JP2020102181A - Tunnel disaster prevention system and fire detector - Google Patents

Tunnel disaster prevention system and fire detector Download PDF

Info

Publication number
JP2020102181A
JP2020102181A JP2019081393A JP2019081393A JP2020102181A JP 2020102181 A JP2020102181 A JP 2020102181A JP 2019081393 A JP2019081393 A JP 2019081393A JP 2019081393 A JP2019081393 A JP 2019081393A JP 2020102181 A JP2020102181 A JP 2020102181A
Authority
JP
Japan
Prior art keywords
fire
signal
failure sign
disaster prevention
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019081393A
Other languages
Japanese (ja)
Other versions
JP7336248B2 (en
Inventor
泰周 杉山
Yasunori Sugiyama
泰周 杉山
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Publication of JP2020102181A publication Critical patent/JP2020102181A/en
Priority to JP2023116420A priority Critical patent/JP2023134692A/en
Priority to JP2023133776A priority patent/JP2023156477A/en
Application granted granted Critical
Publication of JP7336248B2 publication Critical patent/JP7336248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

To provide a tunnel disaster prevention system and a fire detector that can suppress a false alarm by determining the reliability of a fire detector to which a fire signal has been transmitted.SOLUTION: A fire detector 12 connected to signal lines 14a and 14b from a disaster prevention reception panel 10 holds failure sign information containing a number of occurrences of a failure sign. The disaster prevention reception panel 10 estimates and determines reliability of the fire detector 12 by acquiring the failure sign information simultaneously when receiving a fire signal from the failure detector 12. If it is determined that the failure detector 12 is reliable, prescribed fire processing is performed when a fire signal is received from the same failure detector 12 again after the fire detector 12 is recovered. If deterioration in reliability is determined, the fire detector 12 that transmitted the fire signal is recovered, the prescribed fire processing is performed by determining there is a fire when receiving a fire signal from the fire detector 12 and the adjacent fire detector in the detection area as the fire detector 12. When this fire determination is not satisfied, it is determined there is not a fire and the fire processing is not performed.SELECTED DRAWING: Figure 1

Description

本発明は、防災受信盤から引き出された信号線に接続された火災検知器によりトンネル内の火災を監視するトンネル防災システム及び火災検知器に関する。 The present invention relates to a tunnel disaster prevention system and a fire detector for monitoring a fire in a tunnel with a fire detector connected to a signal line drawn from a disaster prevention reception board.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されて火災を監視している。 Conventionally, in a tunnel such as an automobile road, a fire detector is installed to monitor a fire to protect people and vehicles from a fire accident that occurs in the tunnel, and it is connected to a signal line drawn from a disaster prevention reception board. Are watching for fire.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detector has detection areas in both left and right directions, and for example, at intervals of 25 m or 50 m so that the detection areas of adjacent fire detectors overlap each other along the longitudinal direction of the tunnel. It is arranged continuously at intervals.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を点検するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, the fire detector monitors the radiation from the fire flame generated in the tunnel through the translucent window, such as infrared rays, and in order to maintain the flame monitoring function, in order to check the sensitivity of the light receiving element. The sensitivity test and the dirt test to monitor the dirt of the translucent window are performed.

しかしながら、このような従来の火災検知器にあっては、運用期間が長くなって火災検知器の劣化が進んだ場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態でも、火災検知器が火災検知信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、交通渋滞を招くなどの影響が小さくない。 However, in such a conventional fire detector, when the operation period is extended and the fire detector is deteriorated, the sensor can be normally operated without detecting a sensor failure due to a sensitivity test or a stain abnormality due to a stain test. Even when it seems to be in operation, there is a possibility that the fire detector will output a fire detection signal and the non-fire alarm will be output from the disaster prevention reception panel. Until it is confirmed that it is necessary to prohibit the vehicle from passing through the tunnel by issuing an entry prohibition alarm with an alarm display board facility etc., the person in charge must go to the site and check it, and it is troublesome before restarting the tunnel traffic. It takes a lot of time, and the effect of causing traffic congestion is not small.

このため、防災受信盤で火災検知器の温度、湿度、衝撃振動及び電気的ノイズ等の環境ストレスに基づいて劣化の度合いを判定して報知するようにしたトンネル防災システムが提案されており、火災検知器の劣化の進み具合が把握できることで、非火災報が出されてしまう前に、火災検知器を予備の火災検知器に交換する等の対応を可能としている。 For this reason, a tunnel disaster prevention system has been proposed in which the degree of deterioration is judged and notified based on the environmental stress such as temperature, humidity, shock vibration and electrical noise of the fire detector on the disaster prevention reception board. By knowing the progress of deterioration of the detector, it is possible to take measures such as replacing the fire detector with a spare fire detector before a non-fire alarm is issued.

また、従来のトンネル防災システムは、防災受信盤が火災検知器からの火災信号を受信したときに、非火災報を防止するために、所定時間後に火災検知器を一旦復旧し、再度、所定時間以内に火災信号を受信したときに火災と判断して警報表示板設備などにより進入禁止警報を行っている。 In addition, the conventional tunnel fire prevention system, when the fire prevention reception board receives the fire signal from the fire detector, in order to prevent the non-fire alarm, the fire detector is temporarily restored after a predetermined time and then again for the predetermined time. When a fire signal is received within that time, it is judged that a fire has occurred, and the entry prohibition alarm is given by means of an alarm display board facility.

特開2002−246962号公報JP-A-2002-246962 特開2016−128796号公報JP, 2016-128796, A 特開2018−169893号公報JP, 2018-169893, A

しかしながら、このような従来の火災検知器にあっては、故障や想定外の非火災要因等に起因した誤った火災判断により火災信号を送信していた場合、一旦復旧した後も、故障や非火災要因等が解消されていない場合には、再度火災信号を送信してしまうことがあるため、非火災報による問題が依然として残されている。 However, in such a conventional fire detector, if a fire signal is transmitted due to an erroneous fire judgment due to a failure or an unexpected non-fire factor, etc. If the cause of the fire has not been resolved, the fire signal may be sent again, so the problem of non-fire alarms still remains.

本発明は、火災信号を送信した火災検知器の信頼性を判断することにより非火災報を抑制可能とするトンネル防災システム及び火災検知器を提供することを目的とする。 An object of the present invention is to provide a tunnel disaster prevention system and a fire detector capable of suppressing non-fire information by judging the reliability of the fire detector that has transmitted a fire signal.

(第1発明:トンネル防災システム:防災受信盤での信頼性判断)
本発明は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、防災受信盤は火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、
火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
防災受信盤は、
火災検知器から故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、
信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、
信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行う、
ことを特徴とする。
(First invention: tunnel disaster prevention system: reliability judgment on disaster prevention reception board)
The present invention is to connect a plurality of fire detectors to a disaster prevention reception board to monitor a fire in a detection area. Fire detectors adjacent to each other monitor a fire by overlapping at least a part of the detection area. Therefore, the disaster prevention reception board is a tunnel disaster prevention system that performs predetermined fire processing based on the fire signal from the fire detector.
The fire detector holds at least temporarily failure sign information including the number of occurrences of its own predetermined failure sign,
Disaster prevention reception board,
Obtain failure sign information from the fire detector, judge the reliability of the fire detector from the failure sign information,
When a fire signal is received from a fire detector that is judged to be reliable, perform the prescribed fire processing when the fire signal is received again from the fire detector after restoring the fire detector.
When a fire signal is received from a fire detector that is judged to have reduced reliability, the predetermined first fire judgment accumulation condition of the fire detector is set to a predetermined second fire that is stricter than the first fire judgment accumulation condition. When a fire signal is received from at least one of the fire detector that changed the judgment accumulation condition and recovered, and the fire detection target that changed the fire judgment accumulation condition and the adjacent fire detector that duplicately monitors the detection area of the fire detector. To the prescribed fire treatment,
It is characterized by

(第2発明:トンネル単位、信号系統単位又は区間単位の信頼性情報の生成)
本発明の別の形態は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して監視しており、防災受信盤は火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、
火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
防災受信盤は、
トンネル単位又はトンネルの所定の区間ごとにグループ化された複数の火災検知器の故障予兆情報を取得し、当該故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、
信頼性情報から信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、
信頼性情報から信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行う、
ことを特徴とする。
(Second invention: generation of reliability information in tunnel units, signal system units or section units)
Another aspect of the present invention is to connect a plurality of fire detectors to a disaster prevention reception board to monitor a fire in a detection area, and the fire detectors adjacent to each other overlap at least a part of the detection area. In the tunnel disaster prevention system that monitors and the fire prevention reception board performs fire processing based on the fire signal from the fire detector,
The fire detector holds at least temporarily failure sign information including the number of occurrences of its own predetermined failure sign,
Disaster prevention reception board,
Acquires failure sign information of multiple fire detectors grouped in a tunnel unit or each predetermined section of the tunnel, and based on the failure sign information, reliability of the fire detector in tunnel unit, signal system unit or section unit The reliability information generated by judging
When a fire signal is received from a fire detector that is judged to be reliable from the reliability information, perform the prescribed fire processing when the fire signal is received again from the fire detector after restoring the fire detector.
When a fire signal is received from a fire detector that has been determined to have reduced reliability from the reliability information, the predetermined first fire judgment accumulation condition of the fire detector is set to a stricter predetermined condition than the first fire judgment accumulation condition. At least one of the fire detector and the adjacent fire detector that duplicately monitor the detection area of the fire detector that has been changed to the second fire determination and accumulation condition and restored, and that has changed the second fire determination and accumulation condition. When a fire signal is received from, perform the prescribed fire treatment,
It is characterized by

(故障予兆の詳細1)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、複数の火災判定段階により火災を判断しており、
複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure sign 1)
In the tunnel disaster prevention system of the first or second invention,
The fire detector judges a fire through multiple fire judgment stages,
If at least one of the multiple fire judgment stages is judged to be a fire but is not judged to be a fire at any of the remaining fire judgment stages, it is judged as a failure sign and the number of occurrences of the failure sign is calculated. And at least temporarily retain failure sign information including the number of occurrences of the failure sign,
The disaster prevention receiver board determines that the reliability is deteriorated when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment storage condition.

(故障予兆の詳細2)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure sign 2)
In the tunnel disaster prevention system of the first or second invention,
The fire detector conducts a test to judge the failure of the fire detection part based on the light reception signal when the test light source is driven.The level of the light reception signal by the test is outside the predetermined normal range, but the predetermined failure judgment is made. If the condition is not satisfied, it is determined to be a failure sign, and at least temporarily holds failure sign information including information indicating the number of occurrences of the failure sign,
The disaster prevention receiver board determines that the reliability is deteriorated when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment storage condition.

(故障予兆の詳細3)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、
第1の故障予兆の発生回数と第2の故障予兆の発生回数を示す情報を故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断する。
(Details of failure sign 3)
In the tunnel disaster prevention system of the first or second invention,
Fire detector
A fire is judged by multiple fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. And the number of occurrences of the first failure sign is determined, and
We are conducting a test to judge the failure of the fire detection part based on the received light signal when the test light source is driven, and the level of the received light signal by the test is outside the specified normal range, but the specified failure judgment condition is not satisfied. If the second failure sign is determined, the number of occurrences of the second failure sign is determined,
Information indicating the number of occurrences of the first failure sign and the number of occurrences of the second failure sign is held at least temporarily as failure sign information,
In the disaster prevention receiver panel, one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign extracted from the failure sign information acquired from the fire detector satisfy a predetermined reliability judgment storage condition. When it does, it is judged that the reliability is reduced.

(故障予兆の判断)
第1又は第2発明のトンネル防災システムにおいて、
火災検知器は、故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに所定の故障予兆処理を行うム。
(Judgment of failure sign)
In the tunnel disaster prevention system of the first or second invention,
The fire detector performs a predetermined failure sign process when the number of occurrences of the failure sign satisfies a predetermined failure sign judgment accumulation condition.

(故障予兆処理)
火災検知器は、故障予兆処理として、防災受信盤に故障予兆信号を送信すると共に、火災信号の送信を停止し、
防災受信盤は、火災検知器から故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させる。
(Fault sign processing)
The fire detector transmits a failure sign signal to the disaster prevention reception board as a failure sign processing, and stops the transmission of the fire signal,
When receiving the failure sign signal from the fire detector, the disaster prevention receiver board sends a failure sign transfer signal to the distant monitoring and control equipment to notify it.

(隣接火災検知器の感度アップ)
第1又は第2発明のトンネル防災システムにおいて、
防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断蓄積条件に変更する。
(Improved sensitivity of adjacent fire detector)
In the tunnel disaster prevention system of the first or second invention,
The disaster prevention reception panel has at least one of the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector when it is determined that the fire detector receiving the fire signal has decreased reliability. The fire judgment accumulation condition of is changed to a predetermined third fire judgment accumulation condition which is a relaxation of the first fire judgment accumulation condition.

(遠方監視制御設備への非火災移報送信)
第1又は第4発明のトンネル防災システムにおいて、
防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させる。
(Transmission of non-fire notification to remote monitoring and control equipment)
In the tunnel disaster prevention system of the first or fourth invention,
After determining that the fire detector that received the fire signal has decreased reliability, the disaster prevention receiver receives the fire signal from the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector. If not, a non-fire notification signal is sent to the distant monitoring and control facility to notify it.

(第3発明:火災検知器1)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
所定の故障予兆の発生回数を少なくとも一時的に保持しており、
故障予兆の発生回数に基づき自己の信頼性低下と判断した場合に防災受信盤に信頼性低下信号を送信することを特徴とする。
(Third invention: fire detector 1)
Another form of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception board.
At least temporarily holds the number of occurrences of a predetermined failure sign,
It is characterized by transmitting a reliability deterioration signal to the disaster prevention reception board when it is judged that the reliability of itself has deteriorated based on the number of occurrences of the failure sign.

(第 4発明:火災検知器2)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、
故障予兆の発生回数が所定の信頼性判断蓄積定条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信することを特徴とする。
(Fourth invention: Fire detector 2)
Another form of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception board.
A fire is judged by multiple fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. Is judged as a failure sign and the number of occurrences of the failure sign is held at least temporarily,
It is characterized in that when the number of occurrences of a failure sign satisfies a predetermined reliability judgment accumulation fixed condition, it is judged that the self reliability is deteriorated and a reliability deterioration signal is transmitted to the disaster prevention receiver board.

(第5発明:火災検知器3)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており
試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、
故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信することを特徴とする。
(Fifth invention: Fire detector 3)
Another form of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception board.
We are conducting a test to judge the failure of the fire detection unit based on the received light signal when the test light source is driven. The level of the received light signal by the test was outside the specified normal range, but the specified failure judgment condition was not satisfied. In this case, it is judged as a failure sign and at least temporarily holds the number of occurrences of the failure sign,
It is characterized in that when the number of occurrences of a failure sign satisfies a predetermined reliability judgment storage condition, it is judged that the reliability of itself has deteriorated and a reliability deterioration signal is transmitted to the disaster prevention receiver board.

(第6発明:火災検知器4)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断すると共に当該第1の故障予兆の発生回数を少なくとも一時的に保持し、且つ
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断すると共に当該第2の故障予兆の発生回数を求めて少なくとも一時的に保持し、
第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信することを特徴とする。
(Sixth invention: fire detector 4)
Another form of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception board.
A fire is judged by multiple fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. In addition to the first failure sign, the number of occurrences of the first failure sign is held at least temporarily, and a test is performed to judge the failure of the fire detection unit based on the light reception signal when the test light source is driven. When the level of the received light signal by the test is out of the predetermined normal range but the predetermined failure judgment condition is not satisfied, the second failure sign is determined and the number of occurrences of the second failure sign is determined. Hold for at least temporary,
When either or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign satisfy a predetermined reliability judgment storage condition, it is judged that the reliability of the self is deteriorated and the disaster prevention receiver board is judged. It is characterized by transmitting a reliability deterioration signal.

(火災信号の送信停止)
第3発明乃至第6発明の火災検知器に於いて、自己の信頼性低下と判断した場合に、火災信号の送信を停止する。
(Stop sending fire signals)
In the fire detector of the third invention to the sixth invention, the transmission of the fire signal is stopped when it is determined that the reliability of the fire detector is deteriorated.

(第7発明:トンネル防災システム)
本発明の別の形態は、第4乃至第6発明の何れかの火災検知器を防災受信盤に接続して検知エリアの火災を監視するトンネル防災システムに於いて、
防災受信盤は、火災検知器から信頼性低下信号を受信した場合に、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うことを特徴とする。
(Seventh invention: Tunnel disaster prevention system)
Another aspect of the present invention is a tunnel disaster prevention system for monitoring a fire in a detection area by connecting the fire detector according to any one of the fourth to sixth inventions to a disaster prevention reception panel,
The disaster prevention receiver board, when receiving the reliability deterioration signal from the fire detector, sets the predetermined first fire judgment accumulation condition of the fire detector to the second predetermined condition that is stricter than the first fire judgment accumulation condition. A fire signal was received from at least one of the fire detector that changed the fire judgment accumulation condition and recovered, and the adjacent fire detector that duplicately monitors the detection area of the fire detector and the fire detector that changed the fire judgment accumulation condition. Sometimes, it is characterized by performing a predetermined fire treatment.

(第1発明のトンネル防災システムの効果:防災受信盤での信頼性判断)
本発明は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、防災受信盤は火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、防災受信盤は、火災検知器から故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、火災検知器が受光素子の故障や原因不明の非火災要因等により火災信号を送信しても、火災信号を送信した火災検知器の故障予兆の発生回数に基づく故障予兆情報にから信頼性を判断し、信頼性低下と判断した場合は非火災報と見做してトンネルの進入禁止警報を伴う火災処理を行うことがなく、不必要にトンネル通行を止めてしまうことを防止可能とする。
(Effects of the tunnel disaster prevention system of the first invention: Judgment of reliability at disaster prevention reception board)
The present invention is to connect a plurality of fire detectors to a disaster prevention reception board to monitor a fire in a detection area. Fire detectors adjacent to each other monitor a fire by overlapping at least a part of the detection area. In a tunnel disaster prevention system in which the disaster prevention reception board performs predetermined fire processing based on the fire signal from the fire detector, the fire detector includes failure sign information including the number of occurrences of its own specified failure sign. At least temporarily, the disaster prevention reception panel acquires failure sign information from the fire detector, judges the reliability of the fire detector from the failure sign information, and judges that the fire detector is reliable. When a fire signal is received from the fire detector, after the fire detector is restored, if the fire signal is received again from the fire detector, the prescribed fire processing is performed, and the fire signal from the fire detector that is judged to have reduced reliability is sent. When received, change the specified first fire judgment accumulation condition of the relevant fire detector to the specified second fire judgment accumulation condition that is stricter than the first fire judgment accumulation condition and restore to recover the fire judgment accumulation. When a fire signal is received from at least one of the fire detector that changed the conditions and the adjacent fire detector that is duplicatingly monitoring the detection area of the fire detector, the specified fire process is performed. Even if the detector sends a fire signal due to a failure of the light receiving element or a non-fire factor for which the cause is unknown, the reliability is judged from the failure sign information based on the number of times the failure sign of the fire detector that sent the fire signal has occurred. When it is judged that the reliability is low, it is considered as a non-fire alarm and the fire treatment accompanied by the tunnel entry prohibition warning is not performed, and it is possible to prevent the tunnel from being unnecessarily stopped.

