a liquid crystal display, a printer, etc., an operation unit 41 equipped with various switches, and an IG slave station facility 20. A modem 42 is provided, and the fire extinguishing pump equipment 16, the cooling pump equipment 18, the ventilation equipment 22, the alarm display board equipment 24, the radio rebroadcasting equipment 26, the television monitoring equipment 28, and the lighting equipment 30 shown in FIG. 1 are connected. The IO unit 43 is provided.

火災監視制御部45は、火災検知器12からの火災信号の受信に基づき火災と判断した場合は、警報部38による火災警報の出力(報知)、IO部43を介して他設備の連動制御例えば警報表示板設備24による進入禁止警報の表示、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 When the fire monitoring control unit 45 determines that a fire has occurred based on the reception of the fire signal from the fire detector 12, the fire alarm output (notification) by the alarm unit 38 and interlocking control of other equipment via the IO unit 43, for example. Predetermined fire processing including display of an entry prohibition alarm by the alarm display board equipment 24 and transmission of a fire transfer signal to the remote monitoring and control equipment 32 is performed.

(故障予兆判断部)
故障予兆判断部46は、所定の故障予兆判断条件を設定し、火災検知器12の試験光源を駆動した際の受光信号(或いはそれに対応する受光信号情報)に基づき、所定の故障予兆判定条件を充足した場合に火災検知器12の故障予兆と判断する制御を行う。
(Failure sign judgment unit)
The failure sign determination unit 46 sets a predetermined failure sign determination condition, and sets a predetermined failure sign determination condition based on the received signal (or the corresponding received signal information) when the test light source of the fire detector 12 is driven. When the condition is satisfied, the fire detector 12 is controlled to be judged as a failure sign.

例えば、故障予兆判断部46は、例えば1日1回等定期的に実施される自己の内部正常性を試験する感度試験による受光信号のレベルが所定の基準値に基づき正常でもなく故障でもないときに故障予兆と判定し、当該故障予兆の判定回数が所定の故障予兆判断閾値回数に達したときに火災検知器の故障予兆と判断する制御を行う。 For example, when the failure sign determination unit 46 is neither normal nor faulty based on a predetermined reference value by a sensitivity test for testing its own internal normality, which is regularly performed, for example, once a day. It is controlled to determine the failure sign, and when the number of determinations of the failure sign reaches a predetermined failure sign determination threshold number, the fire detector is determined to be a failure sign.

図6は故障予兆判断条件の設定と感度試験時の受光信号レベルに基づく故障予兆の判断動作を示した説明図である。 FIG. 6 is an explanatory diagram showing a failure sign determination operation based on the setting of the failure sign determination condition and the received signal level at the time of the sensitivity test.

説明を簡単にするため、以下では感度試験時の炎受光信号E1Rにつき、この受光信号レベルに基づいて右眼火災検知部60Rの故障予兆を判断し、故障予兆判断条件を変更する場合として説明するが、第1の非炎受光信号E2R,E2L、第2の非炎受光信号E3R,E3Lについても同様に、これらに基づき故障予兆を判断し、これら信号ごと、即ち火災検知部60R,60Lのセンサ部(センサ部64,68,72)の信号系統(即ち増幅処理部66,70,74を含む信号系統)ごとに故障予兆判断を行い、故障予兆判断条件を変更するようにして良い。 In order to simplify the explanation, the following describes a case where the failure sign of the right eye fire detection unit 60R is determined based on the received signal level of the flame light receiving signal E1R at the time of the sensitivity test, and the failure sign determination condition is changed. However, similarly, the first non-flame receiving signals E2R and E2L and the second non-flame receiving signals E3R and E3L also determine the failure sign based on these, and each of these signals, that is, the sensors of the fire detection units 60R and 60L. The failure sign determination may be performed for each signal system (that is, the signal system including the amplification processing units 66, 70, 74) of the units (sensor units 64, 68, 72), and the failure sign determination conditions may be changed.

