JP7336248B2 - Tunnel disaster prevention system and fire detector - Google Patents

Tunnel disaster prevention system and fire detector Download PDF

Info

Publication number
JP7336248B2
JP7336248B2 JP2019081393A JP2019081393A JP7336248B2 JP 7336248 B2 JP7336248 B2 JP 7336248B2 JP 2019081393 A JP2019081393 A JP 2019081393A JP 2019081393 A JP2019081393 A JP 2019081393A JP 7336248 B2 JP7336248 B2 JP 7336248B2
Authority
JP
Japan
Prior art keywords
fire
failure
signal
disaster prevention
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081393A
Other languages
Japanese (ja)
Other versions
JP2020102181A (en
Inventor
泰周 杉山
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Publication of JP2020102181A publication Critical patent/JP2020102181A/en
Priority to JP2023116420A priority Critical patent/JP2023134692A/en
Priority to JP2023133776A priority patent/JP2023156477A/en
Application granted granted Critical
Publication of JP7336248B2 publication Critical patent/JP7336248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)

Description

本発明は、防災受信盤から引き出された信号線に接続された火災検知器によりトンネル内の火災を監視するトンネル防災システム及び火災検知器に関する。 The present invention relates to a tunnel disaster prevention system and a fire detector that monitor fires in a tunnel by means of a fire detector connected to a signal line led out from a disaster prevention receiving panel.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されて火災を監視している。 Conventionally, in order to protect people and vehicles from fire accidents that occur in tunnels, fire detectors are installed in tunnels such as automobile roads to monitor fires, and are connected to signal lines drawn from disaster prevention receivers. to monitor fires.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detectors have detection areas in both the left and right directions, and along the longitudinal direction of the tunnel, the detection areas of the fire detectors placed adjacent to each other complementarily overlap, for example, at intervals of 25 m or 50 m. continuously spaced apart.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を点検するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, fire detectors monitor radiation from fire flames generated in tunnels through translucent windows, such as infrared radiation. sensitivity tests and contamination tests to monitor the contamination of translucent windows.

しかしながら、このような従来の火災検知器にあっては、運用期間が長くなって火災検知器の劣化が進んだ場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態でも、火災検知器が火災検知信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、交通渋滞を招くなどの影響が小さくない。 However, in such a conventional fire detector, when the operation period is long and the deterioration of the fire detector progresses, the sensor failure due to the sensitivity test and the contamination abnormality due to the contamination test are not detected. Even in a state where it seems to be operating, there is a possibility that the fire detector will output a fire detection signal and a non-fire alarm will be issued from the disaster prevention receiver panel. Vehicles must be prohibited from entering the tunnel by issuing warning signs and other equipment until it is confirmed that the tunnel is unsafe. It takes a lot of time, and the impact of causing traffic congestion is not small.

このため、防災受信盤で火災検知器の温度、湿度、衝撃振動及び電気的ノイズ等の環境ストレスに基づいて劣化の度合いを判定して報知するようにしたトンネル防災システムが提案されており、火災検知器の劣化の進み具合が把握できることで、非火災報が出されてしまう前に、火災検知器を予備の火災検知器に交換する等の対応を可能としている。 For this reason, a tunnel disaster prevention system has been proposed in which the degree of deterioration is determined and notified based on environmental stress such as temperature, humidity, shock vibration, and electrical noise of the fire detector on the disaster prevention receiver panel. By being able to grasp the progress of deterioration of the detector, it is possible to take measures such as replacing the fire detector with a spare fire detector before a non-fire alarm is issued.

また、従来のトンネル防災システムは、防災受信盤が火災検知器からの火災信号を受信したときに、非火災報を防止するために、所定時間後に火災検知器を一旦復旧し、再度、所定時間以内に火災信号を受信したときに火災と判断して警報表示板設備などにより進入禁止警報を行っている。 In addition, in the conventional tunnel disaster prevention system, when the disaster prevention receiver receives a fire signal from a fire detector, the fire detector is temporarily restored after a predetermined period of time in order to prevent non-fire alarms, and then again after a predetermined period of time. When a fire signal is received within this period, it is determined that there is a fire, and an entry prohibition warning is issued by means of warning display boards, etc.

特開2002-246962号公報JP-A-2002-246962 特開2016-128796号公報JP 2016-128796 A 特開2018-169893号公報JP 2018-169893 A

しかしながら、このような従来の火災検知器にあっては、故障や想定外の非火災要因等に起因した誤った火災判断により火災信号を送信していた場合、一旦復旧した後も、故障や非火災要因等が解消されていない場合には、再度火災信号を送信してしまうことがあるため、非火災報による問題が依然として残されている。 However, in such a conventional fire detector, if a fire signal is transmitted due to an erroneous fire judgment due to a failure or an unexpected non-fire factor, even after recovery, the failure or non-fire signal will be returned. If the cause of the fire is not eliminated, the fire signal may be sent again, so the problem of non-fire alarms still remains.

本発明は、火災信号を送信した火災検知器の信頼性を判断することにより非火災報を抑制可能とするトンネル防災システム及び火災検知器を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a tunnel disaster prevention system and a fire detector that can suppress non-fire alarms by judging the reliability of the fire detector that transmitted the fire signal.

(第1発明:トンネル防災システム:防災受信盤での信頼性判断)
本発明は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、防災受信盤は火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、
火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
防災受信盤は、
火災検知器から故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、
信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、
信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行う、
ことを特徴とする。
(First Invention: Tunnel Disaster Prevention System: Reliability Judgment with Disaster Prevention Receiver)
The present invention monitors a fire in a detection area by connecting a plurality of fire detectors to a disaster prevention receiver panel, and the fire detectors adjacent to each other monitor the fire by at least partially overlapping the detection area. In the tunnel disaster prevention system, the disaster prevention receiver performs the prescribed fire processing based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure predictor information including the number of occurrences of its own predetermined failure predictor,
The disaster prevention receiver is
Acquiring failure sign information from a fire detector, judging the reliability of the fire detector from the failure sign information,
When a fire signal is received from a fire detector determined to be reliable, after the fire detector has been restored, if a fire signal is received from the fire detector again, the prescribed fire processing is performed,
When a fire signal is received from a fire detector determined to be unreliable, the predetermined first fire determination accumulation condition of the fire detector is changed to a predetermined second fire judgment accumulation condition that is stricter than the first fire judgment accumulation condition. When a fire signal is received from at least one of the fire detector for which the fire judgment accumulation condition has been changed and the fire judgment accumulation condition has been changed, and the adjacent fire detector that monitors the detection area of the fire detector in duplicate. In addition, perform the prescribed fire treatment,
It is characterized by

(第2発明:トンネル単位、信号系統単位又は区間単位の信頼性情報の生成)
本発明の別の形態は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して監視しており、防災受信盤は火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、
火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
防災受信盤は、
トンネル単位又はトンネルの所定の区間ごとにグループ化された複数の火災検知器の故障予兆情報を取得し、当該故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、
信頼性情報から信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、
信頼性情報から信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行う、
ことを特徴とする。
(Second invention: generation of reliability information for each tunnel, signal system or section)
Another aspect of the invention is to connect a plurality of fire detectors to a fire alarm panel to monitor fires in a detection area, wherein adjacent fire detectors at least partially overlap the detection area. In a tunnel disaster prevention system that monitors and the disaster prevention receiver performs fire processing based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure predictor information including the number of occurrences of its own predetermined failure predictor,
The disaster prevention receiver is
Acquisition of failure predictor information of multiple fire detectors grouped for each tunnel or predetermined section of tunnel, and based on the failure predictor information, reliability of fire detector for each tunnel, signal system or section at least temporarily retains the reliability information generated by judging
When a fire signal is received from a fire detector determined to be reliable from the reliability information, when the fire signal is received again from the fire detector after the fire detector is restored, the prescribed fire processing is performed,
When a fire signal is received from a fire detector determined to be unreliable from the reliability information, the predetermined first fire determination accumulation condition of the fire detector is set to a predetermined condition that is stricter than the first fire determination accumulation condition. At least one of the fire detector that has been restored after changing to the second fire judgment accumulation condition and the fire detector whose second fire judgment accumulation condition has been changed and an adjacent fire detector that redundantly monitors the detection area of the fire detector. When a fire signal is received from, perform a predetermined fire process,
It is characterized by

(故障予兆の詳細1)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、複数の火災判定段階により火災を判断しており、
複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure signs 1)
In the tunnel disaster prevention system of the first or second invention,
A fire detector judges a fire through multiple stages of fire judgment,
If a fire is determined in at least one fire determination stage among a plurality of fire determination stages but is not determined as a fire in any of the remaining fire determination stages, it is determined as a failure sign, and the number of occurrences of the failure indication is counted. and at least temporarily retain failure predictor information including the number of occurrences of the failure predictor,
The disaster prevention receiving board judges that the reliability is lowered when the number of failure sign occurrences extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition.

(故障予兆の詳細2)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure sign 2)
In the tunnel disaster prevention system of the first or second invention,
The fire detector performs a test to judge failure of the fire detection part based on the received light signal when the test light source is driven. Determining a failure predictor when a condition is not satisfied, and at least temporarily holding failure predictor information including information indicating the number of occurrences of the failure predictor,
The disaster prevention receiving board judges that the reliability is lowered when the number of failure sign occurrences extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition.

(故障予兆の詳細3)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、
第1の故障予兆の発生回数と第2の故障予兆の発生回数を示す情報を故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure sign 3)
In the tunnel disaster prevention system of the first or second invention,
fire detector,
A fire is judged by a plurality of fire judgment stages, and a fire is judged to be a fire in at least one of the multiple fire judgment stages, but a fire is not judged to be a fire in any of the remaining fire judgment stages. is determined to be the first failure sign, and the number of occurrences of the first failure sign is obtained;
A test was conducted to determine the failure of the fire detection unit based on the received light signal when the test light source was driven. Although the level of the received light signal in the test was outside the specified normal range, it did not satisfy the specified failure judgment conditions. If it is determined to be a second failure sign, and obtains the number of occurrences of the second failure sign,
at least temporarily holding failure predictor information indicating the number of occurrences of the first failure predictor and the number of occurrences of the second failure predictor;
In the disaster prevention receiver, either one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition. Decrease in reliability is determined when

(故障予兆の判断)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに所定の故障予兆処理を行うム。
(Determination of signs of failure)
In the tunnel disaster prevention system of the first or second invention,
The fire detector performs predetermined failure sign processing when the number of failure sign occurrences satisfies a predetermined failure sign judgment accumulation condition.

(故障予兆処理)
火災検知器は、故障予兆処理として、防災受信盤に故障予兆信号を送信すると共に、火災信号の送信を停止し、
防災受信盤は、火災検知器から故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させる。
(Failure sign processing)
The fire detector, as a failure prediction process, sends a failure prediction signal to the disaster prevention receiver panel and stops sending the fire signal,
When the disaster prevention receiver board receives a failure sign signal from the fire detector, it transmits a failure sign transfer signal to the remote monitoring and control equipment to notify it.

(隣接火災検知器の感度アップ)
第1又は第2発明のトンネル防災システムにおいて、
防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断蓄積条件に変更する。
(Increased sensitivity of adjacent fire detectors)
In the tunnel disaster prevention system of the first or second invention,
When a fire detector that receives a fire signal is judged to be unreliable, at least one of the fire detector and an adjacent fire detector that redundantly monitors the detection area of the fire detector. is changed to a predetermined third fire judgment accumulation condition, which is a relaxation of the first fire judgment accumulation condition.

(遠方監視制御設備への非火災移報送信)
第1又は第4発明のトンネル防災システムにおいて、
防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させる。
(Transmission of non-fire alarms to remote monitoring and control equipment)
In the tunnel disaster prevention system of the first or fourth invention,
After judging that the fire detector that received the fire signal is unreliable, the disaster prevention receiver panel receives the fire signal from the fire detector and the adjacent fire detector that redundantly monitors the detection area of the fire detector. If not, send a non-fire alarm signal to the remote monitoring and control equipment for notification.

(第1発明のトンネル防災システムの効果:防災受信盤での信頼性判断)
本発明は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、防災受信盤は火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、防災受信盤は、火災検知器から故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、火災検知器が受光素子の故障や原因不明の非火災要因等により火災信号を送信しても、火災信号を送信した火災検知器の故障予兆の発生回数に基づく故障予兆情報にから信頼性を判断し、信頼性低下と判断した場合は非火災報と見做してトンネルの進入禁止警報を伴う火災処理を行うことがなく、不必要にトンネル通行を止めてしまうことを防止可能とする。
(Effect of the tunnel disaster prevention system of the first invention: reliability judgment on the disaster prevention receiver)
The present invention monitors a fire in a detection area by connecting a plurality of fire detectors to a disaster prevention receiver panel, and the fire detectors adjacent to each other monitor the fire by at least partially overlapping the detection area. In a tunnel disaster prevention system in which the disaster prevention receiver performs prescribed fire processing based on the fire signal from the fire detector, the fire detector receives failure sign information including the number of occurrences of its own prescribed failure signs. At least temporarily, the disaster prevention receiver acquires failure sign information from the fire detector, determines the reliability of the fire detector from the failure sign information, and judges the fire detector to be reliable When a fire signal is received from the fire detector, after the fire detector has been restored, if the fire signal is received again from the fire detector, the prescribed fire processing will be performed, and the fire signal will be sent from the fire detector that is judged to be unreliable. When it is received, the predetermined first fire judgment accumulation condition of the fire detector is changed to a predetermined second fire judgment accumulation condition stricter than the first fire judgment accumulation condition, recovery is performed, and fire judgment accumulation is performed. When a fire signal is received from at least one of the fire detectors whose conditions have been changed and the adjacent fire detectors that are redundantly monitoring the detection area of the fire detector, the prescribed fire processing is performed. Even if the detector sends a fire signal due to a failure of the light-receiving element or an unknown non-fire factor, the reliability is judged from the failure sign information based on the number of occurrences of failure signs of the fire detector that sent the fire signal. To prevent unnecessarily stopping passage through a tunnel by not treating a fire accompanied by an alarm for prohibiting entry into a tunnel by regarding it as a non-fire alarm when it is determined that the reliability is lowered.

また、信頼性低下と判断することで非火災報と見做しても、非火災報となった火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更して非火災報を出しにくくして復旧し、火災判断蓄積条件を変更した火災検知器と同じ警戒エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、間違いなく火災と判断してトンネルの進入禁止警報を含む火災処理を行うことで、確実に火災を検知して対処することができる。 In addition, even if the fire detector is regarded as a non-fire alarm by judging that the reliability is lowered, the first fire judgment accumulation condition of the fire detector that has become a non-fire alarm is changed to a strict second fire judgment accumulation condition. When a fire signal is received from at least one adjacent fire detector that is redundantly monitoring the same caution area as the fire detector whose fire judgment accumulation condition has been changed, a mistake is made. It is possible to reliably detect and deal with fire by judging that it is a fire and performing fire processing including an alarm that prohibits entry into the tunnel.

(第2発明のトンネル防災システムの効果:トンネル単位、信号系統単位又は区間単位の信頼性情報の生成)
本発明の他の形態は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して監視しており、防災受信盤は火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、防災受信盤は、トンネル単位又はトンネルの所定の区間ごとにグループ化された複数の火災検知器の故障予兆情報を取得し、当該故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、信頼性情報から信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、信頼性情報から信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、前述した第1発明の効果に加え、トンネル単位、信号系統単位又は区間単位に特有な温度、湿度、電気的ノイズ等の環境要因に基づいた火災検知器の故障予兆情報を評価して信頼性を判断でき、信頼性低下と判断した場合は非火災報と見做してトンネルの進入禁止警報等を伴う火災処理を行うこと防止可能とする。
(Effect of the tunnel disaster prevention system of the second invention: generation of reliability information for each tunnel, signal system or section)
Another aspect of the present invention is to connect a plurality of fire detectors to a disaster prevention receiver panel to monitor fires in a detection area, wherein adjacent fire detectors at least partially overlap the detection area. In a tunnel disaster prevention system in which the disaster prevention receiver performs fire processing based on the fire signal from the fire detector, the fire detector receives failure sign information including the number of occurrences of its own predetermined failure signs. At least temporarily, the disaster prevention receiver acquires failure sign information of multiple fire detectors grouped for each tunnel or for each predetermined section of the tunnel, and based on the failure sign information, for each tunnel , Reliability information generated by judging the reliability of fire detectors for each signal system or section is stored at least temporarily, and fire signals are sent from fire detectors judged to be reliable from the reliability information. When a fire signal is received from the fire detector, after the fire detector has been restored, the prescribed fire processing is performed when the fire signal is received again from the fire detector. When received, the predetermined first fire determination accumulation condition of the fire detector is changed to a predetermined second fire determination accumulation condition that is stricter than the first fire determination accumulation condition, and restoration is performed. When a fire signal is received from at least one of the fire detector whose fire judgment accumulation condition has been changed and the adjacent fire detector that is redundantly monitoring the detection area of the fire detector, the prescribed fire processing will be performed. Therefore, in addition to the effect of the first invention described above, reliability can be obtained by evaluating the failure sign information of the fire detector based on environmental factors such as temperature, humidity, electrical noise, etc. peculiar to each tunnel, each signal system, or each section. If it is judged that the reliability is lowered, it is considered as a non-fire alarm and it is possible to prevent the fire processing accompanied by the tunnel entry prohibition alarm.

