JP2023134692A - Disaster prevention system and fire detector - Google Patents

Disaster prevention system and fire detector Download PDF

Info

Publication number
JP2023134692A
JP2023134692A JP2023116420A JP2023116420A JP2023134692A JP 2023134692 A JP2023134692 A JP 2023134692A JP 2023116420 A JP2023116420 A JP 2023116420A JP 2023116420 A JP2023116420 A JP 2023116420A JP 2023134692 A JP2023134692 A JP 2023134692A
Authority
JP
Japan
Prior art keywords
fire
failure
reliability
determined
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023116420A
Other languages
Japanese (ja)
Inventor
泰周 杉山
Yasunori Sugiyama
秀成 松熊
Hidenari Matsukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Publication of JP2023134692A publication Critical patent/JP2023134692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Alarm Systems (AREA)

Abstract

To provide a disaster prevention system that can suppress a non-fire alarm by determining a reliability of a fire detector which has transmitted a fire signal.SOLUTION: In a tunnel disaster prevention system, a fire detector 12 connected to a disaster prevention receiver 10 to monitor a fire in a detection area is configured to: determine that there is a failure sign when the fire is determined in at least one fire determination stage of a plurality of fire determination stages for determining the fire, but the fire is not determined in any of remaining fire determination stages; determine its own reliability based on the number of occurrences of failure signs, which is the number of the failure signs determined; and determine that its own reliability has decreased when the number of occurrences of failure signs reaches a predetermined reliability determination accumulating condition, for example, when the number of occurrences of failure signs reaches a predetermined number of 2 or more.SELECTED DRAWING: Figure 1

Description

本発明は、防災受信盤から引き出された信号線に接続された火災検知器によりトンネル内の火災を監視する防災システム及び火災検知器に関する。 The present invention relates to a disaster prevention system and a fire detector that monitor fires in a tunnel using a fire detector connected to a signal line drawn out from a disaster prevention receiver.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されて火災を監視している。 Traditionally, in tunnels such as motorways, fire detectors have been installed to monitor fires in order to protect people and vehicles from fire accidents that occur inside the tunnels, and are connected to signal lines drawn out from disaster prevention receiver panels. are monitoring the fire.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 Fire detectors have detection areas in both the left and right directions, and the detection areas of adjacent fire detectors overlap in a mutually complementary manner along the longitudinal direction of the tunnel, for example, at intervals of 25 m or 50 m. are arranged consecutively at intervals.

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視しており、炎の監視機能を維持するために、受光素子の感度を点検するための感度試験や透光性窓の汚れを監視するための汚れ試験を行っている。 In addition, the fire detector monitors radiation, such as infrared rays, from fire flames generated inside the tunnel through a transparent window, and in order to maintain the flame monitoring function, the sensitivity of the light receiving element is checked. sensitivity tests and dirt tests to monitor dirt on translucent windows.

しかしながら、このような従来の火災検知器にあっては、運用期間が長くなって火災検知器の劣化が進んだ場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態でも、火災検知器が火災検知信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、交通渋滞を招くなどの影響が小さくない。 However, with such conventional fire detectors, if the deterioration of the fire detector progresses over a long period of operation, the sensitivity test will not detect a sensor failure or the dirt test will not detect any fouling abnormalities, and the detector will continue to function normally. Even if it appears to be in operation, there is a possibility that the fire detector will output a fire detection signal and the disaster prevention receiver will issue a non-fire alarm. Until it is confirmed that this is the case, vehicles must be prohibited from passing through the tunnel by issuing a no-entry warning using warning display board equipment, etc., and a person in charge must go to the site to confirm the situation. It takes a lot of time, and the impact of traffic congestion is not small.

このため、防災受信盤で火災検知器の温度、湿度、衝撃振動及び電気的ノイズ等の環境ストレスに基づいて劣化の度合いを判定して報知するようにしたトンネル防災システムが提案されており、火災検知器の劣化の進み具合が把握できることで、非火災報が出されてしまう前に、火災検知器を予備の火災検知器に交換する等の対応を可能としている。 For this reason, a tunnel disaster prevention system has been proposed in which a disaster prevention receiver panel determines the degree of deterioration based on environmental stresses such as temperature, humidity, impact vibration, and electrical noise of fire detectors and provides notification. By being able to grasp the progress of detector deterioration, it is possible to take measures such as replacing the fire detector with a spare fire detector before a non-fire alarm is issued.

また、従来のトンネル防災システムは、防災受信盤が火災検知器からの火災信号を受信したときに、非火災報を防止するために、所定時間後に火災検知器を一旦復旧し、再度、所定時間以内に火災信号を受信したときに火災と判断して警報表示板設備などにより進入禁止警報を行っている。 In addition, in conventional tunnel disaster prevention systems, when the disaster prevention receiver receives a fire signal from a fire detector, in order to prevent non-fire alarms, the fire detector is temporarily restored after a predetermined period of time, and then restarted again for a predetermined period of time. If a fire signal is received within that time, it will be determined that there is a fire and a warning will be issued using alarm display board equipment, etc.

特開2002-246962号公報Japanese Patent Application Publication No. 2002-246962 特開2016-128796号公報Japanese Patent Application Publication No. 2016-128796 特開2018-169893号公報Japanese Patent Application Publication No. 2018-169893

しかしながら、このような従来の火災検知器にあっては、故障や想定外の非火災要因等に起因した誤った火災判断により火災信号を送信していた場合、一旦復旧した後も、故障や非火災要因等が解消されていない場合には、再度火災信号を送信してしまうことがあるため、非火災報による問題が依然として残されている。 However, if such conventional fire detectors transmit a fire signal due to an incorrect fire judgment due to a malfunction or an unexpected non-fire cause, even after the system is restored, the malfunction or non-fire If the cause of the fire has not been resolved, the fire signal may be sent again, so problems caused by non-fire alarms still remain.

本発明は、火災信号を送信した火災検知器の信頼性を判断することにより非火災報を抑制可能とする防災システム及び火災検知器を提供することを目的とする。 An object of the present invention is to provide a disaster prevention system and a fire detector that can suppress non-fire alarms by determining the reliability of a fire detector that has transmitted a fire signal.

(第3発明:火災検知器1)
本発明は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
所定の条件に基づき故障予兆を判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
故障予兆の発生回数が2以上の所定回数となった場合に自己の信頼性低下と判断することを特徴とする。
(Third invention: Fire detector 1)
The present invention provides a fire detector that connects to a disaster prevention receiver panel and monitors fires in a detection area.
Determine failure signs based on predetermined conditions, judge own reliability based on the number of occurrences of failure signs, which is the number of determined failure signs,
It is characterized in that when the number of occurrences of failure signs reaches a predetermined number of 2 or more, it is determined that the reliability of the device itself has decreased.

(第4発明:火災検知器2)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、
複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断することを特徴とする。
(Fourth invention: Fire detector 2)
Another form of the present invention is a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area.
Fires are judged using multiple fire judgment stages.
If a fire is determined to be a fire in at least one of the multiple fire determination stages, but a fire is not determined to be a fire in any of the remaining fire determination stages, it is determined to be a failure sign, and the number of failure signs determined. determines its own reliability based on the number of occurrences of failure signs,
The device is characterized in that it is determined that its own reliability has decreased when the number of occurrences of failure signs satisfies a predetermined reliability judgment accumulation condition.

(第5発明:火災検知器3)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、
試験による受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断することを特徴とする。
(Fifth invention: Fire detector 3)
Another form of the present invention is a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area.
We are conducting a test to determine the failure of the fire detection unit based on the light reception signal when driving the test light source.
If the level of the received light signal in the test does not satisfy the predetermined normality judgment conditions and the predetermined failure judgment conditions, it is judged as a failure sign, and self-confidence is determined based on the number of failure signs that have occurred, which is the number of judged failure signs. determine gender,
The device is characterized in that it is determined that its own reliability has decreased when the number of occurrences of failure signs satisfies a predetermined reliability judgment accumulation condition.

(第6発明:火災検知器4)
本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断し、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断し、
判断した第1の故障予兆の回数である第1の故障予兆の発生回数と判断した第2の故障予兆の回数である第2の故障予兆の発生回数の何れか一方又は両方に基づき自己の信頼性を判断し、
第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断することを特徴とする。
(Sixth invention: Fire detector 4)
Another form of the present invention is a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area.
If a fire is determined by multiple fire determination stages, and a fire is determined as a fire in at least one of the multiple fire determination stages, but a fire is not determined as a fire in any of the remaining fire determination stages. It is determined that this is the first sign of failure,
A test is being conducted to determine the failure of the fire detection unit based on the received light signal when the test light source is driven, and the level of the received light signal from the test does not satisfy the specified normality judgment conditions and the specified failure judgment conditions. It was determined that this was a sign of a second failure.
Self-confidence based on either or both of the number of occurrences of the first failure sign, which is the number of times the first failure sign has been determined, and the number of occurrences of the second failure sign, which is the number of times the second failure sign has been determined. determine gender,
It is characterized in that when either or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign satisfy a predetermined reliability judgment accumulation condition, it is determined that the reliability of the device itself has decreased. .

(信頼性判断蓄積条件)
自己の信頼性低下を判断する信頼性判断蓄積条件は、故障予兆の発生回数が2以上の所定回数となったときに充足したとする条件である。
(Reliability judgment accumulation condition)
The reliability judgment accumulation condition for determining a decrease in the reliability of the device is a condition that is satisfied when the number of occurrences of a failure sign reaches a predetermined number of times of 2 or more.

(信頼性低下信号)
自己の信頼性低下を判断した場合に、当該判断した自己の信頼性低下の情報を含む信頼性低下信号を送信する。
(unreliability signal)
When determining that its own reliability has decreased, it transmits a reliability decrease signal that includes information on the determined decrease in its own reliability.

(火災信号の送信停止)
第3発明乃至第6発明の火災検知器に於いて、自己の信頼性低下と判断した場合に、火災を判断した場合に送信する火災信号の送信を停止する。
(Stop sending fire signal)
In the fire detector of the third to sixth inventions, when it is determined that the reliability of the fire detector has decreased, the transmission of the fire signal that is transmitted when a fire is determined is stopped.

(信頼性の判断)
自己の信頼性として、信頼性の度合により複数段階に分けて判断する。
(Judgment of reliability)
One's own reliability is judged in multiple stages depending on the degree of reliability.

(第7発明:防災システム)
本発明の別の形態は、第3乃至第6発明の何れかの火災検知器を防災受信盤に接続して検知エリアの火災を監視する防災システムに於いて、
防災受信盤は、火災検知器が自己の信頼性低下を判断して送信した信頼性低下信号を受信した場合に、当該火災検知器の火災と判断するための条件をより厳格な条件に変更して復旧し、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災を判断した場合に送信される火災信号を受信したときに、所定の火災処理を行うことを特徴とする。
(Seventh invention: Disaster prevention system)
Another form of the present invention is a disaster prevention system that monitors fires in a detection area by connecting the fire detector according to any one of the third to sixth inventions to a disaster prevention receiving board,
When the disaster prevention receiver receives a reliability reduction signal sent by a fire detector that has determined that its own reliability has deteriorated, it changes the conditions for determining that there is a fire for the fire detector to more stringent conditions. When the fire detector receives a fire signal that is transmitted when a fire is detected from the fire detector and at least one of the adjacent fire detectors that are redundantly monitoring the detection area of the fire detector, It is characterized by fire treatment.

(第3発明:火災検知器1の効果)
本発明は、所定の条件に基づき故障予兆を判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、故障予兆の発生回数が2以上の所定回数となった場合に自己の信頼性低下と判断するようにしたため、信頼性低下が判断された火災検知器の誤作動による非火災報の発生を未然に防止できる。
(Third invention: Effect of fire detector 1)
The present invention determines failure signs based on predetermined conditions, determines its own reliability based on the number of occurrences of failure signs, which is the determined number of failure signs, and determines whether the failure sign occurs a predetermined number of times of 2 or more. Since it is determined that the reliability of the detector itself has decreased when the reliability of the detector has decreased, it is possible to prevent a non-fire alarm from occurring due to malfunction of a fire detector whose reliability has been determined to have decreased.

(第4発明:火災検知器2の効果)
また、本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断するようにしたため、火災検知器による複数の火災判定段階の途中で火災と判定されずに火災と判断するに至らなかった故障予兆の発生回数を求めて信頼性を判断するための根拠とすることで、火災検知器が火災を判断したとしても、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fourth invention: Effect of fire detector 2)
Further, in another embodiment of the present invention, in a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area, a fire is determined by a plurality of fire determination stages. If a fire is determined to be a fire in at least one of the fire determination stages, but it is not determined as a fire in any of the remaining fire determination stages, it is determined to be a failure sign, and the occurrence of a failure sign is the number of failure signs determined. Since the reliability of the self is judged based on the number of occurrences, and when the number of occurrences of failure signs satisfies the predetermined reliability judgment accumulation conditions, it is judged that the self reliability has decreased, so the fire detector has multiple fire judgment stages. By determining the number of occurrences of failure signs that did not result in a fire being determined as a fire during the process and using this as the basis for determining reliability, even if a fire detector has determined a fire, failures will not occur. When the number of occurrences of a warning sign is large, it is determined that the reliability is low because there is a high possibility that it is a non-fire alarm, and it is possible to reliably prevent fire disposal due to a non-fire alarm.

(第5発明:火災検知器3の効果)
また、本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断するようにしたため、火災検知器の試験による受光信号のレベルが、所定の正常判断条件及び故障判断条件を充足しなかった場合に故障予兆と判定し、故障予兆の発生回数を求めて信頼性を判断するための根拠とし、火災検知器が受光素子の故障を検知しなくとも、故障予兆の発生回数が多い場合には、非火災報の可能性が高いことから、信頼性低下と判断し、非火災報による火災処理を確実に防止することを可能とする。
(Fifth invention: Effect of fire detector 3)
Another aspect of the present invention is that in a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area, failure of the fire detection unit is determined based on a light reception signal when a test light source is driven. If a test is being conducted and the level of the received light signal from the test does not satisfy the predetermined normality judgment conditions and the predetermined failure judgment conditions, it is determined to be a failure sign, and the occurrence of a failure sign is the number of times the failure sign has occurred. The reliability of the fire detector is determined based on the number of times the fire detector tests its own reliability, and when the number of occurrences of failure signs satisfies the predetermined reliability judgment accumulation conditions, it is determined that the reliability of the fire detector has decreased. If the level does not satisfy the predetermined normality judgment conditions and failure judgment conditions, it is determined to be a failure sign, and the number of occurrences of the failure sign is used as the basis for determining reliability. Even if a failure is not detected, if a failure sign occurs frequently, it is likely that it is a non-fire alarm, so it is determined that reliability has deteriorated, and it is possible to reliably prevent fire treatment due to non-fire alarms. shall be.

(第6発明:火災検知器4の効果)
また、本発明の別の形態は、防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、複数の火災判定段階により火災を判断しており、複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断し、試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、試験による受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断し、判断した第1の故障予兆の回数である第1の故障予兆の発生回数と判断した第2の故障予兆の回数である第2の故障予兆の発生回数の何れか一方又は両方に基づき自己の信頼性を判断し、第1の故障予兆の発生回数と第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断するようにしたため、前述した第4発明の火災検知器2と第5発明の火災検知器3の効果を併せた効果が得られる。
(Sixth invention: Effect of fire detector 4)
Further, in another embodiment of the present invention, in a fire detector that is connected to a disaster prevention receiver panel and monitors fires in a detection area, a fire is determined by a plurality of fire determination stages. If a fire is determined to be a fire in at least one of the fire determination stages, but it is not determined to be a fire in any of the remaining fire determination stages, it is determined to be the first failure sign, and the light reception signal is generated when the test light source is driven. We conduct tests to determine the failure of the fire detection unit based on the following, and if the level of the received light signal in the test does not meet the predetermined normality judgment conditions and the predetermined failure judgment conditions, it is determined to be a sign of a second failure. , based on either or both of the number of occurrences of the first failure sign, which is the number of determined first failure signs, and the number of occurrences of the second failure sign, which is the number of determined second failure signs. Reliability is determined, and when either or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign satisfy a predetermined reliability judgment accumulation condition, it is determined that the self-reliability has decreased. Therefore, an effect that combines the effects of the fire detector 2 of the fourth invention and the fire detector 3 of the fifth invention described above can be obtained.