図6(A)に示すように、故障予兆判断部46は、故障予兆判断条件として、工場出荷時の状態での火災検知器12の感度試験で検出された受光信号(炎受光信号E1R)のピークレベルを基準値(基準レベル)96として初期設定登録し、基準値96を含む所定の正常範囲98と、正常範囲98を下回るように所定の故障閾値102を設定し、故障閾値102以下となる故障範囲104を設定し、正常範囲98と故障範囲104との間を故障予兆範囲100に設定している。なお、故障閾値102を固定値として故障範囲104を固定範囲としても良いし、故障範囲104も基準値96に応じて変更しても良い。 As shown in FIG. 6A, the failure sign determination unit 46 determines the failure sign determination condition of the light receiving signal (flame light receiving signal E1R) detected in the sensitivity test of the fire detector 12 at the time of shipment from the factory. The peak level is initially set and registered as the reference value (reference level) 96, the predetermined normal range 98 including the reference value 96 and the predetermined failure threshold 102 are set so as to be lower than the normal range 98, and the failure threshold is 102 or less. The failure range 104 is set, and the area between the normal range 98 and the failure range 104 is set to the failure sign range 100. The failure threshold value 102 may be a fixed value and the failure range 104 may be a fixed range, or the failure range 104 may be changed according to the reference value 96.

ここで、受光信号の正常範囲98は基準値96を中心に例えば正常上限値98aと正常下限値98bで挟まれた範囲とし、例えば基準値96に対し±10パーセントとしている。また、故障閾値102は例えば基準値96の50パーセント程度の値とする。 Here, the normal range 98 of the received signal is set to a range sandwiched between, for example, the normal upper limit value 98a and the normal lower limit value 98b around the reference value 96, and is, for example, ± 10% with respect to the reference value 96. Further, the failure threshold value 102 is set to, for example, a value of about 50% of the reference value 96.

なお、故障予兆範囲100として、例えば、(上限値98a)から{(基準値96)+(基準値96の50パーセント)}までの範囲を追加しても良い。故障範囲104についても、例えば{(基準値96)+(基準値の50パーセント)}以上の範囲を追加しても良い。 As the failure sign range 100, for example, a range from (upper limit value 98a) to {(reference value 96) + (50% of reference value 96)} may be added. As for the failure range 104, for example, a range of {(reference value 96) + (50% of reference value)} or more may be added.

このような基準値96に基づいた正常範囲98、故障範囲104及び故障予兆範囲100による故障予兆判断条件の設定に基づき、図6(A)に黒丸で示すように、例えば1日に1回の試験により検出した受光信号(炎受光信号E1R)のピークレベルをプロットして例示すると、故障予兆判断部46は、試験時のピークレベルが正常範囲98にもなく故障範囲104にもない場合、即ち故障予兆範囲100にある場合に故障予兆と判定する。 Based on the setting of the failure sign judgment condition based on the normal range 98, the failure range 104, and the failure sign range 100 based on the reference value 96, as shown by the black circle in FIG. 6 (A), for example, once a day. To plot and exemplify the peak level of the light receiving signal (flame light receiving signal E1R) detected by the test, the failure sign determination unit 46 shows that the peak level at the time of the test is neither in the normal range 98 nor in the failure range 104, that is, When it is within the failure sign range 100, it is determined to be a failure sign.

続いて、故障予兆判断部46は、図6(B)に示すように、故障予兆の判定回数Nを計数して所定の故障予兆判断閾値回数Nthと比較しており、判定回数Nが故障予兆判断閾値回数Nthに達したときに故障予兆判断条件を充足したとして故障予兆と判断する。即ち、故障予兆判断部46は、試験時の受光信号に基づき、また受光信号のピークレベルが正常範囲98にもなく故障範囲にもないことに基づき、またこれらに判定回数Nを合わせて故障予兆を判断するようにしている。 Subsequently, as shown in FIG. 6B, the failure sign determination unit 46 counts the failure sign determination number N and compares it with the predetermined failure sign determination threshold number Nth, and the determination number N is the failure sign. When the number of judgment thresholds Nth is reached, it is judged as a failure sign assuming that the failure sign judgment condition is satisfied. That is, the failure sign determination unit 46 is based on the received signal at the time of the test, and based on the fact that the peak level of the received signal is neither in the normal range 98 nor in the failure range, and the number of determinations N is added to these to predict the failure. I try to judge.