また、信頼性低下と判断することで非火災報と見做しても、非火災報となった火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更して非火災報を出しにくくして復旧し、火災判断蓄積条件を変更した火災検知器と同じ警戒エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、間違いなく火災と判断してトンネルの進入禁止警報を含む火災処理を行うことで、確実に火災を検知して対処することができる。 In addition, even if it is considered as a non-fire alarm due to a decrease in reliability, the first fire judgment accumulation condition of the fire detector that became a non-fire alarm is changed to the strict second fire judgment accumulation condition. Error when receiving a fire signal from at least one adjacent fire detector that is redundantly monitoring the same warning area as the fire detector whose fire judgment and accumulation conditions have been changed. It is possible to reliably detect and deal with a fire by determining that it is a fire and performing fire processing including a tunnel entry prohibition warning.

(第2発明のトンネル防災システムの効果:トンネル単位、信号系統単位又は区間単位の信頼性情報の生成)
本発明の他の形態は、防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した火災検知器は検知エリアを少なくとも一部重複して監視しており、防災受信盤は火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、防災受信盤は、トンネル単位又はトンネルの所定の区間ごとにグループ化された複数の火災検知器の故障予兆情報を取得し、当該故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、信頼性情報から信頼性有りと判断した火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に所定の火災処理を行い、信頼性情報から信頼性低下と判断した火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、前述した第1発明の効果に加え、トンネル単位、信号系統単位又は区間単位に特有な温度、湿度、電気的ノイズ等の環境要因に基づいた火災検知器の故障予兆情報を評価して信頼性を判断でき、信頼性低下と判断した場合は非火災報と見做してトンネルの進入禁止警報等を伴う火災処理を行うこと防止可能とする。
(Effect of Tunnel Disaster Prevention System of Second Invention: Generation of Reliability Information in Tunnel Unit, Signal System Unit or Section Unit)
Another aspect of the present invention is to connect a plurality of fire detectors to a disaster prevention reception board to monitor a fire in a detection area, and the fire detectors adjacent to each other overlap at least a part of the detection area. In the tunnel disaster prevention system where the fire prevention receiver monitors the fire signal based on the fire signal from the fire detector, the fire detector displays the failure sign information including the number of occurrences of its own predetermined failure sign. At least temporarily, the disaster prevention reception board acquires failure sign information of multiple fire detectors grouped in tunnel units or each predetermined section of the tunnel, and based on the failure sign information, tunnel unit , At least temporarily holds the reliability information generated by judging the reliability of the fire detector for each signal system or section, and outputs the fire signal from the fire detector judged to be reliable from the reliability information. When it is received, if the fire signal is received again from the fire detector after the fire detector is restored, the prescribed fire processing is performed, and the fire signal from the fire detector that is judged to have decreased reliability from the reliability information is sent. When it is received, the predetermined first fire judgment storage condition of the fire detector is changed to the second predetermined fire judgment storage condition that is stricter than the first fire judgment storage condition to recover the second fire judgment storage condition. When a fire signal is received from at least one of the fire detector that has changed the fire judgment accumulation condition and the adjacent fire detector that is duplicatively monitoring the detection area of the fire detector, perform a predetermined fire treatment. Therefore, in addition to the effect of the first invention described above, reliability is obtained by evaluating failure sign information of the fire detector based on environmental factors such as temperature, humidity, and electrical noise that are peculiar to each tunnel, signal system or section. If it is judged that the reliability has deteriorated, and it is judged that the reliability has deteriorated, it is possible to prevent it from being considered as a non-fire alarm and to carry out fire treatment with a tunnel entry prohibition warning.

(故障予兆情報の詳細1による効果)
また、第1及び第2発明の火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持し、防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、火災検知器が故障や非火災要因等により複数の火災判定段階を経て火災判断により火災信号を出力するには、それまでの間に、複数の火災判定段階の途中で火災と判断するに至らなかった故障予兆が何回か生じており、この故障予兆の発生回数を求めて故障予兆情報を生成し、信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of detail 1 of failure sign information)
Further, the fire detectors of the first and second aspects of the present invention judge the fire by a plurality of fire judgment stages, and at least one of the plurality of fire judgment stages is judged to be a fire but the remaining fire is judged. If it is not judged as a fire at any of the fire judgment stages, it is judged as a failure sign and the number of occurrences of the failure sign is calculated, and failure sign information including the number of occurrences of the failure sign is at least temporarily stored and disaster prevention reception is performed. The panel determines that the reliability of the fire detector is low when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies the predetermined reliability judgment storage condition. In order to output a fire signal based on a fire judgment after a plurality of fire judgment stages due to a fire factor, etc., the number of failure signs that could not be judged as a fire during the plurality of fire judgment stages until then Even if the fire detector determines that a fire has occurred, the number of occurrences of the failure sign will be calculated by generating the failure sign information by obtaining the number of occurrences of the failure sign and using it as the basis for judging the reliability. If the number is large, the possibility of non-fire alarm is high, so it is judged that the reliability is low, and it is possible to reliably prevent fire processing by non-fire alarm.

(故障予兆情報の詳細2による効果)
また、第1又は第2発明の火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む故障予兆情報を少なくとも一時的に保持し、防災受信盤は、火災検知器から取得した故障予兆情報から抽出した故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、火災検知器が試験光源を駆動した際の受光信号に基づき例えばセンサ部と増幅処理部を備えた火災検知部の故障が判断されるには、それまでの間に、受光素子の劣化等により受光信号のレベルが正常範囲を外れたが例えば故障閾値には達せずに故障判断条件を充足しない故障予兆を何回か発生じており、この火災検知器の試験における故障予兆の発生回数を信頼性を判断するための根拠とすることで、火災検知器が受光素子の故障を判断しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Effect of detail 2 of failure sign information)
In addition, the fire detector of the first or second invention is performing a test for determining a failure of the fire detection unit based on the received light signal when the test light source is driven, and the level of the received light signal by the test is a predetermined normal value. If it is out of the range but does not satisfy the predetermined failure determination condition, it is determined to be a failure sign, and at least temporarily holds failure sign information including information indicating the number of occurrences of the failure sign. When the fire detector drives the test light source, it is determined that the reliability has decreased when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies the predetermined reliability judgment storage condition. Based on the received light signal of, for example, the failure of the fire detection unit including the sensor unit and the amplification processing unit is judged, the level of the received light signal is out of the normal range until then due to deterioration of the light receiving element. For example, the failure sign does not reach the failure threshold and the failure sign that does not satisfy the failure judgment condition is generated several times, and the number of occurrences of the failure sign in the test of this fire detector is used as the basis for judging the reliability. Even if the fire detector does not judge the failure of the light receiving element, if the number of occurrences of the failure sign is high, the possibility of non-fire alarm is high, so it is judged that the reliability is low, and the fire treatment by non-fire alarm is performed. It is possible to reliably prevent.

(故障予兆情報の詳細3による効果)
また、第1又は第2発明の火災検知器は、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、第1の故障予兆の発生回数と第2の故障予兆の発生回数を示す情報を故障予兆情報を少なくとも一時的に保持し、
防災受信盤は、火災検知器から取得した故障予兆情報から抽出した第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断するようにしたため、前述した信頼性情報1の効果と信頼性情報2の効果を併せた効果が得られる。
(Effect of detail 3 of failure sign information)
Further, the fire detector of the first or second invention judges the fire by a plurality of fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but the remaining When a fire is not judged at any of the fire judgment stages, it is judged as the first failure sign, the number of occurrences of the first failure sign is obtained, and the fire is detected based on the light reception signal when the test light source is driven. We are conducting a test to determine the failure of the detector, and when the level of the received light signal by the test is out of the predetermined normal range but does not satisfy the predetermined failure judgment condition, it is judged as the second failure sign. The number of occurrences of the second failure sign is obtained, information indicating the number of occurrences of the first failure sign and the number of occurrences of the second failure sign is retained at least temporarily as failure sign information,
In the disaster prevention receiver panel, one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign extracted from the failure sign information acquired from the fire detector satisfy a predetermined reliability judgment storage condition. Since it is determined that the reliability has deteriorated when the above-described case is performed, it is possible to obtain the combined effect of the reliability information 1 and the reliability information 2 described above.

(故障予兆処理の効果)
また、火災検知器は、故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに故障予兆を確定して所定の故障予兆処理を行うようにしたため、火災検知器が非火災報となる火災信号を送信する前に、故障予兆が確定して火災信号の送信が禁止されることで、非火災報の発生を未然に防止可能とする。
(Effect of failure sign processing)
In addition, the fire detector determines the failure sign and performs the predetermined failure sign processing when the number of occurrences of the failure sign satisfies the predetermined failure sign judgment accumulation condition. Before the fire signal is transmitted, the failure sign is determined and the transmission of the fire signal is prohibited, so that the non-fire alarm can be prevented from occurring.

また、火災検知器は、故障予兆処理として、防災受信盤に故障予兆信号を送信すると共に、火災信号の送信を停止し、防災受信盤は、火災検知器から故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させるようにしたため、遠方監視制御設備側の担当者はトンネルに設置した火災検知器の状況を把握して点検修理等の適切な対応が可能となる。 In addition, the fire detector transmits a failure sign signal to the disaster prevention reception board as a failure sign processing, and stops the transmission of the fire signal, and the disaster prevention reception board receives the failure sign signal from the fire detector, By sending a warning sign transfer signal to the distant monitoring control equipment to notify it, the person in charge of the distant monitoring control equipment can grasp the situation of the fire detector installed in the tunnel and take appropriate measures such as inspection and repair. It will be possible.

(隣接火災検知器の感度アップの効果)
また、防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台の火災判断蓄積条件を第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更するようにしたため、実火災であった場合、隣接した火災検知器が火災判断蓄積条件の緩和により高感度に変更されて迅速に火災信号を送信し、第1報目の火災信号を送信して信頼性低下と判断された火災検知器の復旧後の火災信号の受信を待って火災処理を行うことができる。
(The effect of increasing the sensitivity of the adjacent fire detector)
In addition, the disaster prevention reception panel, when it is determined that the fire detector that received the fire signal has deteriorated reliability, at least the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector. In the case of an actual fire, the adjacent fire detector will judge the fire if it is an actual fire because the one fire judgment accumulation condition is changed to the predetermined third fire judgment condition accumulation condition that relaxes the first fire judgment accumulation condition. The fire signal was changed to high sensitivity due to the relaxation of the storage condition, and the fire signal was transmitted quickly, and the first fire signal was transmitted to wait for the reception of the fire signal after the recovery of the fire detector that was judged to have decreased reliability. Fire treatment can be performed.

(遠方監視制御設備への非火災移報送信による効果)
また、防災受信盤は、火災信号を受信した火災検知器について信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させるようにしたため、複数のトンネルを監視している遠方監視制御設備側の担当者は、非火災報は出力されなかったが、火災以外の要因により火災検知器の火災判定動作が所定頻度で行われたこと(火災判定の結果、火災候補となったこと)を知ることができ、この傾向から非火災報に発展し得る状態を認識することで、トンネル側の火災検知器による火災の監視状況を適切に把握して、トンネルの運用管理に利用可能とする。
(Effect of non-fire transfer notification to remote monitoring and control equipment)
In addition, the disaster prevention reception panel, after judging that the fire detector that received the fire signal has deteriorated in reliability, receives a fire signal from the fire detector and the adjacent fire detector that is monitoring the detection area of the fire detector in duplicate. If it is not received, a non-fire notification signal is sent to the remote monitoring and control equipment to notify it, so the person in charge of the remote monitoring and control equipment monitoring multiple tunnels will output the non-fire notification. However, it was possible to know that the fire detection operation of the fire detector was performed at a predetermined frequency due to factors other than the fire (the result of the fire determination was a candidate for a fire). By recognizing the conditions that can develop, the situation of fire monitoring by the fire detector on the tunnel side can be properly grasped and used for tunnel operation management.

(第3発明:火災検知器1の効果)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、所定の故障予兆の発生回数を少なくとも一時的に保持しており、故障予兆の発生回数に基づき自己の信頼性低下と判断した場合に防災受信盤に信頼性低下信号を送信するようにしたため、信頼性低下が判断された火災検知器の誤作動による非火災報の発生を未然に防止できる。
(Third invention: effect of fire detector 1)
Another aspect of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception panel, and at least temporarily holds the number of occurrences of a predetermined failure sign, and the occurrence of the failure sign. When the reliability is judged to decrease based on the number of times, a reliability deterioration signal is sent to the disaster prevention reception panel, so a non-fire alarm is generated due to a malfunction of the fire detector that has been judged to have decreased reliability. It can be prevented.

(第4発明:火災検知器2の効果)
また、本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、故障予兆の発生回数が所定の信頼性判断蓄積定条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、火災検知器による複数の火災判定段階の途中で火災と判定されずに火災と判断するに至らなかった故障予兆の発生回数を求めて信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fourth Invention: Effect of Fire Detector 2)
Further, another aspect of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception panel, wherein a fire is judged by a plurality of fire judgment stages. If it is judged as a fire in at least one of the fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages, it is judged as a failure sign and the number of occurrences of the failure sign is retained at least temporarily. However, when the number of occurrences of a failure sign satisfies a predetermined reliability judgment accumulation fixed condition, it is judged that the reliability of itself has deteriorated and a reliability deterioration signal is sent to the disaster prevention reception board. The fire detector judged a fire by using the number of occurrences of failure signs that could not be judged as a fire without being judged as a fire in the middle of the fire judgment stage as the basis for judging the reliability. Even if the number of occurrences of the failure sign is large, the possibility of the non-fire alarm is high, so it is determined that the reliability is deteriorated, and it is possible to reliably prevent the fire processing by the non-fire alarm.

(第5発明:火災検知器3の効果)
また、本発明の他の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、火災検知器の試験による受光信号のレベルが、所定の正常範囲を外れたが例えば所定の故障閾値には至らずに故障判断条件を充足しなかった場合に故障予兆と判定し、故障予兆の発生回数を求めて信頼性を判断するための根拠とし、火災検知器が受光素子の故障を検知しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fifth Invention: Effect of Fire Detector 3)
Another aspect of the present invention is a fire detector for monitoring a fire in a detection area by connecting to a disaster prevention reception panel, and determines a failure of a fire detection unit based on a light reception signal when a test light source is driven. When a test is being performed and the level of the received light signal by the test is out of the prescribed normal range but the prescribed failure judgment conditions are not satisfied, it is judged as a failure sign and the occurrence frequency of the failure sign is at least temporarily. In this case, when the number of occurrences of a failure sign satisfies a predetermined reliability judgment storage condition, it is judged that the reliability of itself has deteriorated and a reliability deterioration signal is sent to the disaster prevention receiver board. If the level of the received light signal in the test is out of the predetermined normal range, for example, it does not reach the predetermined failure threshold and the failure judgment condition is not satisfied, it is determined as a failure sign and the number of occurrences of the failure sign is calculated. As a basis for judging the reliability, even if the fire detector does not detect the failure of the light receiving element, if the number of occurrences of failure signs is high, there is a high possibility of non-fire alarms, and the reliability will be degraded. Judgment is possible, and it is possible to reliably prevent fire processing by non-fire reports.

(第6発明:火災検知器4の効果)
また、本発明の他の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断すると共に当該第1の故障予兆の発生回数を少なくとも一時的に保持し、且つ試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断すると共に当該第2の故障予兆の発生回数を求めて少なくとも一時的に保持し、第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断して防災受信盤に信頼性低下信号を送信するようにしたため、前述した第4発明の火災検知器2と第5発明の火災検知器3の効果を併せた効果が得られる。
(Sixth Invention: Effect of Fire Detector 4)
Further, another embodiment of the present invention is a fire detector that monitors a fire in a detection area by connecting to a disaster prevention reception board, and judges a fire by a plurality of fire judgment stages. If it is judged as a fire in at least one of the fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages, it is judged as the first failure sign and the number of occurrences of the first failure sign Is held at least temporarily, and a test is performed to determine the failure of the fire detection unit based on the received light signal when the test light source is driven, and the level of the received light signal by the test is out of the predetermined normal range. When the predetermined failure determination condition is not satisfied, the second failure sign is determined and the number of occurrences of the second failure sign is obtained and at least temporarily retained, and the first occurrence of failure sign and the number of occurrences of the first failure sign are performed. When either one or both of the number of occurrences of the failure sign of 2 satisfy the predetermined reliability judgment accumulation condition, it is judged that the reliability of itself has deteriorated and the reliability deterioration signal is transmitted to the disaster prevention receiver board. The combined effect of the fire detector 2 of the fourth invention and the fire detector 3 of the fifth invention described above can be obtained.

(火災信号の送信停止の効果)
また、第3発明乃至第6発明の火災検知器に於いて、自己の信頼性低下と判断した場合に、火災信号の送信を停止するようにしたため、信頼性低下と判断された火災検知器からの火災信号の受信による非火災報の発生を未然に防止できる。
(Effect of stopping transmission of fire signal)
Further, in the fire detector of the third invention to the sixth invention, when it is determined that the reliability of the self is deteriorated, the transmission of the fire signal is stopped, so that the fire detector determined to be deteriorated in reliability It is possible to prevent the occurrence of a non-fire alarm due to the reception of the fire signal.

(第7発明:トンネル防災システムの効果)
また、本発明の別の形態は、第4乃至第6発明の何れかの火災検知器を防災受信盤に接続して検知エリアの火災を監視するトンネル防災システムに於いて、防災受信盤は、火災検知器から信頼性低下信号を受信した場合に、当該火災検知器の所定の第1の火災判断蓄積条件を第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うようにしたため、前述した第1発明と同様の効果が得られる。
(Seventh invention: Effect of tunnel disaster prevention system)
Another aspect of the present invention is a tunnel disaster prevention system for monitoring a fire in a detection area by connecting the fire detector according to any one of the fourth to sixth inventions to the disaster prevention reception panel. When the reliability deterioration signal is received from the fire detector, the predetermined first fire judgment accumulation condition of the fire detector is set to the predetermined second fire judgment accumulation condition which is stricter than the first fire judgment accumulation condition. When a fire signal is received from at least one of the fire detector that changed and recovered and the fire judgment accumulation condition was changed, and at least one adjacent fire detector that duplicately monitors the detection area of the fire detector, Since the fire treatment is performed, the same effect as the above-described first invention can be obtained.