(火災信号の送信停止の効果)
また、第3発明乃至第6発明の火災検知器に於いて、自己の信頼性低下と判断した場合に、火災を判断した場合に送信する火災信号の送信を停止するようにしたため、信頼性低下と判断された火災検知器からの火災信号の受信による非火災報の発生を未然に防止できる。
(Effect of stopping fire signal transmission)
In addition, in the fire detectors of the third to sixth inventions, when it is determined that the reliability of the detector itself has decreased, the transmission of the fire signal that is transmitted when it is determined that there is a fire is stopped, so the reliability is decreased. It is possible to prevent the occurrence of non-fire alarms due to the reception of fire signals from fire detectors that have been determined to be fire alarms.

(第7発明:トンネル防災システムの効果)
また、本発明の別の形態は、第3乃至第6発明の何れかの火災検知器を防災受信盤に接続して検知エリアの火災を監視する防災システムに於いて、防災受信盤は、火災検知器が自己の信頼性低下を判断して送信した信頼性低下信号を受信した場合に、当該火災検知器の火災と判断するための条件をより厳格な条件に変更して復旧し、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災を判断した場合に送信される火災信号を受信したときに、所定の火災処理を行うようにしたため、火災を正しく判断して適切に対処することを可能とする。
(Seventh invention: Effect of tunnel disaster prevention system)
Further, another form of the present invention is a disaster prevention system in which a fire detector according to any one of the third to sixth inventions is connected to a disaster prevention reception board to monitor a fire in a detection area. When a detector determines that its own reliability has deteriorated and receives a reliability reduction signal that it sends, the conditions for determining a fire in the fire detector are changed to stricter conditions and the fire is restored. When receiving a fire signal that is transmitted when a fire is determined from the detector and at least one adjacent fire detector that is redundantly monitoring the detection area of the fire detector, predetermined fire processing is performed. This makes it possible to correctly judge a fire and deal with it appropriately.

トンネル防災システムの概要を示した説明図Explanatory diagram showing an overview of the tunnel disaster prevention system 火災検知器の検知エリアを示した説明図Explanatory diagram showing the detection area of a fire detector 火災検知器の外観を示した説明図Explanatory diagram showing the appearance of a fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing an overview of the functional configuration of a fire detector 火災検知器の制御動作を示したフローチャートFlowchart showing control operation of fire detector 防災受信盤の機能構成の概略を示したブロック図Block diagram showing an overview of the functional configuration of the disaster prevention reception panel 防災受信盤で火災検知器の信頼性有りが判断された場合の制御動作を示したタイムチャートTime chart showing control operations when the disaster prevention receiver panel determines that the fire detector is reliable 防災受信盤で火災検知器の信頼性低下と判断された場合の制御動作を示したタイムチャートTime chart showing control operations when the disaster prevention receiver panel determines that the reliability of the fire detector has decreased. 火災検知器から故障予兆を受信した場合の防災受信盤の制御動作を示したタイムチャートTime chart showing the control operation of the disaster prevention receiver when a failure sign is received from a fire detector 火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図Explanatory diagram showing the peak level of the received light signal and the number of failure signs when the internal test light source is driven during a fire detector sensitivity test 故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートFlowchart showing fire detector sensitivity test with determination of signs of failure

[トンネル防災システム]
[実施形態の基本的な概念]
図1はトンネル防災システムの概要を示した説明図であり、図2は火災検知器の検知エリアを示した説明図ある。本実施形態によるトンネル防災システムの基本的な概念は、防災受信盤10からの信号系統毎の信号線14a,14bに接続されたトンネル内の火災検知器12は、所定の故障予兆の発生回数に基づく故障予兆情報、例えば故障予兆の発生回数を示す故障予兆情報を少なくとも一時的に保持し、防災受信盤10は、火災検知器12から火災信号を受信したときに、火災検知器12から故障予兆情報を取得して火災検知器12の信頼性を評価して判断し、信頼性有りと判断したときは、火災検知器12を復旧した後に再度火災信号を受信した場合に所定の火災処理を行い、信頼性低下と判断したときは、当該火災検知器12の所定の第1の火災判断蓄積条件(例えば第1の蓄積回数閾値)を、第1の火災判断蓄積条件よりも厳格な第2の火災判断蓄積条件(第1の蓄積回数閾値より多い第2の蓄積回数閾値)に変更して復旧し、火災判断蓄積条件を変更した火災検知器12及び当該火災検知器12の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信したときに、所定の火災処理を行うというものであり、火災検知器12が受光素子の故障や想定外の非火災要因等により火災信号を送信しても、火災信号を送信した火災検知器12の故障予兆情報から信頼性を評価して信頼性有り又は信頼性低下を判断し、信頼性低下と判断した場合は非火災と見做してトンネルの進入禁止警報等を伴う火災処理を行わず、非火災報によりトンネル通行を止めてしまうことを従来に比べ確実に防止可能とする。
[Tunnel disaster prevention system]
[Basic concept of embodiment]
FIG. 1 is an explanatory diagram showing an overview of a tunnel disaster prevention system, and FIG. 2 is an explanatory diagram showing a detection area of a fire detector. The basic concept of the tunnel disaster prevention system according to this embodiment is that the fire detector 12 in the tunnel connected to the signal lines 14a and 14b for each signal system from the disaster prevention receiving board 10 is activated by The disaster prevention receiving board 10 at least temporarily holds failure sign information based on the failure sign, for example, failure sign information indicating the number of times the failure sign has occurred, and when receiving a fire signal from the fire detector 12, the disaster prevention receiving board 10 receives the failure sign from the fire detector 12. The reliability of the fire detector 12 is evaluated and determined by acquiring the information, and when it is determined that the reliability is reliable, the predetermined fire treatment is performed when a fire signal is received again after the fire detector 12 is restored. , when it is determined that the reliability has decreased, the predetermined first fire judgment accumulation condition (for example, the first accumulation number threshold) of the fire detector 12 is changed to a second fire judgment accumulation condition that is stricter than the first fire judgment accumulation condition. The fire detection accumulation condition is changed to the fire detection accumulation condition (the second accumulation frequency threshold is greater than the first accumulation frequency threshold), and the fire detector 12 with the changed fire detection accumulation condition and the detection area of the fire detector 12 are redundantly monitored. When the fire detector 12 receives a fire signal from at least one of the adjacent fire detectors, the fire detector 12 performs a prescribed fire treatment. Even if a signal is transmitted, the reliability is evaluated based on the failure sign information of the fire detector 12 that transmitted the fire signal, and it is determined that the reliability is present or has decreased. If it is determined that the reliability is decreased, it is considered that there is no fire. Furthermore, it is possible to prevent tunnel passage from being stopped due to non-fire alarms more reliably than in the past without performing fire treatment accompanied by warnings for prohibiting entry into the tunnel.

また、火災検知器12の故障予兆情報から信頼性を評価して信頼性低下しを判断したことで非火災報と見做しても、実火災であった場合には、第1報目の火災信号を送信した火災検知器の第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更することで非火災報を出しにくい状態とし、併せて、火災判断蓄積条件を変更した火災検知器と、当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災信号を受信することで、火災と判断してトンネルの進入禁止警報を含む火災処理を行い、確実に火災を検知して対処することができる。 In addition, even if the reliability is evaluated from the failure sign information of the fire detector 12 and it is determined that the reliability has deteriorated, it may be considered as a non-fire alarm, but if it is an actual fire, the first alarm will be By changing the first fire judgment accumulation condition of the fire detector that transmitted the fire signal to the strict second fire judgment accumulation condition, it became difficult to issue a non-fire alarm, and at the same time, the fire judgment accumulation condition was changed. By receiving a fire signal from the fire detector and at least one adjacent fire detector that is redundantly monitoring the detection area of the fire detector, the system determines that there is a fire and takes steps to dispose of the fire, including issuing a tunnel entry prohibition warning. fires, so that fires can be reliably detected and dealt with.

また、火災検知器の信頼性の判断を防災受信盤10で行うことで、火災検知器12側の負担を低減する、というものである。 Furthermore, by having the disaster prevention receiving board 10 determine the reliability of the fire detector, the burden on the fire detector 12 side is reduced.

更に、温度、湿度、電気的ノイズ等の環境要因は、トンネルごと、信号系統ごと又は区間ごとに特有である場合が考えられ、これを考慮して、トンネル(チューブ)単位、信号系統単位又は区間単位に設置された火災検知器12の故障予兆の発生回数を示す故障予兆情報からトンネルごと、信号系統ごと、区間ごとの火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断できる。 Furthermore, environmental factors such as temperature, humidity, and electrical noise may be unique to each tunnel, each signal system, or each section. Evaluate the reliability of the fire detector 12 for each tunnel, signal system, and section based on failure sign information indicating the number of failure signs that occur in the fire detector 12 installed in each unit, and determine whether it is reliable or has decreased reliability. can be judged.

なお、本実施形態における故障予兆とは、将来に起こるべき故障を予測させる現象を意味し、故障のきざし、故障の前兆、故障の前ぶれ等ということもできる。 Note that the failure sign in this embodiment refers to a phenomenon that predicts a failure that will occur in the future, and can also be referred to as a sign of a failure, a sign of a failure, a preview of a failure, etc.

また、図1の例では信号系統とトンネルは一対一に対応しているが、例えば1つのトンネルに複数の信号系統を設けることができる。或いは、複数のトンネルを1つの信号系統とすることもでき、信号系統とトンネルとの関係は任意である。 Further, in the example of FIG. 1, the signal system and the tunnel correspond one-to-one, but for example, one tunnel can be provided with a plurality of signal systems. Alternatively, a plurality of tunnels can be made into one signal system, and the relationship between the signal system and the tunnel is arbitrary.

また、以下の説明において、図1乃至図9の説明は第1発明のトンネル防災システム及び第3及び第4発明の火災検知器に対応し、図10乃至図11の説明が第2及び第7発明のトンネル防災システムと第5及び第6発明の火災検知器に対応している。なお、第3発明乃至第6発明の火災検知器は、1つの信号系統に1台のみが接続されることを妨げない。 In addition, in the following description, the description of FIGS. 1 to 9 corresponds to the tunnel disaster prevention system of the first invention and the fire detectors of the third and fourth inventions, and the description of FIGS. 10 to 11 corresponds to the second and seventh inventions. It corresponds to the tunnel disaster prevention system of the invention and the fire detector of the fifth and sixth inventions. Note that the fire detectors of the third to sixth inventions do not prevent only one fire detector from being connected to one signal system.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。
[Overview of tunnel disaster prevention system]
As shown in FIG. 1, an upline tunnel 1a and a downline tunnel 1b are constructed as tunnels for a motorway. Inside the up-line tunnel 1a and the down-line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the wall surface in the longitudinal direction of the tunnel.

火災検知器12は右眼、左眼の2組の火災検知部を備えることで、図2に示すように、トンネル長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12と検知エリア15が例えば右眼13Rと左眼13Lで相互補完的に重複するように連続的に配置され、検知エリア15内で起きた火災による炎からの赤外線を観測して火災を監視して検知する。 The fire detector 12 is equipped with two sets of fire detection parts, one for the right eye and the other for the left eye.As shown in FIG. The fire detectors 12 and the detection area 15 which are arranged adjacent to each other are successively arranged so as to complement each other and overlap each other, for example, in the right eye 13R and the left eye 13L, and detect fires occurring within the detection area 15. Monitor and detect fires by observing infrared rays from flames.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧設備などが設置されるが、図示を省略している。 In addition, the up-line tunnel 1a and the down-line tunnel 1b are equipped with emergency facilities such as manual reporting devices and emergency telephones for reporting fires, and fire hydrant systems for extinguishing fires and preventing the spread of fire. Water spray equipment that sprays fire extinguishing water from a water spray head is installed to protect the inside of the tunnel body and ducts from fire, but is not shown.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源信号線および信号線14a,14bを引き出してそれぞれに対し複数の火災検知器12が接続されており、火災検知器12には固有のアドレスが設定されている。以下の説明では、信号線14a,14bについて、区別する必要がない場合は信号線14という場合がある。 A power signal line and signal lines 14a, 14b are drawn out from the disaster prevention receiving board 10 to the up line tunnel 1a and the down line tunnel 1b, and a plurality of fire detectors 12 are connected to each of them. A unique address has been set. In the following description, the signal lines 14a and 14b may be referred to as the signal line 14 when there is no need to distinguish between them.

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14を介して所謂R型伝送方式で通信する。 In addition, for the disaster prevention receiver 10, a fire pump equipment 16, a cooling pump equipment 18 for ducts, an IG slave station equipment 20, a ventilation equipment 22, an alarm display board equipment 24, a radio rebroadcast equipment 26, and a television monitoring equipment 28 are provided. and lighting equipment 30, etc., and the fire detector 12 and the disaster prevention receiving panel 10 communicate via a signal line 14 in a so-called R-type transmission system.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とをネットワークを経由して結ぶ通信設備である。 Here, the IG slave station equipment 20 is a communication equipment that connects the disaster prevention receiving board 10 and the remote monitoring and control equipment 32, which is an externally provided host equipment, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転によってトンネル長手方向に換気流を発生する設備である。 The ventilation equipment 22 is equipment that generates ventilation flow in the longitudinal direction of the tunnel by operating a jet fan installed on the ceiling side of the tunnel.

警報表示板設備24は、利用者に対して、火災に伴う進入禁止警報等の情報を電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The alarm display board facility 24 is a facility that notifies users of information such as a no-entry warning due to a fire by displaying it on an electronic display board. The radio rebroadcast facility 26 is a facility that allows drivers and the like to receive information from road administrators inside the tunnel. The television monitoring equipment 28 is equipment for checking the scale and location of a fire, operating water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance. The lighting equipment 30 is equipment that drives and manages lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the external appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体44の上部に設けられたセンサ収納部46に左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に対応して、センサ部が内蔵されている。また、透光性窓50R,50Lの近傍の、センサ部を見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光性窓52R,52Lが設けられている。 As shown in FIG. 3, the fire detector 12 includes two sets of light-transmitting windows 50R and 50L divided into left and right in the sensor housing section 46 provided at the top of the housing 44. , 50L are each equipped with a built-in sensor section. In addition, two sets of light-transmitting windows for test light sources are installed near the light-transmitting windows 50R, 50L, in positions where the sensor parts can be seen through, which house external test light sources used for dirt tests on the light-transmitting windows 50R, 50L. 52R and 52L are provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the light-transmitting window 50R may be referred to as the right-eye light-transmitting window 50R, and the light-transmitting window 50L may be referred to as the left-eye light-transmitting window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部76、感度試験に用いられる内部試験光源78R,80R,82Rと内部試験光源78L,80L,82L、汚れ試験に用いられる外部試験光源84R,84Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Schematic configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control section 54, a transmission section 56, a power supply section 58, two sets of left and right fire detection sections 60R and 60L, a test light emission drive section 76, and a light emission drive section 76 used for sensitivity testing. Internal test light sources 78R, 80R, 82R, internal test light sources 78L, 80L, 82L, and external test light sources 84R, 84L used for dirt tests are provided. In the following description, the fire detection section 60R may be referred to as a right eye fire detection section 60R, and the fire detection section 60L may be referred to as a left eye fire detection section 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is a function realized by executing a program, for example, and the hardware includes a computer circuit including a CPU, memory, various input/output ports, and the like.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10に接続され、各種信号がR型伝送により送受信される。 The transmission section 56 is connected to the disaster prevention receiving board 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R-type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部76に対し所定の電源電圧が供給されている。 The power supply section 58 receives power supply from the disaster prevention receiving panel 10 shown in FIG. A predetermined power supply voltage is supplied to the detection units 60R, 60L and the test light emission drive unit 76.