ここで、判定回数の計数は、例えば所定期間(例えば定期に実施される試験の所定回数)について行い、これを経過したときにクリアして再度計数開始するようにしても良く、その他適宜の計数方法を採用し得る。 Here, the number of determinations may be counted, for example, for a predetermined period (for example, a predetermined number of tests to be performed periodically), and when this has elapsed, the count may be cleared and the count may be restarted. The method can be adopted.

(故障予兆判断条件変更部)
故障予兆判断条件変更部47は、試験による受光信号のピークレベルに基づく試験結果情報を生成し、試験結果情報に基づき、故障予兆判断条件を変更する制御を行う。この場合、故障予兆判断条件変更部47は、試験結果情報から得られた受光信号のピークレベルの傾向に基づいて故障予兆判断条件、例えば図6(A)に示した基準値96を変更し、基準値96の変更に伴い、正常範囲98、故障範囲104及び故障予兆範囲100を変更する。
(Failure sign judgment condition change part)
The failure sign determination condition changing unit 47 generates test result information based on the peak level of the received signal received by the test, and controls to change the failure sign determination condition based on the test result information. In this case, the failure sign determination condition changing unit 47 changes the failure sign determination condition, for example, the reference value 96 shown in FIG. 6 (A), based on the tendency of the peak level of the received signal obtained from the test result information. With the change of the reference value 96, the normal range 98, the failure range 104, and the failure sign range 100 are changed.

図7は故障予兆判断条件変更部による故障予兆判断条件の変更動作を示した説明図であり、例えば1日1回試験を実施し、10日単位の故障予兆判断条件の変更タイミングを設定した場合を例とっている。なお、故障閾値102は固定としている。 FIG. 7 is an explanatory diagram showing the operation of changing the failure sign judgment condition by the failure sign judgment condition change unit. For example, when the test is performed once a day and the change timing of the failure sign judgment condition is set in units of 10 days. Is taken as an example. The failure threshold value 102 is fixed.

いま、D0日から期間T1=10日を経過したD1日で故障予兆判断条件の変更タイミングに達しとすると、期間T1の間に黒点で示す10回分の試験時受光信号のピークレベルが得られている。ここで、期間T1にはそのときの基準値96−1に基づき正常範囲98−1及び故障予兆範囲100−1が設定されており、そのうち7回は正常範囲98−1にあるが、2回は故障予兆範囲100−1にあり、残り1回は正常範囲98−1を超えたa点にある。 Now, assuming that the change timing of the failure sign judgment condition is reached on D1 day when the period T1 = 10 days has passed from D0 day, the peak level of the received light signal for 10 tests indicated by the black dot is obtained during the period T1. There is. Here, in the period T1, the normal range 98-1 and the failure sign range 100-1 are set based on the reference value 96-1 at that time, of which 7 times are in the normal range 98-1 but 2 times. Is in the failure sign range 100-1, and the remaining one is at point a, which exceeds the normal range 98-1.

ここでは、a点のピークレベルは一過性の外乱光、電気的外来ノイズや振動、誘導雷等による特異レベルとして初期値の算出対象から除外する場合を説明する。また、期間T2にb点に示すように、故障閾値102を下回るようなピークレベルについても、特異レベルとして基準値96−2の算出対象から除外する場合とする。もちろん、これら特異レベルも算出対象としても良く、また例えば、特異レベルの出現頻度に応じて対象とするか対象から除外するかを選択するようにしても良い。 Here, the case where the peak level at point a is excluded from the calculation target of the initial value as a peculiar level due to transient disturbance light, electrical external noise, vibration, induced lightning, or the like will be described. Further, as shown at point b in the period T2, the peak level below the failure threshold value 102 is also excluded from the calculation target of the reference value 96-2 as a singular level. Of course, these peculiar levels may also be calculated targets, and for example, it may be selected whether to be targeted or excluded from the target according to the frequency of appearance of the peculiar levels.