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 火災検知器の検知エリアを示した説明図Explanatory drawing showing the detection area of the fire detector 火災検知器の外観を示した説明図Explanatory drawing showing the appearance of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 火災検知器の制御動作を示したフローチャートFlow chart showing the control operation of the fire detector 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver 防災受信盤で火災検知器の信頼性有りが判断された場合の制御動作を示したタイムチャートTime chart showing the control operation when it is judged by the disaster prevention reception board that the fire detector is reliable 防災受信盤で火災検知器の信頼性低下と判断された場合の制御動作を示したタイムチャートTime chart showing the control operation when it is judged by the disaster prevention reception board that the reliability of the fire detector is degraded 火災検知器から故障予兆を受信した場合の防災受信盤の制御動作を示したタイムチャートTime chart showing the control operation of the disaster prevention receiver panel when a failure sign is received from the fire detector 火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図Explanatory diagram showing the peak level of the received light signal and the number of occurrences of failure sign when the internal test light source is driven by the sensitivity test of the fire detector 故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートFlowchart showing sensitivity test of fire detector with judgment of failure sign

[トンネル防災システム]
[実施形態の基本的な概念]
図1はトンネル防災システムの概要を示した説明図であり、図2は火災検知器の検知エリアを示した説明図ある。本実施形態によるトンネル防災システムの基本的な概念は、防災受信盤10からの信号系統毎の信号線14a,14bに接続されたトンネル内の火災検知器12は、所定の故障予兆の発生回数に基づく故障予兆情報、例えば故障予兆の発生回数を示す故障予兆情報を少なくとも一時的に保持し、防災受信盤10は、火災検知器12から火災信号を受信したときに、火災検知器12から故障予兆情報を取得して火災検知器12の信頼性を評価して判断し、信頼性有りと判断したときは、火災検知器12を復旧した後に再度火災信号を受信した場合に所定の火災処理を行い、信頼性低下と判断したときは、当該火災検知器12の所定の第1の火災判断蓄積条件(例えば第1の蓄積回数閾値)を、第1の火災判断蓄積条件よりも厳格な第2の火災判断蓄積条件(第1の蓄積回数閾値より多い第2の蓄積回数閾値)に変更して復旧し、火災判断蓄積条件を変更した火災検知器12及び当該火災検知器12の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うというものであり、火災検知器12が受光素子の故障や想定外の非火災要因等により火災信号を送信しても、火災信号を送信した火災検知器12の故障予兆情報から信頼性を評価して信頼性有り又は信頼性低下を判断し、信頼性低下と判断した場合は非火災と見做してトンネルの進入禁止警報等を伴う火災処理を行わず、非火災報によりトンネル通行を止めてしまうことを従来に比べ確実に防止可能とする。
[Tunnel disaster prevention system]
[Basic Concept of Embodiment]
FIG. 1 is an explanatory diagram showing an outline of a tunnel disaster prevention system, and FIG. 2 is an explanatory diagram showing a detection area of a fire detector. The basic concept of the tunnel disaster prevention system according to the present embodiment is that the fire detector 12 in the tunnel connected to the signal lines 14a and 14b for each signal system from the disaster prevention receiver 10 has a predetermined number of occurrences of a failure sign. Based on the failure sign information, for example, the failure sign information indicating the number of occurrences of the failure sign is held at least temporarily, and the disaster prevention receiver board 10 receives the fire sign from the fire detector 12 when the fire sign 12 receives the fire signal. When information is acquired and the reliability of the fire detector 12 is evaluated and judged, and when it is judged that there is reliability, when the fire signal is received again after the fire detector 12 is restored, predetermined fire processing is performed. When it is determined that the reliability has deteriorated, the predetermined first fire determination accumulation condition (for example, the first accumulation count threshold value) of the fire detector 12 is set to the second fire condition which is stricter than the first fire determination accumulation condition. Redundant monitoring of the fire detector 12 and the detection area of the fire detector 12 that have been changed by changing the fire judgment accumulation condition (the second accumulation count threshold value that is greater than the first accumulation count threshold value) and restored. When a fire signal is received from at least one of the adjacent fire detectors, the fire detector 12 performs a predetermined fire treatment. The fire detector 12 causes a fire due to a failure of the light receiving element or an unexpected non-fire factor. Even if the signal is transmitted, the reliability is evaluated from the failure sign information of the fire detector 12 that has transmitted the fire signal to judge whether there is reliability or deterioration in reliability. Compared with the conventional method, it will be possible to more reliably prevent the tunnel from being stopped due to non-fire alarms without performing fire treatments such as a tunnel entry warning.

また、火災検知器12の故障予兆情報から信頼性を評価して信頼性低下しを判断したことで非火災報と見做しても、実火災であった場合には、第1報目の火災信号を送信した火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更することで非火災報を出しにくい状態とし、併せて、火災判断蓄積条件を変更した火災検知器と、当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信することで、火災と判断してトンネルの進入禁止警報を含む火災処理を行い、確実に火災を検知して対処することができる。 In addition, even if it is regarded as a non-fire report by evaluating the reliability from the failure sign information of the fire detector 12 and judging that the reliability has deteriorated, if it is an actual fire, the first report By changing the first fire judgment accumulation condition of the fire detector that sent the fire signal to the strict second fire judgment accumulation condition, it became difficult to issue a non-fire report, and the fire judgment accumulation condition was also changed. By receiving a fire signal from the fire detector and at least one adjacent fire detector that monitors the detection area of the fire detector in duplicate, it is determined that a fire has occurred and fire processing including a tunnel entry prohibition alarm is performed. By doing so, it is possible to reliably detect and deal with the fire.

また、火災検知器の信頼性の判断を防災受信盤10で行うことで、火災検知器12側の負担を低減する、というものである。 Further, by making a judgment on the reliability of the fire detector by the disaster prevention reception panel 10, the load on the fire detector 12 side is reduced.

更に、温度、湿度、電気的ノイズ等の環境要因は、トンネルごと、信号系統ごと又は区間ごとに特有である場合が考えられ、これを考慮して、トンネル(チューブ)単位、信号系統単位又は区間単位に設置された火災検知器12の故障予兆の発生回数を示す故障予兆情報からトンネルごと、信号系統ごと、区間ごとの火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断できる。 Furthermore, environmental factors such as temperature, humidity, and electrical noise may be peculiar to each tunnel, each signal system, or each section. Considering this, tunnel (tube) unit, signal system unit or section From the failure sign information indicating the number of occurrences of the failure sign of the fire detector 12 installed per unit, the reliability of the fire detector 12 is evaluated by evaluating the reliability of the fire detector 12 for each tunnel, each signal system, and each section. Can judge.

なお、本実施形態における故障予兆とは、将来に起こるべき故障を予測させる現象を意味し、故障のきざし、故障の前兆、故障の前ぶれ等ということもできる。 The failure sign in the present embodiment means a phenomenon that predicts a failure that should occur in the future, and can also be a sign of a failure, a sign of a failure, a pre-failure of a failure, or the like.

また、図1の例では信号系統とトンネルは一対一に対応しているが、例えば1つのトンネルに複数の信号系統を設けることができる。或いは、複数のトンネルを1つの信号系統とすることもでき、信号系統とトンネルとの関係は任意である。 Further, in the example of FIG. 1, the signal system and the tunnel are in one-to-one correspondence, but for example, one tunnel can be provided with a plurality of signal systems. Alternatively, a plurality of tunnels can be used as one signal system, and the relationship between the signal system and the tunnels is arbitrary.

また、以下の説明において、図1乃至図9の説明は第1発明のトンネル防災システム及び第3及び第4発明の火災検知器に対応し、図10乃至図11の説明が第2及び第7発明のトンネル防災システムと第5及び第6発明の火災検知器に対応している。なお、第3発明乃至第6発明の火災検知器は、1つの信号系統に1台のみが接続されることを妨げない。 In the following description, the description of FIGS. 1 to 9 corresponds to the tunnel disaster prevention system of the first invention and the fire detector of the third and fourth inventions, and the description of FIGS. 10 to 11 is the second and seventh. It corresponds to the tunnel disaster prevention system of the invention and the fire detectors of the fifth and sixth inventions. The fire detectors of the third invention to the sixth invention do not prevent only one unit from being connected to one signal system.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。
[Overview of tunnel disaster prevention system]
As shown in FIG. 1, an up tunnel 1a and a down tunnel 1b are constructed as tunnels for an automobile road. Inside the ascending line tunnel 1a and the descending line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the wall surface in the tunnel longitudinal direction.

火災検知器12は右眼、左眼の2組の火災検知部を備えることで、図2に示すように、トンネル長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12と検知エリア15が例えば右眼13Rと左眼13Lで相互補完的に重複するように連続的に配置され、検知エリア15内で起きた火災による炎からの赤外線を観測して火災を監視して検知する。 The fire detector 12 is provided with two sets of fire detection units for the right eye and the left eye, and as shown in FIG. 2, has a detection area 15 in both the up and down directions of the tunnel longitudinal direction, and the longitudinal direction of the tunnel. A fire detector 12 and a detection area 15 which are arranged adjacent to each other are continuously arranged so that, for example, the right eye 13R and the left eye 13L overlap each other in a complementary manner, and a fire that occurs in the detection area 15 Infrared rays from the fire caused by the fire are monitored to detect the fire.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧設備などが設置されるが、図示を省略している。 In addition, in the up tunnel 1a and the down tunnel 1b, as an emergency facility, a manual reporting device or an emergency telephone is provided for reporting a fire, and a fire hydrant device is provided for extinguishing a fire or preventing spread of fire. A water spray facility for spraying fire extinguishing water from a water spray head is installed to protect the tunnel body and the inside of the duct from a fire, but the illustration is omitted.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源信号線および信号線14a,14bを引き出してそれぞれに対し複数の火災検知器12が接続されており、火災検知器12には固有のアドレスが設定されている。以下の説明では、信号線14a,14bについて、区別する必要がない場合は信号線14という場合がある。 From the disaster prevention reception board 10, power signal lines and signal lines 14a and 14b are drawn out to the up tunnel 1a and the down tunnel 1b, and a plurality of fire detectors 12 are connected to each, and the fire detector 12 includes A unique address is set. In the following description, the signal lines 14a and 14b may be referred to as the signal line 14 when there is no need to distinguish them.

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14を介して所謂R型伝送方式で通信する。 Further, for the disaster prevention reception board 10, a fire extinguishing pump equipment 16, a cooling pump equipment 18 for ducts, an IG slave station equipment 20, a ventilation equipment 22, an alarm display board equipment 24, a radio rebroadcast equipment 26, a television monitoring equipment 28. Also, the lighting equipment 30 and the like are provided, and the fire detector 12 and the disaster prevention receiver board 10 communicate with each other via a signal line 14 by a so-called R-type transmission method.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。 Here, the IG slave station equipment 20 is a communication equipment that connects the disaster prevention reception board 10 and a remote monitoring control equipment 32, which is an upper equipment provided outside, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転によってトンネル長手方向に換気流を発生する設備である。 The ventilation facility 22 is a facility that generates a ventilation flow in the tunnel longitudinal direction by operating a jet fan installed on the ceiling side in the tunnel.

警報表示板設備24は、利用者に対して、火災に伴う進入禁止警報等の情報を電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The warning display board facility 24 is a facility that informs the user by displaying information such as an entry prohibition warning associated with a fire on an electronic display board. The radio rebroadcast facility 26 is a facility for allowing a driver or the like to receive information from a road administrator in a tunnel. The TV monitoring facility 28 is a facility for confirming the scale and position of a fire, grasping the situation in the tunnel when operating the water spray facility and guiding evacuation. The lighting equipment 30 is equipment that drives and manages lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory view showing the outer appearance of the fire detector, and FIG. 4 is a block diagram showing the outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体44の上部に設けられたセンサ収納部46に左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に対応して、センサ部が内蔵されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。 As shown in FIG. 3, in the fire detector 12, two sets of translucent windows 50R and 50L are separately provided on the left and right sides in a sensor housing portion 46 provided on the upper part of the housing 44, and the translucent window 50R is provided. , 50L corresponding to each of them, a sensor section is built in. Further, two sets of test-light-transmitting windows 52R for accommodating an external test light source used for a stain test on the light-transmissive windows 50R and 50L are provided in positions near the light-transmissive windows 50R and 50L so that the sensor portion can be seen through. , 52L are provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be referred to as the right-eye translucent window 50R, and the translucent window 50L may be referred to as the left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部76、感度試験に用いられる内部試験光源78R,80R,82Rと内部試験光源78L,80L,82L、汚れ試験に用いられる外部試験光源84R,84Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Outline of fire detector)
As shown in FIG. 4, the fire detector 12 is used for a detector control unit 54, a transmission unit 56, a power supply unit 58, two sets of left and right fire detection units 60R and 60L, a test light emission drive unit 76, and a sensitivity test. Internal test light sources 78R, 80R, 82R, internal test light sources 78L, 80L, 82L, and external test light sources 84R, 84L used for a stain test are provided. In the following description, the fire detection unit 60R may be referred to as the right eye fire detection unit 60R, and the fire detection unit 60L may be referred to as the left eye fire detection unit 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is a function realized by executing a program, for example, and as the hardware, a CPU, a memory, a computer circuit including various input/output ports, and the like are used.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10に接続され、各種信号がR型伝送により送受信される。 The transmission unit 56 is connected to the disaster prevention receiver board 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部76に対し所定の電源電圧が供給されている。 The power supply unit 58 receives power from the disaster prevention receiver panel 10 shown in FIG. 1 through the power supply line B and the power supply common line BC included in the signal line 14, and for example, the detector control unit 54, the transmission unit 56, and two sets of left and right fires. A predetermined power supply voltage is supplied to the detection units 60R and 60L and the test light emission drive unit 76.

試験発光駆動部76には、感度試験に使用する内部試験光源78R,80R,82R78L,80L,82Lが接続され、また、汚れ試験に使用する外部試験光源84R,84Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。 Internal test light sources 78R, 80R, 82R78L, 80L, 82L used for the sensitivity test are connected to the test light emission drive section 76, and external test light sources 84R, 84L used for the dirt test are connected, respectively as light emitting elements. A krypton lamp is provided.

(火災検知部)
火災検知部60R,60Lは、センサ部64,68,72と増幅処理部66,70,74を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68,72の前面にはセンサ収納部46に設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーがセンサ部64,68,72に入射される。
(Fire detection part)
The fire detection units 60R, 60L include sensor units 64, 68, 72 and amplification processing units 66, 70, 74. For example, taking the right-eye fire detection unit 60R as an example, the right-eye translucent window 50R provided in the sensor storage unit 46 is arranged in front of the sensor units 64, 68, 72, and the right-eye translucent window is provided. Infrared energy from the external detection area is incident on the sensor units 64, 68, 72 via 50R.

右眼火災検知部60Rは、例えば3波長式の炎検知により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCOの共鳴放射帯である4.5μm帯の赤外線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該赤外線を受光して光電変換したうえで、増幅処理部66により増幅等所定の処理を施して受光エネルギー量に対応する炎受光信号E1Rとして検知器制御部54へ出力する。 The right-eye fire detection unit 60R monitors the fire by, for example, three-wavelength flame detection. The sensor unit 64 selectively transmits infrared rays in the 4.5 μm band, which is a resonance radiation band of CO 2 which is peculiar to flames, from the infrared energy incident through the right-eye translucent window 50R by an optical wavelength bandpass filter. After passing (passing), the light receiving sensor receives the infrared light and photoelectrically converts it, and then the amplification processing unit 66 performs predetermined processing such as amplification and the like, and outputs the flame light reception signal E1R corresponding to the received light energy amount as the detector control unit 54. Output to.

センサ部68は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第1の非炎波長帯域となる、例えば5.0μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部70により増幅等所定の処理を施して受光エネルギー量に対応する第1の非炎受光信号E2Rとして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits infrared energy in the first non-flame wavelength band, for example, 5.0 μm band, from the infrared energy incident through the right-eye translucent window 50R using an optical wavelength bandpass filter. After passing (passing), the light receiving sensor receives the light and photoelectrically converts it, and then the amplification processing unit 70 performs predetermined processing such as amplification and the like, and the detector control unit as the first non-flame light receiving signal E2R corresponding to the received light energy amount. Output to 54.

センサ部72は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第2の非炎波長帯域となる、例えば2.3μmの赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部74により増幅等所定の処理を施して受光エネルギー量に対応する第2の非炎受光信号E3Rとして検知器制御部54へ出力する。 The sensor unit 72 selectively transmits infrared energy of, for example, 2.3 μm, which is the second non-flame wavelength band, from the infrared energy incident through the right-eye translucent window 50R by an optical wavelength bandpass filter ( After passing through), the light receiving sensor receives the light and photoelectrically converts it, and then the amplification processing unit 74 performs predetermined processing such as amplification and the like, and the detector control unit 54 outputs the second non-flame light receiving signal E3R corresponding to the received light energy amount. Output to.

増幅処理部66,70,74には、プリアンプ、炎のゆらぎ周波数を含む所定の周波数帯域を選択通過させる周波数フィルタ及びメインアンプ等が設けられている。 The amplification processing units 66, 70, and 74 are provided with a preamplifier, a frequency filter that selectively passes a predetermined frequency band including a flame fluctuation frequency, a main amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部86の機能が設けられている。火災判断部86は、炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3Rに基づき、複数の火災判定段階により火災を判断している。火災判断部86は例えば次の3段階の火災判定を行う。
(Fire judgment)
The detector control unit 54 is provided with the function of the fire determination unit 86 as a function realized by executing the program. The fire determination unit 86 determines a fire in a plurality of fire determination stages based on the flame light reception signal E1R, the first non-flame light reception signal E2R, and the second non-flame light reception signal E3R. The fire determination unit 86 performs, for example, the following three stages of fire determination.

火災判断部86は、炎受光信号E1が所定の閾値以上又はこれを上回った場合、第1の非炎受光信号E2との相対比(E1R/E2R)を算出し、相対比(E1R/E2R)が所定の閾値を超えた場合に、第1段階の火災判定条件を充足したとして、火災(火災候補)と判定し、次の第2段階の火災判定を行う。 When the flame light reception signal E1 is equal to or higher than or equal to a predetermined threshold value, the fire determination unit 86 calculates a relative ratio (E1R/E2R) to the first non-flame light reception signal E2, and a relative ratio (E1R/E2R). When the value exceeds a predetermined threshold, it is determined that the fire determination condition of the first stage is satisfied, it is determined to be a fire (fire candidate), and the next second stage fire determination is performed.

火災判断部86による第2段階の火災判定は、炎受光信号E1Rについて、第2の非炎受光信号E3Rとの相対比(E1R/E3R)を算出し、相対比(E1R/E3R)が所定の閾値を超えた場合に、第2段階の火災判定条件を充足したとして火災と判定する。 In the second stage fire determination by the fire determination unit 86, the relative ratio (E1R/E3R) of the flame received light signal E1R to the second non-flame received signal E3R is calculated, and the relative ratio (E1R/E3R) is determined to be a predetermined value. If the threshold value is exceeded, it is determined that the fire is determined to have satisfied the second stage fire determination condition.

続いて、火災判断部86は、次の第3段階の火災判定を行う。火災判断部86による第3段階の火災判定条件は、炎受光信号E1Rを高速フーリエ変換(FFT)して結果を分析し,例えば4Hz以下の低周波側成分の相対強度と4Hz超8Hz以下の高周波側成分の相対強度の相対比を算出し、この相対化が所定の閾値以上又はこれを上回った場合に、第3段階の火災判定条件を充足したとして火災と判定し、これにより第1〜第3の火災判定段階の全てにおいて火災と判定されたことになり、全体として一旦火災と判断する。 Then, the fire determination part 86 performs the following third stage fire determination. The third step of the fire determination condition by the fire determination unit 86 is a fast Fourier transform (FFT) of the flame received signal E1R, and the result is analyzed. For example, the relative intensity of the low frequency side component of 4 Hz or less and the high frequency of 4 Hz to 8 Hz or less. The relative ratio of the relative intensities of the side components is calculated, and when this relativization is equal to or greater than or equal to a predetermined threshold value, it is determined that the fire is determined to satisfy the third stage fire determination condition, and the first to the first It has been judged as a fire in all of the three fire judgment stages, so it is once judged as a fire as a whole.