試験発光駆動部76には、感度試験に使用する内部試験光源78R,80R,82R,78L,80L,82Lが接続され、また、汚れ試験に使用する外部試験光源84R,84Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。 The test light emission drive unit 76 is connected to internal test light sources 78R, 80R, 82R, 78L, 80L, and 82L used for sensitivity tests, and external test light sources 84R and 84L used for dirt tests, respectively. A krypton lamp is provided as an element.

(火災検知部)
火災検知部60R,60Lは、センサ部64,68,72と増幅処理部66,70,74を備える。例えば右眼火災検知部60Rを例にとると、センサ部64,68,72の前面にはセンサ収納部46に設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーがセンサ部64,68,72に入射される。
(Fire detection section)
The fire detection sections 60R, 60L include sensor sections 64, 68, 72 and amplification processing sections 66, 70, 74. For example, taking the right eye fire detection section 60R as an example, the right eye light-transmitting window 50R provided in the sensor housing section 46 is arranged in front of the sensor sections 64, 68, and 72; Infrared energy from an external detection area is incident on the sensor sections 64, 68, and 72 via 50R.

右眼火災検知部60Rは、例えば3波長式の炎検知により火災を監視している。センサ部64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.5μm帯の赤外線を光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該赤外線を受光して光電変換したうえで、増幅処理部66により増幅等所定の処理を施して受光エネルギー量に対応する炎受光信号E1Rとして検知器制御部54へ出力する。 The right eye fire detection unit 60R monitors fire using, for example, three-wavelength flame detection. The sensor unit 64 selectively transmits infrared rays in the 4.5 μm band, which is a resonance radiation band of CO2 peculiar to flames, out of the infrared energy that has entered through the right eye translucent window 50R. The infrared rays are received by the light receiving sensor and subjected to photoelectric conversion, and then subjected to predetermined processing such as amplification by the amplification processing section 66, and sent to the detector control section 54 as a flame light reception signal E1R corresponding to the amount of received light energy. Output.

センサ部68は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第1の非炎波長帯域となる、例えば5.0μm帯の赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部70により増幅等所定の処理を施して受光エネルギー量に対応する第1の非炎受光信号E2Rとして検知器制御部54へ出力する。 The sensor unit 68 selectively transmits infrared energy in a first non-flame wavelength band, for example, a 5.0 μm band, out of the infrared energy that has entered through the right eye translucent window 50R, using an optical wavelength bandpass filter. (pass), is received by the light receiving sensor, photoelectrically converted, and then subjected to predetermined processing such as amplification by the amplification processing section 70 to be converted into the first non-flame light reception signal E2R corresponding to the amount of received light energy by the detector control section. Output to 54.

センサ部72は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、第2の非炎波長帯域となる、例えば2.3μmの赤外線エネルギーを光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより受光して光電変換したうえで、増幅処理部74により増幅等所定の処理を施して受光エネルギー量に対応する第2の非炎受光信号E3Rとして検知器制御部54へ出力する。 The sensor unit 72 selectively transmits infrared energy of, for example, 2.3 μm, which is a second non-flame wavelength band, out of the infrared energy that has entered through the right eye transparent window 50R ( After the light is received by the light receiving sensor and subjected to photoelectric conversion, it is subjected to predetermined processing such as amplification by the amplification processing section 74, and is output to the detector control section 54 as a second non-flame light reception signal E3R corresponding to the amount of received light energy. Output to.

増幅処理部66,70,74には、プリアンプ、炎のゆらぎ周波数を含む所定の周波数帯域を選択通過させる周波数フィルタ及びメインアンプ等が設けられている。 The amplification processing units 66, 70, and 74 are provided with a preamplifier, a frequency filter that selectively passes a predetermined frequency band including the flame fluctuation frequency, a main amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部86の機能が設けられている。火災判断部86は、炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3Rに基づき、複数の火災判定段階により火災を判断している。火災判断部86は例えば次の3段階の火災判定を行う。
(Fire judgment)
The detector control section 54 is provided with the function of a fire determination section 86 as a function realized by executing a program. The fire determination unit 86 determines a fire through a plurality of fire determination stages based on the flame reception signal E1R, the first non-flame reception signal E2R, and the second non-flame reception signal E3R. The fire determination unit 86 performs fire determination in the following three stages, for example.

火災判断部86は、炎受光信号E1Rが所定の閾値以上又はこれを上回った場合、第1の非炎受光信号E2Rとの相対比(E1R/E2R)を算出し、相対比(E1R/E2R)が所定の閾値を超えた場合に、第1段階の火災判定条件を充足したとして、火災(火災候補)と判定し、次の第2段階の火災判定を行う。 When the flame reception signal E1R is equal to or higher than a predetermined threshold, the fire determination unit 86 calculates the relative ratio (E1R/E2R) with the first non-flame reception signal E2R, and calculates the relative ratio (E1R/E2R). exceeds a predetermined threshold, it is determined that the first stage fire determination conditions are satisfied, a fire (fire candidate) is detected, and the next second stage fire determination is performed.

火災判断部86による第2段階の火災判定は、炎受光信号E1Rについて、第2の非炎受光信号E3Rとの相対比(E1R/E3R)を算出し、相対比(E1R/E3R)が所定の閾値を超えた場合に、第2段階の火災判定条件を充足したとして火災と判定する。 The second stage of fire determination by the fire determination unit 86 is to calculate the relative ratio (E1R/E3R) of the flame reception signal E1R to the second non-flame reception signal E3R, and to determine whether the relative ratio (E1R/E3R) is a predetermined value. If the threshold value is exceeded, it is determined that the fire determination conditions of the second stage are satisfied and a fire has occurred.

続いて、火災判断部86は、次の第3段階の火災判定を行う。火災判断部86による第3段階の火災判定条件は、炎受光信号E1Rを高速フーリエ変換(FFT)して結果を分析し,例えば4Hz以下の低周波側成分の相対強度と4Hz超8Hz以下の高周波側成分の相対強度の相対比を算出し、この相対化が所定の閾値以上又はこれを上回った場合に、第3段階の火災判定条件を充足したとして火災と判定し、これにより第1~第3の火災判定段階の全てにおいて火災と判定されたことになり、全体として一旦火災と判断する。 Subsequently, the fire determination unit 86 performs the next third stage of fire determination. The third stage fire determination condition by the fire determination unit 86 is to perform fast Fourier transform (FFT) on the flame reception signal E1R and analyze the result, for example, the relative strength of the low frequency component of 4 Hz or less and the high frequency component of more than 4 Hz and 8 Hz or less. The relative ratio of the relative intensities of the side components is calculated, and if this relativization is equal to or greater than a predetermined threshold value, it is determined that the third stage fire determination conditions are satisfied and a fire occurs. This means that a fire has been determined in all of the fire determination stages in step 3, and the fire is determined as a whole.

更に、第1乃至第3段階の火災判定条件が所定回数連続して充足された場合に、所定の火災判断蓄積条件を満足したとして火災を断定し、火災信号を防災受信盤10に送信する制御を行う。左眼火災検知部60Lにおいても同様に行う。 Furthermore, if the fire determination conditions of the first to third stages are satisfied a predetermined number of times in succession, a fire is determined as having satisfied the predetermined fire determination accumulation conditions, and a fire signal is transmitted to the disaster prevention receiving board 10. I do. The same process is performed for the left eye fire detection section 60L.

なお、火災判断部86による複数の火災判定段階による火災判断は、上記の火災判断に限定されず、更に、1又は複数の火災判定段階を加えても良いし、例えば上記3段階のうち何れかを省略して2段階としても良い。或いは例えば蓄積判定段階までを含む4段階としても良い。 Note that the fire determination by the fire determination unit 86 based on multiple fire determination stages is not limited to the fire determination described above, and one or more fire determination stages may be added, for example, any one of the above three stages may be added. may be omitted and the process may be performed in two stages. Alternatively, for example, there may be four stages including up to the accumulation determination stage.

(故障予兆の判定)
火災判断部86は、前述した3段階の火災判定段階の途中で火災が判定されずに火災と判断するに至らなかった場合に故障予兆の発生と判断し、故障予兆の発生回数Nをカウンタにより計数する制御を行う。
(Determination of signs of failure)
The fire determination unit 86 determines that a failure sign has occurred when a fire is not determined to be a fire during the three fire determination stages described above, and calculates the number of times N of failure signs to occur using a counter. Perform counting control.

また、火災判断部86は、故障予兆の発生回数Nが所定の故障予兆判断蓄積条件を充足したとき、例えば、故障予兆の発生回数Nが所定閾値Nthに達したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。なお、火災判断部86は、更に、故障予兆の確定回数が所定数に達したときに所定の故障予兆処理を行うようにしても良い。 Further, the fire determining unit 86 determines that the failure sign is a failure sign (determined ), transmits a failure sign signal to the disaster prevention receiver 10, and then performs a predetermined failure sign process. Note that the fire determining unit 86 may further perform a predetermined failure sign process when the number of confirmed failure signs reaches a predetermined number.

火災判断部86による所定の故障予兆処理は、例えば火災信号の送信を停止する処理、火災判断の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする等の処理とする。火災信号の送信を停止する故障予兆処理は、故障予兆を判定した後に火災を判断しても故障による誤った火災判断である可能性が高いことから、火災信号の送信を停止して、非火災報の発生を抑止させる、というものである。なお、火災信号の送信を停止する処理は行わないようにすることもできる。 The predetermined failure sign processing performed by the fire determination unit 86 includes, for example, a process of stopping the transmission of a fire signal, a process of increasing a threshold value for the number of accumulations of fire determinations, and tightening the fire determination accumulation conditions. The failure sign processing that stops the transmission of fire signals stops the transmission of fire signals and detects non-fire conditions, since even if a fire is determined after determining failure signs, there is a high possibility that the fire will be incorrectly determined due to a failure. The idea is to prevent the occurrence of information. Note that the process of stopping the transmission of the fire signal may not be performed.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す故障予兆情報を生成して送信する制御を行い、防災受信盤10は取得した故障予兆情報から抽出された故障予兆の発生回数Nに基づいて火災検知器12の信頼性を評価し、信頼性有り、信頼性低下を判断するために用いられる。なお、信頼性低下については、その度合により複数段階に分け、例えば信頼性低下状態と信頼性が無い状態を区別できるようにしても良い。 In addition, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention receiver 10, it performs control to generate and transmit failure sign information indicating the number N of occurrences of the failure sign obtained at that time, The disaster prevention receiver 10 is used to evaluate the reliability of the fire detector 12 based on the number of occurrences N of failure signs extracted from the acquired failure sign information, and to determine whether the fire detector 12 is reliable or has decreased reliability. Incidentally, the reliability reduction may be divided into multiple stages depending on the degree, so that, for example, a reliability reduction state and an unreliability state can be distinguished.

なお、カウンタにより計数している故障予兆の発生回数Nは、所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。ただし、リセット前の故障予兆の発生回数Nは、故障予兆情報として記憶するようにしても良い。 Note that the number of occurrences N of failure signs counted by the counter is reset every predetermined period, or when a predetermined period has elapsed since the failure signs were counted. However, the number N of occurrences of failure signs before reset may be stored as failure sign information.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部88の機能が設けられている。感度試験部88は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。なお、内部試験光源78R,80R,82Rと内部試験光源78L,80L,82Lは、それぞれ1つの光源で共用しても良い。
(Sensitivity test)
The detector control section 54 is provided with the function of a sensitivity test section 88 as a function realized by executing a program. The sensitivity test section 88 operates when it receives a test instruction signal specifying its own address from the disaster prevention receiver 10 via the transmission section 56, and instructs the test light emission drive section 76 to turn on the internal test light sources 78R, 80R. , 82R, 78L, 80L, and 82L are sequentially driven to emit light to conduct a sensitivity test of the fire detection units 60R and 60L. Note that the internal test light sources 78R, 80R, and 82R and the internal test light sources 78L, 80L, and 82L may each be used as one light source.

例えば右眼火災検知部60Rにおけるセンサ部64と増幅処理部66の回路系統を例にとると、試験発光駆動部76は内部試験光源78Rを発光駆動することにより、火災炎に相当する炎疑似光(炎を模擬した赤外線光)をセンサ部64に入射させる。 For example, taking the circuit system of the sensor section 64 and the amplification processing section 66 in the right eye fire detection section 60R as an example, the test light emission drive section 76 emits a false flame corresponding to fire flame by driving the internal test light source 78R to emit light. (infrared light simulating flame) is made to enter the sensor section 64.

センサ部64と増幅処理部66の回路ブロックについては、工場出荷時の初期感度試験時の基準受光値がメモリに記憶されており、システム立上げ時の感度試験で得られる検出受光値は基準受光値に略一致しており、検出受光値を基準受光値で割った検出感度係数は1となっている。運用期間が経過していくと、検出受光値は徐々に低下し、検出感度係数は0.9,0.8,0.7・・・というように低下していく。 Regarding the circuit blocks of the sensor section 64 and the amplification processing section 66, the reference received light value during the initial sensitivity test at the time of shipment from the factory is stored in memory, and the detected received light value obtained during the sensitivity test at system startup is the reference received light value. The detection sensitivity coefficient obtained by dividing the detected light receiving value by the reference light receiving value is 1. As the operating period passes, the detected light reception value gradually decreases, and the detection sensitivity coefficient decreases in the order of 0.9, 0.8, 0.7, and so on.

このように検出感度係数が1以下に低下した場合、感度試験部88は検出感度係数の逆数となる補正係数を求めてメモリに記憶させ、その後の運用状態で検出される受光値に補正係数を乗算して感度補正を行い、火災判断部86は感度補正された受光値により火災を判断する。 When the detection sensitivity coefficient decreases to 1 or less in this way, the sensitivity test section 88 calculates a correction coefficient that is the reciprocal of the detection sensitivity coefficient, stores it in the memory, and applies the correction coefficient to the received light value detected in the subsequent operation state. The sensitivity is corrected by multiplication, and the fire determination unit 86 determines a fire based on the sensitivity-corrected received light value.

また、感度試験部88には、感度補正の限界となる補正係数に対応した感度補正限界閾値、例えば感度補正限界閾値0.5が予め設定されており、感度試験で求められた感度係数が感度補正限界閾値以下又は感度補正限界閾値を下回った場合にセンサ部64の感度異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に感度異常を示す情報を設定して防災受信盤10へ感度異常信号を送信させる制御を行う。 Further, in the sensitivity test section 88, a sensitivity correction limit threshold corresponding to a correction coefficient that is the limit of sensitivity correction, for example, a sensitivity correction limit threshold of 0.5, is set in advance, and the sensitivity coefficient obtained in the sensitivity test is set in advance. If the value is below the correction limit threshold or below the sensitivity correction limit threshold, it is determined that the sensitivity of the sensor unit 64 is abnormal, and the transmitter 56 is instructed to set information indicating the sensitivity abnormality in the response signal to the call signal that matches the self address. Then, control is performed to transmit a sensitivity abnormality signal to the disaster prevention receiving board 10.