このような期間T1に保持された試験時受光信号のピークレベルに基づき、故障予兆判断条件変更部47は、a点のピークレベルを初期値の算出対象から除外し、正常範囲98−1及び故障予兆範囲100−1にある9個のピークレベルの平均処理により新たな基準値96−2を求める。この場合、ピークレベルが受光信号情報、平均処理結果が試験結果情報となる。 Based on the peak level of the received light signal during the test held in T1 during such a period, the failure sign determination condition changing unit 47 excludes the peak level at point a from the calculation target of the initial value, and has a normal range of 98-1 and a failure. A new reference value 96-2 is obtained by averaging the nine peak levels in the sign range 100-1. In this case, the peak level is the received signal information, and the average processing result is the test result information.

続いて、故障予兆判断条件変更部48は、期間T1の受光信号ピークレベルから新たな基準値96−2を求め、これを次の期間T2に基準値96−2として設定し、新たな基準値96−2に基づき正常範囲98−2を設定し、その結果、故障予兆範囲100−2が設定される。 Subsequently, the failure sign determination condition changing unit 48 obtains a new reference value 96-2 from the received signal peak level in the period T1, sets this as the reference value 96-2 in the next period T2, and sets the new reference value. The normal range 98-2 is set based on 96-2, and as a result, the failure sign range 100-2 is set.

これにより期間T1の試験時受光信号のピークレベルの減少傾向に応じて基準値96−2,正常範囲98−2及び故障予兆範囲100−2が低レベル側にシフトするように変更されることで、故障予兆判断条件の変更が行われる。同様に、試験時受光信号のピークレベルが増加傾向の場合には、これに応じて基準値96−2,正常範囲98−2及び故障予兆範囲100−2が高レベル側にシフトするように変更される。 As a result, the reference value 96-2, the normal range 98-2, and the failure sign range 100-2 are changed so as to shift to the low level side according to the decreasing tendency of the peak level of the received signal during the test in the period T1. , The failure sign judgment conditions are changed. Similarly, if the peak level of the received signal during the test tends to increase, the reference value 96-2, the normal range 98-2, and the failure sign range 100-2 are changed to shift to the higher level side accordingly. Will be done.

以下同様に、故障予兆判断条件変更部48は、故障予兆判断条件の変更タイミングに到達するごとに、新な基準値96−3,96−4,・・・を求めて正常範囲98−3,98−4,・・・及び故障予兆範囲100−3,100−4,・・・を変更することで、試験時受光信号のピークレベルの傾向に応じて故障予兆判断条件の変更を行う。 Similarly, the failure sign determination condition changing unit 48 obtains new reference values 96-3, 96-4, ... Each time the failure sign determination condition change timing is reached, and the normal range 98-3, By changing 98-4, ... And the failure sign range 100-3, 100-4, ..., the failure sign determination condition is changed according to the tendency of the peak level of the received signal during the test.

このため例えば季節的な要因により試験時の受光信号のレベルが変動しても、この変動に追従して故障予兆判断条件が変更され、年間を通じて試験による受光信号のレベルから故障予兆を適切に判断することが可能となり、このように適切な条件のもとで故障予兆と判断された場合には火災検知器12の信頼性が低下していることが分かることから、運用管理者は、例えば故障予兆と判断された火災検知器を重点的に点検することで適切な対処を行うことができると共に、非火災報とこれに伴うトンネルの進入禁止警報等の火災処理によりトンネル通行を止めてしまうといったことの未然防止が、従来に比べて確実にできるようになる。 Therefore, for example, even if the level of the received signal during the test fluctuates due to seasonal factors, the failure sign judgment conditions are changed in accordance with this change, and the failure sign is appropriately judged from the level of the received signal from the test throughout the year. When it is determined that the fire is a sign of failure under appropriate conditions, it is found that the reliability of the fire detector 12 is lowered. Therefore, the operation manager can, for example, perform a failure. Appropriate measures can be taken by focusing on the fire detectors that are judged to be signs, and the tunnel passage will be stopped due to fire treatment such as non-fire alarms and accompanying tunnel entry prohibition warnings. It will be possible to prevent this from happening more reliably than before.