(故障予兆情報の詳細1による効果)
また、第1及び第2発明の火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持し、防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、火災検知器が故障や非火災要因等により複数の火災判定段階を経て火災判断により火災信号を出力するには、それまでの間に、複数の火災判定段階の途中で火災と判断するに至らなかった故障予兆が何回か生じており、この故障予兆の発生回数を求めて故障予兆情報を生成し、信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of failure predictor information detail 1)
In addition, the fire detectors of the first and second inventions judge a fire by a plurality of fire judgment stages, and although a fire is judged in at least one fire judgment stage among the plurality of fire judgment stages, the remaining fire judgment stages If a fire is not judged to be a fire in any of the fire judgment stages, it is judged to be a failure sign, the number of occurrences of the failure sign is obtained, the failure sign information including the number of occurrences of the failure sign is at least temporarily stored, and disaster prevention reception is performed. The panel judges that the reliability has decreased when the number of failure sign occurrences extracted from the failure sign information obtained from the fire detector satisfies the predetermined reliability judgment accumulation condition. In order to output a fire signal based on a fire judgment after going through multiple fire judgment stages depending on the cause of the fire, how many failure signs did not lead to a fire judgment in the middle of the multiple fire judgment stages until then? By obtaining the number of failure predictor occurrences to generate failure predictor information and using it as a basis for judging reliability, even if the fire detector determines that a fire has occurred, the number of failure predictor occurrences is If there are many, there is a high possibility that it is a non-fire alarm, so it is determined that the reliability is lowered, and it is possible to reliably prevent the fire processing due to the non-fire alarm.

(故障予兆情報の詳細2による効果)
また、第1又は第2発明の火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む故障予兆情報を少なくとも一時的に保持し、防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、火災検知器が試験光源を駆動した際の受光信号に基づき例えばセンサ部と増幅処理部を備えた火災検知部の故障が判断されるには、それまでの間に、受光素子の劣化等により受光信号のレベルが正常範囲を外れたが例えば故障閾値には達せずに故障判断条件を充足しない故障予兆を何回か発生じており、この火災検知器の試験における故障予兆の発生回数を信頼性を判断するための根拠とすることで、火災検知器が受光素子の故障を判断しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of failure predictor information details 2)
Further, the fire detector of the first or second invention is tested to determine failure of the fire detection part based on the received light signal when the test light source is driven. When it is out of the range but does not satisfy a predetermined failure judgment condition, it is judged as a failure sign, and at least temporarily holding failure sign information including information indicating the number of times the failure sign has occurred. When the fire detector drives the test light source, it is determined that the reliability has decreased when the number of occurrences of failure signs extracted from the failure prediction information obtained from the fire detector satisfies a predetermined reliability judgment accumulation condition. For example, in order to determine the failure of a fire detection unit comprising a sensor unit and an amplification processing unit based on the received light signal, the level of the received light signal deviated from the normal range due to deterioration of the light receiving element, etc. until then. For example, failure signs that do not satisfy the failure judgment conditions without reaching the failure threshold have occurred several times. , even if the fire detector does not judge the failure of the light-receiving element, if there are many failure signs, it is highly likely that the fire alarm is not a fire alarm, so it is judged that the reliability is low, and the fire is handled by the non-fire alarm. can be reliably prevented.

(故障予兆情報の詳細3による効果)
また、第1又は第2発明の火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、第1の故障予兆の発生回数と第2の故障予兆の発生回数を示す情報を故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、前述した信頼性情報1の効果と信頼性情報2の効果を併せた効果が得られる。
(Effect of failure predictor information details 3)
In addition, the fire detector of the first or second invention judges a fire by a plurality of fire judgment stages, and although a fire is judged in at least one fire judgment stage among the plurality of fire judgment stages, the remaining fire judgment stages If a fire is not determined in any of the fire determination stages, it is determined to be a first failure sign, the number of occurrences of the first failure sign is obtained, and a fire is detected based on the received light signal when the test light source is driven. A test for judging the failure of the detection unit is performed, and when the level of the received light signal by the test is out of a predetermined normal range but does not satisfy a predetermined failure judgment condition, it is judged as a second failure sign. Obtaining the number of occurrences of the second failure sign, at least temporarily holding information indicating the number of occurrences of the first failure sign and the number of occurrences of the second failure sign as failure sign information,
In the disaster prevention receiver, either one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition. Since it is determined that the reliability is lowered when the reliability information 1 and the reliability information 2 are combined, the effect of the reliability information 1 and the effect of the reliability information 2 can be obtained.

(故障予兆処理の効果)
また、火災検知器は、故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに故障予兆を確定して所定の故障予兆処理を行うようにしたため、火災検知器が非火災報となる火災信号を送信する前に、故障予兆が確定して火災信号の送信が禁止されることで、非火災報の発生を未然に防止可能とする。
(Effect of failure prediction processing)
In addition, when the number of occurrences of a failure sign satisfies a predetermined failure sign judgment accumulation condition, the fire detector determines the failure sign and executes the prescribed failure sign processing. By determining a sign of failure and prohibiting the transmission of the fire signal before transmitting the other fire signal, it is possible to prevent the occurrence of non-fire alarms.

また、火災検知器は、故障予兆処理として、防災受信盤に故障予兆信号を送信すると共に、火災信号の送信を停止し、防災受信盤は、火災検知器から故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させるようにしたため、遠方監視制御設備側の担当者はトンネルに設置した火災検知器の状況を把握して点検修理等の適切な対応が可能となる。 In addition, the fire detector transmits a failure precursor signal to the disaster prevention receiver as failure precursor processing, and stops transmission of the fire signal. When the disaster prevention receiver receives the failure precursor signal from the fire detector, Since the remote monitoring and control equipment is notified by sending a failure sign transfer signal, the person in charge of the remote monitoring and control equipment can grasp the status of the fire detector installed in the tunnel and take appropriate measures such as inspection and repair. It becomes possible.

(隣接火災検知器の感度アップの効果)
また、防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更するようにしたため、実火災であった場合、隣接した火災検知器が火災判断蓄積条件の緩和により高感度に変更されて迅速に火災信号を送信し、第1報目の火災信号を送信して信頼性低下と判断された火災検知器の復旧後の火災信号の受信を待って火災処理を行うことができる。
(Effect of increasing the sensitivity of adjacent fire detectors)
In addition, when it is determined that the reliability of a fire detector that has received a fire signal has decreased, the disaster prevention receiver panel is configured to detect at least one of the fire detector and an adjacent fire detector that is redundantly monitoring the detection area of the fire detector. Since the fire judgment accumulation condition for one unit is changed to a predetermined third fire judgment accumulation condition that relaxes the first fire judgment accumulation condition, in the event of an actual fire, the adjacent fire detector judges the fire. By relaxing the accumulation conditions, the sensitivity is changed to high, and the fire signal is sent quickly. After sending the first fire signal, wait for the fire signal to be received after the fire detector, which was judged to be unreliable, is restored. fire treatment can be carried out.

(遠方監視制御設備への非火災移報送信による効果)
また、防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させるようにしたため、複数のトンネルを監視している遠方監視制御設備側の担当者は、非火災報は出力されなかったが、火災以外の要因により火災検知器の火災判定動作が所定頻度で行われたこと(火災判定の結果、火災候補となったこと)を知ることができ、この傾向から非火災報に発展し得る状態を認識することで、トンネル側の火災検知器による火災の監視状況を適切に把握して、トンネルの運用管理に利用可能とする。
(Effect of non-fire report transmission to remote monitoring and control equipment)
In addition, after the disaster prevention receiver panel determines that the reliability of the fire detector that received the fire signal has decreased, the fire signal is received from the fire detector and the adjacent fire detector that redundantly monitors the detection area of the fire detector. If it is not received, a non-fire alarm transfer signal is sent to the remote monitoring and control equipment to inform them. However, it is possible to know that the fire judgment operation of the fire detector was performed at a predetermined frequency due to factors other than fire (fire judgment result, fire candidate). By recognizing the conditions that can develop, it is possible to appropriately grasp the fire monitoring status by the fire detector on the tunnel side and use it for the operation management of the tunnel.

(第3発明:火災検知器1の効果)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、所定の故障予兆の発生回数を少なくとも一時的に保持しており、故障予兆の発生回数に基づき自己の信頼性低下と判断した場合に防災受信盤に信頼性低下信号を送信するようにしたため、信頼性低下が判断された火災検知器の誤作動による非火災報の発生を未然に防止できる。
(Third Invention: Effect of Fire Detector 1)
Another aspect of the present invention is a fire detector that monitors a fire in a detection area by being connected to a disaster prevention receiving panel, at least temporarily holding a predetermined number of occurrences of signs of failure, and detecting occurrence of signs of failure. When it determines that its own reliability has decreased based on the number of times, it sends a reliability decrease signal to the disaster prevention receiver panel, so it prevents the occurrence of non-fire alarms due to the malfunction of fire detectors that are determined to have decreased reliability. can be prevented.

(第4発明:火災検知器2の効果)
また、本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、故障予兆の発生回数が所定の信頼性判断蓄積定条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、火災検知器による複数の火災判定段階の途中で火災と判定されずに火災と判断するに至らなかった故障予兆の発生回数を求めて信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fourth Invention: Effect of Fire Detector 2)
In another aspect of the present invention, in a fire detector that monitors a fire in a detection area by connecting to a disaster prevention receiving panel, a fire is determined by a plurality of fire determination stages, and a plurality of fire determination stages are performed. If a fire is determined in at least one of the fire determination stages, but is not determined as a fire in any of the remaining fire determination stages, it is determined as a failure sign and the number of occurrences of the failure sign is held at least temporarily. However, when the number of occurrences of failure signs satisfies a predetermined reliability judgment accumulation constant condition, it is judged that the reliability has decreased and a reliability deterioration signal is sent to the disaster prevention receiver panel. The number of occurrences of failure signs that were not judged to be a fire during the fire judgment stage was obtained and used as the basis for judging reliability. Even so, when the number of failure sign occurrences is large, the possibility of non-fire alarms is high, so it is determined that the reliability is lowered, and it is possible to reliably prevent fire processing due to non-fire alarms.

(第5発明:火災検知器3の効果)
また、本発明の他の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、火災検知器の試験による受光信号のレベルが、所定の正常範囲を外れたが例えば所定の故障閾値には至らずに故障判断条件を充足しなかった場合に故障予兆と判定し、故障予兆の発生回数を求めて信頼性を判断するための根拠とし、火災検知器が受光素子の故障を検知しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fifth Invention: Effect of Fire Detector 3)
Another aspect of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention receiving panel, wherein failure of the fire detection unit is determined based on a received light signal when a test light source is driven. A test is conducted, and if the level of the light receiving signal obtained by the test is out of the predetermined normal range but does not satisfy the predetermined failure judgment conditions, it is judged as a failure sign and the number of occurrences of the failure sign is temporarily reduced. , and when the number of occurrences of failure signs satisfies a predetermined reliability judgment accumulation condition, it is judged that the reliability of the fire detector has deteriorated and a reliability deterioration signal is sent to the disaster prevention receiver panel. When the level of the received light signal in the test is out of a predetermined normal range but does not reach a predetermined failure threshold value and does not satisfy the failure judgment conditions, it is determined as a failure sign, and the number of occurrences of the failure sign is obtained. As a basis for judging reliability, even if the fire detector does not detect a failure in the light-receiving element, if the number of failure sign occurrences is high, there is a high possibility that it is not a fire alarm. To make it possible to make a judgment and surely prevent fire processing by a non-fire alarm.

(第6発明:火災検知器4の効果)
また、本発明の他の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断すると共に当該第1の故障予兆の発生回数を少なくとも一時的に保持し、且つ試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断すると共に当該第2の故障予兆の発生回数を求めて少なくとも一時的に保持し、第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、前述した第4発明の火災検知器2と第5発明の火災検知器3の効果を併せた効果が得られる。
(Sixth Invention: Effect of Fire Detector 4)
Another aspect of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention receiving panel, wherein a fire is determined by a plurality of fire determination stages, and a plurality of fire determination stages are performed. When at least one of the fire determination stages among the fire determination stages is determined to be a fire, but any of the remaining fire determination stages is not determined to be a fire, it is determined to be the first failure sign and the number of occurrences of the first failure sign. is held at least temporarily, and a test is conducted to determine the failure of the fire detection unit based on the received light signal when the test light source is driven. If a predetermined failure judgment condition is not satisfied, it is judged as a second failure sign, the number of occurrences of the second failure sign is obtained and held at least temporarily, and the number of occurrences of the first failure sign and the first failure sign are determined. 2. When either one or both of the number of occurrences of the failure sign of 2 satisfies the predetermined reliability judgment accumulation condition, it is judged that the reliability is lowered and a reliability deterioration signal is transmitted to the disaster prevention receiver panel. , the combined effects of the fire detector 2 of the fourth invention and the fire detector 3 of the fifth invention can be obtained.

(火災信号の送信停止の効果)
また、第3発明乃至第6発明の火災検知器に於いて、自己の信頼性低下と判断した場合に、火災信号の送信を停止するようにしたため、信頼性低下と判断された火災検知器からの火災信号の受信による非火災報の発生を未然に防止できる。
(Effect of Stopping Transmission of Fire Signals)
In addition, in the fire detectors of the third to sixth inventions, when it is determined that the reliability of the fire detector is lowered, the transmission of the fire signal is stopped. It is possible to prevent the occurrence of a non-fire alarm due to the reception of a fire signal.

(第7発明:トンネル防災システムの効果)
また、本発明の別の形態は、第4乃至第6発明の何れかの火災検知器を防災受信盤に接続して検知エリアの火災を監視するトンネル防災システムに於いて、防災受信盤は、火災検知器から信頼性低下信号を受信した場合に、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、前述した第1発明と同様の効果が得られる。
(Seventh Invention: Effect of Tunnel Disaster Prevention System)
Further, according to another aspect of the present invention, in a tunnel disaster prevention system in which the fire detector according to any one of the fourth to sixth inventions is connected to a disaster prevention receiving board to monitor fires in the detection area, the disaster prevention receiving board comprises: When a reliability deterioration signal is received from a fire detector, the predetermined first fire determination accumulation condition of the fire detector is changed to a predetermined second fire determination accumulation condition that is stricter than the first fire determination accumulation condition. When a fire signal is received from at least one of the fire detector that has been changed and restored and the fire judgment accumulation condition has been changed and the adjacent fire detector that is redundantly monitoring the detection area of the fire detector, a predetermined Since fire treatment is performed, the same effects as those of the first invention described above can be obtained.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 火災検知器の検知エリアを示した説明図Explanatory diagram showing the detection area of the fire detector 火災検知器の外観を示した説明図Explanatory diagram showing the exterior of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 火災検知器の制御動作を示したフローチャートFlowchart showing the control operation of the fire detector 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver 防災受信盤で火災検知器の信頼性有りが判断された場合の制御動作を示したタイムチャートTime chart showing the control operation when the fire detector is determined to be reliable by the disaster prevention receiver 防災受信盤で火災検知器の信頼性低下と判断された場合の制御動作を示したタイムチャートTime chart showing the control operation when the fire detector is judged to be unreliable by the disaster prevention receiver 火災検知器から故障予兆を受信した場合の防災受信盤の制御動作を示したタイムチャートTime chart showing the control operation of the disaster prevention receiver panel when a failure sign is received from the fire detector 火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図Explanatory diagram showing the peak level of the received light signal and the number of occurrences of signs of failure when the internal test light source was driven by the sensitivity test of the fire detector. 故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートFlowchart showing sensitivity test of fire detector with determination of signs of failure

[トンネル防災システム]
[実施形態の基本的な概念]
図1はトンネル防災システムの概要を示した説明図であり、図2は火災検知器の検知エリアを示した説明図ある。本実施形態によるトンネル防災システムの基本的な概念は、防災受信盤10からの信号系統毎の信号線14a,14bに接続されたトンネル内の火災検知器12は、所定の故障予兆の発生回数に基づく故障予兆情報、例えば故障予兆の発生回数を示す故障予兆情報を少なくとも一時的に保持し、防災受信盤10は、火災検知器12から火災信号を受信したときに、火災検知器12から故障予兆情報を取得して火災検知器12の信頼性を評価して判断し、信頼性有りと判断したときは、火災検知器12を復旧した後に再度火災信号を受信した場合に所定の火災処理を行い、信頼性低下と判断したときは、当該火災検知器12の所定の第1の火災判断蓄積条件(例えば第1の蓄積回数閾値)を、第1の火災判断蓄積条件よりも厳格な第2の火災判断蓄積条件(第1の蓄積回数閾値より多い第2の蓄積回数閾値)に変更して復旧し、火災判断蓄積条件を変更した火災検知器12及び当該火災検知器12の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うというものであり、火災検知器12が受光素子の故障や想定外の非火災要因等により火災信号を送信しても、火災信号を送信した火災検知器12の故障予兆情報から信頼性を評価して信頼性有り又は信頼性低下を判断し、信頼性低下と判断した場合は非火災と見做してトンネルの進入禁止警報等を伴う火災処理を行わず、非火災報によりトンネル通行を止めてしまうことを従来に比べ確実に防止可能とする。
[Tunnel disaster prevention system]
[Basic concept of the embodiment]
FIG. 1 is an explanatory diagram showing the outline of the tunnel disaster prevention system, and FIG. 2 is an explanatory diagram showing the detection area of the fire detector. The basic concept of the tunnel disaster prevention system according to this embodiment is that the fire detector 12 in the tunnel connected to the signal lines 14a and 14b for each signal system from the disaster prevention receiver 10 is activated when a predetermined failure sign occurs. The disaster prevention receiver board 10 at least temporarily retains failure predictor information based on the data, for example, failure predictor information indicating the number of occurrences of failure predictors. Information is acquired and the reliability of the fire detector 12 is evaluated and determined. When it is determined that the reliability is present, predetermined fire processing is performed when the fire signal is received again after restoring the fire detector 12. , when it is determined that the reliability is lowered, the predetermined first fire determination accumulation condition (for example, the first accumulation number threshold) of the fire detector 12 is set to a second fire judgment accumulation condition that is stricter than the first fire judgment accumulation condition. Redundant monitoring of the fire detector 12 whose fire judgment accumulation condition has been changed and the detection area of the fire detector 12 is restored by changing to the fire judgment accumulation condition (second accumulation count threshold greater than the first accumulation count threshold). When a fire signal is received from at least one of the adjacent fire detectors connected to the fire detector 12, predetermined fire processing is performed. Even if the signal is transmitted, the reliability is evaluated from the failure sign information of the fire detector 12 that transmitted the fire signal, and it is judged that the reliability is present or the reliability is lowered. To more reliably prevent tunnel traffic from being stopped by a non-fire alarm without performing fire treatment accompanying a tunnel entry prohibition alarm or the like.