また、感度試験部88には、感度補正限界に達する前の感度異常の予兆を示す感度係数に対応して、例えば感度異常の予兆閾値0.6が予め設定されており、感度試験で求められた検出感度係数が感度異常の予兆閾値以下又は予兆閾値を下回った場合に、近い将来、感度補正ができなくなる可能性が高い感度異常状態の予兆と判定し、伝送部56に指示して感度異常の予兆を示す感度異常予兆信号を防災受信盤10へ送信して報知させる制御を行う。 In addition, in the sensitivity test section 88, a sensitivity abnormality sign threshold of 0.6, for example, is preset, corresponding to a sensitivity coefficient that indicates a sign of a sensitivity abnormality before reaching the sensitivity correction limit, and is set in advance as a sensitivity abnormality sign threshold of 0.6. If the detected sensitivity coefficient is less than or equal to the sensitivity abnormality sign threshold, it is determined that this is a sign of a sensitivity abnormality state in which there is a high possibility that sensitivity correction will not be possible in the near future, and the transmission unit 56 is instructed to detect the sensitivity abnormality. Control is performed to transmit and notify a sensitivity abnormality sign signal indicating a sign of failure to the disaster prevention receiving board 10.

なお、感度試験部88で感度異常の予兆が判定された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 In addition, when the sensitivity testing section 88 determines that a sign of a sensitivity abnormality is detected, this is regarded as a sign of a failure, and the counter of the fire judgment section 86 performs a counting operation to increase the number of occurrences N of the failure sign. You can also do it.

また、運用期間の経過に伴い検出感度係数が1.1,1.2,1.3…と増加する場合も同様にして補正し、限界に達すると異常とする。 Further, when the detection sensitivity coefficient increases to 1.1, 1.2, 1.3, etc. as the operating period passes, it is corrected in the same way, and when it reaches the limit, it is determined to be abnormal.

センサ部68と増幅処理部70及びセンサ部72と増幅処理部74の回路系統も同様に感度試験が行われる。また、左眼火災検知部60Lについても、試験発光駆動部76により内部試験光源78L,80L,82Lを発光駆動することにより、同様にして感度試験が行われる。 Sensitivity tests are similarly performed on the circuit systems of the sensor section 68 and the amplification processing section 70 and the sensor section 72 and the amplification processing section 74. Furthermore, a sensitivity test is similarly performed on the left eye fire detection section 60L by driving the internal test light sources 78L, 80L, and 82L to emit light using the test light emission drive section 76.

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部90の機能が設けられている。汚れ試験部90は、感度試験と同様に、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、外部試験光源84R,84Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(stain test)
The detector control section 54 is provided with the function of a dirt test section 90 as a function realized by executing a program. Similar to the sensitivity test, the dirt test section 90 operates when it receives a test instruction signal specifying its own address from the disaster prevention reception board 10 via the transmission section 56, and instructs the test light emission drive section 76 to The external test light sources 84R and 84L are sequentially driven to emit light to perform a dirt test on the translucent windows 50R and 50L.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部76は外部試験光源84Rを発光駆動することにより、火災炎に相当する炎疑似光を、試験光源用透光性窓52R及び透光性窓50Rを介してセンサ部64に入射させる。試験光源用透光性窓52R及び透光性窓50Rは工場出荷時に汚れはなく、その際に汚れ試験で得られた受光値が基準受光値としてメモリに記憶されており、減光率の演算に利用される。 For example, in the case of a dirt test on the translucent window 50R, the test light emission driving unit 76 drives the external test light source 84R to emit a flame simulant light corresponding to a fire flame on the translucent window 52R for the test light source. And the light is made to enter the sensor section 64 via the light-transmitting window 50R. The light-transmitting window 52R for the test light source and the light-transmitting window 50R are not dirty when shipped from the factory, and the light reception value obtained in the dirt test at that time is stored in the memory as the reference light reception value, and the light attenuation rate calculation is performed. used for.

システム立上げ時の汚れ試験で得られる検出受光値は基準受光値に略一致しており、基準受光値から検出受光値を減算した値を基準受光値で割った減光率は0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、0.1,0.2,0.3・・・いうように徐々に増加していく。 The detected light receiving value obtained in the dirt test at system startup almost matches the standard light receiving value, and the light attenuation rate obtained by subtracting the detected light receiving value from the standard light receiving value divided by the standard light receiving value is 0. There is. As the operating period passes, dirt adheres to the translucent window 50R, and the light attenuation rate gradually increases to 0.1, 0.2, 0.3, and so on.

このように減光率が増加した場合、汚れ試験部90は汚れ試験により減光率を求めると共に、(1-減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部86は汚れ補正された受光値により火災を判断する。 When the light attenuation rate increases in this way, the stain test section 90 determines the light attenuation rate by the stain test, and also calculates a correction value that is the reciprocal of (1 - light attenuation rate) and stores it in memory for subsequent operation. Dirt correction is performed by dividing the light reception value detected in the state (the light reception value corrected by the correction value of the sensitivity test) by the correction value, and the fire determination unit 86 determines a fire based on the dirt correction corrected light reception value.

また、汚れ試験部90には、汚れ補正の限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.5が予め設定されており、汚れ試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が不可能となる汚損異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚損異常情報を設定して防災受信盤10へ汚損信号を送信して報知させる制御を行う。 Further, in the dirt test section 90, a dirt threshold value, for example, dirt threshold value 0.5, which is a light attenuation rate corresponding to the limit of dirt correction is preset, and the light attenuation rate determined by the dirt test is equal to or higher than the dirt threshold value. Or, if the dirt exceeds the dirt threshold, it is determined that there is a dirt abnormality that makes it impossible to correct the dirt on the translucent window 50R, and instructs the transmission unit 56 to include dirt abnormality information in the response signal to the call signal that matches the own address. Control is performed to set and send a pollution signal to the disaster prevention receiver 10 for notification.

また、汚れ試験部90には、汚れ補正が限界に達する予兆段階に対応した減光率となる汚れ予兆閾値、例えば汚れ予兆閾値0.6が予め設定されており、汚れ試験で求められた減光率が汚れ予兆閾値以上又は汚れ予兆閾値を上回った場合に、近い将来、透光性窓50Rの汚れ補正が不可能となる可能性が高い汚損予兆状態と判断し、伝送部56に指示して汚損予兆信号を防災受信盤10へ送信して報知させる制御を行う。 Further, in the dirt test section 90, a dirt indicator threshold value, for example, a dirt indicator threshold value of 0.6, which is a light attenuation rate corresponding to the indicator stage where the dirt correction reaches its limit, is preset, and the dirt indicator threshold value 0.6 is set in advance. If the light rate is equal to or higher than the contamination sign threshold or exceeds the contamination sign threshold, it is determined that the contamination sign state is likely to become impossible in the near future, and the transmission section 56 is instructed. control is performed to send a contamination sign signal to the disaster prevention receiving panel 10 for notification.

なお、汚れ試験部90で汚損予兆が判断された場合、これを故障予兆の1つと見做し、火災判断部86のカウンタによる計数動作を行って故障予兆の発生回数Nを増加させるようにしても良い。 In addition, when the contamination test section 90 determines that there is a sign of contamination, this is regarded as one of the signs of failure, and the counter of the fire judgment section 86 performs a counting operation to increase the number N of occurrences of the sign of failure. Also good.

(火災検知器の制御動作)
図5は火災検知器の制御動作を示したフローチャートであり、図4に示した火災判断部86による制御動作となる。
(Fire detector control operation)
FIG. 5 is a flowchart showing the control operation of the fire detector, which is the control operation by the fire determination section 86 shown in FIG.

図5に示すように、火災判断部86は、例えば、図4の火災検知部60Rを例にとると、ステップS1で増幅処理部66,70,74から出力された炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3RをAD変換により取込み、ステップS2で炎受光信号E1Rが所定値以上であればステップS3に進み、炎受光信号E1Rと第1の非炎受光信号E2Rの比(E1R/E2R)を算出し、所定値以上の場合は第1段階の火災判定条件を充足したとしてステップS4に進み、ステップS4で炎受光信号E1Rと第2の非炎受光信号E3Rの比(E1R/E3R)を算出し、所定値以上の場合は第2段階の火災判定条件を充足したとしてステップS5に進む。 As shown in FIG. 5, for example, taking the fire detection section 60R of FIG. The non-flame reception signal E2R and the second non-flame reception signal E3R are taken in by AD conversion, and if the flame reception signal E1R is equal to or higher than a predetermined value in step S2, the process proceeds to step S3, where the flame reception signal E1R and the first non-flame reception signal E1R are taken in. The ratio (E1R/E2R) of the received light signal E2R is calculated, and if it is equal to or greater than a predetermined value, the first step fire determination condition is satisfied and the process proceeds to step S4. The ratio (E1R/E3R) of the signal E3R is calculated, and if it is equal to or greater than a predetermined value, it is determined that the second stage fire determination condition is satisfied and the process proceeds to step S5.

続いて、火災判断部86はステップS5で炎受光信号E1Rの高速フーリエ変換(FFT演算)を行い、ステップS6で例えば4Hz以下の低周波数側と4Hz超8Hz以下の高周波側の成分の相対強度比が所定値以上であれば第3段階の火災判定条件を充足したとしてステップS7に進み、ステップS1~S6による第1段階から第3段階の火災判定条件を所定の蓄積回数閾値だけ連続して成立したか否か判定する。 Subsequently, the fire determination unit 86 performs fast Fourier transform (FFT calculation) on the flame reception signal E1R in step S5, and determines the relative intensity ratio of the low frequency component of, for example, 4 Hz or less and the high frequency component of more than 4 Hz and 8 Hz or less in step S6. If is greater than or equal to a predetermined value, it is determined that the fire determination condition of the third stage is satisfied and the process proceeds to step S7, and the fire determination conditions of the first to third stages in steps S1 to S6 are continuously satisfied for a predetermined accumulation number threshold. Determine whether or not.

続いて、火災判断部86は、ステップS7で所定の火災判断蓄積条件としての蓄積回数閾値を充足するとステップS8に進んで火災と判断し、火災信号を防災受信盤10に送信して火災処理を行わせる。続いて、ステップS9で防災受信盤10からの火災復旧信号(復旧指示信号)の受信を判別するとステップS10で火災検知を初期状態に復旧してステップS1に戻る。 Subsequently, when the fire determination unit 86 satisfies the accumulation count threshold value as a predetermined fire determination accumulation condition in step S7, the process proceeds to step S8 and determines that there is a fire, and sends a fire signal to the disaster prevention receiver 10 to carry out fire processing. Let it happen. Subsequently, when it is determined in step S9 that a fire recovery signal (restoration instruction signal) has been received from the disaster prevention receiver 10, the fire detection is restored to the initial state in step S10, and the process returns to step S1.

一方、火災判断部86は、ステップS3で第1段階の火災判定条件が充足されなかったときは、故障予兆が発生したと判定し、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし(インクリメントし)、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 On the other hand, if the fire determination condition of the first stage is not satisfied in step S3, the fire determination unit 86 determines that a failure sign has occurred, and proceeds to step S11 to set a counter N for counting the number of occurrences of a failure sign. is set to +1 (incremented), and if in step S12 the number of occurrences of failure signs N is less than the predetermined threshold number of times Nth, the process from step S1 is repeated.

また、火災判断部86は、ステップS3の第1段階の火災判定条件は充足したが、ステップS4の第2段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Further, if the fire determination condition in the first stage of step S3 is satisfied, but the fire determination condition in the second stage of step S4 is not satisfied, the fire determination unit 86 proceeds to step S11 to determine whether the failure sign has occurred. A counter N for counting the number of times is set to +1, and if the number N of failure sign occurrences is less than the predetermined threshold number Nth in step S12, the process from step S1 is repeated.

更に、火災判断部86は、ステップS3の第1段階及びステップS4の第2段階の火災判定条件は充足したが、ステップS6の第3段階の火災判定条件が充足されなかったときは、ステップS11に進んで故障予兆の発生回数を計数するカウンタNを+1とし、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth未満の場合は、ステップS1からの処理を繰り返す。 Furthermore, if the fire determination conditions of the first stage of step S3 and the second stage of step S4 are satisfied, but the fire determination conditions of the third stage of step S6 are not satisfied, the fire determination unit 86 Proceeding to step S12, a counter N for counting the number of occurrences of a failure sign is set to +1, and in step S12, if the number of failure sign occurrences N is less than a predetermined threshold number of times Nth, the process from step S1 is repeated.

このような故障予兆の発生回数のカウントの繰り返しにより、火災判断部86は、ステップS12で故障予兆の発生回数Nが所定の閾値回数Nth以上となる故障予兆判定蓄積条件を満たした場合に故障予兆と判定(確定)し、ステップS13に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS14で所定の故障予兆処理を行う。 By repeatedly counting the number of occurrences of failure signs in this manner, the fire determining unit 86 detects failure signs when the failure sign judgment accumulation condition is satisfied such that the number of failure signs occurrences N is equal to or greater than a predetermined threshold number of times Nth in step S12. It is determined (confirmed) that the process proceeds to step S13, where a failure sign signal is transmitted to the disaster prevention receiver 10 for notification, and then, in step S14, a predetermined failure sign process is performed.

なお、ステップS13において、ステップS12の故障予兆判定蓄積条件に、更に、ステップS12による故障予兆の判断回数が所定の閾値回数に達しか否かの故障予兆判定蓄積条件の充足判定を追加しても良い。 In addition, in step S13, even if the sufficiency determination of the failure sign judgment accumulation condition of whether the number of failure sign judgments in step S12 reaches a predetermined threshold number of times is added to the failure sign judgment accumulation condition of step S12. good.

また、故障予兆処理は、例えば、ステップS7の蓄積回数閾値を増加させて火災判断蓄積条件を厳格にする。また、火災検知器12は、ステップS1~S7の監視動作とステップS8の火災信号の送信のうち、少なくとも後者を停止する。 Further, the failure sign processing, for example, increases the accumulation count threshold value in step S7 to make the fire judgment accumulation conditions stricter. Furthermore, the fire detector 12 stops at least the latter of the monitoring operations in steps S1 to S7 and the transmission of the fire signal in step S8.

なお、ステップS3で相対比が所定値未満のときはステップS1に戻り、また、ステップS7で火災判断蓄積条件を充足しないと判別したときはステップS11に進むようにしても良い。 Note that if the relative ratio is less than a predetermined value in step S3, the process may return to step S1, and if it is determined in step S7 that the fire judgment accumulation condition is not satisfied, the process may proceed to step S11.

また、火災判断部86は、制御動作中に、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nに関する(Nを示す)情報を故障予兆情報として応答送信し、防災受信盤10で火災検知器12の信頼性判断に利用させる。 Further, when the fire determining unit 86 receives an internal state request command from the disaster prevention receiver 10 during the control operation, the fire determining unit 86 transmits information (indicating N) regarding the number of occurrences of the failure sign counted by the counter at that time to the failure sign. The information is transmitted as a response and used by the disaster prevention receiving panel 10 to determine the reliability of the fire detector 12.