ここで、故障予兆判断条件変更部47による故障予兆判断条件の変更タイミングは一定期間ごとに限定されず、試験が定期的でない場合も含め、所定の試験回数を計数するごとに行っても良いし、特定の火災検知器の故障予兆が判断された時に行っても良く、或いは管理者が操作部41を介して任意のタイミングで行うようにしても良く、適宜の方法とすることができる。 Here, the timing of changing the failure sign determination condition by the failure sign determination condition changing unit 47 is not limited to a fixed period, and may be performed every time a predetermined number of tests is counted, including the case where the test is not periodic. , It may be performed when a failure sign of a specific fire detector is determined, or it may be performed by the administrator at an arbitrary timing via the operation unit 41, and an appropriate method can be used.

また、故障予兆判断条件変更部47は、試験結果情報として試験時受光信号のピークレベルに基づいて故障予兆判断条件を変更しているが、試験時受光レベルのピークレベルの平均値等の統計的処理をしたものを試験結果情報とし、これに基づいて故障予兆判断条件を変更してもよい。 Further, the failure sign determination condition changing unit 47 changes the failure sign determination condition based on the peak level of the light receiving signal during the test as the test result information, but statistically such as the average value of the peak level of the light receiving level during the test. The processed information may be used as the test result information, and the failure sign determination condition may be changed based on the test result information.

また、試験時の受光信号レベルを年間単位で記憶し、例えば月単位で故障予兆判断条件を変更する場合、前年同月の試験時の受光レベルを読出し、これに基づいて故障予兆判断条件を変更してもよい。また、月単位で変更した故障予兆判断条件を記憶し、例えば月単位で故障予兆判断条件を変更する場合、前年同月の故障予兆判断条件を読出して変更しても良い。また、故障予兆判断条件として、故障予兆範囲の変更に代えて、又は加えて、故障予兆判断閾値回数Nthを変更するようにしても良い。 In addition, when the light receiving signal level at the time of the test is stored on an annual basis, for example, when the failure sign judgment condition is changed on a monthly basis, the light receiving level at the time of the test in the same month of the previous year is read and the failure sign judgment condition is changed based on this. You may. Further, when the failure sign determination condition changed on a monthly basis is stored and the failure sign determination condition is changed on a monthly basis, for example, the failure sign determination condition in the same month of the previous year may be read and changed. Further, as a failure sign determination condition, the failure sign determination threshold number Nth may be changed instead of or in addition to changing the failure sign range.

[故障予兆判断部と故障予兆判断条件変更部のシステム配置]
上記の実施形態は、故障予兆判断部46と故障予兆判断条件変更部47の機能を防災受信盤10に配置しているが、これに限定されず、システム上の任意の位置に配置しても良い。
[System layout of failure sign judgment unit and failure sign judgment condition change unit]
In the above embodiment, the functions of the failure sign determination unit 46 and the failure sign determination condition change unit 47 are arranged in the disaster prevention receiver 10, but the present invention is not limited to this, and the functions may be arranged at any position on the system. good.

例えば、故障予兆判断部46と故障予兆判断条件変更部47の機能を火災検知器12に配置しても良い。この場合、火災検知器12は防災受信盤10から故障予兆判断条件の変更指示を受けて、或いは自己の管理するタイミングで、自己保有の試験結果情報に基づいて故障予兆判断条件を変更する。 For example, the functions of the failure sign determination unit 46 and the failure sign determination condition change unit 47 may be arranged in the fire detector 12. In this case, the fire detector 12 changes the failure sign determination condition based on the self-owned test result information at the timing of receiving the failure sign determination condition change instruction from the disaster prevention receiver 10 or at the timing of its own management.