また、火災検知器12の故障予兆情報から信頼性を評価して信頼性低下しを判断したことで非火災報と見做しても、実火災であった場合には、第1報目の火災信号を送信した火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更することで非火災報を出しにくい状態とし、併せて、火災判断蓄積条件を変更した火災検知器と、当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信することで、火災と判断してトンネルの進入禁止警報を含む火災処理を行い、確実に火災を検知して対処することができる。 In addition, even if the reliability is evaluated from the failure sign information of the fire detector 12 and it is determined that the reliability has decreased, even if it is regarded as a non-fire report, if it is a real fire, the first report By changing the first fire judgment accumulation condition of the fire detector that sent the fire signal to a strict second fire judgment accumulation condition, it is made difficult to issue a non-fire alarm, and the fire judgment accumulation condition is changed at the same time. By receiving a fire signal from the fire detector and at least one of the adjacent fire detectors that redundantly monitor the detection area of the fire detector, it is determined that there is a fire and the fire is dealt with, including a tunnel entry prohibition warning. to ensure that fires are detected and dealt with.

また、火災検知器の信頼性の判断を防災受信盤10で行うことで、火災検知器12側の負担を低減する、というものである。 In addition, the load on the fire detector 12 side is reduced by having the disaster prevention receiver panel 10 determine the reliability of the fire detector.

更に、温度、湿度、電気的ノイズ等の環境要因は、トンネルごと、信号系統ごと又は区間ごとに特有である場合が考えられ、これを考慮して、トンネル(チューブ)単位、信号系統単位又は区間単位に設置された火災検知器12の故障予兆の発生回数を示す故障予兆情報からトンネルごと、信号系統ごと、区間ごとの火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断できる。 Furthermore, environmental factors such as temperature, humidity, and electrical noise may be unique to each tunnel, signal system, or section. The reliability of the fire detectors 12 for each tunnel, each signal system, and each section is evaluated based on failure sign information indicating the number of occurrences of failure signs of the fire detectors 12 installed in units to determine whether reliability is present or not. can be judged.

なお、本実施形態における故障予兆とは、将来に起こるべき故障を予測させる現象を意味し、故障のきざし、故障の前兆、故障の前ぶれ等ということもできる。 In this embodiment, a sign of failure means a phenomenon that predicts a failure that should occur in the future, and can also be referred to as a sign of failure, a sign of failure, a premonition of failure, or the like.

また、図1の例では信号系統とトンネルは一対一に対応しているが、例えば1つのトンネルに複数の信号系統を設けることができる。或いは、複数のトンネルを1つの信号系統とすることもでき、信号系統とトンネルとの関係は任意である。 In the example of FIG. 1, the signal system and the tunnel correspond one-to-one, but for example, one tunnel can be provided with a plurality of signal systems. Alternatively, a plurality of tunnels can be one signal system, and the relationship between the signal system and the tunnels is arbitrary.

また、以下の説明において、図1乃至図9の説明は第1発明のトンネル防災システム及び第3及び第4発明の火災検知器に対応し、図10乃至図11の説明が第2及び第7発明のトンネル防災システムと第5及び第6発明の火災検知器に対応している。なお、第3発明乃至第6発明の火災検知器は、1つの信号系統に1台のみが接続されることを妨げない。 1 to 9 correspond to the tunnel disaster prevention system of the first invention and the fire detectors of the third and fourth inventions, and FIGS. 10 to 11 correspond to the second and seventh inventions. It corresponds to the tunnel disaster prevention system of the invention and the fire detector of the fifth and sixth inventions. It should be noted that the fire detectors of the third to sixth inventions are not prevented from being connected to one signal system.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。
[Overview of Tunnel Disaster Prevention System]
As shown in FIG. 1, an up-line tunnel 1a and a down-line tunnel 1b are constructed as tunnels of a motorway. Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the walls in the longitudinal direction of the tunnels.

火災検知器12は右眼、左眼の2組の火災検知部を備えることで、図2に示すように、トンネル長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12と検知エリア15が例えば右眼13Rと左眼13Lで相互補完的に重複するように連続的に配置され、検知エリア15内で起きた火災による炎からの赤外線を観測して火災を監視して検知する。 The fire detector 12 is provided with two sets of fire detection units for the right eye and the left eye, and as shown in FIG. , the fire detector 12 and the detection area 15 arranged adjacently are arranged continuously so as to overlap each other in a mutually complementary manner, for example, the right eye 13R and the left eye 13L, and a fire that has occurred in the detection area 15 Monitor and detect fires by observing infrared rays from flames.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧設備などが設置されるが、図示を省略している。 In addition, in the inbound line tunnel 1a and the outbound line tunnel 1b, as emergency facilities, a manual reporting device and an emergency telephone are provided for fire reporting, and a fire hydrant device is provided for extinguishing the fire and preventing the spread of the fire. In order to protect the inside of the tunnel frame and ducts from fire, a water spraying system for spraying fire extinguishing water from a water spraying head is installed, but illustration is omitted.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源信号線および信号線14a,14bを引き出してそれぞれに対し複数の火災検知器12が接続されており、火災検知器12には固有のアドレスが設定されている。以下の説明では、信号線14a,14bについて、区別する必要がない場合は信号線14という場合がある。 Power supply signal lines and signal lines 14a and 14b are led out from the disaster prevention receiving panel 10 to the inbound tunnel 1a and the outbound tunnel 1b, and a plurality of fire detectors 12 are connected to each of them. A unique address is set. In the following description, the signal lines 14a and 14b may be referred to as the signal line 14 when there is no need to distinguish between them.

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14を介して所謂R型伝送方式で通信する。 In addition, for the disaster prevention receiving panel 10, fire pump equipment 16, duct cooling pump equipment 18, IG slave station equipment 20, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 The fire detector 12 and the disaster prevention receiving panel 10 communicate with each other via a signal line 14 by a so-called R-type transmission system.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。 Here, the IG slave station equipment 20 is a communication equipment that connects the disaster prevention receiving panel 10 and a remote monitoring control equipment 32, which is an externally provided upper equipment, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転によってトンネル長手方向に換気流を発生する設備である。 The ventilation equipment 22 is equipment that generates a ventilation flow in the longitudinal direction of the tunnel by operating a jet fan installed on the ceiling side of the tunnel.

警報表示板設備24は、利用者に対して、火災に伴う進入禁止警報等の情報を電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The warning display board facility 24 is a facility for notifying the user of information such as an entry prohibition warning associated with a fire by displaying it on an electric display board. The radio rebroadcast facility 26 is a facility for enabling drivers and others in tunnels to receive information from road administrators. The television monitoring equipment 28 is equipment for checking the scale and position of the fire, operating the water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance. The lighting equipment 30 is equipment for driving and managing the lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体44の上部に設けられたセンサ収納部46に左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に対応して、センサ部が内蔵されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。
As shown in FIG. 3, the fire detector 12 is provided with two sets of translucent windows 50R and 50L divided into left and right in a sensor housing portion 46 provided in the upper part of the housing 44. The translucent windows 50R , 50L has a built-in sensor unit. Two sets of translucent windows for test light sources, each containing an external test light source used for stain testing of the translucent windows 50R and 50L, are located near the translucent windows 50R and 50L and at positions where the sensor section can be seen. 52R and 52L are provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be called the right-eye translucent window 50R, and the translucent window 50L may be called the left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部76、感度試験に用いられる内部試験光源78R,80R,82Rと内部試験光源78L,80L,82L、汚れ試験に用いられる外部試験光源84R,84Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Schematic configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control section 54, a transmission section 56, a power supply section 58, two pairs of left and right fire detection sections 60R and 60L, a test light emission driving section 76, and a sensitivity test. There are provided internal test light sources 78R, 80R, 82R and internal test light sources 78L, 80L, 82L and external test light sources 84R, 84L used for soil testing. In the following description, the fire detection section 60R may be referred to as the right eye fire detection section 60R, and the fire detection section 60L may be referred to as the left eye fire detection section 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is a function realized by executing a program, for example, and a computer circuit or the like having a CPU, a memory, various input/output ports, etc. is used as hardware.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10に接続され、各種信号がR型伝送により送受信される。 The transmission unit 56 is connected to the disaster prevention receiving panel 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R-type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部76に対し所定の電源電圧が供給されている。 The power supply unit 58 receives power from the disaster prevention receiving panel 10 shown in FIG. A predetermined power supply voltage is supplied to the detection units 60R and 60L and the test light emission driving unit .

試験発光駆動部76には、感度試験に使用する内部試験光源78R,80R,82R78L,80L,82Lが接続され、また、汚れ試験に使用する外部試験光源84R,84Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。
Internal test light sources 78R, 80R, 82R , 78L, 80L, and 82L used for sensitivity tests and external test light sources 84R and 84L used for contamination tests are connected to the test light emission drive unit 76. A krypton lamp is provided as an element.

(火災検知部)
火災検知部60R,60Lは、センサ部64,68,72と増幅処理部66,70,74を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68,72の前面にはセンサ収納部46に設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーがセンサ部64,68,72に入射される。
(Fire detector)
The fire detection units 60R and 60L include sensor units 64, 68 and 72 and amplification processing units 66, 70 and 74, respectively. Taking the right-eye fire detection unit 60R as an example, the right-eye translucent window 50R provided in the sensor storage unit 46 is arranged in front of the sensor units 64, 68, and 72. Infrared energy from an external sensing area is incident on sensor portions 64, 68, 72 via 50R.

右眼火災検知部60Rは、例えば3波長式の炎検知により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCOの共鳴放射帯である4.5μm帯の赤外線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該赤外線を受光して光電変換したうえで、増幅処理部66により増幅等所定の処理を施して受光エネルギー量に対応する炎受光信号E1Rとして検知器制御部54へ出力する。 The right eye fire detection unit 60R monitors fire by, for example, three-wavelength flame detection. The sensor unit 64 uses an optical wavelength bandpass filter to selectively transmit infrared rays in the 4.5 μm band, which is the resonance radiation band of CO 2 peculiar to flames, out of the infrared energy incident through the right-eye translucent window 50R. After the infrared rays are received by the light receiving sensor and photoelectrically converted, they are subjected to predetermined processing such as amplification by the amplification processing unit 66 to generate a flame light receiving signal E1R corresponding to the amount of received energy. Output to

センサ部68は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第1の非炎波長帯域となる、例えば5.0μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部70により増幅等所定の処理を施して受光エネルギー量に対応する第1の非炎受光信号E2Rとして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits infrared energy in, for example, the 5.0 μm band, which is the first non-flame wavelength band, from the infrared energy incident through the right-eye translucent window 50R by an optical wavelength bandpass filter. The light is received by the light receiving sensor and photoelectrically converted, and then subjected to predetermined processing such as amplification by the amplification processing unit 70 to obtain a first non-flame light receiving signal E2R corresponding to the amount of received light energy to the detector control unit. 54.

センサ部72は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第2の非炎波長帯域となる、例えば2.3μmの赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部74により増幅等所定の処理を施して受光エネルギー量に対応する第2の非炎受光信号E3Rとして検知器制御部54へ出力する。 The sensor unit 72 selectively transmits infrared energy of, for example, 2.3 μm, which is the second non-flame wavelength band, from the infrared energy incident through the right-eye translucent window 50R through an optical wavelength bandpass filter ( After the light is received by the light receiving sensor and photoelectrically converted, the light is subjected to predetermined processing such as amplification by the amplification processing unit 74 to generate a second non-flame light receiving signal E3R corresponding to the amount of received light energy. Output to

増幅処理部66,70,74には、プリアンプ、炎のゆらぎ周波数を含む所定の周波数帯域を選択通過させる周波数フィルタ及びメインアンプ等が設けられている。 The amplification processing units 66, 70, and 74 are provided with a preamplifier, a frequency filter for selectively passing a predetermined frequency band including the flame fluctuation frequency, a main amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部86の機能が設けられている。火災判断部86は、炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3Rに基づき、複数の火災判定段階により火災を判断している。火災判断部86は例えば次の3段階の火災判定を行う。
(fire judgment)
The detector control section 54 is provided with a function of a fire determination section 86 as a function realized by executing a program. The fire judgment unit 86 judges a fire through a plurality of fire judgment stages based on the flame reception signal E1R, the first non-flame reception signal E2R, and the second non-flame reception signal E3R. The fire determination unit 86 performs, for example, the following three stages of fire determination.

火災判断部86は、炎受光信号E1が所定の閾値以上又はこれを上回った場合、第1の非炎受光信号E2との相対比(E1R/E2R)を算出し、相対比(E1R/E2R)が所定の閾値を超えた場合に、第1段階の火災判定条件を充足したとして、火災(火災候補)と判定し、次の第2段階の火災判定を行う。
When the flame reception signal E1 R exceeds or exceeds a predetermined threshold value, the fire determination unit 86 calculates the relative ratio (E1R/E2R) to the first non-flame reception signal E2 R , and calculates the relative ratio (E1R/ E2R) exceeds a predetermined threshold value, it is determined that the fire determination condition of the first stage is satisfied, a fire (fire candidate) is determined, and the fire determination of the next second stage is performed.

火災判断部86による第2段階の火災判定は、炎受光信号E1Rについて、第2の非炎受光信号E3Rとの相対比(E1R/E3R)を算出し、相対比(E1R/E3R)が所定の閾値を超えた場合に、第2段階の火災判定条件を充足したとして火災と判定する。 In the second-stage fire determination by the fire determination unit 86, the relative ratio (E1R/E3R) between the flame received signal E1R and the second non-flame received signal E3R is calculated, and the relative ratio (E1R/E3R) is determined to be a predetermined value. When the threshold value is exceeded, it is determined that a fire has occurred, assuming that the second-stage fire determination condition is satisfied.

続いて、火災判断部86は、次の第3段階の火災判定を行う。火災判断部86による第3段階の火災判定条件は、炎受光信号E1Rを高速フーリエ変換(FFT)して結果を分析し,例えば4Hz以下の低周波側成分の相対強度と4Hz超8Hz以下の高周波側成分の相対強度の相対比を算出し、この相対化が所定の閾値以上又はこれを上回った場合に、第3段階の火災判定条件を充足したとして火災と判定し、これにより第1~第3の火災判定段階の全てにおいて火災と判定されたことになり、全体として一旦火災と判断する。 Subsequently, the fire determination unit 86 performs the next third stage of fire determination. The fire judgment condition of the third stage by the fire judging section 86 is to perform a fast Fourier transform (FFT) on the received flame signal E1R and analyze the result. Calculate the relative ratio of the relative intensities of the side components, and when this relativization exceeds or exceeds a predetermined threshold value, it is determined that a fire has occurred, assuming that the fire determination conditions of the third stage are satisfied. It is judged as a fire in all of the fire judgment stages of 3, and it is once judged as a fire as a whole.

更に、第1乃至第3段階の火災判定条件が所定回数連続して充足された場合に、所定の火災判断蓄積条件を満足したとして火災を断定し、火災信号を防災受信盤10に送信する制御を行う。左眼火災検知部60Lにおいても同様に行う。 Furthermore, when the fire determination conditions of the first to third stages are satisfied continuously for a predetermined number of times, it is judged that the predetermined fire determination storage condition is satisfied, and a fire signal is sent to the disaster prevention receiving panel 10. I do. The left eye fire detection section 60L performs similarly.