更に、第1乃至第3段階の火災判定条件が所定回数連続して充足された場合に、所定の火災判断蓄積条件を満足したとして火災を断定し、火災信号を防災受信盤10に送信する制御を行う。左眼火災検知部60Lにおいても同様に行う。 Further, when the first to third stage fire determination conditions are satisfied a predetermined number of times in succession, the fire is determined as satisfying a predetermined fire determination accumulation condition, and a fire signal is transmitted to the disaster prevention reception panel 10. I do. The same applies to the left-eye fire detection unit 60L.

なお、火災判断部86による複数の火災判定段階による火災判断は、上記の火災判断に限定されず、更に、1又は複数の火災判定段階を加えても良いし、例えば上記3段階のうち何れかを省略して2段階としても良い。或いは例えば蓄積判定段階までを含む4段階としても良い。 In addition, the fire determination by the plurality of fire determination stages by the fire determination unit 86 is not limited to the above fire determination, and one or more fire determination stages may be further added, for example, one of the above three stages. May be omitted and there may be two stages. Alternatively, for example, there may be four stages including the accumulation determination stage.

(故障予兆の判定)
火災判断部86は、前述した3段階の火災判定段階の途中で火災が判定されずに火災と判断するに至らなかった場合に故障予兆の発生と判断し、故障予兆の発生回数Nをカウンタにより計数する制御を行う。
(Judgment of failure sign)
The fire judging unit 86 judges that a failure sign has occurred in the middle of the above-mentioned three steps of the fire judgment step and does not judge it as a fire, and judges the occurrence number N of the failure sign by the counter. Control to count.

また、火災判断部86は、故障予兆の発生回数Nが所定の故障予兆判断蓄積条件を充足したとき、例えば、故障予兆の発生回数Nが所定閾値Nthに達したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。なお、火災判断部86は、更に、故障予兆の確定回数が所定数に達したときに所定の故障予兆処理を行うようにしても良い。 Further, the fire determination unit 86 determines (determines) a failure sign when the failure sign occurrence count N satisfies a predetermined failure sign determination accumulation condition, for example, when the failure sign occurrence count N reaches a predetermined threshold Nth. ), and transmits a failure sign signal to the disaster prevention receiver board 10, and then performs a predetermined failure sign processing. The fire determination unit 86 may further perform a predetermined failure sign process when the number of times the failure sign is determined reaches a predetermined number.

火災判断部86による所定の故障予兆処理は、例えば火災信号の送信を停止する処理、火災判断の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする等の処理とする。火災信号の送信を停止する故障予兆処理は、故障予兆を判定した後に火災を判断しても故障による誤った火災判断である可能性が高いことから、火災信号の送信を停止して、非火災報の発生を抑止させる、というものである。なお、火災信号の送信を停止する処理は行わないようにすることもできる。 The predetermined failure sign process by the fire determination unit 86 is, for example, a process of stopping transmission of a fire signal, a process of increasing a storage count threshold value of the fire determination to make the fire determination storage condition strict, or the like. The failure sign process that stops the transmission of fire signals is likely to be an erroneous fire judgment due to a failure even if a fire is judged after judging the failure sign. It is to suppress the generation of news. The process of stopping the transmission of the fire signal may be omitted.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す故障予兆情報を生成して送信する制御を行い、防災受信盤10は取得した故障予兆情報から抽出された故障予兆の発生回数Nに基づいて火災検知器12の信頼性を評価し、信頼性有り、信頼性低下を判断するために用いられる。なお、信頼性低下については、その度合により複数段階に分け、例えば信頼性低下状態と信頼性が無い状態を区別できるようにしても良い。 Further, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention reception panel 10, the fire determination unit 86 performs control to generate and transmit failure sign information indicating the number N of occurrences of failure signs obtained at that time, The disaster prevention receiver board 10 is used to evaluate the reliability of the fire detector 12 based on the number N of times of occurrence of a failure sign extracted from the acquired failure sign information, and determine whether there is reliability or a decrease in reliability. Note that the reliability deterioration may be divided into a plurality of stages depending on the degree thereof, and for example, the reliability deterioration state and the unreliability state may be distinguished.

なお、カウンタにより計数している故障予兆の発生回数Nは、所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。ただし、リセット前の故障予兆の発生回数Nは、故障予兆情報として記憶するようにしても良い。 The number N of occurrences of the failure sign counted by the counter is reset every predetermined period, or is reset when a predetermined period has elapsed after counting the failure sign. However, the number N of occurrences of the failure sign before resetting may be stored as failure sign information.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部88の機能が設けられている。感度試験部88は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。なお、内部試験光源78R,80R,82Rと内部試験光源78L,80L,82Lは、それぞれ1つの光源で共用しても良い。
(Sensitivity test)
The detector control unit 54 is provided with the function of the sensitivity test unit 88 as a function realized by executing a program. The sensitivity test unit 88 operates when it receives a test instruction signal designating its own address from the disaster prevention receiver board 10 via the transmission unit 56, instructs the test light emission drive unit 76, and outputs the internal test light sources 78R, 80R. , 82R, 78L, 80L, and 82L are sequentially driven to emit light, and a sensitivity test of the fire detection units 60R and 60L is performed. The internal test light sources 78R, 80R, 82R and the internal test light sources 78L, 80L, 82L may be shared by one light source.

例えば右眼火災検知部60Rにおけるセンサ部64と増幅処理部66の回路系統を例にとると、試験発光駆動部76は内部試験光源78Rを発光駆動することにより、火災炎に相当する炎疑似光(炎を模擬した赤外線光)をセンサ部64に入射させる。 For example, taking the circuit system of the sensor unit 64 and the amplification processing unit 66 in the right-eye fire detection unit 60R as an example, the test light emission drive unit 76 drives the internal test light source 78R to emit light, so that a flame pseudo light equivalent to a fire flame is emitted. (Infrared light simulating a flame) is incident on the sensor unit 64.

センサ部64と増幅処理部66の回路ブロックについては、工場出荷時の初期感度試験時の基準受光値がメモリに記憶されており、システム立上げ時の感度試験で得られる検出受光値は基準受光値に略一致しており、検出受光値を基準受光値で割った検出感度係数は1となっている。運用期間が経過していくと、検出受光値は徐々に低下し、検出感度係数は0.9,0.8,0.7・・・というように低下していく。 Regarding the circuit blocks of the sensor unit 64 and the amplification processing unit 66, the reference light receiving value at the time of the initial sensitivity test at the time of factory shipment is stored in the memory, and the detected light receiving value obtained by the sensitivity test at the time of system startup is the reference light receiving. The detection sensitivity coefficient obtained by dividing the detected light reception value by the reference light reception value is 1 because the detected light reception value is substantially equal to the value. As the operation period elapses, the detected light reception value gradually decreases, and the detection sensitivity coefficient decreases such as 0.9, 0.8, 0.7.

このように検出感度係数が1以下に低下した場合、感度試験部88は検出感度係数の逆数となる補正係数を求めてメモリに記憶させ、その後の運用状態で検出される受光値に補正係数を乗算して感度補正を行い、火災判断部86は感度補正された受光値により火災を判断する。 When the detection sensitivity coefficient drops to 1 or less in this way, the sensitivity testing unit 88 obtains a correction coefficient that is the reciprocal of the detection sensitivity coefficient and stores it in the memory, and then applies the correction coefficient to the received light value detected in the subsequent operating state. The sensitivity is corrected by multiplying, and the fire determination unit 86 determines a fire based on the sensitivity-corrected light reception value.

また、感度試験部88には、感度補正の限界となる補正係数に対応した感度補正限界閾値、例えば感度補正限界閾値0.5が予め設定されており、感度試験で求められた感度係数が感度補正限界閾値以下又は感度補正限界閾値を下回った場合にセンサ部64の感度異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に感度異常を示す情報を設定して防災受信盤10へ感度異常信号を送信させる制御を行う。 Further, the sensitivity test section 88 is preset with a sensitivity correction limit threshold value corresponding to a correction coefficient which is a limit of sensitivity correction, for example, a sensitivity correction limit threshold value 0.5, and the sensitivity coefficient obtained by the sensitivity test is the sensitivity. When it is less than the correction limit threshold value or less than the sensitivity correction limit threshold value, it is determined that the sensitivity of the sensor unit 64 is abnormal, and the transmission unit 56 is instructed to set information indicating the sensitivity abnormality in the response signal to the calling signal that matches the self address. Then, control is performed to transmit a sensitivity abnormality signal to the disaster prevention receiver board 10.

また、感度試験部88には、感度補正限界に達する前の感度異常の予兆を示す感度係数に対応して、例えば感度異常の予兆閾値0.6が予め設定されており、感度試験で求められた検出感度係数が感度異常の予兆閾値以下又は予兆閾値を下回った場合に、近い将来、感度補正ができなくなる可能性が高い感度異常状態の予兆と判定し、伝送部56に指示して感度異常の予兆を示す感度異常予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, in the sensitivity test unit 88, for example, a precursor threshold value 0.6 of the sensitivity abnormality is preset corresponding to the sensitivity coefficient indicating the precursor of the sensitivity abnormality before the sensitivity correction limit is reached. If the detection sensitivity coefficient is less than or equal to or less than the predictive threshold value of the sensitivity abnormality, it is determined that it is a predictor of the sensitivity abnormal state in which sensitivity correction is likely to be impossible in the near future, and the transmission unit 56 is instructed to detect the sensitivity abnormality. The sensitivity abnormality sign signal indicating the sign of is transmitted to the disaster prevention receiver board 10 to notify it.

なお、感度試験部88で感度異常の予兆が判定された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the sensitivity test unit 88 determines a sign of a sensitivity abnormality, it is regarded as one of the failure signs, and the counting operation by the counter of the fire judging unit 86 is performed to increase the number N of occurrences of the failure signs. You can

また、運用期間の経過に伴い検出感度が1.1,1.2,1.3…と増加する場合も同様にして補正し、限界に達すると異常とする。 Further, when the detection sensitivity increases to 1.1, 1.2, 1.3... With the lapse of the operation period, the detection sensitivity is similarly corrected, and when the limit is reached, it is determined to be abnormal.

センサ部68と増幅処理部70及びセンサ部72と増幅処理部74の回路系統も同様に感度試験が行われる。また、左眼火災検知部60Lについても、試験発光駆動部76により内部試験光源78L,80L,82Lを発光駆動することにより、同様にして感度試験が行われる。 The sensitivity test is similarly performed on the circuit systems of the sensor unit 68 and the amplification processing unit 70 and the sensor unit 72 and the amplification processing unit 74. Similarly, with respect to the left eye fire detection unit 60L, the test light emission drive unit 76 drives the internal test light sources 78L, 80L, 82L to emit light, and the sensitivity test is similarly performed.

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部90の機能が設けられている。汚れ試験部90は、感度試験と同様に、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、外部試験光源84R,84Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(Stain test)
The detector control unit 54 is provided with the function of the dirt test unit 90 as a function realized by executing a program. Similar to the sensitivity test, the dirt test unit 90 operates when it receives a test instruction signal designating its own address from the disaster prevention receiver board 10 via the transmission unit 56, and instructs the test light emission drive unit 76 to The external test light sources 84R and 84L are sequentially driven to emit light, and the contamination test of the translucent windows 50R and 50L is performed.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部76は外部試験光源84Rを発光駆動することにより、火災炎に相当する炎疑似光を、試験光源用透光性窓52R及び透光性窓50Rを介してセンサ部64に入射させる。試験光源用透光性窓52R及び透光性窓50Rは工場出荷時に汚れはなく、その際に汚れ試験で得られた受光値が基準受光値としてメモリに記憶されており、減光率の演算に利用される。 For example, taking the stain test of the transparent window 50R as an example, the test light emission drive unit 76 drives the external test light source 84R to emit light, so that the pseudo light corresponding to the fire flame is emitted to the test light source transparent window 52R. Also, the light is incident on the sensor unit 64 through the transparent window 50R. The test light source translucent window 52R and the translucent window 50R are not contaminated at the time of factory shipment, and the light reception value obtained by the contamination test at that time is stored in the memory as the reference light reception value, and the extinction ratio is calculated. Used for.

システム立上げ時の汚れ試験で得られる検出受光値は基準受光値に略一致しており、基準受光値から検出受光値を減算した値を基準受光値で割った減光率は0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、0.1,0.2,0.3・・・いうように徐々に増加していく。 The detected light-reception value obtained by the dirt test at system startup is almost equal to the reference light-reception value, and the extinction rate obtained by dividing the value obtained by subtracting the detected light-reception value from the reference light-reception value by 0 is 0. There is. As the operation period elapses, dirt adheres to the translucent window 50R, and the extinction ratio gradually increases as 0.1, 0.2, 0.3...

このように減光率が増加した場合、汚れ試験部90は汚れ試験により減光率を求めると共に、(1−減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部86は汚れ補正された受光値により火災を判断する。 When the dimming rate increases in this way, the stain test unit 90 obtains the dimming rate by the stain test, obtains a correction value that is the reciprocal of (1-dimming rate), and stores the correction value in the memory for subsequent operation. The light reception value detected in the state (light reception value corrected by the correction value of the sensitivity test) is divided by the correction value to perform stain correction, and the fire determination unit 86 determines a fire based on the stain corrected light reception value.

また、汚れ試験部90には、汚れ補正の限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.5が予め設定されており、感度試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が不可能となる汚損異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚損異常情報を設定して防災受信盤10へ汚損信号を送信して報知させる制御を行う。 In addition, the stain test unit 90 is preset with a stain threshold value that is an extinction ratio corresponding to the limit of stain correction, for example, a stain threshold value of 0.5, and the extinction ratio obtained by the sensitivity test is equal to or greater than the stain threshold value. Alternatively, when the stain threshold value is exceeded, it is determined that the stain abnormality of the translucent window 50R cannot be corrected, and the transmission unit 56 is instructed to add the stain abnormality information to the response signal to the calling signal that matches the self address. The control is performed to set and send a stain signal to the disaster prevention reception panel 10 to notify it.

また、汚れ試験部90には、汚れ補正が限界に達する予兆段階に対応した減光率となる汚れ予兆閾値、例えば汚れ予兆閾値0.6が予め設定されており、汚れ試験で求められた減光率が汚れ予兆閾値以上又は汚れ予兆閾値を上回った場合に、近い将来、透光性窓50Rの汚れ補正が不可能となる可能性が高い汚損予兆状態と判断し、伝送部56に指示して汚損予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, the stain test unit 90 is preset with a stain predictive threshold value, for example, a stain predictive threshold value of 0.6, which is an extinction rate corresponding to the predictive stage when the stain correction reaches the limit, and the stain predictive threshold value of 0.6 is set in advance. When the light rate is equal to or higher than the dirt sign threshold value or exceeds the dirt sign threshold value, it is determined that the dirt sign state is likely to be impossible to correct the dirt of the translucent window 50R in the near future, and the transmission unit 56 is instructed. Then, the pollution warning signal is transmitted to the disaster prevention reception panel 10 to be informed.

なお、汚れ試験部90で汚損予兆が判断された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 When the stain test unit 90 determines the sign of fouling, it is regarded as one of the signs of failure, and the counting operation by the counter of the fire judging unit 86 is performed to increase the number N of occurrences of signs of failure. Is also good.

(火災検知器の制御動作)
図5は火災検知器の制御動作を示したフローチャートであり、図4に示した火災判断部86による制御動作となる。
(Control action of fire detector)
FIG. 5 is a flowchart showing the control operation of the fire detector, which is the control operation by the fire judging unit 86 shown in FIG.

図5に示すように、火災判断部86は、例えば、図4の火災検知部60Rを例にとると、ステップS1で増幅処理部66,70,74から出力された炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3RをAD変換により取込み、ステップS2で炎受光信号E1Rが所定値以上であればステップS3に進み、炎受光信号E1Rと第1の非炎受光信号E2Rの比(E1R/E2R)を算出し、所定値以上の場合は第1段階の火災判定条件を充足したとしてステップS4に進み、ステップS4で炎受光信号E1Rと第2の非炎受光信号E3Rの比(E1R/E3R)を算出し、所定値以上の場合は第2段階の火災判定条件を充足したとしてステップS5に進む。 As shown in FIG. 5, for example, when the fire detection unit 60R of FIG. 4 is taken as an example, the fire determination unit 86 receives the flame reception signal E1R, the first light reception signal E1R output from the amplification processing units 66, 70, and 74 in step S1. Of the non-flame light reception signal E2R and the second non-flame light reception signal E3R by AD conversion, and if the flame light reception signal E1R is greater than or equal to a predetermined value in step S2, the process proceeds to step S3, and the flame light reception signal E1R and the first non-flame The ratio (E1R/E2R) of the light reception signal E2R is calculated, and if the ratio is equal to or more than a predetermined value, it is determined that the first stage fire determination condition is satisfied, and the process proceeds to step S4. In step S4, the flame light reception signal E1R and the second non-flame light reception The ratio (E1R/E3R) of the signal E3R is calculated. If the ratio is equal to or more than the predetermined value, it is considered that the second stage fire determination condition is satisfied, and the process proceeds to step S5.

続いて、火災判断部86はステップS5で炎受光信号E1Rの高速フーリエ変換(FFT演算)を行い、ステップS6で例えば4Hz以下の低周波数側と4Hz超8Hz以下の高周波側の成分の相対強度比が所定値以上であれば第3の火災判定条件を充足したとしてステップS7に進み、ステップS1〜S6による第1段階から第3段階の火災判定条件を所定の蓄積回数閾値だけ連続して成立したか否か判定する。 Subsequently, the fire determination unit 86 performs a fast Fourier transform (FFT operation) of the flame received signal E1R in step S5, and in step S6, for example, the relative intensity ratio of the low frequency component of 4 Hz or less and the high frequency component of 4 Hz or more and 8 Hz or less. Is greater than or equal to a predetermined value, it is determined that the third fire determination condition is satisfied, and the process proceeds to step S7, and the fire determination conditions of the first to third stages in steps S1 to S6 are continuously satisfied for a predetermined accumulation count threshold value. It is determined whether or not.

続いて、火災判断部86は、ステップS7で所定の火災判断蓄積条件としての蓄積回数閾値を充足するとステップS8に進んで火災と判断し、火災信号を防災受信盤10に送信して火災処理を行わせる。続いて、ステップS9で防災受信盤10からの火災復旧信号(復旧指示信号)の受信を判別するとステップS10で火災検知を初期状態に復旧してステップS1に戻る。 Subsequently, the fire determination unit 86 proceeds to step S8 when the storage count threshold as the predetermined fire determination storage condition is satisfied in step S7, determines that there is a fire, and transmits a fire signal to the disaster prevention reception panel 10 to perform fire processing. Let it be done. Then, if it is determined in step S9 that the fire recovery signal (recovery instruction signal) is received from the disaster prevention receiver board 10, the fire detection is recovered to the initial state in step S10, and the process returns to step S1.

一方、火災判断部86は、ステップS3で第1段階の火災判定条件が充足されなかったときは、故障予兆が発生したと判定し、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし(インクリメントし)、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 On the other hand, when the first stage fire determination condition is not satisfied in step S3, the fire determination unit 86 determines that a failure sign has occurred, and proceeds to step S11 to count the number of times the failure sign has occurred N Is set to +1 (incremented), and if the number N of occurrences of failure signs is less than the predetermined threshold number Nth in step S12, the processes from step S1 are repeated.

また、火災判断部86は、ステップS3の第1段階の火災判定条件は充足したが、ステップS4の第2段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 When the fire determination unit 86 satisfies the first stage fire determination condition of step S3, but does not satisfy the second stage fire determination condition of step S4, the process proceeds to step S11, and a failure sign is generated. The counter N that counts the number of times is set to +1. If the number N of occurrences of failure signs is less than the predetermined threshold number Nth in step S12, the processes from step S1 are repeated.