防災受信盤10から火災検知器12に対する故障予兆判断条件の変更指示は、所定期間ごとに行う場合以外に、防災受信盤10で複数の火災検知器12からの試験結果情報を取得して総合的に処理し、例えば、トンネルの区間、信号系統等に分けて試験結果情報を総合的に処理し、例えば試験時受光信号のレベル変動の大きい区間、信号系統に対し故障予兆判断条件の変更指示を行うようにしても良い。 The disaster prevention receiver 10 acquires test result information from a plurality of fire detectors 12 and comprehensively gives an instruction to change the failure sign judgment condition from the disaster prevention receiver 10 to the fire detector 12 except when the instruction is given at predetermined intervals. For example, the test result information is comprehensively processed by dividing it into tunnel sections, signal systems, etc., and for example, instructions for changing failure sign judgment conditions are given to sections and signal systems where the level fluctuation of the received signal during the test is large. You may do it.

また、他の形態として、故障予兆判断部46は火災検知器12に配置し、故障予兆判断条件変更部47は防災受信盤10に配置するというように、システム内に分散して配置してもよく、任意である。 Further, as another form, the failure sign determination unit 46 may be arranged in the fire detector 12, and the failure sign determination condition change unit 47 may be arranged in the disaster prevention receiver 10 in a distributed manner in the system. Well, it's optional.

[本発明の変形例]
(火災検知器)
上記の実施形態は、3波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、CO2の共鳴放射帯である4.5μm帯と、その短波長側の例えば、5.0μm付近の波長帯域における赤外線エネルギーを検知し、これらの2波長帯域における各受光信号の相対比によって炎の有無を判定する2波長式の炎検知器としても良い。
[Modification of the present invention]
(Fire detector)
Although the above embodiment takes a three-wavelength fire detector as an example, other methods may be used, for example, the 4.5 μm band which is the resonance radiation band of CO 2 and the short wavelength side thereof, for example, 5. It may be a two-wavelength type flame detector that detects infrared energy in a wavelength band near 0 μm and determines the presence or absence of a flame by the relative ratio of each received signal in these two wavelength bands.

(監視システム)
上記の実施形態は、監視システムとして、トンネル内の異常である火災を監視するR型のトンネル防災システムを例にとっているが、P型(Proprietary−type)としても良い。
(Monitoring system)
In the above embodiment, as a monitoring system, an R-type tunnel disaster prevention system that monitors an abnormal fire in the tunnel is taken as an example, but a P-type (proprietary-type) may also be used.

また、本発明はトンネル防災システム以外の監視システムについても適用できる。例えば建物内の火災を監視する自動火災報知システムや、プラント等の火災を監視する防災システム等、適宜の監視システムに適用することができる。また、監視対象とする異常事象としては火災に限らず各種の災害事象等を監視するものであっても良いし、例えば人体検知や侵入検知の機能を有する防犯検知器と防犯受信盤によって構成される防犯用途の監視システムであっても良い。 The present invention can also be applied to monitoring systems other than tunnel disaster prevention systems. For example, it can be applied to an appropriate monitoring system such as an automatic fire alarm system for monitoring a fire in a building or a disaster prevention system for monitoring a fire in a plant or the like. Further, the abnormal event to be monitored may be one that monitors various disaster events, etc., not limited to fire. For example, it is composed of a crime prevention detector and a crime prevention receiver having a function of detecting a human body or intrusion. It may be a surveillance system for crime prevention purposes.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
Further, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not further limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
36a,36b:伝送部
45:火災監視制御部
46:故障予兆判断部
47:故障予兆判断条件変更部
50R,50L:透光性窓
52R,52L:試験光源用透光窓
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64,68,72:センサ部
66,70,74:増幅処理部
76:試験発光駆動部
78R,78L,80R,80L,82R,82L:内部試験光源
84R,84L:外部試験光源
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver 12: Fire detector 14a, 14b: Signal line 16: Fire extinguishing pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Alarm display Board equipment 26: Radio rebroadcasting equipment 28: TV monitoring equipment 30: Lighting equipment 32: Remote monitoring control equipment 34: Panel control units 36a, 36b: Transmission unit 45: Fire monitoring control unit 46: Failure sign determination unit 47: Failure sign Judgment condition changing unit 50R, 50L: Translucent window 52R, 52L: Translucent window for test light source 54: Detector control unit 56: Transmission unit 58: Power supply unit 60R, 60L: Fire detection unit 64, 68, 72: Sensor Units 66, 70, 74: Amplification processing unit 76: Test emission drive unit 78R, 78L, 80R, 80L, 82R, 82L: Internal test light source 84R, 84L: External test light source