[防災受信盤]
(防災受信盤の概略)
図6は防災受信盤の機能構成の概略を示したブロック図である。図6に示すように、防災受信盤10は盤制御部34を備え、盤制御部34は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
(Outline of disaster prevention reception board)
FIG. 6 is a block diagram schematically showing the functional configuration of the disaster prevention receiver. As shown in FIG. 6, the disaster prevention reception panel 10 includes a panel control section 34, and the panel control section 34 is a function realized by executing a program, for example, and the hardware includes a CPU, memory, various input/output ports, etc. Use computer circuits etc. equipped with

盤制御部34に対しては伝送部36a,36bが設けられ、伝送部36a,36bから引き出した信号線14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the panel control unit 34, and a plurality of fire detectors 12 installed in the upstream tunnel 1a and the downstream tunnel 1b are connected to signal lines 14a and 14b drawn out from the transmission units 36a and 36b, respectively. The machine is connected.

また、盤制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部41、IG子局設備20を接続するモデム42が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部43が設けられている。 In addition, an alarm unit 38 equipped with a speaker, an alarm indicator light, etc., a display unit 40 equipped with a liquid crystal display, a printer, etc., an operation unit 41 equipped with various switches, etc., and an IG slave station equipment 20 are connected to the panel control unit 34. The modem 42 shown in FIG. An IO unit 43 is provided.

盤制御部34には、プログラムの実行により実現される機能として、火災監視制御部48の機能が設けられている。 The panel control section 34 is provided with the function of a fire monitoring control section 48 as a function realized by executing a program.

火災監視制御部48は、伝送部36a,36bに指示して信号線14a,14bを介して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災信号、感度異常予兆信号、感度異常信号、汚損予兆信号、汚損信号等の応答信号を返信する。 The fire monitoring control unit 48 instructs the transmission units 36a and 36b to repeatedly transmit a call signal including a polling command that sequentially specifies the address of the fire detector 12 via the signal lines 14a and 14b, and the fire detector 12 12, when receiving a call signal matching its own address, returns a response signal such as a fire signal, a sensitivity abnormality sign signal, a sensitivity abnormality sign signal, a contamination sign signal, a stain signal, etc.

また、火災監視制御部48は、火災検知器12からの火災信号の受信に基づき火災と判断した場合は、警報部38による火災警報の出力、IO部43を介して他設備の連動制御例えば警報表示板設備24による進入禁止警報の表示、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In addition, when the fire monitoring control unit 48 determines that there is a fire based on the reception of the fire signal from the fire detector 12, the fire monitoring control unit 48 outputs a fire alarm from the alarm unit 38, and controls interlocking of other equipment via the IO unit 43, such as an alarm. Predetermined fire treatment is performed, including displaying a no-entry warning on the display board equipment 24 and transmitting a fire transfer signal to the remote monitoring and control equipment 32.

また、火災監視制御部48は、システムの立上げ時あるいは運用中の所定の周期毎(例えば1日1回となる24時間周期)に、火災検知器12のアドレスを順次指定した試験指示信号を送信し、火災検知器12に感度試験及び汚れ試験を行わせ、それぞれの試験結果を応答させ、例えばセンサ故障の応答信号を受信した場合、火災検知器12のアドレスを特定したセンサ故障警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 In addition, the fire monitoring control unit 48 sends test instruction signals that sequentially specify the addresses of the fire detectors 12 at the startup of the system or at predetermined intervals (for example, once a day, 24-hour cycle). The fire detector 12 performs a sensitivity test and a dirt test, and responds with the results of each test. For example, when a response signal of a sensor failure is received, a sensor failure alarm that specifies the address of the fire detector 12 is issued. Control is performed to notify by an alarm sound from the section 38, display on the display section 40, and printing.

また、火災監視制御部48は火災検知器12の汚れ試験により得られた汚損異常の応答信号を受信した場合、火災検知器のアドレスを特定した汚れ警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 In addition, when the fire monitoring control unit 48 receives a response signal indicating a contamination abnormality obtained from the contamination test of the fire detector 12, the fire monitoring control unit 48 issues a contamination alarm specifying the address of the fire detector, an alarm sound from the alarm unit 38, and an alarm sound from the display unit 40. Controls the display and printing of information.

また、火災監視制御部48は、火災検知器12の感度試験及び汚れ試験により得られたセンサ故障又は汚損異常の応答信号を受信した場合、モデム42から図1に示したIG子局設備20を介して遠方監視制御設備32に移報信号を送信し、故障警報又は異常警報を報知させる制御を行う。 In addition, when the fire monitoring control unit 48 receives a response signal indicating sensor failure or contamination abnormality obtained from the sensitivity test and contamination test of the fire detector 12, the fire monitoring control unit 48 transmits the IG slave station equipment 20 shown in FIG. 1 from the modem 42. A transfer signal is transmitted to the remote monitoring and control equipment 32 via the remote monitoring control equipment 32, and control is performed to notify a failure alarm or an abnormality alarm.

(火災判断制御)
火災監視制御部48は、火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12のアドレスを指定した内部状態要求コマンド信号を送信し、火災検知器12のカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を取得し、これに基づき火災信号を送信した火災検知器12の信頼性を評価して信頼性有りか信頼性低下かを判断する。
(Fire judgment control)
When the fire monitoring control unit 48 receives a fire signal from the fire detector 12, it transmits an internal state request command signal specifying the address of the fire detector 12 that sent the fire signal, and counts the value using the counter of the fire detector 12. Obtains failure sign information including information indicating the number of times N failure signs have occurred, and based on this, evaluates the reliability of the fire detector 12 that transmitted the fire signal to determine whether it is reliable or has decreased reliability. do.

火災監視制御部48による火災検知器12の信頼性の評価は、例えば故障予兆情報として取得して抽出した火災検知器12の故障予兆の発生回数Nが信頼性判断蓄積条件として設定した所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断する。 The reliability evaluation of the fire detector 12 by the fire monitoring control unit 48 is performed based on, for example, a predetermined threshold value set as a reliability judgment accumulation condition for the number of occurrences N of failure signs of the fire detector 12 acquired and extracted as failure sign information. If the number of times is less than Nref or the threshold number of times Nref, it is determined that the reliability is present, and if the number of times is more than the predetermined threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability has decreased.

火災検知器12が故障予兆を判定したときに火災信号を送信しないようにする場合は、例えば信頼性判断蓄積条件を設定する閾値回数Nrefは、図4に示した火災判断部86で故障予兆判断蓄積条件として設定した閾値回数Nthより低い値を設定すれば良い。 If the fire detector 12 does not transmit a fire signal when it determines a failure sign, for example, the threshold number of times Nref for setting the reliability judgment accumulation condition may be determined by the failure sign judgment by the fire determination unit 86 shown in FIG. It is sufficient to set a value lower than the threshold number of times Nth set as the accumulation condition.

火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性有りと判断したときは、火災検知器12に火災復旧コマンド信号を送信して復旧させた後に再度火災信号を受信した場合に火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 When the fire monitoring control unit 48 determines that the fire detector 12 that transmitted the fire signal is reliable, the fire monitoring control unit 48 transmits a fire recovery command signal to the fire detector 12 to restore it, and then receives the fire signal again. It is determined that there is a fire, and predetermined fire treatment is carried out, including the output of a fire alarm, interlocking control of other equipment, including at least the display of a no-entry warning by the alarm display board equipment 24, and the transmission of a fire transfer signal to the remote monitoring and control equipment 32. conduct.

一方、火災監視制御部48は、火災信号を送信した火災検知器12につき信頼性低下と判断したときは、火災検知器12の蓄積条件変更コマンド信号(蓄積条件厳格化コマンド)の送信により、火災検知器12の第1の火災判断蓄積条件(図5のステップS7の蓄積条件)を設定する蓄積回数閾値を増加して厳格な(より火災判断に到達し難い)第2の火災判断蓄積条件に変更し、具体的には例えば蓄積回数閾値を高くして実質的に火災に対し低感度化し、続いて、復旧コマンド信号を送信して復旧させる。 On the other hand, when the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that has transmitted the fire signal has deteriorated, the fire monitoring control unit 48 detects the fire by transmitting an accumulation condition change command signal (accumulation condition tightening command) The accumulation count threshold for setting the first fire judgment accumulation condition (accumulation condition in step S7 in FIG. 5) of the detector 12 is increased to make the second fire judgment accumulation condition stricter (harder to reach a fire judgment). Specifically, for example, the accumulation frequency threshold value is increased to substantially reduce the sensitivity to fire, and then a restoration command signal is transmitted to restore the system.

この状態で、火災監視制御部48は、火災判断蓄積条件を変更した第1報目の火災信号を送信した火災検知器12から第2の火災判断蓄積条件の充足による第2報目の火災信号を受信し、且つ、又は、第1報目の火災信号を送信した火災検知器12と同じ検知エリアを重複監視している隣接した火災検知器12から火災信号を受信したときに火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, the fire monitoring control unit 48 receives a second fire signal based on the satisfaction of the second fire judgment accumulation condition from the fire detector 12 that transmitted the first fire signal with the changed fire judgment accumulation condition. It is determined that there is a fire when a fire signal is received from an adjacent fire detector 12 that is redundantly monitoring the same detection area as the fire detector 12 that sent the first fire signal. , performs predetermined fire treatment including outputting a fire alarm, interlocking control of other equipment including at least the display of a no-entry warning by the alarm display board equipment 24, and transmitting a fire transfer signal to the remote monitoring and control equipment 32.

このように火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、火災検知器12が火災以外の故障予兆により火災と判断して火災信号を送信した場合も、当該火災検知器の火災判断蓄積条件を厳格に変更することから復旧後に原因不明の非火災要因により再度火災信号を送信する可能性は低くなり、また、このとき隣接した火災検知器12は信頼性が低下しておらず、実火災でない場合に火災信号を送信する可能性は極めて低く、第1報目の火災信号を送信して復旧した火災検知器12とこれに隣接する火災検知器12aの一方又は両方から火災信号が受信される場合に火災と判断するようすることで、非火災にもかかわらず火災と判断して火災処理を行ってしまうことを確実に防止できる。 In this way, if the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that transmitted the fire signal has decreased, or if the fire detector 12 determines that there is a fire due to a failure sign other than a fire and transmits the fire signal. By strictly changing the fire judgment accumulation conditions of the fire detector, the possibility of transmitting a fire signal again due to unknown non-fire factors after recovery is reduced, and in this case, the adjacent fire detector 12 is not reliable. The fire detector 12, which has been restored after transmitting the first fire signal, and the adjacent fire detector 12a By determining that there is a fire when a fire signal is received from one or both of the above, it is possible to reliably prevent the fire from being determined to be a fire even though it is not a fire and fire treatment is performed.

また、火災監視制御部48は、第1報目の火災信号を送信した火災検知器12につき信頼性低下と判断した後に当該火災検知器12及び又はこれに隣接した火災検知器12aに基づく火災判断が成立しなかった場合、火災検知器12から非火災の(誤った)火災信号を受信したことを示す非火災移報信号を遠方監視制御設備32に送信して報知させる制御を行う。 Further, after determining that the reliability of the fire detector 12 that transmitted the first fire signal has decreased, the fire monitoring control unit 48 makes a fire judgment based on the fire detector 12 and/or the adjacent fire detector 12a. If this is not true, control is performed to transmit a non-fire transfer signal indicating that a non-fire (erroneous) fire signal has been received from the fire detector 12 to the remote monitoring control equipment 32 for notification.

これにより遠方監視制御設備32側の管理担当者は、非火災報の原因となり得る火災検知器12の信頼性が低下した状態を知ることができ、火災検知器12の点検強化等といったトンネルの運用管理効率化のために利用可能とする。 As a result, the person in charge of the management of the remote monitoring and control equipment 32 can know the state in which the reliability of the fire detector 12 has decreased, which could be the cause of a non-fire alarm, and can perform tunnel operations such as strengthening inspections of the fire detector 12. Make it available for management efficiency.

また、火災監視制御部48で火災信号を送信した火災検知器12につき信頼性低下と判断した場合、当該火災検知器12の検知エリアを重複監視している隣接した火災検知器12に、蓄積条件変更コマンド信号(蓄積条件緩和コマンド)を送信して、図5のステップS7の蓄積回数閾値を低下させることで、第1の火災判断蓄積条件を緩和する(より火災判断に到達しやすくする)第3の火災判断蓄積条件に変更し、実質的に火災に対し高感度化しても良い。 In addition, if the fire monitoring control unit 48 determines that the reliability of the fire detector 12 that transmitted the fire signal has decreased, the accumulation condition is set for the adjacent fire detector 12 that is redundantly monitoring the detection area of the fire detector 12. By transmitting a change command signal (accumulation condition relaxation command) and lowering the accumulation frequency threshold in step S7 in FIG. 5, the first fire judgment accumulation condition is relaxed (to make it easier to reach a fire judgment). It is also possible to change to the fire judgment accumulation condition of 3 to substantially increase the sensitivity to fire.

具体的には例えば、隣接した火災検知器12の第1の火災判断蓄積条件として設定した蓄積回数閾値を低下させて第3の火災判断蓄積条件に変更することで、実火災であった場合、隣接した火災検知器12aよる火災信号が迅速に送信され、且つ又は第1報目の火災信号を送信して信頼性低下と判断された火災検知器12の復旧後再度の火災信号の送信によって速やかに火災処理を行うことができる。 Specifically, for example, by lowering the accumulation count threshold set as the first fire judgment accumulation condition of the adjacent fire detector 12 and changing it to the third fire judgment accumulation condition, if it is an actual fire, The fire signal from the adjacent fire detector 12a is quickly transmitted, and/or the fire detector 12 that was determined to have decreased reliability after transmitting the first fire signal is restored, and then a second fire signal is promptly transmitted. Fire treatment can be carried out.

なお、火災検知器12が右眼と左眼を区別した火災信号を送信できる場合、例えば、この火災検知器12の右眼の検知エリアを左眼で重複監視している火災検知器(の左眼)を隣接した火災検知器12とすれば良い。右眼と左眼の区別ができない場合は、両隣かこのうちの何れかの火災検知器12となる。 In addition, if the fire detector 12 can transmit a fire signal that distinguishes between the right eye and the left eye, for example, if the fire detector 12 redundantly monitors the detection area of the right eye of this fire detector 12 with the left eye, The fire detector 12 may be adjacent to the eye). If it is not possible to distinguish between the right eye and the left eye, the fire detectors 12 on both sides or one of them will be used.

[トンネル防災システムの制御動作]
(火災検知器の信頼性有り)
図7は防災受信盤で火災検知器の信頼性有りと判断された場合の制御動作を示したタイムチャートである。
[Control operation of tunnel disaster prevention system]
(Fire detector is reliable)
FIG. 7 is a time chart showing the control operation when the fire detector is determined to be reliable by the disaster prevention receiver.

図7に示すように、火災検知器12がステップS21で火災と判断すると、ステップS22に進んで防災受信盤10に火災信号を送信する。防災受信盤10は火災検知器12からの火災信号を受信するとステップS23で内部状態要求コマンド信号を火災検知器12に送信し、これを受けて火災検知器12はステップS24でそのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を生成して防災受信盤10に送信する。 As shown in FIG. 7, when the fire detector 12 determines that there is a fire in step S21, the process proceeds to step S22 and transmits a fire signal to the disaster prevention receiver 10. When the disaster prevention receiving panel 10 receives the fire signal from the fire detector 12, it transmits an internal status request command signal to the fire detector 12 in step S23, and in response to this, the fire detector 12 counts the value using the counter in step S24. Failure predictor information including information indicating the number of occurrences N of failure predictors is generated and transmitted to the disaster prevention receiver 10.