更に、火災判断部86は、ステップS3の第1段階及びステップS4の第2段階の火災判定条件は充足したが、ステップS6の第3段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Furthermore, the fire determination unit 86 satisfies the fire determination conditions of the first stage of step S3 and the second stage of step S4, but when the fire determination conditions of the third stage of step S6 are not satisfied, step S11. In step S12, if the counter N for counting the number of occurrences of the failure sign is incremented by 1, and the number of occurrences N of the failure sign is less than the predetermined threshold value Nth, the processing from step S1 is repeated.

このような故障予兆の発生回数のカウントの繰り返しにより、火災判断部86は、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth以上となる故障予兆判定蓄積条件を満たした場合に故障予兆と判定(確定)し、ステップS13に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS14で所定の故障予兆処理を行う。 By repeating the counting of the number of times of occurrence of the failure sign, the fire determination unit 86 determines the failure sign when the number N of times of occurrence of the failure sign satisfies the failure sign determination accumulation condition that is equal to or more than the predetermined threshold value Nth in step S12. Is determined (determined), the process proceeds to step S13, where a failure sign signal is transmitted to the disaster prevention receiver board 10 to be informed, and then a predetermined failure sign process is performed in step S14.

なお、ステップS13において、ステップS12の故障予兆判定蓄積条件に、更に、ステップS12による故障予兆の判断回数が所定の閾値回数に達しか否かの故障予兆判定蓄積条件の充足判定を追加しても良い。 In addition, in step S13, even if the failure sign determination storage condition of step S12 is further added to the failure sign determination storage condition whether the number of times of failure sign determination reaches a predetermined threshold number of times. good.

また、故障予兆処理は、例えば、ステップS7の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする。また、火災検知器12は、ステップS1〜S7の監視動作とステップS8の火災信号の送信のうち、少なくとも後者を停止する。 In the failure sign process, for example, the threshold value of the number of times of accumulation in step S7 is increased to make the fire judgment accumulation condition strict. Further, the fire detector 12 stops at least the latter of the monitoring operations of steps S1 to S7 and the transmission of the fire signal of step S8.

なお、ステップS3で相対比が所定値未満のときはステップS1に戻り、また、ステップS7で火災判断蓄積条件を充足しないと判別したときはステップS11に進むようにしても良い。 If the relative ratio is less than the predetermined value in step S3, the process may return to step S1. If it is determined in step S7 that the fire determination/accumulation condition is not satisfied, the process may proceed to step S11.

また、火災判断部86は、制御動作中に、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nに関する(Nを示す)情報を故障予兆情報として応答送信し、防災受信盤10で火災検知器12の信頼性判断に利用させる。 Further, when the fire determination unit 86 receives the internal state request command from the disaster prevention receiver 10 during the control operation, the fire determination unit 86 displays information (indicative of N) regarding the number N of occurrences of the failure symptom counted by the counter at that time as the failure symptom. A response is transmitted as information, and is used by the disaster prevention reception panel 10 to judge the reliability of the fire detector 12.

[防災受信盤]
(防災受信盤の概略)
図6は防災受信盤の機能構成の概略を示したブロック図である。図6に示すように、防災受信盤10は盤制御部34を備え、盤制御部34は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention reception board]
(Outline of disaster prevention reception board)
FIG. 6 is a block diagram showing an outline of the functional configuration of the disaster prevention reception board. As shown in FIG. 6, the disaster prevention reception board 10 includes a board control unit 34, and the board control unit 34 is a function realized by executing a program, for example, and has hardware such as a CPU, a memory, and various input/output ports. A computer circuit equipped with is used.

盤制御部34に対しては伝送部36a,36bが設けられ、伝送部36a,36bから引き出した信号線14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the panel control unit 34, and a plurality of fire detectors 12 installed in the up tunnel 1a and the down tunnel 1b are provided on the signal lines 14a and 14b drawn from the transmission units 36a and 36b, respectively. Connected.

また、盤制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部41、IG子局設備20を接続するモデム42が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部43が設けられている。 Further, the panel control unit 34 is connected to an alarm unit 38 including a speaker, an alarm indicator light, etc., a display unit 40 including a liquid crystal display, a printer, etc., an operation unit 41 including various switches, and the IG slave station equipment 20. 1, a fire extinguishing pump equipment 16, a cooling pump equipment 18, a ventilation equipment 22, an alarm display board equipment 24, a radio rebroadcast equipment 26, a television monitoring equipment 28, and a lighting equipment 30 shown in FIG. 1 are connected. The IO unit 43 is provided.

盤制御部34には、プログラムの実行により実現される機能として、火災監視制御部48の機能が設けられている。 The board control unit 34 is provided with the function of the fire monitoring control unit 48 as a function realized by executing the program.

火災監視制御部48は、伝送部36a,36bに指示して信号線14a,14bを介して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災信号、感度異常予兆信号、感度異常信号、汚損予兆信号、汚損信号等の応答信号を返信する。 The fire monitoring controller 48 repeatedly sends a call signal including a polling command instructing the transmitters 36a and 36b to sequentially specify the address of the fire detector 12 via the signal lines 14a and 14b. When 12 receives the call signal that matches its own address, it returns response signals such as a fire signal, a sensitivity abnormality sign signal, a sensitivity abnormality signal, a stain sign signal, and a stain signal.

また、火災監視制御部48は、火災検知器12からの火災信号の受信に基づき火災と判断した場合は、警報部38による火災警報の出力、IO部43を介して他設備の連動制御例えば警報表示板設備24による進入禁止警報の表示、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In addition, when the fire monitoring control unit 48 determines that there is a fire based on the reception of the fire signal from the fire detector 12, the fire monitoring control unit 48 outputs a fire alarm by the alarm unit 38, and interlocks with other equipment via the IO unit 43, for example, an alarm. Predetermined fire processing including display of an entry prohibition warning by the display board facility 24 and transmission of a fire transfer signal to the remote monitoring and control facility 32 is performed.

また、火災監視制御部48は、システムの立上げ時あるいは運用中の所定の周期毎(例えば1日1回となる24時間周期)に、火災検知器12のアドレスを順次指定した試験指示信号を送信し、火災検知器12に感度試験及び汚れ試験を行わせ、それぞれの試験結果を応答させ、例えばセンサ故障の応答信号を受信した場合、火災検知器12のアドレスを特定したセンサ故障警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 Further, the fire monitoring controller 48 sends a test instruction signal that sequentially specifies the addresses of the fire detectors 12 at a predetermined cycle during system startup or during operation (for example, a 24-hour cycle that is once a day). When the fire detector 12 is sent, the sensitivity test and the dirt test are performed, the respective test results are responded, and, for example, when a response signal of a sensor failure is received, a sensor failure alarm specifying the address of the fire detector 12 is warned. The alarm sound of the unit 38, the display of the display unit 40, and the control of notifying by printing are performed.

また、火災監視制御部48は火災検知器12の汚れ試験により得られた汚損異常の応答信号を受信した場合、火災検知器のアドレスを特定した汚れ警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 Further, when the fire monitoring control unit 48 receives the stain abnormality response signal obtained by the stain test of the fire detector 12, the fire monitoring control unit 48 issues a stain alarm specifying the address of the fire detector to the alarm sound of the alarm unit 38 and the display unit 40. The display is displayed and the control is performed by printing.

また、火災監視制御部48は、火災検知器12の感度試験及び汚れ試験により得られたセンサ故障又は汚損異常の応答信号を受信した場合、モデム42から図1に示したIG子局設備20を介して遠方監視制御設備32に移報信号を送信し、故障警報又は異常警報を報知させる制御を行う。 Further, when the fire monitoring control unit 48 receives the response signal of the sensor failure or the stain abnormality obtained by the sensitivity test and the stain test of the fire detector 12, the fire monitor control unit 48 controls the IG slave station equipment 20 shown in FIG. A notification signal is transmitted to the distant monitoring control facility 32 via the control unit 32 to control the failure alarm or the abnormality alarm.

(火災判断制御)
火災監視制御部48は、火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12のアドレスを指定した内部状態要求コマンド信号を送信し、火災検知器12のカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を取得し、これに基づき火災信号を送信した火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断する。
(Fire judgment control)
When the fire monitoring control unit 48 receives a fire signal from the fire detector 12, the fire monitoring control unit 48 transmits an internal state request command signal specifying the address of the fire detector 12 that has transmitted the fire signal, and the counter of the fire detector 12 counts it. The failure sign information including the information indicating the number N of occurrences of the failure sign is acquired, and the reliability of the fire detector 12 that has transmitted the fire signal is evaluated based on the acquired failure sign information to determine whether there is reliability or decreased reliability. To do.

火災監視制御部48による火災検知器12の信頼性の評価は、例えば故障予兆情報として取得して抽出した火災検知器12の故障予兆の発生回数Nが信頼性判断蓄積条件として設定した所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断する。 The reliability of the fire detector 12 is evaluated by the fire monitoring control unit 48 by, for example, a predetermined threshold value that is set as the reliability determination accumulation condition based on the number N of occurrences of the failure sign of the fire detector 12 acquired and extracted as the failure sign information. If it is less than the number of times Nref or less than the threshold number of times Nref, it is determined to be reliable, and if it is equal to or more than the predetermined threshold number of times Nref or exceeds the threshold number of times Nref, it is determined to be less reliable.

火災検知器12が故障予兆を判定したときに火災信号を送信しないようにする場合は、例えば信頼性判断蓄積条件を設定する閾値回数Nrefは、図4に示した火災判断部86で故障予兆判断蓄積条件として設定した閾値回数Nthより低い値を設定すれば良い。 When the fire detector 12 determines not to transmit a fire signal when it judges a failure sign, for example, the threshold number of times Nref for setting the reliability judgment storage condition is determined by the fire judgment unit 86 shown in FIG. A value lower than the threshold number Nth set as the accumulation condition may be set.

火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性有りと判断したときは、火災検知器12に火災復旧コマンド信号を送信して復旧させた後に再度火災信号を受信した場合に火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 When the fire monitoring controller 48 determines that the fire detector 12 that has transmitted the fire signal is reliable, it transmits a fire recovery command signal to the fire detector 12 to restore it, and then receives the fire signal again. It is determined that there is a fire, and the predetermined fire processing including the output of the fire alarm, the interlocking control of other equipment including the display of the entry prohibition alarm by the alarm display board equipment 24, and the transmission of the fire notification signal to the remote monitoring control equipment 32. To do.

一方、火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性低下と判断したときは、火災検知器12の蓄積条件変更コマンド信号(蓄積条件厳格化コマンド)の送信により、火災検知器12の第1の火災判断蓄積条件(図5のステップS7の蓄積条件)を設定する蓄積回数閾値を増加して厳格な(より火災判断に到達し難い)第2の火災判断蓄積条件に変更し、具体的には例えば蓄積回数閾値を高くして実質的に火災に対し低感度化し、続いて、復旧コマンド信号を送信して復旧させる。 On the other hand, when the fire monitoring control unit 48 determines that the fire detector 12 that has transmitted the fire signal has decreased reliability, the fire detector 12 transmits the storage condition change command signal (storage condition tightening command) to cause the fire. The first fire judgment accumulation condition (accumulation condition of step S7 in FIG. 5) of the detector 12 is increased to a stricter (more difficult to reach fire judgment) second accumulation judgment threshold value by increasing the accumulation count threshold value. This is changed, specifically, the threshold value of the number of times of accumulation is increased to substantially reduce the sensitivity to fire, and subsequently, a recovery command signal is transmitted to recover.

この状態で、火災監視制御部48は、火災判断蓄積条件を変更した第1報目の火災信号を送信した火災検知器12から第2の火災判断蓄積条件の充足による第2報目の火災信号を受信し、且つ、又は、第1報目の火災信号を送信した火災検知器12と同じ検知エリアを重複監視している隣接した火災検知器12から火災信号を受信したときに火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, the fire monitoring control unit 48 sends the fire signal of the first report in which the fire judgment and accumulation condition is changed from the fire detector 12 that has transmitted the fire signal of the second report, and the fire signal of the second report is satisfied by the satisfaction of the second fire judgment and accumulation condition. Is received and/or, when a fire signal is received from an adjacent fire detector 12 that is redundantly monitoring the same detection area as the fire detector 12 that transmitted the first fire signal, it is determined to be a fire. Predetermined fire processing including output of a fire alarm, interlocking control of other equipment including at least display of an entry prohibition alarm by the alarm display board equipment 24, and transmission of a fire transfer signal to the distant monitoring control equipment 32 is performed.

このように火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、火災検知器12が火災以外の故障予兆により火災と判断して火災信号を送信した場合も、当該火災検知器の火災判断蓄積条件を厳格に変更することから復旧後に原因不明の非火災要因により再度火災信号を送信する可能性は低くなり、また、このとき隣接火災検知器12は信頼性が低下しておらず、実火災でない場合に火災信号を送信する可能性は極めて低く、第1報目の火災信号を送信して復旧した火災検知器12とこれに隣接する火災検知器12aの一方又は両方から火災信号が受信される場合に火災と判断するようすることで、非火災にもかかわらず火災と判断して火災処理を行ってしまうことを確実に防止できる。 As described above, when the fire monitoring control unit 48 determines that the fire detector 12 that has transmitted the fire signal has deteriorated reliability, the fire detector 12 also determines that the fire is due to a failure sign other than the fire and transmits the fire signal. Since the fire judgment accumulation condition of the fire detector is strictly changed, it is less likely that the fire signal will be transmitted again due to a non-fire factor whose cause is unknown after the recovery, and at this time, the adjacent fire detector 12 is not reliable. Is not lowered, and the possibility of transmitting a fire signal when it is not an actual fire is extremely low, and the fire detector 12 that has recovered by transmitting the fire signal of the first report and the fire detector 12a adjacent thereto By determining that a fire occurs when a fire signal is received from one or both of them, it is possible to reliably prevent a fire from being determined to be a fire despite a non-fire.

また、火災監視制御部48は、第1報目の火災信号を送信した火災検知器12につき信頼性低下と判断した後に当該火災検知器12及び又はこれに隣接した火災検知器12aに基づく火災判断が成立しなかった場合、火災検知器12から非火災の(誤った)火災信号を受信したことを示す非火災移報信号を遠方監視制御設備32に送信して報知させる制御を行う。 In addition, the fire monitoring control unit 48 determines that the fire detector 12 that has transmitted the first fire signal has a decreased reliability, and then determines the fire based on the fire detector 12 and/or the fire detector 12a adjacent thereto. If is not established, the control for transmitting the non-fire notification signal indicating that the non-fire (erroneous) fire signal has been received from the fire detector 12 to the distant monitoring control facility 32 to perform the notification is performed.

これにより遠方監視制御設備32側の管理担当者は、非火災報の原因となり得る火災検知器12の信頼性が低下した状態を知ることができ、火災検知器12の点検強化等といったトンネルの運用管理効率化のために利用可能とする。 As a result, the person in charge of management of the remote monitoring and control equipment 32 can know the state in which the reliability of the fire detector 12 that may cause a non-fire alarm has deteriorated, and the operation of the tunnel such as strengthening the inspection of the fire detector 12 can be performed. It can be used for management efficiency.

また、火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、当該火災検知器12の検知エリアを重複監視している隣接火災検知器12aに、蓄積条件変更コマンド信号(蓄積条件緩和コマンド)を送信して、図5のステップS7の蓄積回数閾値を低下させることで、第1の火災判断条件を緩和する(より火災判断に到達しやすくする)第3の火災判断条件に変更し、実質的に火災に対し高感度化しても良い。 If the fire monitoring control unit 48 determines that the fire detector 12 that has transmitted the fire signal has decreased reliability, the storage condition is changed to the adjacent fire detector 12a that duplicately monitors the detection area of the fire detector 12. By transmitting a command signal (accumulation condition relaxation command) and lowering the accumulation frequency threshold value in step S7 of FIG. 5, the first fire determination condition is relaxed (it is easier to reach the fire determination). It may be possible to change to fire judgment conditions to substantially increase the sensitivity to fire.

具体的には例えば、隣接した火災検知器12の第1の火災判断蓄積条件として設定した蓄積回数閾値を低下させて第3の火災判断条件に変更することで、実火災であった場合、隣接災検知器12aよる火災信号が迅速に送信され、且つ又は第1報目の火災信号を送信して信頼性低下と判断された火災検知器12の復旧後再度の火災信号の送信によって速やかに火災処理を行うことができる。 Specifically, for example, if an actual fire occurs by lowering the accumulation number threshold set as the first fire determination accumulation condition of the adjacent fire detectors 12 and changing it to the third fire determination condition, The fire signal from the disaster detector 12a is transmitted quickly, and/or the fire signal of the first report is transmitted, and it is determined that the reliability has decreased. Processing can be performed.

なお、火災検知器12が右眼と左眼を区別した火災信号を送信できる場合、例えば、この火災検知器12の右眼の検知エリアを左眼で重複監視している火災検知器(の左眼)を隣接した火災検知器12aとすれば良い。右眼と左眼の区別ができない場合は、両隣かこのうちの何れかの火災検知器12aとなる。 In addition, when the fire detector 12 can transmit a fire signal that distinguishes the right eye and the left eye, for example, the left of the fire detector in which the detection area of the right eye of the fire detector 12 is redundantly monitored by the left eye. The eye) may be the adjacent fire detector 12a. When the right eye and the left eye cannot be distinguished, the fire detector 12a is provided on either side or on either side.

[トンネル防災システムの制御動作]
(火災検知器の信頼性有り)
図7は防災受信盤で火災検知器の信頼性有りと判断された場合の制御動作を示したタイムチャートである。
[Control operation of tunnel disaster prevention system]
(The fire detector is reliable)
FIG. 7 is a time chart showing the control operation when it is judged by the disaster prevention reception panel that the fire detector is reliable.

図7に示すように、火災検知器12がステップS21で火災と判断すると、ステップS22に進んで防災受信盤10に火災信号を送信する。防災受信盤10は火災検知器12からの火災信号を受信するとステップS23で内部状態要求コマンド信号を火災検知器12に送信し、これを受けて火災検知器12はステップS24でそのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を生成して防災受信盤10に送信する。 As shown in FIG. 7, when the fire detector 12 determines that there is a fire in step S21, the process proceeds to step S22, and a fire signal is transmitted to the disaster prevention receiver board 10. Upon receiving the fire signal from the fire detector 12, the disaster prevention receiver board 10 transmits an internal state request command signal to the fire detector 12 in step S23, and in response, the fire detector 12 counts in the counter at step S24 at that time. The failure sign information including the information indicating the number N of occurrences of the failure sign is generated and transmitted to the disaster prevention receiver board 10.