Claims (7)

受信盤に検知器を接続して異常を監視する監視システムに於いて、
前記検知器の試験光源を駆動した際の受光信号に基づき、所定の故障予兆判定条件を充足したときに前記検知部の故障予兆と判断する故障予兆判断部と、
前記試験による前記受光信号に基づく試験結果情報を生成し、試験結果情報に基づき、故障予兆判断条件を変更する故障予兆判断条件変更部と、
を備えたことを特徴とする監視システム。
In a monitoring system that monitors abnormalities by connecting a detector to the receiving panel
Based on the received signal when the test light source of the detector is driven, the failure sign determination unit that determines the failure sign of the detector when a predetermined failure sign determination condition is satisfied, and the failure sign determination unit.
A failure sign judgment condition change unit that generates test result information based on the received light signal from the test and changes the failure sign judgment condition based on the test result information.
A monitoring system characterized by being equipped with.
請求項1記載の監視システムに於いて、
前記故障予兆判断条件変更部は、前記試験結果情報から得られた前記受光信号のレベルの変化傾向に基づいて前記故障予兆判断条件を変更することを特徴とする監視システム。
In the monitoring system according to claim 1,
The failure sign determination condition changing unit is a monitoring system characterized in that the failure sign determination condition is changed based on a change tendency of the level of the received light signal obtained from the test result information.
請求項1記載の監視システムに於いて、
前記故障予兆判断部は、前記試験による前記受光信号のレベルが所定の基準値に基づき正常でなく故障でもないことに基づいて前記検知器の故障予兆と判断し、
前記故障予兆判断条件変更部は、前記試験結果情報から得られた前記受光信号のレベルの変化傾向に基づいて前記基準値を変更することを特徴とする監視システム。
In the monitoring system according to claim 1,
The failure sign determination unit determines that the detector is a failure sign based on the fact that the level of the received light signal in the test is neither normal nor failure based on a predetermined reference value.
The failure sign determination condition changing unit is a monitoring system characterized in that the reference value is changed based on the change tendency of the level of the received light signal obtained from the test result information.
請求項3記載の監視システムに於いて、
前記故障予兆判断部は、前記試験による前記受光信号のレベルが前記基準値を含む所定の正常範囲になく、且つ前記正常範囲を下回る所定の故障範囲にもないことに基づいて前記検知器の故障予兆と判断し、
前記故障予兆判断条件変更部は、前記試験結果情報から得られた前記受光信号のレベルの変化傾向に基づいて前記基準値及び前記正常範囲を変更することを特徴とする監視システム。
In the monitoring system according to claim 3,
The failure sign determination unit fails the detector based on the fact that the level of the received light signal according to the test is not in the predetermined normal range including the reference value and is not in the predetermined failure range below the normal range. Judging as a sign,
The failure sign determination condition changing unit is a monitoring system characterized in that the reference value and the normal range are changed based on the change tendency of the level of the received light signal obtained from the test result information.
請求項1乃至4の何れかに記載の監視システムに於いて、
前記故障予兆判断部と前記故障予兆判断条件変更部は前記受信盤に配置され、前記検知器は、前記試験光源を駆動した際の受光信号に基づく試験結果情報を前記受信盤に送信することを特徴とする監視システム。
In the monitoring system according to any one of claims 1 to 4.
The failure sign determination unit and the failure sign determination condition change unit are arranged on the receiver panel, and the detector transmits test result information based on a light receiving signal when the test light source is driven to the receiver panel. A featured monitoring system.
請求項1乃至4の何れかに記載の監視システムに於いて、
前記故障予兆判断部と前記故障予兆判断条件変更部は前記受信盤に配置され、前記検知器は、前記試験光源を駆動した際の受光信号に基づく受光信号情報を前記受信盤に送信し、前記受信盤は前記受光信号情報に基づき試験結果情報を生成することを特徴とする監視システム。
In the monitoring system according to any one of claims 1 to 4.
The failure sign determination unit and the failure sign determination condition change unit are arranged on the receiver panel, and the detector transmits the light reception signal information based on the light reception signal when the test light source is driven to the receiver panel, and the detector is described. The receiving board is a monitoring system characterized in that test result information is generated based on the received signal information.
請求項1乃至6の何れかに記載の監視システムに於いて、
前記故障予兆判断部と前記故障予兆判断条件変更部は前記検知器に配置され、
前記受信盤は所定のタイミングで前記検知器に前記故障予兆判断条件の変更を指示することを特徴とする監視システム。
In the monitoring system according to any one of claims 1 to 6.
The failure sign determination unit and the failure sign determination condition change unit are arranged in the detector.
The receiver is a monitoring system characterized in that the detector is instructed to change the failure sign determination condition at a predetermined timing.
JP2019089590A 2019-05-10 2019-05-10 Monitoring system Active JP7358071B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019089590A JP7358071B2 (en) 2019-05-10 2019-05-10 Monitoring system
JP2023164250A JP2023171849A (en) 2019-05-10 2023-09-27 Monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089590A JP7358071B2 (en) 2019-05-10 2019-05-10 Monitoring system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023164250A Division JP2023171849A (en) 2019-05-10 2023-09-27 Monitoring system