火災検知器12からの故障予兆情報を受信した防災受信盤10は、ステップS25で故障予兆情報から抽出した故障予兆の発生回数Nに基づき信頼性を評価し、ステップS26で信頼性有りと判断するとステップS27に進み、復旧コマンド信号を火災検知器12に送信してステップS28で復旧させ、ステップS29で火災検知器12が再度火災と判断してステップS30で火災信号が送信されると、この火災信号を受信した防災受信盤10はステップS31で火災と判断し、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 The disaster prevention receiver 10 that has received the failure sign information from the fire detector 12 evaluates reliability based on the number of failure sign occurrences N extracted from the failure sign information in step S25, and if it is determined that the reliability is present in step S26. Proceeding to step S27, a recovery command signal is sent to the fire detector 12, and recovery is performed in step S28.In step S29, the fire detector 12 determines that there is a fire again, and a fire signal is transmitted in step S30. The disaster prevention receiver 10 that received the signal determines that there is a fire in step S31, and outputs a fire alarm, performs interlocking control of equipment including at least the display of a no-entry warning by the alarm display board equipment 24, and fire notification to the remote monitoring and control equipment 32. Carry out prescribed fire procedures, including sending signals.

(火災検知器の信頼性低下)
図8は防災受信盤で火災検知器の信頼性低下が判断された場合の制御動作を示したタイムチャートである。
(Reduced reliability of fire detector)
FIG. 8 is a time chart showing the control operation when the disaster prevention receiver panel determines that the reliability of the fire detector has decreased.

図8のステップS41~S45の処理は、図7のステップS21~S25の処理と同じになる。図8にあっては、ステップS45で故障予兆情報から抽出された故障予兆の発生回数Nに基づき信頼性を評価し、ステップS46で信頼性低下と判断するとステップS47に進み、信頼性低下と判断された火災検知器12の当該信頼性低下の原因となった火災検知部に対応する検知エリアを重複監視している隣接した火災検知器12に当該重複監視している検知エリアに対する火災判断蓄積条件を緩和する蓄積条件変更コマンド信号、具体的には図5のステップS7の火災判断蓄積条件となる蓄積回数閾値を減少させる蓄積条件変更コマンド信号を送信し、併せて、第1報目の火災信号を送信した火災検知器12に、当該火災信号を送信する原因となった火災検知部に対応する第1の火災判断蓄積条件を厳格な第2の火災判断蓄積条件に変更する蓄積条件変更コマンド信号、具体的には、火災判断の蓄積回数閾値を増加させる蓄積条件変更コマンド信号を送信する。 The processing in steps S41 to S45 in FIG. 8 is the same as the processing in steps S21 to S25 in FIG. In FIG. 8, the reliability is evaluated in step S45 based on the number of occurrences N of failure signs extracted from the failure sign information, and if it is determined in step S46 that the reliability has decreased, the process proceeds to step S47, where it is determined that the reliability has decreased. Fire judgment accumulation conditions for the detection area that is being monitored redundantly for the adjacent fire detector 12 that is redundantly monitoring the detection area corresponding to the fire detection unit that caused the reliability reduction of the fire detector 12 that has been A storage condition change command signal to reduce the accumulation condition change command signal, specifically, a storage condition change command signal to reduce the accumulation count threshold value which is the fire judgment accumulation condition in step S7 of FIG. an accumulation condition change command signal for changing the first fire judgment accumulation condition corresponding to the fire detection section that caused the transmission of the fire signal to the strict second fire judgment accumulation condition, to the fire detector 12 that transmitted the fire signal; Specifically, it transmits an accumulation condition change command signal that increases the accumulation frequency threshold for fire determination.

防災受信盤10からの蓄積条件変更コマンド信号を受信した隣接した火災検知器12(両隣又は一方の隣)はステップS48で蓄積回数閾値を低下させることで火災判断蓄積条件を緩和し、その結果として実質的に火災感度を上げ、実火災であれば、速やかにステップS49で火災と判断し、ステップS50で火災信号を送信する。 The adjacent fire detectors 12 (next to both sides or one side) that have received the accumulation condition change command signal from the disaster prevention receiver 10 relax the fire judgment accumulation condition by lowering the accumulation frequency threshold in step S48. The fire sensitivity is substantially increased, and if it is an actual fire, it is immediately determined to be a fire in step S49, and a fire signal is transmitted in step S50.

また、防災受信盤10から蓄積回数閾値を増加させる蓄積条件変更コマンド信号を受信した火災検知器12はステップS51で蓄積回数閾値を増加させて実質的に火災感度を下げる。続いて、防災受信盤10はステップS52で第1報目の火災信号を送信した火災検知器12に復旧コマンド信号を送信し、これを受信した火災検知器12はステップS53で一旦復旧する。このとき実火災が継続していれば、感度を下げた火災検知器12もステップS54で再度火災と判断してステップS55で火災信号を再度送信する。 Further, the fire detector 12 that has received the accumulation condition change command signal to increase the accumulation frequency threshold from the disaster prevention receiver 10 increases the accumulation frequency threshold in step S51 to substantially lower the fire sensitivity. Subsequently, the disaster prevention receiver 10 transmits a recovery command signal to the fire detector 12 that sent the first fire signal in step S52, and the fire detector 12 that receives this signal temporarily recovers in step S53. At this time, if the actual fire continues, the fire detector 12 with lowered sensitivity also determines that there is a fire again in step S54 and transmits the fire signal again in step S55.

防災受信盤10はステップS57で所定時間を経過する前にステップS56で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、厳格な火災判断蓄積条件に変更した隣接した火災検知器12(隣接した火災検知器が2台の場合はその一方又は両方)からの火災信号との一方又は両方を受信するとステップS58に進み、火災警報の出力、少なくとも警報表示板設備24による進入禁止警報の表示を含む設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。ここで、ステップS57の所定時間は、ステップS51で増加させた蓄積回数閾値を考慮した蓄積時間に対応した時間とする。 In step S57, the disaster prevention receiver 10 receives the second fire signal from the fire detector 12 that transmitted the first fire signal in step S56 before a predetermined time elapses, and in accordance with the strict fire judgment accumulation conditions. When one or both of the changed fire signal from the adjacent fire detector 12 (if there are two adjacent fire detectors, one or both of them) is received, the process proceeds to step S58, and the output of a fire alarm, or at least an alarm display. Predetermined fire treatment is performed, including interlocking control of the equipment, including display of a no-entry warning by the board equipment 24, and transmission of a fire transfer signal to the remote monitoring and control equipment 32. Here, the predetermined time in step S57 is a time corresponding to the accumulation time in consideration of the accumulation count threshold increased in step S51.

なお、右眼と左眼の区別できるシステムでは、火災が発生したとする方の眼の検知エリアを重複監視している1台の(当該検知エリアを監視している方の眼の)の火災信号を得たときに火災処理すれば良い。 In addition, in a system that can distinguish between the right eye and the left eye, the one eye that is monitoring the detection area of the eye where a fire has occurred is redundantly monitored. All you have to do is put out the fire when you get a signal.

一方、ステップS57で第1報目の火災信号を送信した火災検知器12からの第2報目の火災信号と、隣接した火災検知器12からの火災信号の一方又は両方の受信を判別することなくステップS57で所定時間が経過した場合はステップS59に進み、遠方監視制御設備32に火災検知器12からの非火災の火災信号を受信したことを示す非火災移報信号を送信して報知させる。 On the other hand, in step S57, it is determined whether one or both of the second fire signal from the fire detector 12 that transmitted the first fire signal and the fire signal from the adjacent fire detector 12 are received. If the predetermined time has elapsed in step S57, the process proceeds to step S59, and a non-fire transfer signal indicating that a non-fire fire signal has been received from the fire detector 12 is sent to the remote monitoring and control equipment 32 to notify it. .

[火災検知器で信頼性を判断する実施形態]
上記の実施形態にあっては、防災受信盤10が火災信号を受信したときに、火災信号を送信した火災検知器12から故障予兆の発生回数を示す情報を含む故障予兆情報を取得して、火災信号を送信した火災検知器12の信頼性を評価して信頼性あり又は信頼性低下を判断しているが、他の実施形態として、火災検知器12側で故障予兆の発生回数から信頼性を評価して信頼性あり、信頼性低下を判断するようにしても良い。
[Embodiment in which reliability is determined using a fire detector]
In the above embodiment, when the disaster prevention receiver 10 receives a fire signal, it acquires failure sign information including information indicating the number of failure signs to occur from the fire detector 12 that transmitted the fire signal, Although the reliability of the fire detector 12 that transmitted the fire signal is evaluated to determine whether it is reliable or has decreased reliability, in another embodiment, the reliability is evaluated based on the number of occurrences of failure signs on the fire detector 12 side. It is also possible to evaluate whether the reliability is high or the reliability is low.

即ち、図4に示した火災検知器12の火災判断部86は、図5の制御動作に示したように、ステップS11で故障予兆の発生回数Nを求めているが、火災信号を送信した後に、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき求めている故障予兆の発生回数Nを信頼性判断蓄積条件として設定した所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、この信頼性の判断結果を示す情報を含む信頼性情報を防災受信盤10に送信する。 That is, the fire determination unit 86 of the fire detector 12 shown in FIG. 4 calculates the number of occurrences N of failure signs in step S11 as shown in the control operation of FIG. , when an internal state request command signal is received from the disaster prevention receiver 10, the number N of occurrences of the failure sign sought at that time is compared with a predetermined threshold number Nref set as a reliability judgment accumulation condition, and the predetermined threshold number Nref is determined. If it is less than or equal to the threshold number of times Nref, it is determined that there is reliability, and if it is more than or equal to the predetermined threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability has decreased, and information indicating the result of this reliability judgment is included. The reliability information is transmitted to the disaster prevention receiving panel 10.

防災受信盤10は、図7のステップS25における信頼性の判断、及び、図8のステップS45における信頼性の判断の処理において、火災検知器12から取得した信頼性情報から信頼性判断の結果を抽出するだけで良く、それ以外は、前述した実施形態と同じになる。このように信頼性の判断を火災検知器12側で行うことで、防災受信盤10側の処理負担を低減できる。 The disaster prevention receiver 10 determines the reliability determination result from the reliability information acquired from the fire detector 12 in the reliability determination process in step S25 of FIG. 7 and the reliability determination process in step S45 of FIG. All that is required is extraction, and the rest is the same as the embodiment described above. By making the reliability judgment on the fire detector 12 side in this way, the processing load on the disaster prevention receiving panel 10 side can be reduced.

(火災検知器の故障予兆検出による防災受信盤の制御動作)
図9は火災検知器で故障予兆が検出されて故障予兆と判定した場合の防災受信盤の制御動作を示したタイムチャートである。なお、火災検知器は自己の故障予兆と判定した場合であっても、故障予兆処理として火災信号の送信停止は行わず、火災と判断すると火災信号を送信する場合を例にとっている。
(Control operation of disaster prevention receiving panel by detecting signs of failure of fire detector)
FIG. 9 is a time chart showing the control operation of the disaster prevention receiver when a failure sign is detected by the fire detector and determined to be a failure sign. Note that even if the fire detector determines that it is a sign of its own failure, it does not stop transmitting a fire signal as a failure sign process, but it transmits a fire signal when it determines that there is a fire.

図9に示すように、ステップS61において火災検知器12で故障予兆の発生回数Nが所定の閾値Nthに達して故障予兆と判定(確定)するとステップS62で故障予兆信号が防災受信盤10に送信され、故障予兆処理を行う場合はステップS62aで所定の故障予兆処理が行われるが、前述のとおり、その後の制御を説明するため、ここでは故障予兆処理として火災信号の送信停止は行わない例とする。火災検知器12からの故障予兆信号を受信した防災受信盤10はステップS63で故障予兆となった火災検知器12をディスプレイ等の警報表示により報知し、ステップS64で遠方監視制御設備32に故障予兆移報信号を送信して報知させる。 As shown in FIG. 9, when the number of occurrences N of failure signs in the fire detector 12 reaches a predetermined threshold value Nth in step S61 and it is determined (determined) to be a failure sign, a failure sign signal is sent to the disaster prevention receiving board 10 in step S62. If a failure sign process is performed, a predetermined failure sign process is performed in step S62a, but as described above, in order to explain the subsequent control, an example in which stopping the transmission of fire signals is not performed as a failure sign process is used. do. The disaster prevention receiver 10 that has received the failure sign signal from the fire detector 12 notifies the fire detector 12 that has become a failure sign by an alarm display on a display in step S63, and sends a failure sign to the remote monitoring and control equipment 32 in step S64. Send a relocation signal to make an announcement.

この状態で火災検知器12がステップS65で火災と判断してステップS66で火災信号を送信したとすると、防災受信盤10はステップS67で故障予兆が検出された火災検知器12か否か判別し、故障予兆が検出された火災検知器12でなければステップS68に進んで、火災警報の出力、警報表示板設備24による進入禁止警報の表示を含む他設備の連動制御、遠方監視制御設備32に対する火災移報信号の送信を含む所定の火災処理を行う。 In this state, if the fire detector 12 determines that there is a fire in step S65 and transmits a fire signal in step S66, the disaster prevention receiver 10 determines in step S67 whether or not the fire detector 12 has detected a failure sign. If it is not the fire detector 12 for which a sign of failure has been detected, the process proceeds to step S68, and the interlocking control of other equipment including the output of a fire alarm, the display of a no-entry warning by the alarm display board equipment 24, and the remote monitoring control equipment 32 are performed. Carry out predetermined fire treatment including sending a fire alarm signal.

これに対しステップS67で当該2報目の火災信号が、故障予兆が検出された火災検知器12から送信されたものであることが判別されたときはステップS69に進んで非火災報と判断し、火災処理は行わず、例えば、非火災報の受信を報知し、続いて、ステップS70に進み、遠方監視制御設備32に火災検知器12の誤作動情報として火災検知器12の誤作動を示す非火災移報信号を送信して報知させる。 On the other hand, if it is determined in step S67 that the second fire signal is transmitted from the fire detector 12 in which a failure sign has been detected, the process proceeds to step S69 and is determined to be a non-fire signal. , without performing fire processing, for example, notifying the reception of a non-fire alarm, then proceeding to step S70, and indicating malfunction of the fire detector 12 to the remote monitoring and control equipment 32 as malfunction information of the fire detector 12. Send a non-fire transfer signal to notify.

なお、火災検知器12の火災判断部86による故障予兆処理として火災信号の送信を停止している場合には、ステップS65以降の処理は行われない。 Note that if the fire determination unit 86 of the fire detector 12 has stopped transmitting the fire signal as a failure sign process, the processes after step S65 are not performed.

[トンネル単位又は区間単位の信頼性を判断する実施形態]
上記の実施形態は、火災検知器12ごとに信頼性を判断しているが、他の実施形態として、トンネルごと、信号系統ごと又はトンネルの所定の区間ごとにグループ化された複数の火災検知器12の故障予兆情報に基づき、トンネル単位、信号系統単位又は区間単位に信頼性を評価して信頼性有り、信頼性低下を判断するようにしても良い。
[Embodiment for determining reliability on a tunnel-by-tunnel or section-by-section basis]
In the above embodiment, reliability is determined for each fire detector 12, but in other embodiments, a plurality of fire detectors may be grouped for each tunnel, each signal system, or each predetermined section of a tunnel. Based on the 12 failure sign information, the reliability may be evaluated for each tunnel, each signal system, or each section to determine whether the system is reliable or has decreased reliability.

このため、例えばトンネルの区間ごとに信頼性を判断する場合、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、火災信号を送信した火災検知器12が属する区間でグループ化された複数の火災検知器12に内部情報要求コマンド信号を送信して、それぞれの故障予兆情報を受信し、この情報から故障予兆の発生回数N1,N2,・・・Nnを取得し、故障予兆の発生回数N1,N2,・・・Nnの平均回数Naveを算出して所定の閾値回数Nrefと比較し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 Therefore, when determining reliability for each section of a tunnel, for example, when the disaster prevention receiving board 10 receives a fire signal from a fire detector 12, it is grouped by the section to which the fire detector 12 that transmitted the fire signal belongs. The internal information request command signal is sent to the plurality of fire detectors 12 to receive the respective failure sign information, and from this information, the number of occurrences N1, N2,...Nn of failure signs is obtained, and the failure sign information is obtained. The average number of occurrences N1, N2, . . . If the threshold number of times Nref or exceeds the threshold number of times Nref, it is determined that the reliability has decreased, and the same control operation as in the above embodiment is performed depending on the reliability determination result.