火災検知器12からの故障予兆情報を受信した防災受信盤10は、ステップS25で故障予兆情報から抽出した故障予兆の発生回数Nに基づき信頼性を評価し、ステップS26で信頼性有りと判断するとステップS27に進み、復旧コマンド信号を火災検知器12に送信してステップS28で復旧させ、ステップS29で火災検知器12が再度火災と判断してステップS30で火災信号が送信されると、この火災信号を受信した防災受信盤10はステップS31で火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 The disaster prevention receiver board 10 that has received the failure sign information from the fire detector 12 evaluates the reliability based on the number of times N of the failure sign extracted from the failure sign information in step S25, and determines that there is reliability in step S26. Proceeding to step S27, a recovery command signal is sent to the fire detector 12 to recover it in step S28, the fire detector 12 judges again in step S29 that there is a fire, and the fire signal is transmitted in step S30. The disaster prevention reception board 10 that has received the signal determines that there is a fire in step S31, outputs a fire alarm, interlocks the equipment including at least the display of the entry prohibition alarm by the alarm display board equipment 24, and notifies the remote monitoring control equipment 32 of the fire. Perform predetermined fire treatment including signal transmission.

(火災検知器の信頼性低下)
図8は防災受信盤で火災検知器の信頼性低下が判断された場合の制御動作を示したタイムチャートである。
(Reduced reliability of fire detector)
FIG. 8 is a time chart showing the control operation when it is determined that the fire detector has decreased reliability of the fire prevention reception board.

図8のステップS41〜S45の処理は、図7のステップS21〜S25の処理と同じになる。図8にあっては、ステップS45で故障予兆情報から抽出された故障予兆の発生回数Nに基づき信頼性を評価し、ステップS46で信頼性低下と判断するとステップS47に進み、信頼性低下と判断された火災検知器12の当該信頼性低下の原因となった火災検知部に対応する検知エリアを重複監視している隣接火災検知器12aに当該重複監視している検知エリアに対する火災判断蓄積条件を緩和する蓄積条件変更コマンド信号、具体的には図5のステップS7の火災判断蓄積条件となる蓄積回数閾値を減少させる蓄積条件変更コマンド信号を送信し、併せて、第1報目の火災信号を送信した火災検知器12に、当該火災信号を送信する原因となった火災検知部に対応する第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更する蓄積条件変更コマンド信号、具体的には、火災判断の蓄積回数閾値を増加させる蓄積条件変更コマンド信号を送信する。 The processing of steps S41 to S45 of FIG. 8 is the same as the processing of steps S21 to S25 of FIG. In FIG. 8, the reliability is evaluated based on the number N of times of occurrence of the failure sign extracted from the failure sign information in step S45, and if it is determined that the reliability is low in step S46, the process proceeds to step S47, and it is determined that the reliability is low. The fire determination accumulation condition for the detection area that is being duplicatively monitored is set to the adjacent fire detector 12a that is duplicatingly monitoring the detection area corresponding to the fire detecting unit that has caused the decrease in reliability of the fire detector 12 that has been detected. A storage condition change command signal to be relaxed, specifically, a storage condition change command signal to decrease the number of storage times threshold that is the fire determination storage condition in step S7 of FIG. 5 is transmitted, and at the same time, the first fire signal is transmitted. A storage condition change command signal that changes the first fire determination storage condition corresponding to the fire detection unit that caused the transmission of the fire signal to the transmitted fire detector 12 to the strict second fire determination storage condition, Specifically, a storage condition change command signal for increasing the storage count threshold for fire determination is transmitted.

防災受信盤10からの蓄積条件変更コマンド信号を受信した隣接火災検知器12a(両隣又は一方の隣)はステップS48で蓄積回数閾値を低下させることで火災判断蓄積条件を緩和し、その結果として実質的に火災感度を上げ、実火災であれば、速やかにステップS49で火災と判断し、ステップS50で火災信号を送信する。 The adjacent fire detectors 12a (on either side or on one side) that have received the storage condition change command signal from the disaster prevention receiver 10 relax the fire determination storage condition by lowering the storage count threshold value in step S48, and as a result, The fire sensitivity is increased, and if it is an actual fire, it is immediately determined to be a fire in step S49, and a fire signal is transmitted in step S50.

また、防災受信盤10から蓄積回数閾値を増加させる蓄積条件変更コマンド信号を受信した火災検知器12はステップS51で蓄積回数閾値を増加させて実質的に火災感度を下げる。続いて、防災受信盤10はステップS52で第1報目の火災信号を送信した火災検知器12に復旧コマンド信号を送信し、これを受信した火災検知器12はステップS53で一旦復旧する。このとき実火災が継続していれば、感度を下げた火災検知器12もステップS54で再度火災と判断してステップS55で火災信号を再度送信する。 Further, the fire detector 12, which has received the accumulation condition change command signal for increasing the accumulation number threshold from the disaster prevention reception panel 10, increases the accumulation number threshold in step S51 to substantially reduce the fire sensitivity. Subsequently, the disaster prevention receiver board 10 transmits a recovery command signal to the fire detector 12 that has transmitted the first fire signal in step S52, and the fire detector 12 that has received this signal is temporarily restored in step S53. If the actual fire continues at this time, the fire detector 12 whose sensitivity has been lowered also determines that a fire has occurred again in step S54, and again transmits a fire signal in step S55.

防災受信盤10はステップS57で所定時間を経過する前にステップS56で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、厳格な火災判断蓄積条件に変更した隣接火災検知器12a(隣接火災検知器が2台の場合はその一方又は両方)からの火災信号との一方又は両方を受信するとステップS58に進み、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。ここで、ステップS57の所定時間は、ステップS51で増加させた蓄積回数閾値を考慮した蓄積時間に対応した時間とする。 The disaster prevention receiver board 10 uses the second fire signal from the fire detector 12 which has transmitted the first fire signal in step S56 before the predetermined time has passed in step S57, and the strict fire judgment accumulation condition. When one or both of the fire signal from the changed adjacent fire detector 12a (one or both of the two adjacent fire detectors) is received, the process proceeds to step S58 to output a fire alarm, at least an alarm display board facility. Predetermined fire processing including interlocking control of equipment including display of an entry prohibition warning by 24 and transmission of a fire transfer signal to the remote monitoring control equipment 32 is performed. Here, the predetermined time of step S57 is a time corresponding to the accumulation time in consideration of the accumulation number threshold increased in step S51.

なお、右眼と左眼の区別できるシステムでは、火災が発生したとする方の眼の検知エリアを重複監視している1台の(当該検知エリアを監視している方の眼の)の火災信号を得たときに火災処理すれば良い。 In a system that can distinguish between the right eye and the left eye, one fire (of the eye that is monitoring the detection area) that is redundantly monitoring the detection area of the eye where the fire is supposed to occur Fire should be dealt with when the signal is obtained.

一方、ステップS57で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、隣接した火災検知器12aからの火災信号の一方又は両方の受信を判別することなくステップS57で所定時間が経過した場合はステップS59に進み、遠方監視制御設備32に火災検知器12からの非火災の火災信号を受信したことを示す非火災移報信号を送信して報知させる。 On the other hand, the reception of one or both of the second fire signal from the fire detector 12 that has transmitted the first fire signal in step S57 and the fire signal from the adjacent fire detector 12a is determined. Otherwise, if the predetermined time has elapsed in step S57, the process proceeds to step S59, in which the remote monitoring and control facility 32 is notified by transmitting a non-fire notification signal indicating that the non-fire fire signal from the fire detector 12 has been received. ..

[火災検知器で信頼性を判断する実施形態]
上記の実施形態にあっては、防災受信盤10が火災信号を受信したときに、火災信号を送信した火災検知器12から故障予兆の発生回数を示す情報を含む故障予兆情報を取得して、火災信号を送信した火災検知器12の信頼性を評価して信頼性あり又は信頼性低下を判断しているが、他の実施形態として、火災検知器12側で故障予兆の発生回数から信頼性を評価して信頼性あり、信頼性低下を判断するようにしても良い。
[Embodiment in which reliability is judged by fire detector]
In the above-described embodiment, when the disaster prevention receiver board 10 receives the fire signal, the failure sign information including the information indicating the number of occurrences of the failure sign is acquired from the fire detector 12 that has transmitted the fire signal, The reliability of the fire detector 12 that has transmitted the fire signal is evaluated to determine whether the fire detector 12 is reliable or the reliability is reduced. However, as another embodiment, the fire detector 12 is reliable based on the number of occurrences of a failure sign. May be evaluated to judge that the reliability is low and the reliability is low.

即ち、図4に示した火災検知器12の火災判断部86は、図5の制御動作に示したように、ステップS11で故障予兆の発生回数Nを求めているが、火災信号を送信した後に、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき求めている故障予兆の発生回数Nを信頼性判断蓄積条件として設定した所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、この信頼性の判断結果を示す情報を含む信頼性情報を防災受信盤10に送信する。 That is, as shown in the control operation of FIG. 5, the fire determination unit 86 of the fire detector 12 shown in FIG. 4 obtains the number N of occurrences of failure signs in step S11, but after transmitting the fire signal. When the internal state request command signal is received from the disaster prevention receiver panel 10, the number N of occurrences of failure signs obtained at that time is compared with the predetermined threshold number Nref set as the reliability judgment storage condition, and the predetermined threshold number Nref is compared. Below, or below the threshold number of times Nref, it is judged to be reliable, and above the predetermined threshold number of times Nref or exceeding the threshold number of times Nref, it is judged to be low reliability, and includes information indicating the reliability judgment result. The reliability information is transmitted to the disaster prevention receiver 10.

防災受信盤10は、図7のステップS25における信頼性の判断、及び、図8のステップS45における信頼性の判断の処理において、火災検知器12から取得した信頼性情報から信頼性判断の結果を抽出するだけで良く、それ以外は、前述した実施形態と同じになる。このように信頼性の判断を火災検知器12側で行うことで、防災受信盤10側の処理負担を低減できる。 The disaster prevention receiver board 10 obtains the reliability judgment result from the reliability information acquired from the fire detector 12 in the reliability judgment processing in step S25 of FIG. 7 and the reliability judgment processing in step S45 of FIG. It only needs to be extracted, and other than that, it is the same as the above-described embodiment. In this way, by making the reliability determination on the side of the fire detector 12, the processing load on the side of the disaster prevention receiver board 10 can be reduced.

(火災検知器の故障予兆検出による防災受信盤の制御動作)
図9は火災検知器で故障予兆が検出されて故障予兆と判定した場合の防災受信盤の制御動作を示したタイムチャートである。なお、火災検知器は自己の故障予兆と判定した場合であっても、故障予兆処理として火災信号の送信停止は行わず、火災と判断すると火災信号を送信する場合を例にとっている。
(Control operation of disaster prevention receiver board by detecting failure sign of fire detector)
FIG. 9 is a time chart showing the control operation of the disaster prevention receiver panel when a failure sign is detected by the fire detector and the failure sign is determined. Note that the fire detector does not stop transmission of a fire signal as failure sign processing even when it determines that it is a failure sign of its own, and in this example, it sends a fire signal when it judges that there is a fire.

図9に示すように、ステップS61において火災検知器12で故障予兆の発生回数Nが所定の閾値Nthに達して故障予兆と判定(確定)するとステップS62で故障予兆信号が防災受信盤10に送信され、故障予兆処理を行う場合はステップS62aで所定の故障予兆処理が行われるが、前述のとおり、その後の制御を説明するため、ここでは故障予兆処理として火災信号の送信停止は行わない例とする。火災検知器12からの故障予兆信号を受信した防災受信盤10はステップS63で故障予兆となった火災検知器12をディスプレイ等の警報表示により報知し、ステップS64で遠方監視制御設備32に故障予兆移報信号を送信して報知させる。 As shown in FIG. 9, in step S61, when the number of times of occurrence of failure sign N in the fire detector 12 reaches a predetermined threshold value Nth and it is determined (determined) as a failure sign, a failure sign signal is transmitted to the disaster prevention receiver board 10 in step S62. When performing the failure sign process, a predetermined failure sign process is performed in step S62a, but as described above, in order to explain the subsequent control, here, an example in which transmission of the fire signal is not stopped as the failure sign process will be described. To do. The disaster prevention receiver panel 10 that has received the failure sign signal from the fire detector 12 notifies the fire detector 12 that has become the failure sign by an alarm display such as a display in step S63, and notifies the remote monitoring and control equipment 32 of the failure sign in step S64. Send a transfer signal to notify.

この状態で火災検知器12がステップS65で火災と判断してステップS66で火災信号を送信したとすると、防災受信盤10はステップS67で故障予兆が検出された火災検知器12か否か判別し、故障予兆が検出された火災検知器12でなければステップS68に進んで、火災警報の出力、警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, if the fire detector 12 determines that there is a fire in step S65 and sends a fire signal in step S66, the disaster prevention receiver board 10 determines in step S67 whether or not the fire detector 12 has detected a failure sign. If it is not the fire detector 12 in which the failure sign is detected, the process proceeds to step S68 to output a fire alarm, interlock control of other equipment including display of an entry prohibition alarm by the alarm display board equipment 24, and the remote monitoring control equipment 32. Prescribed fire processing including transmission of fire notification signal.

これに対しステップS67で当該2報目の火災信号が、故障予兆が検出された火災検知器12から送信されたものであることが判別されたときはステップS69に進んで非火災報と判断し、火災処理は行わず、例えば、非火災報の受信を報知し、続いて、ステップS70に進み、遠方監視制御設備32に火災検知器12の誤作動情報として火災検知器12の誤作動を示す非火災移報信号を送信して報知させる。 On the other hand, when it is determined in step S67 that the second fire signal is transmitted from the fire detector 12 in which the failure sign is detected, the process proceeds to step S69 and it is determined that it is a non-fire report. , Fire processing is not performed, for example, the reception of a non-fire report is notified, and then the process proceeds to step S70 to indicate the malfunction of the fire detector 12 to the remote monitoring and control facility 32 as malfunction information of the fire detector 12. Send a non-fire transfer signal to notify.

なお、火災検知器12の火災判断部86による故障予兆処理として火災信号の送信を停止している場合には、ステップS65以降の処理は行われない。 In addition, when the transmission of the fire signal is stopped as the failure sign process by the fire determination unit 86 of the fire detector 12, the processes from step S65 are not performed.

[トンネル単位又は区間単位の信頼性を判断する実施形態]
上記の実施形態は、火災検知器12ごとに信頼性を判断しているが、他の実施形態として、トンネルごと、信号系統ごと又はトンネルの所定の区間ごとにグループ化された複数の火災検知器12の故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に信頼性を評価して信頼性有り、信頼性低下を判断するようにしても良い。
[Embodiment for Determining Reliability in Tunnel Unit or Section Unit]
In the above embodiment, the reliability is judged for each fire detector 12, but as another embodiment, a plurality of fire detectors grouped for each tunnel, each signal system, or each predetermined section of the tunnel. The reliability may be evaluated on a tunnel unit basis, a signal system unit basis, or a section unit basis on the basis of the failure sign information of 12 to judge whether there is reliability or not.

このため、例えばトンネルの区間ごとに信頼性を判断する場合、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12が属する区間でグループ化された複数の火災検知器12に内部情報要求コマンド信号を送信して、それぞれの故障予兆情報を受信し、この情報から故障予兆の発生回数N1,N2,・・・Nnを取得し、故障予兆の発生回数N1,N2,・・・Nnの平均回数Naveを算出して所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 Therefore, for example, when judging the reliability for each section of the tunnel, the disaster prevention receiver board 10 is grouped by the section to which the fire detector 12 that has transmitted the fire signal belongs when the fire signal is received from the fire detector 12, for example. The internal information request command signal is transmitted to the plurality of fire detectors 12 and the respective failure sign information is received, and the number of occurrences N1, N2,... Nn of the failure sign is acquired from this information, and the failure sign is detected. The average number Nave of the number of occurrences N1, N2,... Nn is calculated and compared with a predetermined threshold number of times Nref. When the average number of times Nref is less than or equal to the predetermined threshold number of times Nref or less than the threshold number of times Nref, it is determined to be reliable, and a predetermined value is determined. When it is equal to or more than the threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability is deteriorated, and the same control operation as that of the above-described embodiment is performed according to the reliability determination result.

本実施形態は、トンネル内の区間単位に特有な温度、湿度、電気的ノイズ等の環境要因の相違に基づいた火災検知器12の信頼性を評価して信頼性あり、信頼性低下を判断できる。この判断結果及び上記のNrefを示す情報を信頼性情報として一時保持する。 In this embodiment, the reliability of the fire detector 12 is evaluated based on the difference in environmental factors such as temperature, humidity, and electrical noise peculiar to each section in the tunnel, and the reliability can be determined, and a decrease in reliability can be determined. .. Information indicating this judgment result and the above Nref is temporarily held as reliability information.

また、トンネル単位に信頼性を判断する場合には、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、トンネル内に設置された全ての火災検知器12に内部情報要求コマンド信号を送信して、全ての故障予兆情報として故障予兆の発生回数N1,N2,・・・Nnを取得して平均回数Naveを算出し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 Further, in the case of judging the reliability for each tunnel, when the disaster prevention reception board 10 receives a fire signal from the fire detector 12, for example, the internal information request command signal is sent to all the fire detectors 12 installed in the tunnel. Is transmitted, all the failure sign information is obtained as the failure sign occurrence times N1, N2,... Nn, and the average number Nave is calculated. When the average sign Nave is less than or equal to the predetermined threshold value Nref or less than the threshold value Nref, If it is determined that there is reliability, and if it is equal to or greater than the predetermined threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability is lowered, and the same control operation as that of the above-described embodiment is performed according to the reliability determination result.

ここで、図7、図8の実施形態及びトンネルごと、信号系統ごと、区間ごとの信頼性情報を生成する本実施形態においては、防災受信盤10は火災検知器12から火災信号を受信したときに当該火災検知器12或いはトンネル、信号系統、区間の火災検知器から故障予兆情報を取得するようにしているが、火災信号受信に先立って故障予兆情報を取得し、これに基づいて火災信号受信に係る各処理を行うようにしても良い。 Here, in the embodiment of FIGS. 7 and 8 and in the present embodiment that generates reliability information for each tunnel, each signal system, and each section, when the disaster prevention receiver board 10 receives a fire signal from the fire detector 12. The failure sign information is acquired from the fire detector 12 or the fire detector in the tunnel, the signal system, or the section. However, the failure sign information is acquired prior to receiving the fire signal, and the fire signal is received based on this. You may make it perform each process which concerns.

また、系統毎に信頼性を判断する場合は、信号線14a,14bごとの火災検知器12の故障予兆の発生回数から同様に平均回数を求めて、これに基づき信頼性を判断する。なお、故障予兆情報は故障予兆の発生回数に限られず、移動平均回数、故障予兆の発生頻度や所定期間の発生割合等としても良い。 When the reliability is determined for each system, the average number of times is similarly calculated from the number of occurrences of the failure sign of the fire detector 12 for each of the signal lines 14a and 14b, and the reliability is determined based on this. The failure sign information is not limited to the number of occurrences of the failure sign, but may be the moving average number of times, the occurrence frequency of the failure sign, the occurrence rate of a predetermined period, or the like.

[故障予兆の判定の他の実施形態]
(感度試験に伴う故障予兆の判定)
図10は火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図である。
[Other Embodiments for Determining Failure Prediction]
(Judgment of failure sign accompanying sensitivity test)
FIG. 10 is an explanatory diagram showing the peak level of the received light signal and the number of occurrences of a failure sign when the internal test light source is driven by the sensitivity test of the fire detector.