なお、火災判断部86による複数の火災判定段階による火災判断は、上記の火災判断に限定されず、更に、1又は複数の火災判定段階を加えても良いし、例えば上記3段階のうち何れかを省略して2段階としても良い。或いは例えば蓄積判定段階までを含む4段階としても良い。 Note that the fire determination by the multiple fire determination stages by the fire determination unit 86 is not limited to the fire determination described above, and one or more fire determination stages may be added. may be omitted and two stages may be used. Alternatively, for example, four stages including up to the accumulation determination stage may be used.

(故障予兆の判定)
火災判断部86は、前述した3段階の火災判定段階の途中で火災が判定されずに火災と判断するに至らなかった場合に故障予兆の発生と判断し、故障予兆の発生回数Nをカウンタにより計数する制御を行う。
(Determination of signs of failure)
The fire judging section 86 judges that a failure sign has occurred when a fire is not judged to be a fire in the middle of the three stages of fire judgment stages described above, and counts the number of occurrences N of failure signs with a counter. Control to count.

また、火災判断部86は、故障予兆の発生回数Nが所定の故障予兆判断蓄積条件を充足したとき、例えば、故障予兆の発生回数Nが所定閾値Nthに達したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。なお、火災判断部86は、更に、故障予兆の確定回数が所定数に達したときに所定の故障予兆処理を行うようにしても良い。 Further, the fire judgment unit 86 determines that a failure sign occurs when the number N of failure sign occurrences satisfies a predetermined failure sign judgment accumulation condition, for example, when the number N of failure sign occurrences reaches a predetermined threshold value Nth. ), a failure predictor signal is transmitted to the disaster prevention receiving panel 10, and then a predetermined failure predictor process is performed. The fire determination unit 86 may further perform a predetermined failure predictor process when the number of failure predictor determinations reaches a predetermined number.

火災判断部86による所定の故障予兆処理は、例えば火災信号の送信を停止する処理、火災判断の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする等の処理とする。火災信号の送信を停止する故障予兆処理は、故障予兆を判定した後に火災を判断しても故障による誤った火災判断である可能性が高いことから、火災信号の送信を停止して、非火災報の発生を抑止させる、というものである。なお、火災信号の送信を停止する処理は行わないようにすることもできる。 The predetermined failure sign processing by the fire determination unit 86 is, for example, a process of stopping the transmission of fire signals, a process of increasing the fire determination accumulation count threshold to make the fire determination accumulation condition stricter, or the like. In the failure sign processing that stops the transmission of the fire signal, even if the fire is judged after the judgment of the failure sign, there is a high possibility that the fire judgment is erroneous due to the failure. It is intended to suppress the generation of information. Note that it is also possible not to perform the process of stopping the transmission of the fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す故障予兆情報を生成して送信する制御を行い、防災受信盤10は取得した故障予兆情報から抽出された故障予兆の発生回数Nに基づいて火災検知器12の信頼性を評価し、信頼性有り、信頼性低下を判断するために用いられる。なお、信頼性低下については、その度合により複数段階に分け、例えば信頼性低下状態と信頼性が無い状態を区別できるようにしても良い。 In addition, when the fire determination unit 86 receives an internal state request command signal from the disaster prevention receiver 10, the fire determination unit 86 performs control to generate and transmit failure predictor information indicating the number of occurrences N of failure predictors obtained at that time, The disaster prevention receiving panel 10 is used to evaluate the reliability of the fire detector 12 based on the number of occurrences N of failure predictors extracted from the obtained failure predictor information, and to determine whether the fire detector 12 is reliable or not. It should be noted that the degree of reliability deterioration may be divided into a plurality of stages, so that, for example, a reliability deterioration state and an unreliability state may be distinguished.

なお、カウンタにより計数している故障予兆の発生回数Nは、所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。ただし、リセット前の故障予兆の発生回数Nは、故障予兆情報として記憶するようにしても良い。 The number N of occurrences of failure signs counted by the counter is reset every predetermined period, or reset when a predetermined period elapses after the failure signs are counted. However, the number N of occurrences of failure predictors before resetting may be stored as failure predictor information.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部88の機能が設けられている。感度試験部88は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。なお、内部試験光源78R,80R,82Rと内部試験光源78L,80L,82Lは、それぞれ1つの光源で共用しても良い。
(Sensitivity test)
The detector control section 54 is provided with the function of the sensitivity test section 88 as a function realized by executing the program. The sensitivity test section 88 operates when it receives a test instruction signal designating its own address from the disaster prevention receiver board 10 via the transmission section 56, and instructs the test light emission driving section 76 to , 82R, 78L, 80L, and 82L are sequentially driven to emit light, and the sensitivity test of the fire detection units 60R and 60L is performed. The internal test light sources 78R, 80R, 82R and the internal test light sources 78L, 80L, 82L may share one light source.

例えば右眼火災検知部60Rにおけるセンサ部64と増幅処理部66の回路系統を例にとると、試験発光駆動部76は内部試験光源78Rを発光駆動することにより、火災炎に相当する炎疑似光(炎を模擬した赤外線光)をセンサ部64に入射させる。 For example, taking the circuit system of the sensor unit 64 and the amplification processing unit 66 in the right eye fire detection unit 60R, the test light emission driving unit 76 drives the internal test light source 78R to emit light, thereby generating a flame pseudo light corresponding to a fire flame. (Infrared light simulating flame) is made incident on the sensor section 64 .

センサ部64と増幅処理部66の回路ブロックについては、工場出荷時の初期感度試験時の基準受光値がメモリに記憶されており、システム立上げ時の感度試験で得られる検出受光値は基準受光値に略一致しており、検出受光値を基準受光値で割った検出感度係数は1となっている。運用期間が経過していくと、検出受光値は徐々に低下し、検出感度係数は0.9,0.8,0.7・・・というように低下していく。 As for the circuit blocks of the sensor unit 64 and the amplification processing unit 66, the reference received light value at the time of the initial sensitivity test at the time of shipment from the factory is stored in the memory, and the detected received light value obtained in the sensitivity test at the time of system start-up is the reference received light value. , and the detection sensitivity coefficient obtained by dividing the detected light reception value by the reference light reception value is 1. As the operating period elapses, the detected received light value gradually decreases, and the detection sensitivity coefficient decreases to 0.9, 0.8, 0.7, and so on.

このように検出感度係数が1以下に低下した場合、感度試験部88は検出感度係数の逆数となる補正係数を求めてメモリに記憶させ、その後の運用状態で検出される受光値に補正係数を乗算して感度補正を行い、火災判断部86は感度補正された受光値により火災を判断する。 When the detection sensitivity coefficient drops below 1 in this manner, the sensitivity test unit 88 obtains a correction coefficient that is the reciprocal of the detection sensitivity coefficient, stores the correction coefficient in the memory, and applies the correction coefficient to the received light value detected in the subsequent operating state. Sensitivity correction is performed by multiplication, and the fire judgment unit 86 judges a fire based on the sensitivity-corrected received light value.

また、感度試験部88には、感度補正の限界となる補正係数に対応した感度補正限界閾値、例えば感度補正限界閾値0.5が予め設定されており、感度試験で求められた感度係数が感度補正限界閾値以下又は感度補正限界閾値を下回った場合にセンサ部64の感度異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に感度異常を示す情報を設定して防災受信盤10へ感度異常信号を送信させる制御を行う。 In the sensitivity test unit 88, a sensitivity correction limit threshold value corresponding to a correction coefficient that is the limit of sensitivity correction, for example, a sensitivity correction limit threshold value of 0.5 is set in advance. If it is below the correction limit threshold value or below the sensitivity correction limit threshold value, it is determined that the sensor unit 64 has an abnormal sensitivity, and the transmission unit 56 is instructed to set information indicating the abnormal sensitivity in the response signal to the calling signal that matches the own address. Then, control is performed to transmit a sensitivity abnormality signal to the disaster prevention receiver panel 10 .

また、感度試験部88には、感度補正限界に達する前の感度異常の予兆を示す感度係数に対応して、例えば感度異常の予兆閾値0.6が予め設定されており、感度試験で求められた検出感度係数が感度異常の予兆閾値以下又は予兆閾値を下回った場合に、近い将来、感度補正ができなくなる可能性が高い感度異常状態の予兆と判定し、伝送部56に指示して感度異常の予兆を示す感度異常予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, in the sensitivity test unit 88, for example, a sensitivity abnormality precursor threshold value of 0.6 is set in advance corresponding to a sensitivity coefficient indicating a precursor of sensitivity abnormality before the sensitivity correction limit is reached. If the detected sensitivity coefficient is equal to or less than the sign threshold of sensitivity abnormality or falls below the sign threshold, it is determined that it is a sign of an abnormal sensitivity state in which there is a high possibility that sensitivity correction will not be possible in the near future, and the transmission unit 56 is instructed to detect the sensitivity abnormality. A sensitivity abnormality sign signal indicating a sign of is transmitted to the disaster prevention receiving panel 10 to be notified.

なお、感度試験部88で感度異常の予兆が判定された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the sensitivity test unit 88 detects a sign of sensitivity abnormality, it is regarded as one of the signs of failure, and the counter of the fire judgment unit 86 performs a counting operation to increase the number of occurrences N of signs of failure. You can do it.

また、運用期間の経過に伴い検出感度係数が1.1,1.2,1.3…と増加する場合も同様にして補正し、限界に達すると異常とする。
Also, when the detection sensitivity coefficient increases to 1.1, 1.2, 1.3, .

センサ部68と増幅処理部70及びセンサ部72と増幅処理部74の回路系統も同様に感度試験が行われる。また、左眼火災検知部60Lについても、試験発光駆動部76により内部試験光源78L,80L,82Lを発光駆動することにより、同様にして感度試験が行われる。 A sensitivity test is similarly performed on the circuit systems of the sensor section 68 and the amplification processing section 70 and the sensor section 72 and the amplification processing section 74 . Also, the sensitivity test of the left eye fire detection unit 60L is similarly performed by driving the internal test light sources 78L, 80L, and 82L to emit light by the test light emission driving unit 76. FIG.

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部90の機能が設けられている。汚れ試験部90は、感度試験と同様に、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、外部試験光源84R,84Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(dirt test)
The detector control section 54 is provided with the function of the contamination test section 90 as a function realized by executing the program. Similarly to the sensitivity test, the contamination test section 90 operates when it receives a test instruction signal designating its own address from the disaster prevention receiver 10 via the transmission section 56, and instructs the test light emission drive section 76 to The external test light sources 84R, 84L are sequentially driven to emit light, and the translucent windows 50R, 50L are tested for contamination.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部76は外部試験光源84Rを発光駆動することにより、火災炎に相当する炎疑似光を、試験光源用透光性窓52R及び透光性窓50Rを介してセンサ部64に入射させる。試験光源用透光性窓52R及び透光性窓50Rは工場出荷時に汚れはなく、その際に汚れ試験で得られた受光値が基準受光値としてメモリに記憶されており、減光率の演算に利用される。 For example, in the dirt test of the translucent window 50R, the test light emission driving unit 76 drives the external test light source 84R to emit a flame quasi-light corresponding to a fire flame, which is emitted from the test light source translucent window 52R. and enter the sensor section 64 through the translucent window 50R. The light-transmitting window 52R for the test light source and the light-transmitting window 50R were not soiled at the time of shipment from the factory, and the received light value obtained in the soiling test at that time was stored in the memory as the reference received light value, and the light attenuation rate was calculated. used for

システム立上げ時の汚れ試験で得られる検出受光値は基準受光値に略一致しており、基準受光値から検出受光値を減算した値を基準受光値で割った減光率は0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、0.1,0.2,0.3・・・いうように徐々に増加していく。 The detected light reception value obtained in the contamination test at the time of system start-up almost matches the reference light reception value, and the light reduction rate obtained by dividing the value obtained by subtracting the detected light reception value from the reference light reception value by the reference light reception value is 0. there is As the operating period elapses, dirt adheres to the translucent window 50R, and the light attenuation rate gradually increases to 0.1, 0.2, 0.3, and so on.

このように減光率が増加した場合、汚れ試験部90は汚れ試験により減光率を求めると共に、(1-減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部86は汚れ補正された受光値により火災を判断する。 When the light attenuation rate increases in this way, the contamination test unit 90 obtains the light attenuation rate by the contamination test, and also obtains a correction value that is the reciprocal of (1-light attenuation rate) and stores it in the memory for subsequent operation. Dirt correction is performed by dividing the light reception value detected in the state (light reception value corrected by the correction value of the sensitivity test) by the correction value, and the fire judgment unit 86 judges a fire from the dirt-corrected light reception value.

また、汚れ試験部90には、汚れ補正の限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.5が予め設定されており、汚れ試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が不可能となる汚損異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚損異常情報を設定して防災受信盤10へ汚損信号を送信して報知させる制御を行う。
Further, the dirt test unit 90 is preset with a dirt threshold that is a light attenuation rate corresponding to the limit of dirt correction, for example, a dirt threshold of 0.5. Alternatively, when the dirt threshold value is exceeded, it is determined that the stain correction of the translucent window 50R is impossible, and instructs the transmission unit 56 to add the stain abnormality information to the response signal to the call signal that matches the own address. Control is performed to set and transmit a contamination signal to the disaster prevention receiving panel 10 for notification.

また、汚れ試験部90には、汚れ補正が限界に達する予兆段階に対応した減光率となる汚れ予兆閾値、例えば汚れ予兆閾値0.6が予め設定されており、汚れ試験で求められた減光率が汚れ予兆閾値以上又は汚れ予兆閾値を上回った場合に、近い将来、透光性窓50Rの汚れ補正が不可能となる可能性が高い汚損予兆状態と判断し、伝送部56に指示して汚損予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, in the contamination test section 90, a contamination predictive threshold, for example, a contamination predictive threshold of 0.6, which is a light reduction rate corresponding to the predictive stage where the contamination correction reaches the limit, is set in advance. If the light rate is equal to or higher than the contamination sign threshold value or exceeds the contamination sign threshold value, it is determined to be a contamination sign state in which there is a high possibility that contamination correction of the translucent window 50R will become impossible in the near future, and the transmission unit 56 is instructed. control to transmit a contamination sign signal to the disaster prevention receiving panel 10 to notify it.

なお、汚れ試験部90で汚損予兆が判断された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the contamination test unit 90 determines that a sign of contamination is detected, it is regarded as one of the signs of failure, and the counter of the fire judgment unit 86 performs a counting operation to increase the number of occurrences N of signs of failure. Also good.

(火災検知器の制御動作)
図5は火災検知器の制御動作を示したフローチャートであり、図4に示した火災判断部86による制御動作となる。
(Control operation of fire detector)
FIG. 5 is a flow chart showing the control operation of the fire detector, which is the control operation by the fire determination section 86 shown in FIG.

図5に示すように、火災判断部86は、例えば、図4の火災検知部60Rを例にとると、ステップS1で増幅処理部66,70,74から出力された炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3RをAD変換により取込み、ステップS2で炎受光信号E1Rが所定値以上であればステップS3に進み、炎受光信号E1Rと第1の非炎受光信号E2Rの比(E1R/E2R)を算出し、所定値以上の場合は第1段階の火災判定条件を充足したとしてステップS4に進み、ステップS4で炎受光信号E1Rと第2の非炎受光信号E3Rの比(E1R/E3R)を算出し、所定値以上の場合は第2段階の火災判定条件を充足したとしてステップS5に進む。 As shown in FIG. 5, the fire determination unit 86, taking the fire detection unit 60R of FIG. The non-flame light reception signal E2R and the second non-flame light reception signal E3R are fetched by AD conversion, and if the flame light reception signal E1R is equal to or greater than a predetermined value in step S2, the process proceeds to step S3. A ratio (E1R/E2R) of the received light signal E2R is calculated, and if it is equal to or greater than a predetermined value, it is assumed that the first stage fire determination condition is satisfied, and the process proceeds to step S4. A ratio (E1R/E3R) of the signal E3R is calculated, and if it is equal to or greater than a predetermined value, it is determined that the second stage fire determination condition is satisfied, and the process proceeds to step S5.

続いて、火災判断部86はステップS5で炎受光信号E1Rの高速フーリエ変換(FFT演算)を行い、ステップS6で例えば4Hz以下の低周波数側と4Hz超8Hz以下の高周波側の成分の相対強度比が所定値以上であれば第3段階の火災判定条件を充足したとしてステップS7に進み、ステップS1~S6による第1段階から第3段階の火災判定条件を所定の蓄積回数閾値だけ連続して成立したか否か判定する。
Subsequently, in step S5, the fire determination unit 86 performs a fast Fourier transform (FFT operation) of the received flame signal E1R. is equal to or greater than a predetermined value, the third stage fire determination condition is satisfied, and the process proceeds to step S7, and the first to third stage fire determination conditions in steps S1 to S6 are successively satisfied for a predetermined accumulated count threshold. determine whether or not.