本実施形態は、トンネル内の区間単位に特有な温度、湿度、電気的ノイズ等の環境要因の相違に基づいた火災検知器12の信頼性を評価して信頼性あり、信頼性低下を判断できる。この判断結果及び上記のNrefを示す情報を信頼性情報として一時保持する。 This embodiment can evaluate the reliability of the fire detector 12 based on differences in environmental factors such as temperature, humidity, and electrical noise specific to each section of the tunnel, and determine whether the fire detector 12 is reliable or has decreased reliability. . This judgment result and the information indicating the above Nref are temporarily held as reliability information.

また、トンネル単位に信頼性を判断する場合には、防災受信盤10は例えば火災検知器12から火災信号を受信した場合、トンネル内に設置された全ての火災検知器12に内部情報要求コマンド信号を送信して、全ての故障予兆情報として故障予兆の発生回数N1,N2,・・・Nnを取得して平均回数Naveを算出し、所定の閾値回数Nref以下又は閾値回数Nrefを下回った場合は信頼性有りと判断し、所定の閾値回数Nref以上又は閾値回数Nrefを超えた場合は信頼性低下と判断し、信頼性の判断結果に応じて上記の実施形態と同じ制御動作を行う。 In addition, when determining reliability on a tunnel-by-tunnel basis, when receiving a fire signal from a fire detector 12, the disaster prevention receiver 10 sends an internal information request command to all fire detectors 12 installed in the tunnel. is transmitted, and the number of occurrences of failure signs N1, N2, ... Nn is obtained as all the failure sign information, and the average number of times Nave is calculated. If it is determined that there is reliability, and the number of times exceeds a predetermined threshold value Nref or exceeds the threshold value Nref, it is determined that the reliability has decreased, and the same control operation as in the above embodiment is performed depending on the reliability determination result.

ここで、図7、図8の実施形態及びトンネルごと、信号系統ごと、区間ごとの信頼性情報を生成する本実施形態においては、防災受信盤10は火災検知器12から火災信号を受信したときに当該火災検知器12或いはトンネル、信号系統、区間の火災検知器から故障予兆情報を取得するようにしているが、火災信号の受信に先立って故障予兆情報を取得し、これに基づいて火災信号の受信に係る各処理を行うようにしても良い。 Here, in the embodiments of FIGS. 7 and 8 and the present embodiment in which reliability information is generated for each tunnel, each signal system, and each section, when the disaster prevention receiving board 10 receives a fire signal from the fire detector 12, In this system, failure sign information is acquired from the relevant fire detector 12 or fire detectors in tunnels, signal systems, and sections, but the failure sign information is acquired prior to receiving the fire signal, and based on this, the fire signal is detected. It is also possible to perform various processes related to the reception of the data.

また、系統毎に信頼性を判断する場合は、信号線14a,14bごとの火災検知器12の故障予兆の発生回数から同様に平均回数を求めて、これに基づき信頼性を判断する。なお、故障予兆情報は故障予兆の発生回数に限られず、移動平均回数、故障予兆の発生頻度や所定期間の発生割合等としても良い。 Furthermore, when determining the reliability for each system, the average number of occurrences of failure signs of the fire detector 12 for each signal line 14a, 14b is similarly calculated, and the reliability is determined based on this. Note that the failure predictor information is not limited to the number of occurrences of failure predictors, but may also be a moving average number of occurrences, a frequency of occurrence of failure predictors, an occurrence rate over a predetermined period, or the like.

[故障予兆の判定の他の実施形態]
(感度試験に伴う故障予兆の判定)
図10は火災検知器の感度試験により内部試験光源を駆動した際の受光信号のピークレベルと故障予兆の発生回数を示した説明図である。
[Other embodiments of determining failure signs]
(Determination of failure signs associated with sensitivity test)
FIG. 10 is an explanatory diagram showing the peak level of a light reception signal and the number of occurrences of a failure sign when an internal test light source is driven in a sensitivity test of a fire detector.

図4に示した火災検知器12の検知器制御部54に設けられた感度試験部88は、防災受信盤10から定期的(例えば1日に1回)に送信される試験指示信号を受信した場合に動作し、試験発光駆動部76に指示して、内部試験光源78R,80R,82R,78L,80L,82Lを順番に例えば2Hzで所定期間(例えば1秒間)点滅させる発光駆動を行って火災検知部60R,60Lに火災炎に相当する炎疑似光(試験光)を入射して感度試験を行わせる。 The sensitivity test unit 88 provided in the detector control unit 54 of the fire detector 12 shown in FIG. If a fire occurs, the test light emitting drive unit 76 is activated to cause the internal test light sources 78R, 80R, 82R, 78L, 80L, and 82L to blink in sequence for a predetermined period (for example, 1 second) at 2 Hz, for example, to prevent a fire. A sensitivity test is performed by injecting flame pseudo light (test light) corresponding to fire flame into the detection units 60R and 60L.

感度試験部88による感度試験は、図4について既に説明したと同じ内容となる。これに加え、本実施形態の感度試験部88は、感度試験に伴い火災検知部60Rから出力される炎受光信号E1R、第1の非炎受光信号E2R及び第2の非炎受光信号E3R、及び、火災検知部60Lから出力される感度試験時の炎受光信号E1L、第1の非炎受光信号E2L及び第2の非炎受光信号E3Lの各々について、各受光信号のピークレベルを検出し、図10(A)に黒丸で示すように、例えば1日に1回検出したピークレベルが、工場出荷時の劣化無しの状態で検出されたピークレベルの初期値92に基づく所定の正常範囲94を外れたが、所定の故障閾値96以下又は故障閾値96を下回らず故障判断条件を充足しなかった場合、即ち故障予兆範囲98にある場合は故障予兆と判断し、図10(B)に示すように、故障予兆の発生回数Nをカウンタにより計数する制御を行う。 The sensitivity test performed by the sensitivity test section 88 has the same contents as already explained with reference to FIG. In addition, the sensitivity testing section 88 of the present embodiment receives a flame reception signal E1R, a first non-flame reception signal E2R, a second non-flame reception signal E3R, and , the peak level of each light reception signal is detected for each of the flame reception signal E1L, the first non-flame reception signal E2L, and the second non-flame reception signal E3L during the sensitivity test output from the fire detection unit 60L. As shown by the black circle in 10(A), for example, the peak level detected once a day is outside the predetermined normal range 94 based on the initial value 92 of the peak level detected in the state without deterioration at the time of shipment from the factory. However, if the predetermined failure threshold 96 or below or the failure threshold 96 is not satisfied and the failure judgment conditions are not satisfied, that is, if it is within the failure sign range 98, it is determined as a failure sign, and as shown in FIG. 10(B). , the number of occurrences N of failure signs is controlled by a counter.

ここで、受光信号の正常範囲94は初期値92を中心に例えば上限値94aと下限値94bで挟まれた範囲とし、例えば初期値92に対し±10パーセントとしている。また、故障閾値96は例えば初期値92の50パーセント程度の値とする。 Here, the normal range 94 of the light reception signal is a range centered on the initial value 92 and sandwiched between, for example, an upper limit value 94a and a lower limit value 94b, and is, for example, ±10% of the initial value 92. Further, the failure threshold value 96 is set to a value of about 50% of the initial value 92, for example.

なお、故障予兆範囲として、例えば正常範囲94の上限値94aから初期値92の50パーセントを初期値92に加えたまでの範囲、即ち
(上限値94a)超え{(初期値92)+(初期値92の50パーセント)}以下
の範囲を追加して故障予兆と判断しても良い。
The failure sign range is, for example, the range from the upper limit 94a of the normal range 94 to 50% of the initial value 92 added to the initial value 92, that is, exceeding (upper limit 94a) {(initial value 92) + (initial value 50% of 92)} The following range may be added and determined to be a sign of failure.

一方、火災判断部86は、感度試験部88のカウンタで係数された故障予兆の発生回数Nを故障予兆判定蓄積条件として設定した所定の閾値回数Nthと比較しており、故障予兆の発生回数Nが所定閾値Nth以上又は所定閾値Nthを超えて故障予兆判定蓄積条件を充足したときに故障予兆と判定(確定)し、防災受信盤10に故障予兆信号を送信し、続いて、所定の故障予兆処理を行う。火災判断部86による故障予兆処理は、例えば、火災信号の送信を停止する処理とする。 On the other hand, the fire determination unit 86 compares the number of occurrences N of the failure sign calculated by the counter of the sensitivity test unit 88 with a predetermined threshold number Nth set as the failure sign judgment accumulation condition, and compares the number N of occurrences of the failure sign When the predetermined failure sign is greater than or equal to the predetermined threshold Nth or exceeds the predetermined threshold Nth and satisfies the failure sign determination accumulation condition, it is determined (confirmed) to be a failure sign, and a failure sign signal is transmitted to the disaster prevention receiver 10, and then the predetermined failure sign is detected. Perform processing. The failure sign processing by the fire determination unit 86 is, for example, processing to stop transmitting a fire signal.

また、火災判断部86は、防災受信盤10から内部状態要求コマンド信号を受信した場合、そのとき得られている故障予兆の発生回数Nを示す情報を含む予兆故障情報を送信する制御を行い、防災受信盤10において故障予兆の発生回数Nを抽出し、これに基づいて火災信号を送信した火災検知器12の信頼性を評価して信頼性有り、信頼性低下を判断するために用いられる。 Further, when the fire determination unit 86 receives the internal state request command signal from the disaster prevention receiver 10, it performs control to transmit predictive failure information including information indicating the number N of occurrences of the failure sign obtained at that time, It is used to extract the number N of occurrences of failure signs in the disaster prevention receiver 10 and evaluate the reliability of the fire detector 12 that transmitted the fire signal based on this to determine whether the reliability is present or whether the reliability has decreased.

なお、カウンタにより計数している故障予兆の発生回数Nは、例えば所定の期間毎にリセットされるか、又は、故障予兆をカウントしてから所定の期間が経過したときにリセットされる。リセット前の故障予兆の発生回数Nは、故障予兆情報履歴として記憶するようにしても良い。 Note that the number of occurrences N of failure signs counted by the counter is reset, for example, every predetermined period, or when a predetermined period has elapsed since the failure signs were counted. The number N of failure sign occurrences before reset may be stored as a failure sign information history.

(火災検知器の感度試験動作)
図11は故障予兆の判定を伴う火災検知器の感度試験を示したフローチャートであり、図4に示した火災検知器12の感度試験部88及び火災判断部86による制御動作となる。
(Fire detector sensitivity test operation)
FIG. 11 is a flowchart showing a sensitivity test of a fire detector that involves determination of signs of failure, and is a control operation by the sensitivity test section 88 and fire determination section 86 of the fire detector 12 shown in FIG.

図11に示すように、感度試験部88は、例えば、図4の火災検知部60Rを例にとると、ステップS71で防災受信盤10から順番にアドレスを指定して1日1回、送信される試験指示信号の受信(自己アドレスを示すもの)を判別してステップS72に進み、試験発光駆動部76に指示して内部試験光源78Rを2Hzで所定期間(例えば1秒間)点滅駆動してセンサ部64に火災炎に相当する炎疑似光(試験光)を入射する。 As shown in FIG. 11, for example, taking the fire detection section 60R of FIG. The process proceeds to step S72, where it instructs the test light emission drive section 76 to blink the internal test light source 78R at 2 Hz for a predetermined period (for example, 1 second) to lighten the sensor. A flame dummy light (test light) corresponding to a fire flame is incident on the section 64.

続いて、感度試験部88はステップS73に進み、増幅処理部66より出力される試験光による炎受光信号(受光信号)E1Rのピークレベルを検出し、ステップS74で図10(A)に示した正常範囲94内か否か判別し、正常範囲94内にある場合はステップS75に進み、工場出荷時の初期感度試験時に記憶された初期値(基準受光値)92により受光信号の例えばピークレベルを割って検出感度係数を算出し、ステップS77で検出感度係数の逆数として受光信号の補正係数を算出して記憶し、受光信号レベルの補正に用いる。 Subsequently, the sensitivity testing unit 88 proceeds to step S73, detects the peak level of the flame reception signal (light reception signal) E1R due to the test light output from the amplification processing unit 66, and in step S74, detects the peak level of the flame reception signal (light reception signal) E1R as shown in FIG. 10(A). It is determined whether or not it is within the normal range 94. If it is within the normal range 94, the process proceeds to step S75, and the peak level of the received light signal, for example, is determined based on the initial value (reference received light value) 92 stored during the initial sensitivity test at the time of factory shipment. A detection sensitivity coefficient is calculated by dividing, and in step S77, a correction coefficient for the light reception signal is calculated and stored as the reciprocal of the detection sensitivity coefficient, and is used to correct the light reception signal level.

続いて、感度試験部88はステップS77に進み、ステップS75で算出した検出感度係数が予め定めた所定の感度補正限界閾値(例えば0.5)に達するまで、ステップS71からの処理を繰り返す。なお、ステップS75における補正限界は、ステップS81と同様に、ピークレベルが故障閾値以下又はそれを下回った場合としても良い。 Subsequently, the sensitivity test unit 88 proceeds to step S77, and repeats the processing from step S71 until the detection sensitivity coefficient calculated in step S75 reaches a predetermined sensitivity correction limit threshold (for example, 0.5). Note that the correction limit in step S75 may be set when the peak level is equal to or less than the failure threshold, similarly to step S81.

感度試験部88は、ステップS77で検出感度係数の感度補正限界閾値への到達を判別した場合は、ステップS78で所定の感度異常判定蓄積条件、例えば所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信する。 If the sensitivity test unit 88 determines in step S77 that the detection sensitivity coefficient has reached the sensitivity correction limit threshold, in step S78 the sensitivity test unit 88 continues the process from step S71 until reaching a predetermined sensitivity abnormality determination accumulation condition, for example, a predetermined accumulation number threshold. The process is repeated, and when the sensitivity abnormality determination accumulation condition in step S78 is satisfied, a sensitivity abnormality signal is transmitted to the disaster prevention receiving panel 10 in step S79.

続いて、火災判断部86は感度試験部88における感度異常の判定を受けてステップS80で所定の感度異常処理を行う。この感度異常処理は、感度異常を判定した後は感度異常(例えば感度異常を伴う受光素子故障や電気回路故障等)による誤った火災判断がなされる可能性が高いことから、例えば火災判断部86における火災判断蓄積条件を設定する蓄積回数閾値を増加して実質的に火災感度を下げるか、或いは、火災信号の送信を停止する等の処理とする。 Subsequently, the fire determining unit 86 receives the determination of sensitivity abnormality by the sensitivity testing unit 88 and performs a predetermined sensitivity abnormality process in step S80. This sensitivity abnormality processing is performed by, for example, the fire judgment unit 8 The fire sensitivity may be substantially lowered by increasing the number of accumulation thresholds used to set the fire judgment accumulation conditions, or the transmission of fire signals may be stopped.