図4に示した火災検知器12の検知器制御部54に設けられた感度試験部88は、防災受信盤10から定期的(例えば1日に1回)に送信される試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に例えば2Hzで所定期間(例えば1秒間)点滅させる発光駆動を行って火災検知部60R,60Lに火災炎に相当する炎疑似光(試験光)を入射して感度試験を行わせる。 The sensitivity test unit 88 provided in the detector control unit 54 of the fire detector 12 illustrated in FIG. 4 receives the test instruction signal transmitted from the disaster prevention receiver panel 10 periodically (for example, once a day). In this case, the test light emission drive unit 76 is instructed to perform a light emission drive in which the internal test light sources 78R, 80R, 82R, 78L, 80L, 82L are sequentially blinked at, for example, 2 Hz for a predetermined period (for example, 1 second) to cause a fire. A flame pseudo light (test light) corresponding to a fire flame is incident on the detection units 60R and 60L to perform a sensitivity test.

感度試験部88による感度試験は、図4について既に説明したと同じ内容となる。これに加え、本実施形態の感度試験部88は、感度試験に伴い火災検知部60Rから出力される炎受光信号E1R、第1の非炎受光信号E2RL及び第2の非炎受光信号E3R,E3L、及び、火災検知部60Lから出力される感度試験時の炎受光信号E1L、第1の非炎受光信号E2L及び第2の非炎受光信号E3Lの各々について、各受光信号のピークレベルを検出し、図10(A)に黒丸で示すように、例えば1日に1回検出したピークレベルが、工場出荷時の劣化無しの状態で検出されたピークレベルの初期値92に基づく所定の正常範囲94を外れたが、所定の故障閾値96以下又は故障閾値96を下回らず故障判断条件を充足しなかった場合、即ち故障予兆範囲98にある場合は故障予兆と判断し、図10(B)に示すように、故障予兆の発生回数Nをカウンタにより計数する制御を行う。 The sensitivity test by the sensitivity test unit 88 has the same contents as already described with reference to FIG. In addition to this, the sensitivity test unit 88 of the present embodiment uses the flame light reception signal E1R, the first non-flame light reception signal E2RL, and the second non-flame light reception signals E3R, E3L output from the fire detection unit 60R in accordance with the sensitivity test. , And the peak level of each received light signal for each of the flame received signal E1L, the first non-flame received signal E2L, and the second non-flame received signal E3L that are output from the fire detection unit 60L during the sensitivity test. As shown by the black circles in FIG. 10A, the peak level detected once a day, for example, is a predetermined normal range 94 based on the initial value 92 of the peak level detected without deterioration at the time of factory shipment. However, when the failure judgment condition is not satisfied, that is, the failure failure condition is not less than the predetermined failure threshold value 96 or less than the predetermined failure threshold value 96, that is, in the failure sign range 98, it is determined as the failure sign and is shown in FIG. In this way, control is performed to count the number N of occurrences of failure signs by a counter.

ここで、受光信号の正常範囲94は初期値92を中心に例えば正常上限値94aと正常下限値94bで挟まれた範囲とし、例えば初期値92に対し±10パーセントとしている。また、故障閾値96は例えば初期値92の50パーセント程度の値とする。 Here, the normal range 94 of the received light signal is a range centered on the initial value 92, for example, between the normal upper limit value 94a and the normal lower limit value 94b, and is, for example, ±10% of the initial value 92. Further, the failure threshold value 96 is, for example, a value of about 50% of the initial value 92.

なお、故障予兆範囲として、例えば正常範囲94の上限値94aから初期値92の50パーセントを初期値92に加えたまでの範囲、即ち
(上限値94a)超え{(初期値92)+(初期値92の50パーセント)}以下
の範囲を追加して故障予兆と判断しても良い。
As the failure sign range, for example, a range from the upper limit 94a of the normal range 94 to 50% of the initial value 92 added to the initial value 92, that is, (upper limit 94a) exceeds {(initial value 92)+(initial value 92 It is also possible to add the following range to determine that it is a failure sign.

一方、火災判断部86は、感度試験部88のカウンタで係数された故障予兆の発生回数Nを故障予兆判定蓄積条件として設定した所定の閾値回数Nthと比較しており、故障予兆の発生回数Nが所定閾値Nth以上又は所定閾値Nthを超えて故障予兆判定蓄積条件を充足したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。火災判断部86による故障予兆処理は、例えば、火災信号の送信を停止する処理とする。 On the other hand, the fire judging unit 86 compares the number of times of occurrence of the failure sign N counted by the counter of the sensitivity testing unit 88 with the predetermined number of times of threshold Nth set as the failure sign determination accumulation condition, and the number of occurrences of the failure sign N Is determined to be a failure sign (determined) when the failure sign determination accumulation condition is satisfied or exceeded a predetermined threshold value Nth or more, and a failure sign signal is transmitted to the disaster prevention receiver board 10, and then a predetermined failure sign. Perform processing. The failure sign process by the fire determination unit 86 is, for example, a process of stopping transmission of a fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す情報を含む予兆故障情報を送信する制御を行い、防災受信盤10において故障予兆の発生回数Nを抽出し、これに基づいて火災信号を送信した火災検知器12の信頼性を評価して信頼性有り、信頼性低下を判断するために用いられる。 In addition, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention reception panel 10, the fire determination unit 86 performs control to transmit predictive failure information including information indicating the number N of occurrences of failure predictor obtained at that time, The disaster prevention receiver 10 extracts the number N of occurrences of a failure sign, and based on this, the reliability of the fire detector 12 that has transmitted the fire signal is evaluated, and it is used to determine whether there is reliability or a decrease in reliability.

なお、カウンタにより計数している故障予兆の発生回数Nは、例えば所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。リセット前の故障予兆の発生回数Nは、故障予兆情報履歴として記憶するようにしても良い。 The number N of occurrences of the failure sign counted by the counter is reset, for example, every predetermined period, or when a predetermined period has elapsed after counting the failure sign. The number N of occurrences of the failure sign before resetting may be stored as a failure sign information history.

(火災検知器の感度試験動作)
図11は故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートであり、図4に示した火災検知器12の感度試験部88及び火災判断部86による制御動作となる。
(Sensitivity test operation of fire detector)
FIG. 11 is a flowchart showing the sensitivity test of the fire detector accompanied by the determination of the failure sign, which is the control operation by the sensitivity test unit 88 and the fire judgment unit 86 of the fire detector 12 shown in FIG.

図11に示すように、感度試験部88は、例えば、図4の火災検知部60Rを例にとると、ステップS71で防災受信盤10から順番にアドレスを指定して1日1回、送信される試験指示信号の受信(自己アドレスを示すもの)を判別してステップS72に進み、試験発光駆動部76に指示して内部試験光源78Rを2Hzで所定期間(例えば1秒間)点滅駆動してセンサ部64に火災炎に相当する炎疑似光(試験光)を入射する。 As shown in FIG. 11, for example, taking the fire detection unit 60R of FIG. 4 as an example, the sensitivity test unit 88 specifies addresses in order from the disaster prevention reception panel 10 in step S71, and is transmitted once a day. The reception of the test instruction signal (indicating the self address) is determined, and the process proceeds to step S72 to instruct the test light emission drive unit 76 to drive the internal test light source 78R to blink at 2 Hz for a predetermined period (for example, 1 second) to perform the sensor. Flame pseudo light (test light) corresponding to a fire flame is incident on the portion 64.

続いて、感度試験部88はステップS73に進み、増幅処理部66より出力される試験光による炎受光信号(受光信号)E1Rのピークレベルを検出し、ステップS74で図10(A)に示した正常範囲94内か否か判別し、正常範囲94内にある場合はステップS75に進み、工場出荷時の初期感度試験時に記憶された初期値(基準受光値)92により受光信号の例えばピークレベルを割って検出感度係数を算出し、ステップS77で検出感度係数の逆数として受光信号の補正係数を算出して記憶し、受光信号レベルの補正に用いる。 Subsequently, the sensitivity test unit 88 proceeds to step S73, detects the peak level of the flame light reception signal (light reception signal) E1R by the test light output from the amplification processing unit 66, and shows the peak level in step S74 in FIG. It is determined whether or not it is within the normal range 94, and if it is within the normal range 94, the process proceeds to step S75, and, for example, the peak level of the light reception signal is determined by the initial value (reference light reception value) 92 stored during the initial sensitivity test at the time of factory shipment. The detection sensitivity coefficient is divided to calculate the correction coefficient of the received light signal as the reciprocal of the detected sensitivity coefficient in step S77, which is stored and used to correct the received light signal level.

続いて、感度試験部88はステップS77に進み、ステップS75で算出した検出感度係数が予め定めた所定の感度補正限界閾値(例えば0.5)に達するまで、ステップS71からの処理を繰り返す。なお、ステップS75における補正限界は、ステップS81と同様に、ピークレベルが故障閾値以下又はそれを下回った場合としても良い。 Subsequently, the sensitivity test unit 88 proceeds to step S77, and repeats the processing from step S71 until the detection sensitivity coefficient calculated in step S75 reaches a predetermined sensitivity correction limit threshold value (for example, 0.5). Note that the correction limit in step S75 may be the case where the peak level is equal to or lower than or equal to the failure threshold value, as in step S81.

感度試験部88は、ステップS77で検出感度係数の感度補正限界閾値への到達を判別した場合は、ステップS78で所定の感度異常判定蓄積条件、例えば所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信する。 When it is determined in step S77 that the detection sensitivity coefficient reaches the sensitivity correction limit threshold value, the sensitivity testing unit 88 determines in step S78 that a predetermined sensitivity abnormality determination storage condition, for example, a predetermined storage count threshold value is reached from step S71. When the process is repeated and the sensitivity abnormality determination storage condition of step S78 is satisfied, the sensitivity abnormality signal is transmitted to the disaster prevention receiver board 10 in step S79.

続いて、火災判断部86は感度試験部88における感度異常の判定を受けてステップS80で所定の感度異常処理を行う。この感度異常処理は、感度異常を判定した後は感度異常(例えば感度異常を伴う受光素子故障や電気回路故障等)による誤った火災判断がなされる可能性が高いことから、例えば火災判断部86における火災判断蓄積条件を設定する蓄積回数閾値を増加して実質的に火災感度を下げるか、或いは、火災信号の送信を停止する等の処理とする。 Subsequently, the fire determination unit 86 receives the determination of the sensitivity abnormality in the sensitivity test unit 88 and performs a predetermined sensitivity abnormality processing in step S80. In this sensitivity abnormality processing, there is a high possibility that an erroneous fire determination due to a sensitivity abnormality (for example, a light receiving element failure or an electric circuit failure accompanied by a sensitivity abnormality) is made after the sensitivity abnormality is determined, and therefore, for example, the fire determination unit 86. The fire detection storage condition is set to increase the storage count threshold to substantially reduce the fire sensitivity, or the transmission of the fire signal is stopped.

一方、感度試験部88は、ステップS74で試験時の受光信号E1Rのピークレベルが正常範囲94を外れたことを判別するとステップS81に進み、ピークレベルが故障閾値96以下又は故障閾値を下回らない場合、即ち、図10(A)に示した、故障予兆範囲98にある場合は、故障予兆が発生したと判定して火災判断部86に通知する。なお、ステップS81の故障予兆の判定は、受光信号のピークレベルに限らず、例えば積分値や平均レベルに基づいて行っても良い。 On the other hand, if the sensitivity test unit 88 determines in step S74 that the peak level of the received light signal E1R at the time of testing is out of the normal range 94, the process proceeds to step S81, and the peak level is equal to or lower than the failure threshold value 96 or does not fall below the failure threshold value. That is, when it is in the failure sign range 98 shown in FIG. 10A, it is determined that a failure sign has occurred and the fire judgment unit 86 is notified. The failure sign determination in step S81 is not limited to the peak level of the received light signal, but may be made based on, for example, the integrated value or the average level.

続いて、感度試験部88から故障予兆の判定結果の通知を受けた火災判断部86は、ステップS82で故障予兆の発生回数を計数するカウンタNを+1し(インクリメントし)、ステップS83で故障予兆の発生回数Nが所定の故障予兆判定蓄積条件として設定した閾値回数Nth以下又はそれを下回った場合は、ステップS71からの処理を繰り返す。 Subsequently, the fire determination unit 86 that has received the notification of the failure sign determination result from the sensitivity test unit 88 increments (increments) the counter N that counts the number of occurrences of the failure sign in step S82, and in step S83. If the number of occurrences N of the threshold value is equal to or less than the threshold number of times Nth set as the predetermined failure sign determination accumulating condition or is lower than the threshold value number Nth, the processing from step S71 is repeated.

このような故障予兆の発生回数Nのカウントの繰り返しにより、火災判断部86は、ステップS83で故障予兆の発生回数Nが所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に故障予兆と判定(確定)し、ステップS85に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS86で所定の故障予兆処理を行う。 By repeating the counting of the number N of occurrences of failure signs, the fire determination unit 86 determines in step S83 that the number N of occurrences of failure signs exceeds the predetermined threshold number Nth and the failure sign determination accumulation condition is satisfied. A failure sign is determined (determined), the process proceeds to step S85, a failure sign signal is transmitted to the disaster prevention receiver board 10 to be informed, and then a predetermined failure sign process is performed in step S86.

この故障予兆処理は、例えば、火災判断部86による火災判断蓄積条件として設定する蓄積回数閾値を増加させて火災判断蓄積条件を厳格にして実質的に火災感度を下げる。また、その後に火災判断部86で火災が判断されても、故障による誤った火災判断の可能性が高いことから火災信号の送信を停止して、非火災報の発生を抑止させる処理を行うようにしても良い。 In this failure sign process, for example, the threshold value of the number of times of storage set as the fire determination storage condition by the fire determination unit 86 is increased to make the fire determination storage condition strict and substantially reduce the fire sensitivity. Further, even if the fire determination unit 86 subsequently determines that a fire has occurred, there is a high possibility that an erroneous fire determination is made due to a failure, so transmission of the fire signal is stopped, and processing is performed to suppress the occurrence of non-fire reports. You can

また、火災判断部86は、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を応答送信し、防災受信盤10は取得した火災検知器12の故障予兆情報から故障予兆の発生回数を抽出して信頼性を評価し、信頼性有り又は信頼性低下を判断する。 Further, when the fire determination unit 86 receives the internal state request command from the disaster prevention reception panel 10, the fire determination unit 86 responds by transmitting failure sign information including information indicating the number N of occurrences of failure signs counted by the counter, and receives the disaster prevention reception. The board 10 extracts the number of occurrences of a failure sign from the acquired failure sign information of the fire detector 12, evaluates the reliability, and determines whether there is reliability or a decrease in reliability.

一方、感度試験部88は、ステップS81で受光信号のピークレベルが故障閾値96以下に低下したことを判別した場合にはステップS78に進み、感度異常判定蓄積条件として設定した所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信し、続いてステップS80で所定の感度異常処理を行う。 On the other hand, if the sensitivity test unit 88 determines in step S81 that the peak level of the received light signal has dropped to the failure threshold value 96 or less, the process proceeds to step S78, and the predetermined accumulation threshold value set as the sensitivity abnormality determination accumulation condition is set. The process from step S71 is repeated until it reaches, and when the sensitivity abnormality determination storage condition of step S78 is satisfied, a sensitivity abnormality signal is transmitted to the disaster prevention receiver board 10 in step S79, and subsequently, predetermined sensitivity abnormality processing is performed in step S80.

また、本実施形態は火災検知器で定期的に行う感度試験により故障予兆の発生回数を求める場合を例にとっているが、これに限定されず、防災受信盤10からの試験指示操作により任意のタイミングで行われる試験を含み、また、感度試験以外の内部試験光源を駆動する適宜の試験も含む。左眼60Lについても同様に行うことが出来る。また、試験時の非炎受光信号E2R,E2L、第2の比炎受光信号E3R,E3Lについても同様に行うことができる。 Further, although the present embodiment takes as an example the case where the number of occurrences of the failure sign is obtained by the sensitivity test regularly performed by the fire detector, the present invention is not limited to this, and the test instruction operation from the disaster prevention receiver board 10 can be performed at any timing. In addition to the sensitivity test, it also includes an appropriate test for driving the internal test light source. The same applies to the left eye 60L. In addition, the non-flame light receiving signals E2R and E2L and the second specific flame light receiving signals E3R and E3L at the time of the test can be similarly processed.

[火災判断部と感度試験部による故障予兆の判定]
本発明による火災検知器12の他の実施形態として、図5のフローチャートに示した火災判断部86による故障予兆の判定と、図11のフローチャートに示した感度試験部88による故障予兆の判定を組み合わせ、それぞれで判断された故障予兆の発生回数Nを累積してカウントするように構成し、火災信号を送信した火災検知器12から故障予兆の累積発生回数を示す情報を含む故障予兆情報を防災受信盤10で取得し、抽出した故障予兆の累積発生回数から信頼性を評価して信頼性有り、信頼性低下を判断する。
[Determination of a failure sign by the fire determination unit and the sensitivity test unit]
As another embodiment of the fire detector 12 according to the present invention, the determination of the failure sign by the fire determination unit 86 shown in the flowchart of FIG. 5 and the judgment of the failure sign by the sensitivity test unit 88 shown in the flowchart of FIG. 11 are combined. Is configured to accumulate and count the number N of occurrences of failure signs determined by each, and disaster prevention reception of failure sign information including information indicating the cumulative number of occurrences of failure signs from the fire detector 12 that has transmitted the fire signal. The reliability is evaluated from the cumulative number of occurrences of the failure sign acquired on the panel 10 and the reliability is determined, and the decrease in reliability is determined.

また、故障予兆の判定も、故障予兆の累積発生回数が所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に、故障予兆と判定して故障予兆信号を防災受信盤10に送信して報知させ、続いて所定の故障予兆処理を行うようにする。 Further, in the determination of the failure sign, when the accumulated occurrence number of the failure sign exceeds the predetermined threshold number Nth and the failure sign determination storage condition is satisfied, it is determined as the failure sign and the failure sign signal is sent to the disaster prevention receiver board 10. The information is transmitted and notified, and then a predetermined failure sign process is performed.

[本発明の変形例]
(火災検知器)
3波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、COの共鳴放射帯である4.5μm帯と、その短波長側の例えば、5.0μm付近の波長帯域における赤外線エネルギーを検知し、これらの2波長帯域における各受光信号の相対比によって炎の有無を判定する2波長式の炎検知器としても良い。
[Modification of the present invention]
(Fire detector)
Although a three-wavelength type fire detector is used as an example, other types of fire detectors may be used. For example, in the 4.5 μm band which is the resonance emission band of CO 2 and the wavelength band near its short wavelength side, for example, 5.0 μm. A two-wavelength flame detector that detects infrared energy and determines the presence or absence of a flame based on the relative ratio of each received light signal in these two wavelength bands may be used.

(蓄積条件の変更)
また、上記の実施形態における火災検知器12の火災判断蓄積条件の変更、例えば火災判断蓄積回数閾値の変更は、火災検知器12自身が故障予兆処理として故障予兆判断条件を厳格にする(火災感度を下げる)ために蓄積回数閾値を増加する場合(図5のステップS14)と、防災受信盤10が信頼性低下と判断したときの指示を受けて火災判断蓄積条件を厳格(感度を緩和)にするために蓄積回数閾値を増加させる場合(図8のステップS51)とがあり、両者が重複して行われる場合には、全体の蓄積時間が必要以上に長くなり火災の発見が遅れることのないように適切に変更する。
(Change of storage condition)
In addition, when the fire determination accumulation condition of the fire detector 12 in the above-described embodiment is changed, for example, the threshold value of the fire determination accumulation number is changed, the fire detector 12 itself makes the failure sign determination condition strict as the failure sign processing (fire sensitivity. If the storage count threshold value is increased (to lower the value) (step S14 in FIG. 5) and the disaster prevention reception panel 10 receives an instruction when it is determined that the reliability has deteriorated, the fire determination storage condition is made strict (the sensitivity is relaxed). In order to do so, there is a case where the accumulation number threshold value is increased (step S51 in FIG. 8), and when both are performed in duplicate, the entire accumulation time becomes longer than necessary and the discovery of fire will not be delayed. To make the appropriate changes.