続いて、火災判断部86は、ステップS7で所定の火災判断蓄積条件としての蓄積回数閾値を充足するとステップS8に進んで火災と判断し、火災信号を防災受信盤10に送信して火災処理を行わせる。続いて、ステップS9で防災受信盤10からの火災復旧信号(復旧指示信号)の受信を判別するとステップS10で火災検知を初期状態に復旧してステップS1に戻る。 Subsequently, when the fire judgment unit 86 satisfies the accumulated count threshold as a predetermined fire judgment accumulation condition in step S7, the process proceeds to step S8 to judge that there is a fire, and transmits a fire signal to the disaster prevention receiving panel 10 to perform fire processing. let it happen Subsequently, when the reception of the fire recovery signal (restoration instruction signal) from the disaster prevention receiving panel 10 is determined in step S9, the fire detection is recovered to the initial state in step S10, and the process returns to step S1.

一方、火災判断部86は、ステップS3で第1段階の火災判定条件が充足されなかったときは、故障予兆が発生したと判定し、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし(インクリメントし)、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 On the other hand, when the fire judgment condition of the first stage is not satisfied in step S3, the fire judging section 86 judges that a failure sign has occurred, proceeds to step S11, and proceeds to step S11, where the counter N counts the number of occurrences of the failure sign. is set to +1 (incremented), and if the number of occurrences N of failure signs is less than the predetermined threshold number of times Nth in step S12, the processing from step S1 is repeated.

また、火災判断部86は、ステップS3の第1段階の火災判定条件は充足したが、ステップS4の第2段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Further, when the fire judgment condition of the first stage of step S3 is satisfied, but the fire judgment condition of the second stage of step S4 is not satisfied, the fire judging section 86 proceeds to step S11, where a sign of failure has occurred. A counter N that counts the number of times is set to +1, and if the number of occurrences N of failure signs is less than the predetermined threshold number of times Nth in step S12, the process from step S1 is repeated.

更に、火災判断部86は、ステップS3の第1段階及びステップS4の第2段階の火災判定条件は充足したが、ステップS6の第3段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Furthermore, when the fire determination conditions of the first step of step S3 and the second step of step S4 are satisfied, but the fire determination condition of the third step of step S6 is not satisfied, the fire determination unit 86 performs step S11. , the counter N for counting the number of occurrences of failure signs is set to +1, and if the number of occurrences of failure signs N is less than the predetermined threshold number of times Nth in step S12, the processing from step S1 is repeated.

このような故障予兆の発生回数のカウントの繰り返しにより、火災判断部86は、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth以上となる故障予兆判定蓄積条件を満たした場合に故障予兆と判定(確定)し、ステップS13に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS14で所定の故障予兆処理を行う。 By repeating the counting of the number of failure predictor occurrences in this manner, the fire determination unit 86 determines in step S12 that the failure predictor determination accumulation condition that the failure predictor occurrence count N is equal to or greater than the predetermined threshold number of times Nth is satisfied. Then, the process proceeds to step S13 to transmit a failure portent signal to the disaster prevention receiving panel 10 to notify the failure portent signal, and then in step S14, predetermined failure portent processing is performed.

なお、ステップS13において、ステップS12の故障予兆判定蓄積条件に、更に、ステップS12による故障予兆の判断回数が所定の閾値回数に達しか否かの故障予兆判定蓄積条件の充足判定を追加しても良い。 In addition, in step S13, it is possible to add, to the failure sign determination accumulation condition of step S12, a determination of whether or not the failure sign determination accumulation condition in step S12 has reached a predetermined threshold number of times. good.

また、故障予兆処理は、例えば、ステップS7の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする。また、火災検知器12は、ステップS1~S7の監視動作とステップS8の火災信号の送信のうち、少なくとも後者を停止する。 Further, in the failure sign processing, for example, the accumulation count threshold in step S7 is increased to make the fire determination accumulation condition stricter. Moreover, the fire detector 12 stops at least the latter of the monitoring operations in steps S1 to S7 and the transmission of the fire signal in step S8.

なお、ステップS3で相対比が所定値未満のときはステップS1に戻り、また、ステップS7で火災判断蓄積条件を充足しないと判別したときはステップS11に進むようにしても良い。 If the relative ratio is less than the predetermined value in step S3, the process may return to step S1, and if it is determined in step S7 that the fire determination accumulation condition is not satisfied, the process may proceed to step S11.

また、火災判断部86は、制御動作中に、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nに関する(Nを示す)情報を故障予兆情報として応答送信し、防災受信盤10で火災検知器12の信頼性判断に利用させる。 Further, when the fire determination unit 86 receives an internal state request command from the disaster prevention receiver panel 10 during the control operation, the fire determination unit 86 outputs information (indicating N) regarding the number of occurrences of the failure predictor counted by the counter at that time. A response is transmitted as information, and the disaster prevention receiving panel 10 utilizes it to judge the reliability of the fire detector 12. - 特許庁

[防災受信盤]
(防災受信盤の概略)
図6は防災受信盤の機能構成の概略を示したブロック図である。図6に示すように、防災受信盤10は盤制御部34を備え、盤制御部34は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
(Overview of disaster prevention receiver)
FIG. 6 is a block diagram showing an outline of the functional configuration of the disaster prevention receiving panel. As shown in FIG. 6, the disaster prevention receiving board 10 includes a board control section 34. The board control section 34 is a function realized by executing a program, for example. using a computer circuit or the like with

盤制御部34に対しては伝送部36a,36bが設けられ、伝送部36a,36bから引き出した信号線14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the panel control unit 34, and signal lines 14a and 14b drawn from the transmission units 36a and 36b are connected to a plurality of fire detectors 12 installed in the upstream tunnel 1a and the downstream tunnel 1b, respectively. is connected.

また、盤制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部41、IG子局設備20を接続するモデム42が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部43が設けられている。 In addition, to the panel control unit 34, an alarm unit 38 equipped with a speaker, an alarm indicator lamp, etc., a display unit 40 equipped with a liquid crystal display, a printer, etc., an operation unit 41 equipped with various switches, etc., and an IG slave station equipment 20 are connected. A modem 42 is provided, and the fire pump equipment 16, cooling pump equipment 18, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 and lighting equipment 30 shown in FIG. 1 are connected. IO unit 43 is provided.

盤制御部34には、プログラムの実行により実現される機能として、火災監視制御部48の機能が設けられている。 The board control unit 34 is provided with the function of the fire monitoring control unit 48 as a function realized by executing the program.

火災監視制御部48は、伝送部36a,36bに指示して信号線14a,14bを介して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災信号、感度異常予兆信号、感度異常信号、汚損予兆信号、汚損信号等の応答信号を返信する。 The fire monitoring control unit 48 instructs the transmission units 36a and 36b to repeatedly transmit call signals including polling commands sequentially specifying the addresses of the fire detectors 12 via the signal lines 14a and 14b. 12, when it receives a call signal matching its own address, returns a response signal such as a fire signal, a sensitivity abnormality predictor signal, a sensitivity abnormality signal, a pollution predictor signal, a pollution signal, or the like.

また、火災監視制御部48は、火災検知器12からの火災信号の受信に基づき火災と判断した場合は、警報部38による火災警報の出力、IO部43を介して他設備の連動制御例えば警報表示板設備24による進入禁止警報の表示、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In addition, when the fire monitoring control unit 48 determines that there is a fire based on the reception of the fire signal from the fire detector 12, the alarm unit 38 outputs a fire alarm, and the interlocking control of other equipment via the IO unit 43, such as an alarm Predetermined fire processing including display of an entry prohibition alarm by the display board equipment 24 and transmission of a fire alarm signal to the remote monitoring control equipment 32 is performed.

また、火災監視制御部48は、システムの立上げ時あるいは運用中の所定の周期毎(例えば1日1回となる24時間周期)に、火災検知器12のアドレスを順次指定した試験指示信号を送信し、火災検知器12に感度試験及び汚れ試験を行わせ、それぞれの試験結果を応答させ、例えばセンサ故障の応答信号を受信した場合、火災検知器12のアドレスを特定したセンサ故障警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 In addition, the fire monitoring control unit 48 outputs a test instruction signal sequentially designating the address of the fire detector 12 when the system is started up or at predetermined intervals during operation (for example, once a day in a 24-hour cycle). and cause the fire detector 12 to perform the sensitivity test and the dirt test, and respond with the test results. It controls notification by means of an alarm sound from the unit 38, display on the display unit 40, and printing.

また、火災監視制御部48は火災検知器12の汚れ試験により得られた汚損異常の応答信号を受信した場合、火災検知器のアドレスを特定した汚れ警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 Further, when the fire monitoring control unit 48 receives the response signal of the contamination abnormality obtained by the contamination test of the fire detector 12, the contamination alarm specifying the address of the fire detector is generated by the alarm sound of the alarm unit 38 and the display unit 40. display, and control to notify by printing.

また、火災監視制御部48は、火災検知器12の感度試験及び汚れ試験により得られたセンサ故障又は汚損異常の応答信号を受信した場合、モデム42から図1に示したIG子局設備20を介して遠方監視制御設備32に移報信号を送信し、故障警報又は異常警報を報知させる制御を行う。 In addition, when the fire monitoring control unit 48 receives a sensor failure or staining abnormality response signal obtained by the sensitivity test and staining test of the fire detector 12, the IG slave station equipment 20 shown in FIG. It transmits a report transfer signal to the remote monitoring and control equipment 32 via the remote monitoring and control equipment 32, and performs control to report a failure alarm or abnormality alarm.

(火災判断制御)
火災監視制御部48は、火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12のアドレスを指定した内部状態要求コマンド信号を送信し、火災検知器12のカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を取得し、これに基づき火災信号を送信した火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断する。
(fire judgment control)
When receiving a fire signal from the fire detector 12, the fire monitoring control unit 48 transmits an internal state request command signal designating the address of the fire detector 12 that transmitted the fire signal, and the counter of the fire detector 12 counts. obtains failure sign information including information indicating the number of times N of occurrences of failure signs that have been detected, evaluates the reliability of the fire detector 12 that transmitted the fire signal based on this, and determines whether it is reliable or unreliable. do.

火災監視制御部48による火災検知器12の信頼性の評価は、例えば故障予兆情報として取得して抽出した火災検知器12の故障予兆の発生回数Nが信頼性判断蓄積条件として設定した所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断する。 The evaluation of the reliability of the fire detector 12 by the fire monitoring control unit 48 is based on, for example, the number N of occurrences of the failure sign of the fire detector 12 acquired and extracted as the failure sign information, and a predetermined threshold value set as the reliability judgment accumulation condition. If the number of times is equal to or less than the threshold number of times Nref or less than the threshold number of times Nref, it is determined that the reliability is high.

火災検知器12が故障予兆を判定したときに火災信号を送信しないようにする場合は、例えば信頼性判断蓄積条件を設定する閾値回数Nrefは、図4に示した火災判断部86で故障予兆判断蓄積条件として設定した閾値回数Nthより低い値を設定すれば良い。 When the fire signal is not transmitted when the fire detector 12 determines a failure sign, for example, the threshold number of times Nref for setting the reliability judgment accumulation condition is determined by the fire judgment unit 86 shown in FIG. A value lower than the threshold number of times Nth set as the accumulation condition may be set.

火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性有りと判断したときは、火災検知器12に火災復旧コマンド信号を送信して復旧させた後に再度火災信号を受信した場合に火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 When the fire monitoring control unit 48 determines that the fire detector 12 that has transmitted the fire signal is reliable, it transmits a fire recovery command signal to the fire detector 12 to restore it, and then receives the fire signal again. Fire alarm output, interlocking control of other equipment including at least display of no-entry alarm by alarm display board equipment 24, predetermined fire processing including transmission of fire alarm signal to remote monitoring and control equipment 32 conduct.

一方、火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性低下と判断したときは、火災検知器12の蓄積条件変更コマンド信号(蓄積条件厳格化コマンド)の送信により、火災検知器12の第1の火災判断蓄積条件(図5のステップS7の蓄積条件)を設定する蓄積回数閾値を増加して厳格な(より火災判断に到達し難い)第2の火災判断蓄積条件に変更し、具体的には例えば蓄積回数閾値を高くして実質的に火災に対し低感度化し、続いて、復旧コマンド信号を送信して復旧させる。 On the other hand, when the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that has transmitted the fire signal has decreased, the fire detector 12 sends an accumulation condition change command signal (accumulation condition tightening command) to the fire detector 12. The accumulation number threshold for setting the first fire judgment accumulation condition (accumulation condition of step S7 in FIG. 5) of the detector 12 is increased to make the second fire judgment accumulation condition stricter (more difficult to reach fire judgment). Specifically, for example, the accumulation number threshold is increased to substantially reduce the sensitivity to fire, and then a restoration command signal is transmitted to restore the fire.

この状態で、火災監視制御部48は、火災判断蓄積条件を変更した第1報目の火災信号を送信した火災検知器12から第2の火災判断蓄積条件の充足による第2報目の火災信号を受信し、且つ、又は、第1報目の火災信号を送信した火災検知器12と同じ検知エリアを重複監視している隣接した火災検知器12から火災信号を受信したときに火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, the fire monitoring control unit 48 receives the second fire signal from the fire detector 12 that has transmitted the first fire signal with the changed fire judgment accumulation condition and the second fire judgment accumulation condition. and/or, when a fire signal is received from an adjacent fire detector 12 that redundantly monitors the same detection area as the fire detector 12 that transmitted the first fire signal, it is determined that a fire has occurred. , fire alarm output, interlocking control of other equipment including at least display of an entry prohibition alarm by the alarm display board equipment 24, and predetermined fire processing including transmission of a fire alarm signal to the remote monitoring control equipment 32.

このように火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、火災検知器12が火災以外の故障予兆により火災と判断して火災信号を送信した場合も、当該火災検知器の火災判断蓄積条件を厳格に変更することから復旧後に原因不明の非火災要因により再度火災信号を送信する可能性は低くなり、また、このとき隣接した火災検知器12は信頼性が低下しておらず、実火災でない場合に火災信号を送信する可能性は極めて低く、第1報目の火災信号を送信して復旧した火災検知器12とこれに隣接する火災検知器12aの一方又は両方から火災信号が受信される場合に火災と判断するようすることで、非火災にもかかわらず火災と判断して火災処理を行ってしまうことを確実に防止できる。
In this way, when the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that has transmitted the fire signal is lowered, even if the fire detector 12 determines that there is a fire due to a failure sign other than a fire and transmits the fire signal. Since the fire judgment accumulation condition of the fire detector is strictly changed, the possibility of transmitting a fire signal again due to a non-fire factor of unknown cause after restoration becomes low, and at this time, the adjacent fire detector 12 is reliable. The possibility of transmitting a fire signal is extremely low when the fire is not degraded and it is not an actual fire. By determining that there is a fire when a fire signal is received from one or both of them, it is possible to reliably prevent a situation in which it is determined that there is a fire even though there is no fire, and fire processing is performed.

また、火災監視制御部48は、第1報目の火災信号を送信した火災検知器12につき信頼性低下と判断した後に当該火災検知器12及び又はこれに隣接した火災検知器12aに基づく火災判断が成立しなかった場合、火災検知器12から非火災の(誤った)火災信号を受信したことを示す非火災移報信号を遠方監視制御設備32に送信して報知させる制御を行う。 After determining that the reliability of the fire detector 12 that transmitted the fire signal of the first report has decreased, the fire monitoring control unit 48 determines the fire based on the fire detector 12 and/or the fire detector 12a adjacent thereto. is not established, control is performed to transmit a non-fire alarm signal indicating that a non-fire (erroneous) fire signal has been received from the fire detector 12 to the remote monitoring control equipment 32 to notify.

これにより遠方監視制御設備32側の管理担当者は、非火災報の原因となり得る火災検知器12の信頼性が低下した状態を知ることができ、火災検知器12の点検強化等といったトンネルの運用管理効率化のために利用可能とする。 As a result, the person in charge of management on the side of the remote monitoring control equipment 32 can know the state where the reliability of the fire detector 12, which can cause non-fire alarms, has decreased, and the operation of the tunnel, such as strengthening the inspection of the fire detector 12, can be performed. It will be available for management efficiency.

また、火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、当該火災検知器12の検知エリアを重複監視している隣接した火災検知器12に、蓄積条件変更コマンド信号(蓄積条件緩和コマンド)を送信して、図5のステップS7の蓄積回数閾値を低下させることで、第1の火災判断蓄積条件を緩和する(より火災判断に到達しやすくする)第3の火災判断蓄積条件に変更し、実質的に火災に対し高感度化しても良い。
In addition, when the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that has transmitted the fire signal has decreased, the adjacent fire detector 12 redundantly monitors the detection area of the fire detector 12, and the accumulation condition By transmitting a change command signal (accumulation condition easing command) and lowering the accumulation number threshold in step S7 of FIG. The fire judgment accumulation condition of 3 may be changed to substantially increase the sensitivity to fire.

具体的には例えば、隣接した火災検知器12の第1の火災判断蓄積条件として設定した蓄積回数閾値を低下させて第3の火災判断蓄積条件に変更することで、実火災であった場合、隣接した火災検知器12aよる火災信号が迅速に送信され、且つ又は第1報目の火災信号を送信して信頼性低下と判断された火災検知器12の復旧後再度の火災信号の送信によって速やかに火災処理を行うことができる。
Specifically, for example, by lowering the accumulation number threshold set as the first fire determination accumulation condition of the adjacent fire detector 12 and changing to the third fire judgment accumulation condition, if there is an actual fire, The fire signal is quickly transmitted by the adjacent fire detector 12a, and/or the fire signal is transmitted again after the fire detector 12, which has transmitted the first fire signal and is judged to be unreliable, is restored. Fire can be treated quickly.