Publications (2)

Publication Number Publication Date
JP2020187401A true JP2020187401A (en) 2020-11-19
JP7358071B2 JP7358071B2 (en) 2023-10-10

Family

ID=73221740

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019089590A Active JP7358071B2 (en) 2019-05-10 2019-05-10 Monitoring system
JP2023164250A Pending JP2023171849A (en) 2019-05-10 2023-09-27 Monitoring system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023164250A Pending JP2023171849A (en) 2019-05-10 2023-09-27 Monitoring system

Country Status (1)

Country Link
JP (2) JP7358071B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282774A (en) * 1993-03-25 1994-10-07 Nohmi Bosai Ltd Radiation type fire sensor
JP2017034489A (en) * 2015-08-03 2017-02-09 ホーチキ株式会社 Tunnel disaster prevention system
JP2017049799A (en) * 2015-09-02 2017-03-09 ホーチキ株式会社 Fire detector
JP2018147373A (en) * 2017-03-08 2018-09-20 ホーチキ株式会社 Tunnel disaster prevention system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282774A (en) * 1993-03-25 1994-10-07 Nohmi Bosai Ltd Radiation type fire sensor
JP2017034489A (en) * 2015-08-03 2017-02-09 ホーチキ株式会社 Tunnel disaster prevention system
JP2017049799A (en) * 2015-09-02 2017-03-09 ホーチキ株式会社 Fire detector
JP2018147373A (en) * 2017-03-08 2018-09-20 ホーチキ株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP2023171849A (en) 2023-12-05
JP7358071B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2018169893A5 (en)
JP7432658B2 (en) disaster prevention system
KR200414008Y1 (en) System for monitoring fire signals
JP6605885B2 (en) Fire detector
KR20220085125A (en) Safety management system using unmanned detector
JP2023055960A (en) Disaster prevention system and fire detector
JP2023089258A (en) Fire detector and tunnel disaster prevention system
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
JP2020187401A (en) Monitoring system and detector
KR100628837B1 (en) Wireless fire-warning system and method
JP7336252B2 (en) Tunnel disaster prevention system
KR102327158B1 (en) Remote firefighting management system using CCTV image
JP7475114B2 (en) Monitoring system
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
JP2002063664A (en) Disaster prevention monitoring system and disaster prevention receiving panel
JP6811512B2 (en) Fire detector
JP2023015283A (en) disaster prevention system
JP2023052809A (en) disaster prevention system
JPH06137100A (en) Tunnel fire protection system
JP2002133566A (en) Receiving board for disaster
JP2018197990A (en) Disaster prevention system
JP6949175B2 (en) Tunnel disaster prevention system
KR102143378B1 (en) Facility remote control system using TF memory method based on PLC
KR100976240B1 (en) Infrared rays sensing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230927

R150 Certificate of patent or registration of utility model

Ref document number: 7358071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150