(P型トンネル防災システム)
上記の実施形態は、防災受信盤から引き出された信号線にアドレスが設定された火災検知を接続して火災監視する所謂R型のトンネル防災システムを示したが、本発明はこれに限定されず、防災受信盤から火災検知器単位に信号線を引き出し、各信号線に火災検知器が接続された所謂P型のトンネル防災システムについても同様である。
(P-type tunnel disaster prevention system)
The above-described embodiment shows the so-called R-type tunnel disaster prevention system in which the fire detection is performed by connecting the fire detection with the address set to the signal line drawn from the disaster prevention reception board, but the present invention is not limited to this. The same applies to a so-called P-type tunnel disaster prevention system in which a signal line is drawn from the disaster prevention reception panel for each fire detector and the fire detector is connected to each signal line.

一般的なP型のトンネル防災システムにあっては、防災受信盤と火災検知器との間で具体的な予兆発生回数等の情報通信はできないことから、上記の実施形態に示した防災受信盤で火災検知器の信頼性を評価して信頼性あり、信頼性低下と判断する機能は火災検知器側に設け、火災検知器で信頼性低下を判断した場合に、例えば、信号線を断線状態とすることで、又は信頼性低下信号専用線を設けるなどして信頼性情報を防災受信盤に送信して信頼性低下を報知させる。 In a general P-type tunnel disaster prevention system, since the information communication such as the specific number of occurrences of a sign cannot be performed between the disaster prevention reception panel and the fire detector, the disaster prevention reception panel shown in the above embodiment The function of judging the reliability of the fire detector with reliability is judged on the side of the fire detector, and when the reliability of the fire detector is judged to decrease, for example, the signal line is broken. In this case, or by providing a dedicated line for reliability degradation signal, the reliability information is transmitted to the disaster prevention receiver to notify the reliability degradation.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
Further, the present invention includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
36a,36b:伝送部
48:火災監視制御部
50R,50L:透光性窓
52R,52L:試験光源用透光窓
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64,68,72:センサ部
66,70,74:増幅処理部
76:試験発光駆動部
78R,78L,80R,80L,82R,82L:内部試験光源
84R,84L:外部試験光源
86:火災判断部
88:感度試験部
90:汚れ試験部
1a: Upline tunnel 1b: Downline tunnel 10: Disaster prevention reception panel 12: Fire detectors 14a, 14b: Signal line 16: Fire pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Warning display Board equipment 26: Radio rebroadcast equipment 28: Television monitoring equipment 30: Lighting equipment 32: Remote monitoring control equipment 34: Board control units 36a, 36b: Transmission unit 48: Fire monitoring control units 50R, 50L: Translucent windows 52R, 52L: Translucent window for test light source 54: Detector control unit 56: Transmission unit 58: Power supply unit 60R, 60L: Fire detection unit 64, 68, 72: Sensor unit 66, 70, 74: Amplification processing unit 76: Test light emission Drive unit 78R, 78L, 80R, 80L, 82R, 82L: Internal test light source 84R, 84L: External test light source 86: Fire determination unit 88: Sensitivity test unit 90: Dirt test unit

Claims (15)

防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した前記火災検知器は検知エリアを少なくとも一部重複して火災を監視しており、前記防災受信盤は前記火災検知器からの火災信号に基づいて所定の火災処理を行うトンネル防災システムに於いて、
前記火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
前記防災受信盤は、
前記火災検知器から前記故障予兆情報を取得し、当該故障予兆情報から当該火災検知器の信頼性を判断し、
信頼性有りと判断した前記火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に前記所定の火災処理を行い、
信頼性低下と判断した前記火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行う、
ことを特徴とするトンネル防災システム。
To connect a plurality of fire detectors to the disaster prevention reception board to monitor the fire in the detection area, the fire detectors adjacent to each other monitor the fire by overlapping at least a part of the detection area, In the disaster prevention system, the disaster prevention reception board performs a predetermined fire treatment based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure sign information including the number of occurrences of its own predetermined failure sign,
The disaster prevention reception board,
Obtain the failure sign information from the fire detector, determine the reliability of the fire detector from the failure sign information,
When a fire signal is received from the fire detector that is judged to be reliable, perform the predetermined fire processing when the fire signal is received again from the fire detector after restoring the fire detector,
When a fire signal is received from the fire detector that is judged to have reduced reliability, the predetermined first fire judgment accumulation condition of the fire detector is set to a second predetermined condition that is stricter than the first fire judgment accumulation condition. The fire signal from at least one of the fire detector and the adjacent fire detector that duplicately monitors the detection area of the fire detector for which the fire judgment and accumulation condition has been changed and the system is restored. When received, perform the prescribed fire treatment,
A tunnel disaster prevention system characterized by that.
防災受信盤に複数の火災検知器を接続して検知エリアの火災を監視するものであって、相互に隣接した前記火災検知器は検知エリアを少なくとも一部重複して監視しており、前記防災受信盤は前記火災検知器からの火災信号に基づいて火災処理を行うトンネル防災システムに於いて、
前記火災検知器は、自己の所定の故障予兆の発生回数を含む故障予兆情報を少なくとも一時的に保持しており、
前記防災受信盤は、
前記トンネル単位又は前記トンネルの所定の区間ごとにグループ化された複数の前記火災検知器の前記故障予兆情報を取得し、当該故障予兆情報に基づき、前記トンネル単位、信号系統単位又は前記区間単位に前記火災検知器の信頼性を判断して生成した信頼性情報を少なくとも一時的に保持しており、
前記信頼性情報から信頼性有りと判断した前記火災検知器から火災信号を受信したときは、当該火災検知器を復旧した後に再度当該火災検知器から火災信号を受信した場合に前記所定の火災処理を行い、
前記信頼性情報から信頼性低下と判断した前記火災検知器から火災信号を受信したときは、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記第2の火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行う、
ことを特徴とするトンネル防災システム。
A plurality of fire detectors are connected to the disaster prevention reception board to monitor a fire in the detection area, and the fire detectors adjacent to each other monitor at least a part of the detection area, and In the tunnel disaster prevention system that processes fires based on the fire signal from the fire detector,
The fire detector at least temporarily holds failure sign information including the number of occurrences of its own predetermined failure sign,
The disaster prevention reception board,
Acquiring the failure sign information of the plurality of fire detectors grouped for each tunnel unit or each predetermined section of the tunnel, and based on the failure sign information, the tunnel unit, the signal system unit, or the section unit At least temporarily holds the reliability information generated by determining the reliability of the fire detector,
When a fire signal is received from the fire detector that is judged to be reliable from the reliability information, when the fire signal is received again from the fire detector after the fire detector is restored, the predetermined fire treatment is performed. And then
When a fire signal is received from the fire detector that is judged to have reduced reliability from the reliability information, the predetermined first fire judgment accumulation condition of the fire detector is stricter than the first fire judgment accumulation condition. Fire detectors that have been changed to the specified second fire judgment and accumulation condition and restored, and the adjacent fire detectors that are duplicatively monitoring the fire detector and the detection area of the fire detector that have changed the second fire judgment and accumulation condition When a fire signal is received from at least one of the
A tunnel disaster prevention system characterized by that.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、複数の火災判定段階により火災を判断しており、
前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判定して故障予兆の発生回数を求め、当該故障予兆の発生回数を含む前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector judges a fire through a plurality of fire judgment stages,
The number of occurrences of a failure sign as a failure sign when it is judged as a fire in at least one of the plurality of fire judgment steps but not in any of the remaining fire judgment steps And at least temporarily hold the failure sign information including the number of occurrences of the failure sign,
The disaster prevention receiver board is characterized by determining that the reliability is deteriorated when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment storage condition. Tunnel disaster prevention system.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判定し、当該故障予兆の発生回数を示す情報を含む前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector is performing a test to determine a failure of the fire detection unit based on a light reception signal when a test light source is driven, and the level of the light reception signal by the test is out of a predetermined normal range The failure sign is determined when the failure judgment condition is not satisfied, and the failure sign information including information indicating the number of occurrences of the failure sign is held at least temporarily,
The disaster prevention receiver board is characterized by determining that the reliability is deteriorated when the number of occurrences of the failure sign extracted from the failure sign information acquired from the fire detector satisfies a predetermined reliability judgment storage condition. Tunnel disaster prevention system.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判定すると共に当該第1の故障予兆の発生回数を求め、且つ、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判定すると共に当該第2の故障予兆の発生回数を求め、
前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数を示す情報を前記故障予兆情報を少なくとも一時的に保持し、
前記防災受信盤は、前記火災検知器から取得した前記故障予兆情報から抽出した前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに信頼性低下と判断することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The fire detector is
A fire is judged by a plurality of fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. In this case, the first failure sign is determined, the number of occurrences of the first failure sign is calculated, and
We are conducting a test to judge the failure of the fire detection part based on the received light signal when driving the test light source, and the level of the received light signal by the test is outside the predetermined normal range, but the predetermined failure judgment condition is satisfied. If not, the second failure sign is determined and the number of occurrences of the second failure sign is calculated,
Information indicating the number of occurrences of the first failure sign and the number of occurrences of the second failure sign is held at least temporarily in the failure sign information,
In the disaster prevention receiver, one or both of the number of times of occurrence of the first failure sign and the number of times of occurrence of the second failure sign extracted from the failure sign information acquired from the fire detector have predetermined reliability. A tunnel disaster prevention system characterized by determining that reliability is deteriorated when the judgment accumulation condition is satisfied.
請求項1又は2記載のトンネル防災システムに於いて、
前記火災検知器は、前記故障予兆の発生回数が所定の故障予兆判断蓄積条件を充足したときに所定の故障予兆処理を行うことを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
A tunnel disaster prevention system, wherein the fire detector performs a predetermined failure sign process when the number of occurrences of the failure sign satisfies a predetermined failure sign judgment accumulation condition.
請求項6記載のトンネル防災システムに於いて、
前記火災検知器は、前記故障予兆処理として、前記防災受信盤に故障予兆信号を送信すると共に、前記火災信号の送信を停止し、
前記防災受信盤は、前記火災検知器から前記故障予兆信号を受信したときに、遠方監視制御設備に故障予兆移報信号を送信して報知させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 6,
The fire detector, as the failure sign process, transmits a failure sign signal to the disaster prevention receiver, and stops the transmission of the fire signal,
A tunnel disaster prevention system, wherein the disaster prevention reception panel transmits a failure symptom transfer signal to a distant monitoring control facility to notify when the failure symptom signal is received from the fire detector.
請求項1又は2記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災信号を受信した前記火災検知器について前記信頼性低下と判断されたときに、当該火災検知器及び当該火災検知器の検知エリアを重複監視している前記隣接火災検知器の少なくとも一台の火災判断蓄積条件を前記第1の火災判断蓄積条件を緩和した所定の第3の火災判断条件蓄積条件に変更することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
The disaster prevention reception panel, when it is determined that the reliability of the fire detector that has received the fire signal has deteriorated, duplicately monitors the fire detector and the detection area of the fire detector. A tunnel disaster prevention system, characterized in that the fire determination and storage condition of at least one of the firearms is changed to a predetermined third fire determination condition storage condition which is a relaxation of the first fire determination and storage condition.
請求項1又は2記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災信号を受信した前記火災検知器について前記信頼性低下と判断した後に、当該火災検知器及び当該火災検知器の検知エリアを重複監視している前記隣接火災検知器から火災信号が受信されなかった場合、非火災移報信号を遠方監視制御設備に送信して報知させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 1 or 2,
From the adjacent fire detector that is monitoring the fire detector and the detection area of the fire detector in an overlapping manner after the fire prevention receiver receives the fire signal and determines that the fire detector has deteriorated in reliability. A tunnel disaster prevention system characterized by transmitting a non-fire notification signal to a distant monitoring and controlling facility when no fire signal is received.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
所定の故障予兆の発生回数を少なくとも一時的に保持しており、
前記故障予兆の発生回数に基づき自己の信頼性低下と判断した場合に前記防災受信盤に信頼性低下信号を送信することを特徴とする火災検知器。
In the fire detector that connects to the disaster prevention reception board and monitors the fire in the detection area,
At least temporarily holds the number of occurrences of a predetermined failure sign,
A fire detector, which transmits a reliability deterioration signal to the disaster prevention reception panel when it is judged that the reliability of itself has deteriorated based on the number of occurrences of the failure sign.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、
前記故障予兆の発生回数が所定の信頼性判断蓄積定条件を充足したときに自己の信頼性低下と判断して前記防災受信盤に信頼性低下信号を送信することを特徴とする火災検知器。
In the fire detector that connects to the disaster prevention reception board and monitors the fire in the detection area,
A fire is judged by a plurality of fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. In this case, it is judged as a failure sign and at least temporarily holds the number of occurrences of the failure sign,
A fire detector, characterized in that when the number of occurrences of the failure sign satisfies a predetermined reliability judgment accumulation constant condition, it judges that the reliability of itself has deteriorated and transmits a reliability decrease signal to the disaster prevention reception board.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており
前記試験による前記試験光受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に故障予兆と判断して当該故障予兆の発生回数を少なくとも一時的に保持し、
前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断して前記防災受信盤に信頼性低下信号を送信することを特徴とする火災検知器。
In the fire detector that connects to the disaster prevention reception board and monitors the fire in the detection area,
We are conducting a test to judge the failure of the fire detection part based on the received light signal when driving the test light source.The level of the test light received signal by the test is outside the predetermined normal range, but the predetermined failure judgment condition is met. If not satisfied, it is judged as a failure sign and at least temporarily holds the number of occurrences of the failure sign,
A fire detector characterized in that, when the number of occurrences of the failure sign satisfies a predetermined reliability judgment storage condition, it judges that the reliability of itself has deteriorated and transmits a reliability decrease signal to the disaster prevention reception board.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断すると共に当該第1の故障予兆の発生回数を少なくとも一時的に保持し、且つ
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常範囲を外れたが所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断すると共に当該第2の故障予兆の発生回数を求めて少なくとも一時的に保持し、
前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断して前記防災受信盤に信頼性低下信号を送信することを特徴とする火災検知器。
In the fire detector that connects to the disaster prevention reception board and monitors the fire in the detection area,
A fire is judged by a plurality of fire judgment stages, and it is judged as a fire in at least one of the plurality of fire judgment stages, but is not judged as a fire in any of the remaining fire judgment stages. In this case, a test for determining the first failure sign, at least temporarily holding the number of occurrences of the first failure sign, and judging the failure of the fire detection unit based on the light reception signal when the test light source is driven is performed. When the level of the received light signal by the test is out of the predetermined normal range but the predetermined failure judgment condition is not satisfied, the second failure sign is determined and the second failure sign is detected. At least temporarily hold the number of occurrences,
When one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign satisfy a predetermined reliability determination accumulation condition, it is determined that the reliability of the self is deteriorated and the disaster prevention is performed. A fire detector characterized by transmitting a reliability decrease signal to a reception board.
請求項11乃至13の何れかに記載の火災検知器において、自己の信頼性低下を判断した場合に、火災信号の送信を停止することを特徴とする火災検知器。
The fire detector according to any one of claims 11 to 13, wherein transmission of a fire signal is stopped when the reliability of the fire detector is determined to decrease.
請求項11乃至14の何れかに記載の火災検知器を防災受信盤に接続して検知エリアの火災を監視するトンネル防災システムに於いて、
前記防災受信盤は、前記火災検知器から前記信頼性低下信号を受信した場合に、当該火災検知器の所定の第1の火災判断蓄積条件を前記第1の火災判断蓄積条件よりも厳格な所定の第2の火災判断蓄積条件に変更して復旧し、前記火災判断蓄積条件を変更した当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、前記所定の火災処理を行うことを特徴とするトンネル防災システム。
A tunnel disaster prevention system for monitoring a fire in a detection area by connecting the fire detector according to any one of claims 11 to 14 to a disaster prevention reception panel,
The disaster prevention receiver, when receiving the reliability deterioration signal from the fire detector, sets a predetermined first fire judgment accumulation condition of the fire detector to a stricter predetermined condition than the first fire judgment accumulation condition. From the at least one of the relevant fire detectors that have been changed to the second fire judgment and accumulation condition and restored and the fire detection and accumulation conditions are changed, and the adjacent fire detectors that are overlappingly monitoring the detection area of the fire detector. A tunnel disaster prevention system, wherein the predetermined fire treatment is performed when a fire signal is received.
JP2019081393A 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector Active JP7336248B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023116420A JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018236904 2018-12-19
JP2018236904 2018-12-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2023116420A Division JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Division JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Publications (2)

Publication Number Publication Date
JP2020102181A true JP2020102181A (en) 2020-07-02
JP7336248B2 JP7336248B2 (en) 2023-08-31

Family

ID=71139747

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019081393A Active JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector
JP2023116420A Pending JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2023116420A Pending JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Country Status (1)

Country Link
JP (3) JP7336248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7513414B2 (en) 2020-03-31 2024-07-09 能美防災株式会社 Disaster Prevention System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042264A (en) * 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP2009026180A (en) * 2007-07-23 2009-02-05 Hochiki Corp Fire receiver and control method
JP2018136726A (en) * 2017-02-22 2018-08-30 ホーチキ株式会社 Disaster prevention system
JP2018169893A (en) * 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042264A (en) * 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP2009026180A (en) * 2007-07-23 2009-02-05 Hochiki Corp Fire receiver and control method
JP2018136726A (en) * 2017-02-22 2018-08-30 ホーチキ株式会社 Disaster prevention system
JP2018169893A (en) * 2017-03-30 2018-11-01 ホーチキ株式会社 Tunnel disaster prevention system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7513414B2 (en) 2020-03-31 2024-07-09 能美防災株式会社 Disaster Prevention System

Also Published As

Publication number Publication date
JP7336248B2 (en) 2023-08-31
JP2023134692A (en) 2023-09-27
JP2023156477A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2018169893A5 (en)
KR101104519B1 (en) Contactless fire perception system
KR101911371B1 (en) Function Extension Type Fire Detector
JP7085670B2 (en) Disaster prevention system
JP5791469B2 (en) Fire detector
JP7249380B2 (en) Fire prevention system and fire detector
JP7503171B2 (en) Fire detectors and tunnel disaster prevention systems
KR20180055468A (en) Control system for fire detection errors in p-type receiver and method thereof
JP2023156477A (en) disaster prevention system
JP2018136726A5 (en)
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
KR100877420B1 (en) Repeater of fire managing system monitoring detector condition and method for managing fire thereof
KR101264591B1 (en) Fire detection apparatus and system
JP7336252B2 (en) Tunnel disaster prevention system
JP5002549B2 (en) Abnormal equipment detection system
JP7475114B2 (en) Monitoring system
JP2023015283A (en) disaster prevention system
JP7358071B2 (en) Monitoring system
KR20100032766A (en) The disaster prevention system generating a repairing and checking signal
JP6381059B1 (en) Security device, security system, report transmission method and program
JP2010020659A (en) Remote monitoring failure reporting alternate system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150