なお、火災検知器12が右眼と左眼を区別した火災信号を送信できる場合、例えば、この火災検知器12の右眼の検知エリアを左眼で重複監視している火災検知器(の左眼)を隣接した火災検知器12とすれば良い。右眼と左眼の区別ができない場合は、両隣かこのうちの何れかの火災検知器12となる。
In addition, when the fire detector 12 can transmit a fire signal that distinguishes between the right eye and the left eye, for example, the fire detector (the left eye) as the adjacent fire detector 12 . If it is not possible to distinguish between the right eye and the left eye, the fire detectors 12 are both adjacent or one of them.

[トンネル防災システムの制御動作]
(火災検知器の信頼性有り)
図7は防災受信盤で火災検知器の信頼性有りと判断された場合の制御動作を示したタイムチャートである。
[Control operation of tunnel disaster prevention system]
(Reliable fire detector)
FIG. 7 is a time chart showing the control operation when the fire detector is judged to be reliable by the disaster prevention receiving panel.

図7に示すように、火災検知器12がステップS21で火災と判断すると、ステップS22に進んで防災受信盤10に火災信号を送信する。防災受信盤10は火災検知器12からの火災信号を受信するとステップS23で内部状態要求コマンド信号を火災検知器12に送信し、これを受けて火災検知器12はステップS24でそのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を生成して防災受信盤10に送信する。 As shown in FIG. 7, when the fire detector 12 determines that there is a fire in step S21, the process proceeds to step S22 to transmit a fire signal to the disaster prevention receiving panel 10. FIG. When the disaster prevention receiver 10 receives the fire signal from the fire detector 12, it transmits an internal state request command signal to the fire detector 12 in step S23. Failure predictor information including information indicating the number of times N of failure predictor occurrences is generated and transmitted to the disaster prevention receiving panel 10 .

火災検知器12からの故障予兆情報を受信した防災受信盤10は、ステップS25で故障予兆情報から抽出した故障予兆の発生回数Nに基づき信頼性を評価し、ステップS26で信頼性有りと判断するとステップS27に進み、復旧コマンド信号を火災検知器12に送信してステップS28で復旧させ、ステップS29で火災検知器12が再度火災と判断してステップS30で火災信号が送信されると、この火災信号を受信した防災受信盤10はステップS31で火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 The disaster prevention receiving panel 10, which has received the failure sign information from the fire detector 12, evaluates the reliability based on the number N of failure sign occurrences extracted from the failure sign information in step S25, and determines that the reliability is present in step S26. Proceeding to step S27, a restoration command signal is transmitted to the fire detector 12, and restoration is performed in step S28. The disaster prevention receiving panel 10 that received the signal determines that there is a fire in step S31, outputs a fire alarm, interlocks control of the equipment including at least the display of an entry prohibition alarm by the alarm display board equipment 24, and transfers the fire alarm to the remote monitoring control equipment 32. Perform prescribed fire procedures, including sending signals.

(火災検知器の信頼性低下)
図8は防災受信盤で火災検知器の信頼性低下が判断された場合の制御動作を示したタイムチャートである。
(Decreased reliability of fire detectors)
FIG. 8 is a time chart showing the control operation when the disaster prevention receiving panel determines that the reliability of the fire detector has deteriorated.

図8のステップS41~S45の処理は、図7のステップS21~S25の処理と同じになる。図8にあっては、ステップS45で故障予兆情報から抽出された故障予兆の発生回数Nに基づき信頼性を評価し、ステップS46で信頼性低下と判断するとステップS47に進み、信頼性低下と判断された火災検知器12の当該信頼性低下の原因となった火災検知部に対応する検知エリアを重複監視している隣接した火災検知器12に当該重複監視している検知エリアに対する火災判断蓄積条件を緩和する蓄積条件変更コマンド信号、具体的には図5のステップS7の火災判断蓄積条件となる蓄積回数閾値を減少させる蓄積条件変更コマンド信号を送信し、併せて、第1報目の火災信号を送信した火災検知器12に、当該火災信号を送信する原因となった火災検知部に対応する第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更する蓄積条件変更コマンド信号、具体的には、火災判断の蓄積回数閾値を増加させる蓄積条件変更コマンド信号を送信する。
The processing of steps S41-S45 in FIG. 8 is the same as the processing of steps S21-S25 in FIG. In FIG. 8, in step S45, reliability is evaluated based on the number of occurrences N of failure predictors extracted from the failure predictor information. The fire judgment accumulation condition for the detection area that is redundantly monitored by the adjacent fire detector 12 that is redundantly monitoring the detection area corresponding to the fire detection unit that caused the decrease in reliability of the fire detector 12 that was detected. Specifically, an accumulation condition change command signal for decreasing the accumulation number threshold value, which is the fire determination accumulation condition in step S7 of FIG. 5, is transmitted. to the fire detector 12 that transmitted the fire signal, the accumulation condition change command signal for changing the first fire judgment accumulation condition corresponding to the fire detection unit that caused the fire signal to be changed to the strict second fire judgment accumulation condition. More specifically, it transmits an accumulation condition change command signal for increasing the accumulation number threshold for fire judgment.

防災受信盤10からの蓄積条件変更コマンド信号を受信した隣接した火災検知器12(両隣又は一方の隣)はステップS48で蓄積回数閾値を低下させることで火災判断蓄積条件を緩和し、その結果として実質的に火災感度を上げ、実火災であれば、速やかにステップS49で火災と判断し、ステップS50で火災信号を送信する。
The adjacent fire detectors 12 (both adjacent or one adjacent) that received the accumulation condition change command signal from the disaster prevention receiver panel 10 relax the fire determination accumulation condition by lowering the accumulation count threshold in step S48, and as a result The fire sensitivity is substantially increased, and if it is a real fire, it is immediately determined as a fire in step S49, and a fire signal is transmitted in step S50.

また、防災受信盤10から蓄積回数閾値を増加させる蓄積条件変更コマンド信号を受信した火災検知器12はステップS51で蓄積回数閾値を増加させて実質的に火災感度を下げる。続いて、防災受信盤10はステップS52で第1報目の火災信号を送信した火災検知器12に復旧コマンド信号を送信し、これを受信した火災検知器12はステップS53で一旦復旧する。このとき実火災が継続していれば、感度を下げた火災検知器12もステップS54で再度火災と判断してステップS55で火災信号を再度送信する。 Further, the fire detector 12, which receives the accumulation condition change command signal for increasing the accumulation number threshold from the disaster prevention receiver 10, increases the accumulation number threshold in step S51 to substantially lower the fire sensitivity. Subsequently, in step S52, the disaster prevention receiving panel 10 transmits a recovery command signal to the fire detector 12 that transmitted the first fire signal, and the fire detector 12 that has received this command recovers in step S53. At this time, if the actual fire continues, the fire detector 12 whose sensitivity has been lowered also determines that there is a fire again in step S54, and transmits the fire signal again in step S55.

防災受信盤10はステップS57で所定時間を経過する前にステップS56で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、厳格な火災判断蓄積条件に変更した隣接した火災検知器12(隣接した火災検知器が2台の場合はその一方又は両方)からの火災信号との一方又は両方を受信するとステップS58に進み、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。ここで、ステップS57の所定時間は、ステップS51で増加させた蓄積回数閾値を考慮した蓄積時間に対応した時間とする。
The disaster prevention receiver 10 receives the second fire signal from the fire detector 12 that transmitted the first fire signal in step S56 before the predetermined time elapses in step S57, and the strict fire judgment accumulation condition. When one or both of the fire signal from the changed adjacent fire detector 12 (one or both of the two adjacent fire detectors are received) is received, the process proceeds to step S58 to output the fire alarm, or at least display the alarm. Predetermined fire processing including transmission of a fire alarm signal to remote monitoring and control equipment 32 and interlocking control of equipment including display of an entry prohibition alarm by the board equipment 24 are performed. Here, the predetermined time in step S57 is set to the time corresponding to the accumulation time in consideration of the accumulation count threshold increased in step S51.

なお、右眼と左眼の区別できるシステムでは、火災が発生したとする方の眼の検知エリアを重複監視している1台の(当該検知エリアを監視している方の眼の)の火災信号を得たときに火災処理すれば良い。 In addition, in a system that can distinguish between the right eye and the left eye, one unit (of the eye monitoring the detection area) that is redundantly monitoring the detection area of the eye where the fire is supposed to occur The fire should be dealt with when the signal is received.

一方、ステップS57で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、隣接した火災検知器12からの火災信号の一方又は両方の受信を判別することなくステップS57で所定時間が経過した場合はステップS59に進み、遠方監視制御設備32に火災検知器12からの非火災の火災信号を受信したことを示す非火災移報信号を送信して報知させる。
On the other hand, it is determined whether one or both of the fire signal of the second report from the fire detector 12 that transmitted the fire signal of the first report in step S57 and the fire signal from the adjacent fire detector 12 have been received. If the predetermined time has elapsed in step S57, the process proceeds to step S59, and the remote monitoring control equipment 32 is notified by transmitting a non-fire alarm signal indicating that the non-fire signal has been received from the fire detector 12. .

[火災検知器で信頼性を判断する実施形態]
上記の実施形態にあっては、防災受信盤10が火災信号を受信したときに、火災信号を送信した火災検知器12から故障予兆の発生回数を示す情報を含む故障予兆情報を取得して、火災信号を送信した火災検知器12の信頼性を評価して信頼性あり又は信頼性低下を判断しているが、他の実施形態として、火災検知器12側で故障予兆の発生回数から信頼性を評価して信頼性あり、信頼性低下を判断するようにしても良い。
[Embodiment for judging reliability with a fire detector]
In the above embodiment, when the disaster prevention receiver board 10 receives a fire signal, the failure sign information including information indicating the number of occurrences of failure signs is acquired from the fire detector 12 that transmitted the fire signal, The reliability of the fire detector 12 that transmitted the fire signal is evaluated to determine whether it is reliable or not reliable. may be evaluated to determine whether or not there is reliability.

即ち、図4に示した火災検知器12の火災判断部86は、図5の制御動作に示したように、ステップS11で故障予兆の発生回数Nを求めているが、火災信号を送信した後に、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき求めている故障予兆の発生回数Nを信頼性判断蓄積条件として設定した所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、この信頼性の判断結果を示す情報を含む信頼性情報を防災受信盤10に送信する。 That is, the fire judgment unit 86 of the fire detector 12 shown in FIG. 4 obtains the number of occurrences N of failure signs in step S11 as shown in the control operation of FIG. , when an internal state request command signal is received from the disaster prevention receiver 10, the number N of failure sign occurrences obtained at that time is compared with a predetermined threshold number of times Nref set as the reliability judgment accumulation condition, and the predetermined threshold number of times Nref It is determined that there is reliability when it is less than or less than the threshold number of times Nref, and it is determined that reliability is lowered when it is equal to or greater than the predetermined threshold number of times Nref or exceeds the threshold number of times Nref, and information indicating the reliability determination result is included. Reliability information is transmitted to the disaster prevention receiving board 10 .

防災受信盤10は、図7のステップS25における信頼性の判断、及び、図8のステップS45における信頼性の判断の処理において、火災検知器12から取得した信頼性情報から信頼性判断の結果を抽出するだけで良く、それ以外は、前述した実施形態と同じになる。このように信頼性の判断を火災検知器12側で行うことで、防災受信盤10側の処理負担を低減できる。 The disaster prevention receiver 10 receives the result of the reliability judgment from the reliability information acquired from the fire detector 12 in the judgment of reliability in step S25 of FIG. 7 and the judgment of reliability in step S45 of FIG. It is only necessary to extract them, and the rest is the same as the embodiment described above. By judging the reliability on the side of the fire detector 12 in this way, the processing load on the side of the disaster prevention receiving panel 10 can be reduced.

(火災検知器の故障予兆検出による防災受信盤の制御動作)
図9は火災検知器で故障予兆が検出されて故障予兆と判定した場合の防災受信盤の制御動作を示したタイムチャートである。なお、火災検知器は自己の故障予兆と判定した場合であっても、故障予兆処理として火災信号の送信停止は行わず、火災と判断すると火災信号を送信する場合を例にとっている。
(Control operation of disaster prevention receiving panel by detecting failure sign of fire detector)
FIG. 9 is a time chart showing the control operation of the disaster prevention receiving panel when a failure sign is detected by the fire detector and determined as a failure sign. Even if the fire detector determines that it is a sign of its own failure, it does not stop transmission of the fire signal as the failure sign processing, but instead transmits the fire signal if it judges that there is a fire.

図9に示すように、ステップS61において火災検知器12で故障予兆の発生回数Nが所定の閾値Nthに達して故障予兆と判定(確定)するとステップS62で故障予兆信号が防災受信盤10に送信され、故障予兆処理を行う場合はステップS62aで所定の故障予兆処理が行われるが、前述のとおり、その後の制御を説明するため、ここでは故障予兆処理として火災信号の送信停止は行わない例とする。火災検知器12からの故障予兆信号を受信した防災受信盤10はステップS63で故障予兆となった火災検知器12をディスプレイ等の警報表示により報知し、ステップS64で遠方監視制御設備32に故障予兆移報信号を送信して報知させる。 As shown in FIG. 9, in step S61, when the fire detector 12 determines (confirms) that the number of occurrences of a failure sign has reached a predetermined threshold value Nth, a failure sign is transmitted to the disaster prevention receiving panel 10 in step S62. If failure predictive processing is to be performed, predetermined failure predictive processing is performed in step S62a. However, as described above, in order to explain subsequent control, it is assumed here that transmission of the fire signal is not stopped as failure predictive processing. do. In step S63, the disaster prevention receiving panel 10, which has received the failure sign signal from the fire detector 12, notifies the failure sign of the fire detector 12 by displaying an alarm such as a display. Send a transfer signal to notify.

この状態で火災検知器12がステップS65で火災と判断してステップS66で火災信号を送信したとすると、防災受信盤10はステップS67で故障予兆が検出された火災検知器12か否か判別し、故障予兆が検出された火災検知器12でなければステップS68に進んで、火災警報の出力、警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, if the fire detector 12 determines that there is a fire in step S65 and transmits a fire signal in step S66, the disaster prevention receiver 10 determines in step S67 whether or not the fire detector 12 has detected a sign of failure. , If it is not the fire detector 12 that has detected a sign of failure, the process proceeds to step S68, where the output of the fire alarm, interlocking control of other equipment including the display of the entry prohibition alarm by the alarm display board equipment 24, and the remote monitoring control equipment 32 Predetermined fire processing including transmission of a fire alarm signal is performed.

これに対しステップS67で当該2報目の火災信号が、故障予兆が検出された火災検知器12から送信されたものであることが判別されたときはステップS69に進んで非火災報と判断し、火災処理は行わず、例えば、非火災報の受信を報知し、続いて、ステップS70に進み、遠方監視制御設備32に火災検知器12の誤作動情報として火災検知器12の誤作動を示す非火災移報信号を送信して報知させる。 On the other hand, if it is determined in step S67 that the second fire signal was transmitted from the fire detector 12 in which a sign of failure was detected, the flow advances to step S69 to determine that the fire signal is non-fire. , Fire processing is not performed, for example, the reception of a non-fire alarm is notified, and then the process proceeds to step S70 to indicate the malfunction of the fire detector 12 as the malfunction information of the fire detector 12 to the remote monitoring and control equipment 32. Send a non-fire alarm transfer signal to notify.

なお、火災検知器12の火災判断部86による故障予兆処理として火災信号の送信を停止している場合には、ステップS65以降の処理は行われない。 It should be noted that when the transmission of the fire signal is stopped as the failure sign processing by the fire determination unit 86 of the fire detector 12, the processing after step S65 is not performed.

[トンネル単位又は区間単位の信頼性を判断する実施形態]
上記の実施形態は、火災検知器12ごとに信頼性を判断しているが、他の実施形態として、トンネルごと、信号系統ごと又はトンネルの所定の区間ごとにグループ化された複数の火災検知器12の故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に信頼性を評価して信頼性有り、信頼性低下を判断するようにしても良い。
[Embodiment for Determining Reliability in Tunnel Units or Section Units]
Although the above embodiment determines reliability for each fire detector 12, other embodiments include multiple fire detectors grouped by tunnel, signal system, or predetermined section of tunnel. Based on the 12 pieces of failure sign information, the reliability may be evaluated for each tunnel, each signal system, or each section to determine whether there is reliability or not.

このため、例えばトンネルの区間ごとに信頼性を判断する場合、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12が属する区間でグループ化された複数の火災検知器12に内部情報要求コマンド信号を送信して、それぞれの故障予兆情報を受信し、この情報から故障予兆の発生回数N1,N2,・・・Nnを取得し、故障予兆の発生回数N1,N2,・・・Nnの平均回数Naveを算出して所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 For this reason, when determining the reliability for each section of a tunnel, for example, when the disaster prevention receiver panel 10 receives a fire signal from, for example, a fire detector 12, it is grouped by the section to which the fire detector 12 that sent the fire signal belongs. An internal information request command signal is transmitted to the plurality of fire detectors 12, the respective failure sign information is received, the number of occurrences of failure signs N1, N2, . . . An average number Nave of the number of occurrences N1, N2, . . . Nn is calculated and compared with a predetermined threshold number of times Nref. is equal to or greater than the threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability is lowered, and the same control operation as in the above embodiment is performed according to the reliability determination result.

本実施形態は、トンネル内の区間単位に特有な温度、湿度、電気的ノイズ等の環境要因の相違に基づいた火災検知器12の信頼性を評価して信頼性あり、信頼性低下を判断できる。この判断結果及び上記のNrefを示す情報を信頼性情報として一時保持する。 This embodiment evaluates the reliability of the fire detector 12 based on differences in environmental factors such as temperature, humidity, electrical noise, etc. specific to each section in the tunnel, and can determine whether it is reliable or not. . This determination result and the information indicating the above Nref are temporarily held as reliability information.

また、トンネル単位に信頼性を判断する場合には、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、トンネル内に設置された全ての火災検知器12に内部情報要求コマンド信号を送信して、全ての故障予兆情報として故障予兆の発生回数N1,N2,・・・Nnを取得して平均回数Naveを算出し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 When the reliability is determined for each tunnel, for example, when the disaster prevention receiver 10 receives a fire signal from the fire detector 12, an internal information request command signal is sent to all the fire detectors 12 installed in the tunnel. is transmitted, and the number of occurrences N1, N2, . It is determined that reliability exists, and if the predetermined threshold number of times Nref or more or exceeds the threshold number of times Nref, it is determined that reliability is lowered, and the same control operation as in the above embodiment is performed according to the reliability determination result.

ここで、図7、図8の実施形態及びトンネルごと、信号系統ごと、区間ごとの信頼性情報を生成する本実施形態においては、防災受信盤10は火災検知器12から火災信号を受信したときに当該火災検知器12或いはトンネル、信号系統、区間の火災検知器から故障予兆情報を取得するようにしているが、火災信号受信に先立って故障予兆情報を取得し、これに基づいて火災信号受信に係る各処理を行うようにしても良い。
Here, in the embodiments of FIGS. 7 and 8 and this embodiment that generates reliability information for each tunnel, each signal system, and each section, when the disaster prevention receiver 10 receives a fire signal from the fire detector 12, Although the failure sign information is acquired from the fire detector 12 or the fire detector in the tunnel, signal system, or section, the failure sign information is acquired prior to receiving the fire signal , and based on this, the fire signal may be performed .

また、系統毎に信頼性を判断する場合は、信号線14a,14bごとの火災検知器12の故障予兆の発生回数から同様に平均回数を求めて、これに基づき信頼性を判断する。なお、故障予兆情報は故障予兆の発生回数に限られず、移動平均回数、故障予兆の発生頻度や所定期間の発生割合等としても良い。 When determining the reliability of each system, the average number of occurrences of signs of failure of the fire detector 12 for each of the signal lines 14a and 14b is similarly obtained, and the reliability is determined based on this average number. The failure predictor information is not limited to the number of failure predictor occurrences, and may be a moving average number of times, a failure predictor occurrence frequency, an occurrence rate in a predetermined period, or the like.

[故障予兆の判定の他の実施形態]
(感度試験に伴う故障予兆の判定)
図10は火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図である。
[Other Embodiments of Failure Sign Determination]
(Determination of signs of failure associated with sensitivity test)
FIG. 10 is an explanatory diagram showing the peak level of the received light signal and the number of occurrences of signs of failure when the internal test light source is driven in the sensitivity test of the fire detector.

図4に示した火災検知器12の検知器制御部54に設けられた感度試験部88は、防災受信盤10から定期的(例えば1日に1回)に送信される試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に例えば2Hzで所定期間(例えば1秒間)点滅させる発光駆動を行って火災検知部60R,60Lに火災炎に相当する炎疑似光(試験光)を入射して感度試験を行わせる。 A sensitivity test section 88 provided in the detector control section 54 of the fire detector 12 shown in FIG. In this case, the test light emission drive unit 76 is instructed to perform light emission drive to blink the internal test light sources 78R, 80R, 82R, 78L, 80L, and 82L in order at, for example, 2 Hz for a predetermined period (for example, 1 second). A flame pseudo light (test light) corresponding to a fire flame is incident on the detectors 60R and 60L to perform a sensitivity test.

感度試験部88による感度試験は、図4について既に説明したと同じ内容となる。これに加え、本実施形態の感度試験部88は、感度試験に伴い火災検知部60Rから出力される炎受光信号E1R、第1の非炎受光信号E2及び第2の非炎受光信号E3、及び、火災検知部60Lから出力される感度試験時の炎受光信号E1L、第1の非炎受光信号E2L及び第2の非炎受光信号E3Lの各々について、各受光信号のピークレベルを検出し、図10(A)に黒丸で示すように、例えば1日に1回検出したピークレベルが、工場出荷時の劣化無しの状態で検出されたピークレベルの初期値92に基づく所定の正常範囲94を外れたが、所定の故障閾値96以下又は故障閾値96を下回らず故障判断条件を充足しなかった場合、即ち故障予兆範囲98にある場合は故障予兆と判断し、図10(B)に示すように、故障予兆の発生回数Nをカウンタにより計数する制御を行う。
The sensitivity test by the sensitivity test unit 88 has the same contents as those already explained with reference to FIG. In addition to this, the sensitivity test section 88 of the present embodiment outputs the flame reception signal E1R, the first non-flame reception signal E2 R , and the second non-flame reception signal E3 R output from the fire detection section 60R during the sensitivity test. , and the peak level of each light-receiving signal is detected for each of the flame light-receiving signal E1L, the first non-flame light-receiving signal E2L, and the second non-flame light-receiving signal E3L output from the fire detection section 60L during the sensitivity test. , as indicated by black circles in FIG. 10(A), the peak level detected, for example, once a day falls within a predetermined normal range 94 based on the initial value 92 of the peak level detected in the state of no deterioration at the time of shipment from the factory. but does not fall below a predetermined failure threshold value 96 or does not fall below the failure threshold value 96 and does not satisfy the failure judgment conditions, that is, if it is within the failure sign range 98, it is judged to be a failure sign, and shown in FIG. 10B. As described above, control is performed to count the number of occurrences N of failure signs using a counter.

ここで、受光信号の正常範囲94は初期値92を中心に例えば上限値94aと下限値94bで挟まれた範囲とし、例えば初期値92に対し±10パーセントとしている。また、故障閾値96は例えば初期値92の50パーセント程度の値とする。
Here, the normal range 94 of the received light signal is a range sandwiched between , for example, an upper limit value 94a and a lower limit value 94b with the initial value 92 as the center, and is ±10% of the initial value 92, for example. Also, the failure threshold 96 is set to a value of about 50% of the initial value 92, for example.

なお、故障予兆範囲として、例えば正常範囲94の上限値94aから初期値92の50パーセントを初期値92に加えたまでの範囲、即ち
(上限値94a)超え{(初期値92)+(初期値92の50パーセント)}以下
の範囲を追加して故障予兆と判断しても良い。
As the failure sign range, for example, the range from the upper limit value 94a of the normal range 94 to the initial value 92 plus 50% of the initial value 92, that is, beyond the (upper limit value 94a) {(initial value 92) + (initial value 50% of 92)} may be determined as a failure sign by adding the following range.

一方、火災判断部86は、感度試験部88のカウンタで係数された故障予兆の発生回数Nを故障予兆判定蓄積条件として設定した所定の閾値回数Nthと比較しており、故障予兆の発生回数Nが所定閾値Nth以上又は所定閾値Nthを超えて故障予兆判定蓄積条件を充足したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。火災判断部86による故障予兆処理は、例えば、火災信号の送信を停止する処理とする。 On the other hand, the fire judging section 86 compares the number of failure sign occurrences N multiplied by the counter of the sensitivity test section 88 with a predetermined threshold number of times Nth set as the failure sign judgment accumulation condition. is equal to or greater than a predetermined threshold value Nth or exceeds a predetermined threshold value Nth and satisfies the failure sign determination accumulation condition, it is determined (confirmed) that a failure sign is present, a failure sign signal is transmitted to the disaster prevention receiving panel 10, and then a predetermined failure sign process. The failure sign processing by the fire determination unit 86 is, for example, processing for stopping the transmission of the fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す情報を含む予兆故障情報を送信する制御を行い、防災受信盤10において故障予兆の発生回数Nを抽出し、これに基づいて火災信号を送信した火災検知器12の信頼性を評価して信頼性有り、信頼性低下を判断するために用いられる。 Further, when the fire determination unit 86 receives an internal state request command signal from the disaster prevention receiver 10, it performs control to transmit predictive failure information including information indicating the number of occurrences N of failure predictors obtained at that time, The disaster prevention receiver 10 extracts the number of occurrences N of failure signs, and based on this, evaluates the reliability of the fire detector 12 that transmitted the fire signal, and determines whether it is reliable or not.

なお、カウンタにより計数している故障予兆の発生回数Nは、例えば所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。リセット前の故障予兆の発生回数Nは、故障予兆情報履歴として記憶するようにしても良い。 The number N of occurrences of failure signs counted by the counter is reset, for example, every predetermined period of time, or reset when a predetermined period of time has elapsed since the failure signs were counted. The number of occurrences N of failure predictors before resetting may be stored as failure predictor information history.

(火災検知器の感度試験動作)
図11は故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートであり、図4に示した火災検知器12の感度試験部88及び火災判断部86による制御動作となる。
(Fire detector sensitivity test operation)
FIG. 11 is a flow chart showing the sensitivity test of the fire detector accompanied by the determination of a sign of failure.

図11に示すように、感度試験部88は、例えば、図4の火災検知部60Rを例にとると、ステップS71で防災受信盤10から順番にアドレスを指定して1日1回、送信される試験指示信号の受信(自己アドレスを示すもの)を判別してステップS72に進み、試験発光駆動部76に指示して内部試験光源78Rを2Hzで所定期間(例えば1秒間)点滅駆動してセンサ部64に火災炎に相当する炎疑似光(試験光)を入射する。 As shown in FIG. 11, the sensitivity test unit 88, taking the fire detection unit 60R of FIG. The test instruction signal (indicating its own address) is received, and the process advances to step S72 to instruct the test light emission driving section 76 to drive the internal test light source 78R to blink at 2 Hz for a predetermined period (for example, 1 second). A flame pseudo light (test light) corresponding to a fire flame is incident on the portion 64 .

続いて、感度試験部88はステップS73に進み、増幅処理部66より出力される試験光による炎受光信号(受光信号)E1Rのピークレベルを検出し、ステップS74で図10(A)に示した正常範囲94内か否か判別し、正常範囲94内にある場合はステップS75に進み、工場出荷時の初期感度試験時に記憶された初期値(基準受光値)92により受光信号の例えばピークレベルを割って検出感度係数を算出し、ステップS77で検出感度係数の逆数として受光信号の補正係数を算出して記憶し、受光信号レベルの補正に用いる。 Subsequently, the sensitivity test section 88 proceeds to step S73 to detect the peak level of the flame light reception signal (light reception signal) E1R by the test light output from the amplification processing section 66, and in step S74, the peak level shown in FIG. It is determined whether or not it is within the normal range 94, and if it is within the normal range 94, the process advances to step S75, and the peak level of the received light signal, for example, is determined based on the initial value (reference received light value) 92 stored during the initial sensitivity test at the time of shipment from the factory. A detection sensitivity coefficient is calculated by dividing, and in step S77, a correction coefficient for the received light signal is calculated as the reciprocal of the detection sensitivity coefficient, stored, and used for correction of the received light signal level.

続いて、感度試験部88はステップS77に進み、ステップS75で算出した検出感度係数が予め定めた所定の感度補正限界閾値(例えば0.5)に達するまで、ステップS71からの処理を繰り返す。なお、ステップS75における補正限界は、ステップS81と同様に、ピークレベルが故障閾値以下又はそれを下回った場合としても良い。 Subsequently, the sensitivity test unit 88 proceeds to step S77, and repeats the processing from step S71 until the detection sensitivity coefficient calculated in step S75 reaches a predetermined sensitivity correction limit threshold value (for example, 0.5). Note that the correction limit in step S75 may be the case where the peak level is equal to or below the failure threshold, as in step S81.

感度試験部88は、ステップS77で検出感度係数の感度補正限界閾値への到達を判別した場合は、ステップS78で所定の感度異常判定蓄積条件、例えば所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信する。 If the sensitivity test unit 88 determines in step S77 that the detection sensitivity coefficient has reached the sensitivity correction limit threshold value, in step S78, the sensitivity test unit 88 repeats steps from step S71 until a predetermined sensitivity abnormality determination accumulation condition, for example, a predetermined accumulation number threshold value is reached. The process is repeated, and when the sensitivity abnormality determination accumulation condition in step S78 is satisfied, a sensitivity abnormality signal is transmitted to the disaster prevention receiving panel 10 in step S79.

続いて、火災判断部86は感度試験部88における感度異常の判定を受けてステップS80で所定の感度異常処理を行う。この感度異常処理は、感度異常を判定した後は感度異常(例えば感度異常を伴う受光素子故障や電気回路故障等)による誤った火災判断がなされる可能性が高いことから、例えば火災判断部86における火災判断蓄積条件を設定する蓄積回数閾値を増加して実質的に火災感度を下げるか、或いは、火災信号の送信を停止する等の処理とする。 Subsequently, the fire determination section 86 receives the determination of the sensitivity abnormality in the sensitivity test section 88 and performs predetermined sensitivity abnormality processing in step S80. In this sensitivity abnormality processing, since there is a high possibility that an erroneous fire judgment is made due to a sensitivity abnormality (for example, a light-receiving element failure or an electric circuit failure that accompanies a sensitivity abnormality) after the sensitivity abnormality is determined, for example, the fire determination unit 86 The threshold for the number of times of accumulation for setting the fire judgment accumulation condition is increased to substantially lower the fire sensitivity, or the transmission of the fire signal is stopped.

一方、感度試験部88は、ステップS74で試験時の受光信号E1Rのピークレベルが正常範囲94を外れたことを判別するとステップS81に進み、ピークレベルが故障閾値96以下又は故障閾値を下回らない場合、即ち、図10(A)に示した、故障予兆範囲98にある場合は、故障予兆が発生したと判定して火災判断部86に通知する。なお、ステップS81の故障予兆の判定は、受光信号のピークレベルに限らず、例えば積分値や平均レベルに基づいて行っても良い。 On the other hand, if the sensitivity test section 88 determines in step S74 that the peak level of the received light signal E1R during the test is out of the normal range 94, the process proceeds to step S81. That is, when it is in the failure sign range 98 shown in FIG. Note that the determination of a sign of failure in step S81 is not limited to the peak level of the received light signal, and may be performed based on, for example, an integral value or an average level.

続いて、感度試験部88から故障予兆の判定結果の通知を受けた火災判断部86は、ステップS82で故障予兆の発生回数を計数するカウンタNを+1し(インクリメントし)、ステップS83で故障予兆の発生回数Nが所定の故障予兆判定蓄積条件として設定した閾値回数Nth以下又はそれを下回った場合は、ステップS71からの処理を繰り返す。 Subsequently, the fire judging unit 86 receives notification of the failure sign determination result from the sensitivity test unit 88, and in step S82 increments the counter N that counts the number of failure sign occurrences by +1 (increments). is less than or equal to the threshold number of times Nth set as the predetermined failure predictor determination accumulation condition, the process from step S71 is repeated.

このような故障予兆の発生回数Nのカウントの繰り返しにより、火災判断部86は、ステップS83で故障予兆の発生回数Nが所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に故障予兆と判定(確定)し、ステップS85に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS86で所定の故障予兆処理を行う。 By repeating the counting of the number of occurrences N of failure signs, the fire determination unit 86 determines in step S83 when the number of occurrences N of failure signs is equal to or greater than the predetermined threshold number of times Nth and the failure sign determination accumulation condition is satisfied. A failure sign is determined (confirmed), and the process proceeds to step S85 to transmit a failure sign signal to the disaster prevention receiving panel 10 to notify it, and then in step S86, predetermined failure sign processing is performed.

この故障予兆処理は、例えば、火災判断部86による火災判断蓄積条件として設定する蓄積回数閾値を増加させて火災判断蓄積条件を厳格にして実質的に火災感度を下げる。また、その後に火災判断部86で火災が判断されても、故障による誤った火災判断の可能性が高いことから火災信号の送信を停止して、非火災報の発生を抑止させる処理を行うようにしても良い。 In this failure sign processing, for example, the threshold for the number of times of accumulation set as the fire judgment accumulation condition by the fire judging unit 86 is increased to make the fire judgment accumulation condition stricter, thereby substantially lowering the fire sensitivity. Further, even if the fire determination unit 86 determines that there is a fire after that, there is a high possibility that the fire is determined to be erroneous due to a failure. You can do it.

また、火災判断部86は、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を応答送信し、防災受信盤10は取得した火災検知器12の故障予兆情報から故障予兆の発生回数を抽出して信頼性を評価し、信頼性有り又は信頼性低下を判断する。 Further, when receiving an internal state request command from the disaster prevention receiving panel 10, the fire determination unit 86 responds with failure predictor information including information indicating the number of occurrences N of failure predictors counted by the counter at that time, and receives disaster prevention. The board 10 extracts the number of occurrences of failure signs from the acquired failure sign information of the fire detector 12, evaluates the reliability, and judges whether or not the reliability is low.

一方、感度試験部88は、ステップS81で受光信号のピークレベルが故障閾値96以下に低下したことを判別した場合にはステップS78に進み、感度異常判定蓄積条件として設定した所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信し、続いてステップS80で所定の感度異常処理を行う。 On the other hand, if the sensitivity test unit 88 determines in step S81 that the peak level of the received light signal has decreased to the failure threshold value 96 or less, the process proceeds to step S78. The processing from step S71 is repeated until the threshold is reached, and when the sensitivity abnormality determination accumulation condition of step S78 is satisfied, a sensitivity abnormality signal is transmitted to the disaster prevention receiving panel 10 in step S79, and then predetermined sensitivity abnormality processing is performed in step S80.

また、本実施形態は火災検知器で定期的に行う感度試験により故障予兆の発生回数を求める場合を例にとっているが、これに限定されず、防災受信盤10からの試験指示操作により任意のタイミングで行われる試験を含み、また、感度試験以外の内部試験光源を駆動する適宜の試験も含む。左眼火災検知部60Lについても同様に行うことが出来る。また、試験時の第1の非炎受光信号E2R,E2L、第2の炎受光信号E3R,E3Lについても同様に行うことができる。
In addition, although this embodiment takes as an example the case where the number of occurrences of signs of failure is determined by periodically performing a sensitivity test on a fire detector, the present invention is not limited to this, and an arbitrary timing can be obtained by a test instruction operation from the disaster prevention receiving panel 10. Also includes any tests that drive the internal test light source other than the sensitivity test. The same can be done for the left eye fire detection section 60L. The same can be done for the first non-flame light receiving signals E2R and E2L and the second non -flame light receiving signals E3R and E3L during the test.

[火災判断部と感度試験部による故障予兆の判定]
本発明による火災検知器12の他の実施形態として、図5のフローチャートに示した火災判断部86による故障予兆の判定と、図11のフローチャートに示した感度試験部88による故障予兆の判定を組み合わせ、それぞれで判断された故障予兆の発生回数Nを累積してカウントするように構成し、火災信号を送信した火災検知器12から故障予兆の累積発生回数を示す情報を含む故障予兆情報を防災受信盤10で取得し、抽出した故障予兆の累積発生回数から信頼性を評価して信頼性有り、信頼性低下を判断する。
[Determination of signs of failure by fire determination unit and sensitivity test unit]
As another embodiment of the fire detector 12 according to the present invention, the determination of the sign of failure by the fire determination unit 86 shown in the flowchart of FIG. 5 and the determination of the sign of failure by the sensitivity test unit 88 shown in the flowchart of FIG. 11 are combined. , and counts the number N of occurrences of failure signs determined respectively, and receives failure sign information including information indicating the accumulated number of occurrences of failure signs from the fire detector 12 that has transmitted the fire signal. Reliability is evaluated from the number of cumulative occurrences of failure signs acquired and extracted by the board 10, and it is judged whether there is reliability or not.

また、故障予兆の判定も、故障予兆の累積発生回数が所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に、故障予兆と判定して故障予兆信号を防災受信盤10に送信して報知させ、続いて所定の故障予兆処理を行うようにする。 Further, in the judgment of a failure sign, when the accumulated number of occurrences of a failure sign is equal to or greater than a predetermined threshold number of times Nth and the failure sign determination accumulation condition is satisfied, it is judged as a failure sign and a failure sign signal is sent to the disaster prevention receiving panel 10. The information is transmitted and notified, and then predetermined failure sign processing is performed.

[本発明の変形例]
(火災検知器)
3波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、COの共鳴放射帯である4.5μm帯と、その短波長側の例えば、5.0μm付近の波長帯域における赤外線エネルギーを検知し、これらの2波長帯域における各受光信号の相対比によって炎の有無を判定する2波長式の炎検知器としても良い。
[Modification of the present invention]
(fire detector)
A three-wavelength type fire detector is taken as an example, but other methods may be used. A two-wavelength flame detector that detects infrared energy and determines the presence or absence of a flame based on the relative ratio of the received light signals in these two wavelength bands may be used.

(蓄積条件の変更)
また、上記の実施形態における火災検知器12の火災判断蓄積条件の変更、例えば火災判断蓄積回数閾値の変更は、火災検知器12自身が故障予兆処理として故障予兆判断条件を厳格にする(火災感度を下げる)ために蓄積回数閾値を増加する場合(図5のステップS14)と、防災受信盤10が信頼性低下と判断したときの指示を受けて火災判断蓄積条件を厳格(感度を緩和)にするために蓄積回数閾値を増加させる場合(図8のステップS51)とがあり、両者が重複して行われる場合には、全体の蓄積時間が必要以上に長くなり火災の発見が遅れることのないように適切に変更する。
(Change in Accumulation Conditions)
Further, when the fire detection accumulation condition of the fire detector 12 in the above-described embodiment is changed, for example, by changing the fire judgment accumulation count threshold, the fire detector 12 itself makes the failure omen judgment condition stricter as failure omen processing (fire sensitivity 5), and in response to an instruction when the disaster prevention receiver 10 determines that the reliability has decreased, the fire judgment accumulation condition is made stricter (relaxed sensitivity). There is a case where the accumulation number threshold is increased (step S51 in FIG. 8) in order to prevent the occurrence of a fire. change accordingly.

(P型トンネル防災システム)
上記の実施形態は、防災受信盤から引き出された信号線にアドレスが設定された火災検知を接続して火災監視する所謂R型のトンネル防災システムを示したが、本発明はこれに限定されず、防災受信盤から火災検知器単位に信号線を引き出し、各信号線に火災検知器が接続された所謂P型のトンネル防災システムについても同様である。
(P-type tunnel disaster prevention system)
The above embodiment shows a so-called R-type tunnel disaster prevention system that monitors fires by connecting a fire detection with an address set to a signal line drawn from a disaster prevention receiver panel, but the present invention is not limited to this. The same applies to a so-called P-type tunnel disaster prevention system in which a signal line is drawn out from a disaster prevention receiving panel for each fire detector and a fire detector is connected to each signal line.

一般的なP型のトンネル防災システムにあっては、防災受信盤と火災検知器との間で具体的な予兆発生回数等の情報通信はできないことから、上記の実施形態に示した防災受信盤で火災検知器の信頼性を評価して信頼性あり、信頼性低下と判断する機能は火災検知器側に設け、火災検知器で信頼性低下を判断した場合に、例えば、信号線を断線状態とすることで、又は信頼性低下信号専用線を設けるなどして信頼性情報を防災受信盤に送信して信頼性低下を報知させる。 In a general P-type tunnel disaster prevention system, information communication such as the number of specific warning signs cannot be communicated between the disaster prevention receiver and the fire detector. The function to evaluate the reliability of the fire detector and determine that it is reliable and that the reliability has decreased is provided on the fire detector side. By doing so, or by providing a dedicated line for reliability deterioration signal, the reliability information is transmitted to the disaster prevention receiving panel to notify the reliability deterioration.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(others)
The present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
36a,36b:伝送部
48:火災監視制御部
50R,50L:透光性窓
52R,52L:試験光源用透光
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64,68,72:センサ部
66,70,74:増幅処理部
76:試験発光駆動部
78R,78L,80R,80L,82R,82L:内部試験光源
84R,84L:外部試験光源
86:火災判断部
88:感度試験部
90:汚れ試験部
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver panel 12: Fire detectors 14a, 14b: Signal line 16: Fire pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Alarm display Board facility 26: Radio rebroadcast facility 28: Television monitoring facility 30: Lighting facility 32: Remote monitoring control facility 34: Panel control units 36a, 36b: Transmission unit 48: Fire monitoring control units 50R, 50L: Translucent window 52R, 52L: Translucent window for test light source 54: Detector control unit 56: Transmission unit 58: Power supply units 60R, 60L: Fire detection units 64, 68, 72: Sensor units 66, 70, 74: Amplification processing unit 76: Test Light emission drive units 78R, 78L, 80R, 80L, 82R, 82L: internal test light sources 84R, 84L: external test light sources 86: fire determination unit 88: sensitivity test unit 90: dirt test unit

Claims (9)

防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した前記火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、前記防災受信盤は前記火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、
前記火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
前記防災受信盤は、
前記火災検知器から前記故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、
信頼性有りと判断した前記火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に前記所定の火災処理を行い、
信頼性低下と判断した前記火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行う、
ことを特徴とするトンネル防災システム。
A plurality of fire detectors are connected to a disaster prevention receiving panel to monitor fires in detection areas, wherein the fire detectors adjacent to each other monitor fires by at least partially overlapping the detection areas, In a tunnel disaster prevention system in which the disaster prevention receiving panel performs predetermined fire processing based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure predictor information including the number of occurrences of its own predetermined failure predictor,
The disaster prevention receiving board
Obtaining the failure sign information from the fire detector, determining the reliability of the fire detector from the failure sign information,
When a fire signal is received from the fire detector determined to be reliable, the predetermined fire processing is performed when the fire signal is received again from the fire detector after restoring the fire detector,
When a fire signal is received from the fire detector determined to be unreliable, the predetermined first fire determination accumulation condition of the fire detector is changed to a predetermined second fire determination accumulation condition that is stricter than the first fire determination accumulation condition. , and a fire signal is sent from at least one of the fire detector whose fire judgment accumulation condition has been changed and an adjacent fire detector that is redundantly monitoring the detection area of the fire detector. When receiving, performing the predetermined fire treatment,
A tunnel disaster prevention system characterized by:
防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した前記火災検知器は検知エリアを少なくとも一部重複して監視しており、前記防災受信盤は前記火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、
前記火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
前記防災受信盤は、
前記トンネル単位又は前記トンネルの所定の区間ごとにグループ化された複数の前記火災検知器の前記故障予兆情報を取得し、当該故障予兆情報に基づき、前記トンネル単位、信号系統単位又は前記区間単位に前記火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、
前記信頼性情報から信頼性有りと判断した前記火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に前記所定の火災処理を行い、
前記信頼性情報から信頼性低下と判断した前記火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行う、
ことを特徴とするトンネル防災システム。
A plurality of fire detectors are connected to a disaster prevention receiving panel to monitor a fire in a detection area, the fire detectors adjacent to each other monitor the detection area at least partially, and the disaster prevention In a tunnel disaster prevention system in which the receiving panel performs fire processing based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure predictor information including the number of occurrences of its own predetermined failure predictor,
The disaster prevention receiving board
acquiring the failure predictor information of the plurality of fire detectors grouped for each tunnel or for each predetermined section of the tunnel, and based on the failure predictor information, for each tunnel, for each signal system, or for each section at least temporarily holding reliability information generated by determining the reliability of the fire detector;
When a fire signal is received from the fire detector determined to be reliable from the reliability information, the predetermined fire processing is performed when the fire signal is received again from the fire detector after the fire detector is restored. and
When a fire signal is received from the fire detector determined to be unreliable from the reliability information, a predetermined first fire determination accumulation condition of the fire detector is made stricter than the first fire determination accumulation condition. The fire detector whose second fire judgment accumulation condition has been changed and the adjacent fire detector that is redundantly monitoring the detection area of the fire detector is restored after changing to a predetermined second fire judgment accumulation condition. Perform the predetermined fire processing when receiving a fire signal from at least one of
A tunnel disaster prevention system characterized by:
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、複数の火災判定段階により火災を判断しており、
前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector judges a fire by a plurality of fire judgment stages,
If a fire is determined in at least one fire determination stage among the plurality of fire determination stages but is not determined to be a fire in any of the remaining fire determination stages, it is determined as a failure sign, and the number of occurrences of the failure sign. and at least temporarily holding the failure predictor information including the number of occurrences of the failure predictor,
The disaster prevention receiving panel determines that the reliability is lowered when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition. Tunnel disaster prevention system.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector performs a test to determine failure of the fire detection unit based on the received light signal when the test light source is driven. determining a failure sign if the failure judgment condition of (1) is not satisfied, and at least temporarily holding the failure sign information including information indicating the number of occurrences of the failure sign,
The disaster prevention receiving panel determines that the reliability is lowered when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment accumulation condition. Tunnel disaster prevention system.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、
前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数を示す情報を前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector,
A fire is determined by a plurality of fire determination stages, and a fire is determined in at least one fire determination stage among the plurality of fire determination stages, but a fire is not determined in any of the remaining fire determination stages. is determined to be the first failure sign, and the number of occurrences of the first failure sign is obtained;
A test is performed to determine the failure of the fire detection unit based on the received light signal when the test light source is driven. Although the level of the received light signal in the test is outside the predetermined normal range, the predetermined failure determination condition is satisfied. If not, it is determined to be a second failure sign and the number of occurrences of the second failure sign is obtained,
at least temporarily holding information indicating the number of occurrences of the first failure sign and the number of occurrences of the second failure sign as the failure sign information;
The disaster prevention receiving panel is configured such that either one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign extracted from the failure sign information acquired from the fire detector has a predetermined reliability. A tunnel disaster prevention system characterized by judging reliability deterioration when a judgment storage condition is satisfied.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、前記故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに所定の故障予兆処理を行うことを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The tunnel disaster prevention system, wherein the fire detector performs predetermined failure sign processing when the number of occurrences of the failure sign satisfies a predetermined failure sign determination accumulation condition.
請求項6記載のトンネル防災システムに於いて、
前記火災検知器は、前記故障予兆処理として、前記防災受信盤に故障予兆信号を送信すると共に、前記火災信号の送信を停止し、
前記防災受信盤は、前記火災検知器から前記故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 6,
The fire detector, as the failure prediction process, transmits a failure prediction signal to the disaster prevention receiving panel and stops transmission of the fire signal,
The tunnel disaster prevention system, wherein the disaster prevention receiving panel transmits a failure prediction transfer signal to remote monitoring and control equipment to notify the remote monitoring and control equipment when the failure prediction signal is received from the fire detector.
請求項1又は2記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災信号を受信した前記火災検知器について前記信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している前記隣接火災検知器の少なくとも一台の火災判断蓄積条件を前記第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The disaster prevention receiver panel monitors the fire detector and the detection area of the fire detector redundantly when it is determined that the reliability of the fire detector that received the fire signal has decreased. A tunnel disaster prevention system, wherein the fire judgment accumulation condition of at least one of the vessels is changed to a predetermined third fire judgment condition accumulation condition that relaxes the first fire judgment accumulation condition.
請求項1又は2記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災信号を受信した前記火災検知器について前記信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している前記隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
After determining that the reliability of the fire detector that has received the fire signal has decreased, the disaster prevention receiver board receives the fire signal from the adjacent fire detector that redundantly monitors the detection area of the fire detector and the fire detector. A tunnel disaster prevention system characterized in that, when a fire signal is not received, a non-fire alarm signal is sent to remote monitoring and control equipment to inform the operator.
JP2019081393A 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector Active JP7336248B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023116420A JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018236904 2018-12-19
JP2018236904 2018-12-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2023116420A Division JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Division JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Publications (2)

Publication Number Publication Date
JP2020102181A JP2020102181A (en) 2020-07-02
JP7336248B2 true JP7336248B2 (en) 2023-08-31

Family

ID=71139747

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019081393A Active JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector
JP2023116420A Pending JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2023116420A Pending JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Country Status (1)

Country Link
JP (3) JP7336248B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042264A (en) 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP2009026180A (en) 2007-07-23 2009-02-05 Hochiki Corp Fire receiver and control method
JP2018136726A (en) 2017-02-22 2018-08-30 ホーチキ株式会社 Disaster prevention system
JP2018169893A (en) 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042264A (en) 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP2009026180A (en) 2007-07-23 2009-02-05 Hochiki Corp Fire receiver and control method
JP2018136726A (en) 2017-02-22 2018-08-30 ホーチキ株式会社 Disaster prevention system
JP2018169893A (en) 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP2020102181A (en) 2020-07-02
JP2023156477A (en) 2023-10-24
JP2023134692A (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2018169893A5 (en)
JP7085670B2 (en) Disaster prevention system
JP2023089258A (en) Fire detector and tunnel disaster prevention system
KR102176533B1 (en) Fire alarm system using artificial intelligence
JP2023055960A (en) Disaster prevention system and fire detector
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
KR101145414B1 (en) Fire alarm system linked power monitoring unit
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
JP7441919B2 (en) disaster prevention system
JP7336252B2 (en) Tunnel disaster prevention system
KR102327158B1 (en) Remote firefighting management system using CCTV image
KR102569035B1 (en) System for Automatic Fire Detection working with Disconnected Detection Line
JP7100743B2 (en) Disaster prevention system
JP7475114B2 (en) Monitoring system
JP6746444B2 (en) Tunnel disaster prevention system
KR20100053128A (en) System based on network for detecting a fire
JP7358071B2 (en) Monitoring system
JP2023015283A (en) disaster prevention system
JP2023052809A (en) disaster prevention system
JP6949175B2 (en) Tunnel disaster prevention system
JP7241831B2 (en) disaster prevention system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150