一方、感度試験部88は、ステップS74で試験時の受光信号E1Rのピークレベルが正常範囲94を外れたことを判別するとステップS81に進み、ピークレベルが故障閾値96以下又は故障閾値を下回らない場合、即ち、図10(A)に示した、故障予兆範囲98にある場合は、故障予兆が発生したと判定して火災判断部86に通知する。なお、ステップS81の故障予兆の判定は、受光信号のピークレベルに限らず、例えば積分値や平均レベルに基づいて行っても良い。 On the other hand, if the sensitivity test section 88 determines in step S74 that the peak level of the light reception signal E1R during the test is outside the normal range 94, the process proceeds to step S81, and if the peak level is not lower than the failure threshold 96 or does not fall below the failure threshold That is, if it is within the failure sign range 98 shown in FIG. Note that the determination of a sign of failure in step S81 is not limited to the peak level of the light reception signal, and may be performed based on, for example, an integral value or an average level.

続いて、感度試験部88から故障予兆の判定結果の通知を受けた火災判断部86は、ステップS82で故障予兆の発生回数を計数するカウンタNを+1し(インクリメントし)、ステップS83で故障予兆の発生回数Nが所定の故障予兆判定蓄積条件として設定した閾値回数Nth以下又はそれを下回った場合は、ステップS71からの処理を繰り返す。 Subsequently, the fire determining unit 86, which has received the notification of the failure sign determination result from the sensitivity testing unit 88, increments a counter N for counting the number of failure sign occurrences by 1 in step S82, and in step S83, the fire judgment unit 86 increments the counter N for counting the number of failure sign occurrences. If the number N of occurrences is less than or equal to the threshold number Nth set as a predetermined failure sign determination accumulation condition, the process from step S71 is repeated.

このような故障予兆の発生回数Nのカウントの繰り返しにより、火災判断部86は、ステップS83で故障予兆の発生回数Nが所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に故障予兆と判定(確定)し、ステップS85に進んで故障予兆信号を防災受信盤10に送信して報知させ、続いてステップS86で所定の故障予兆処理を行う。 By repeatedly counting the number N of occurrences of failure signs in this manner, the fire determination unit 86 determines whether the failure sign determination accumulation condition is satisfied in step S83 when the number N of failure sign occurrences exceeds a predetermined threshold number of times Nth. It is determined (confirmed) that it is a failure sign, and the process proceeds to step S85, where a failure sign signal is transmitted to the disaster prevention receiver 10 for notification, and then, in step S86, a predetermined failure sign process is performed.

この故障予兆処理は、例えば、火災判断部86による火災判断蓄積条件として設定する蓄積回数閾値を増加させて火災判断蓄積条件を厳格にして実質的に火災感度を下げる。また、その後に火災判断部86で火災が判断されても、故障による誤った火災判断の可能性が高いことから火災信号の送信を停止して、非火災報の発生を抑止させる処理を行うようにしても良い。 This failure sign processing, for example, increases the accumulation count threshold value set as the fire judgment accumulation condition by the fire judgment unit 86 to tighten the fire judgment accumulation condition and substantially lower the fire sensitivity. Furthermore, even if the fire determining unit 86 determines that there is a fire after that, there is a high possibility that the fire will be determined incorrectly due to a malfunction, so the transmission of the fire signal will be stopped and processing will be performed to suppress the occurrence of non-fire alarms. You can also do it.

また、火災判断部86は、防災受信盤10から内部状態要求コマンドを受信すると、そのときカウンタで計数している故障予兆の発生回数Nを示す情報を含む故障予兆情報を応答送信し、防災受信盤10は取得した火災検知器12の故障予兆情報から故障予兆の発生回数を抽出して信頼性を評価し、信頼性有り又は信頼性低下を判断する。 Further, upon receiving the internal status request command from the disaster prevention receiving board 10, the fire determining unit 86 responds by transmitting failure sign information including information indicating the number of failure sign occurrences N counted by the counter at that time, and receives the disaster prevention reception. The panel 10 extracts the number of occurrences of a failure sign from the acquired failure sign information of the fire detector 12, evaluates the reliability, and determines whether reliability is present or reliability is decreased.

一方、感度試験部88は、ステップS81で受光信号のピークレベルが故障閾値96以下に低下したことを判別した場合にはステップS78に進み、感度異常判定蓄積条件として設定した所定の蓄積回数閾値に達するまでステップS71からの処理を繰り返し、ステップS78の感度異常判定蓄積条件を充足するとステップS79で感度異常信号を防災受信盤10に送信し、続いてステップS80で所定の感度異常処理を行う。 On the other hand, if the sensitivity test section 88 determines in step S81 that the peak level of the light reception signal has decreased to the failure threshold 96 or less, the process proceeds to step S78, and the sensitivity testing section 88 advances to step S78 to reach the predetermined accumulation count threshold set as the sensitivity abnormality determination accumulation condition. The processing from step S71 is repeated until the sensitivity abnormality determination accumulation condition of step S78 is satisfied, a sensitivity abnormality signal is transmitted to the disaster prevention receiver 10 in step S79, and then a predetermined sensitivity abnormality process is performed in step S80.

また、本実施形態は火災検知器で定期的に行う感度試験により故障予兆の発生回数を求める場合を例にとっているが、これに限定されず、防災受信盤10からの試験指示操作により任意のタイミングで行われる試験を含み、また、感度試験以外の内部試験光源を駆動する適宜の試験も含む。左眼火災検知部60Lについても同様に行うことが出来る。また、試験時の第1の非炎受光信号E2R,E2L、第2の非炎受光信号E3R,E3Lについても同様に行うことができる。 Furthermore, although this embodiment takes as an example a case where the number of occurrences of a failure sign is determined through a sensitivity test periodically performed on a fire detector, the present invention is not limited to this, and the test instruction operation from the disaster prevention receiver 10 can be performed at any timing. It also includes tests performed on internal test light sources other than sensitivity tests. The same can be done for the left eye fire detection section 60L. Further, the same process can be performed for the first non-flame light reception signals E2R, E2L and the second non-flame light reception signals E3R, E3L during the test.

[火災判断部と感度試験部による故障予兆の判定]
本発明による火災検知器12の他の実施形態として、図5のフローチャートに示した火災判断部86による故障予兆の判定と、図11のフローチャートに示した感度試験部88による故障予兆の判定を組み合わせ、それぞれで判断された故障予兆の発生回数Nを累積してカウントするように構成し、火災信号を送信した火災検知器12から故障予兆の累積発生回数を示す情報を含む故障予兆情報を防災受信盤10で取得し、抽出した故障予兆の累積発生回数から信頼性を評価して信頼性有り、信頼性低下を判断する。
[Judgment of signs of failure by fire judgment section and sensitivity testing section]
As another embodiment of the fire detector 12 according to the present invention, a combination of the failure sign determination by the fire determining section 86 shown in the flowchart of FIG. 5 and the failure sign determination by the sensitivity testing section 88 shown in the flowchart of FIG. , is configured to cumulatively count the number of occurrences N of failure signs judged by each of them, and receives failure sign information including information indicating the cumulative number of occurrences of failure signs from the fire detector 12 that transmitted the fire signal. Reliability is evaluated based on the cumulative number of occurrences of failure signs acquired and extracted by the panel 10, and it is determined whether reliability is present or reliability is decreased.

また、故障予兆の判定も、故障予兆の累積発生回数が所定の閾値回数Nth以上となって故障予兆判定蓄積条件を充足した場合に、故障予兆と判定して故障予兆信号を防災受信盤10に送信して報知させ、続いて所定の故障予兆処理を行うようにする。 Furthermore, when the cumulative number of occurrences of a failure sign exceeds a predetermined threshold number Nth and satisfies the failure sign judgment accumulation condition, the failure sign is determined to be a failure sign and a failure sign signal is sent to the disaster prevention receiver 10. A notification is sent and a predetermined failure sign process is subsequently performed.

[本発明の変形例]
(火災検知器)
3波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、CO2の共鳴放射帯である4.5μm帯と、その短波長側の例えば、5.0μm付近の波長帯域における赤外線エネルギーを検知し、これらの2波長帯域における各受光信号の相対比によって炎の有無を判定する2波長式の炎検知器としても良い。
[Modification of the present invention]
(fire detector)
Although a three-wavelength fire detector is used as an example, other methods may also be used.For example, infrared rays in the 4.5 μm band, which is the resonant radiation band of CO2, and the shorter wavelength band, for example, around 5.0 μm. It may be a two-wavelength flame detector that detects energy and determines the presence or absence of flame based on the relative ratio of each received light signal in these two wavelength bands.

(蓄積条件の変更)
また、上記の実施形態における火災検知器12の火災判断蓄積条件の変更、例えば火災判断蓄積回数閾値の変更は、火災検知器12自身が故障予兆処理として故障予兆判断条件を厳格にする(火災感度を下げる)ために蓄積回数閾値を増加する場合(図5のステップS14)と、防災受信盤10が信頼性低下と判断したときの指示を受けて火災判断蓄積条件を厳格(感度を緩和)にするために蓄積回数閾値を増加させる場合(図8のステップS51)とがあり、両者が重複して行われる場合には、全体の蓄積時間が必要以上に長くなり火災の発見が遅れることのないように適切に変更する。
(Change of storage conditions)
In addition, changing the fire judgment accumulation conditions of the fire detector 12 in the above embodiment, for example, changing the fire judgment accumulation frequency threshold, makes the failure sign judgment conditions stricter as the fire detector 12 itself performs failure sign processing (fire sensitivity In the case of increasing the accumulation count threshold (step S14 in FIG. 5) in order to lower the number of fires (reducing the sensitivity of There is a case where the accumulation count threshold is increased (step S51 in FIG. 8) in order to increase the number of accumulation times (step S51 in FIG. 8), and if both are carried out at the same time, the total accumulation time becomes longer than necessary and the detection of a fire is not delayed. Change it accordingly.

(P型トンネル防災システム)
上記の実施形態は、防災受信盤から引き出された信号線にアドレスが設定された火災検知を接続して火災監視する所謂R型のトンネル防災システムを示したが、本発明はこれに限定されず、防災受信盤から火災検知器単位に信号線を引き出し、各信号線に火災検知器が接続された所謂P型のトンネル防災システムについても同様である。
(P-type tunnel disaster prevention system)
Although the above embodiment has shown a so-called R-type tunnel disaster prevention system that monitors fires by connecting a fire detector with an address set to a signal line drawn out from a disaster prevention receiver, the present invention is not limited to this. The same applies to a so-called P-type tunnel disaster prevention system in which signal lines are drawn out for each fire detector from a disaster prevention receiver and a fire detector is connected to each signal line.

一般的なP型のトンネル防災システムにあっては、防災受信盤と火災検知器との間で具体的な予兆発生回数等の情報通信はできないことから、上記の実施形態に示した防災受信盤で火災検知器の信頼性を評価して信頼性あり、信頼性低下と判断する機能は火災検知器側に設け、火災検知器で信頼性低下を判断した場合に、例えば、信号線を断線状態とすることで、又は信頼性低下信号専用線を設けるなどして信頼性情報を防災受信盤に送信して信頼性低下を報知させる。 In a general P-type tunnel disaster prevention system, it is not possible to communicate information such as the number of occurrences of specific warning signs between the disaster prevention reception board and the fire detector, so the disaster prevention reception board shown in the above embodiment The fire detector has a function that evaluates the reliability of the fire detector and determines whether it is reliable or has decreased reliability. By doing so, or by providing a dedicated line for reliability degradation signals, reliability information is transmitted to the disaster prevention receiving board to notify the disaster prevention receiver of the reliability degradation.

(その他)
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(others)
Further, the present invention includes appropriate modifications that do not impair its objects and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:盤制御部
36a,36b:伝送部
48:火災監視制御部
50R,50L:透光性窓
52R,52L:試験光源用透光性窓
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64,68,72:センサ部
66,70,74:増幅処理部
76:試験発光駆動部
78R,78L,80R,80L,82R,82L:内部試験光源
84R,84L:外部試験光源
86:火災判断部
88:感度試験部
90:汚れ試験部
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention reception board 12: Fire detectors 14a, 14b: Signal line 16: Fire pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Alarm display Board equipment 26: Radio rebroadcasting equipment 28: Television monitoring equipment 30: Lighting equipment 32: Remote monitoring and control equipment 34: Panel control sections 36a, 36b: Transmission section 48: Fire monitoring and control section 50R, 50L: Translucent window 52R, 52L: Translucent window for test light source 54: Detector control section 56: Transmission section 58: Power supply section 60R, 60L: Fire detection section 64, 68, 72: Sensor section 66, 70, 74: Amplification processing section 76: Test Light emission drive section 78R, 78L, 80R, 80L, 82R, 82L: Internal test light source 84R, 84L: External test light source 86: Fire judgment section 88: Sensitivity test section 90: Dirt test section

Claims (9)

防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
所定の条件に基づき故障予兆を判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
前記故障予兆の発生回数が2以上の所定回数となった場合に自己の信頼性低下と判断することを特徴とする火災検知器。
In a fire detector that connects to a disaster prevention receiver and monitors fires in the detection area,
Determine failure signs based on predetermined conditions, judge own reliability based on the number of occurrences of failure signs, which is the number of determined failure signs,
A fire detector characterized in that when the number of occurrences of the failure sign reaches a predetermined number of times of 2 or more, it is determined that the reliability of the fire detector has decreased.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、
前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断することを特徴とする火災検知器。
In a fire detector that connects to a disaster prevention receiver and monitors fires in the detection area,
Fires are judged using multiple fire judgment stages.
If a fire is determined to be a fire in at least one of the plurality of fire determination stages, but a fire is not determined to be a fire in any of the remaining fire determination stages, it is determined to be a failure sign, and the determined failure sign is determined to be a failure sign. Determine your own reliability based on the number of occurrences of failure signs, which is the number of times,
A fire detector characterized in that the fire detector determines that its own reliability has decreased when the number of occurrences of the failure sign satisfies a predetermined reliability judgment accumulation condition.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、
前記試験による前記受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に故障予兆と判断し、判断した故障予兆の回数である故障予兆の発生回数に基づき自己の信頼性を判断し、
前記故障予兆の発生回数が所定の信頼性判断蓄積条件を充足したときに自己の信頼性低下と判断することを特徴とする火災検知器。
In a fire detector that connects to a disaster prevention receiver and monitors fires in the detection area,
We are conducting a test to determine the failure of the fire detection unit based on the light reception signal when driving the test light source.
If the level of the received light signal in the test does not satisfy the predetermined normality judgment condition and the predetermined failure judgment condition, it is judged as a failure sign, and the self-control is determined based on the number of occurrences of the failure sign, which is the number of judged failure signs. determine the reliability of
A fire detector characterized in that the fire detector determines that its own reliability has decreased when the number of occurrences of the failure sign satisfies a predetermined reliability judgment accumulation condition.
防災受信盤に接続して検知エリアの火災を監視する火災検知器に於いて、
複数の火災判定段階により火災を判断しており、前記複数の火災判定段階の内の少なくとも1つの火災判定段階で火災と判定されたが残りの何れかの火災判定段階で火災と判定されなかった場合に第1の故障予兆と判断し、
試験光源を駆動した際の受光信号に基づき火災検知部の故障を判断する試験を行っており、前記試験による前記受光信号のレベルが、所定の正常判断条件及び所定の故障判断条件を充足しなかった場合に第2の故障予兆と判断し、
判断した第1の故障予兆の回数である第1の故障予兆の発生回数と判断した第2の故障予兆の回数である第2の故障予兆の発生回数の何れか一方又は両方に基づき自己の信頼性を判断し、
前記第1の故障予兆の発生回数と前記第2の故障予兆の発生回数の何れか一方又は両方が所定の信頼性判断蓄積条件を充足したときに、自己の信頼性低下と判断することを特徴とする火災検知器。
In a fire detector that connects to a disaster prevention receiver and monitors fires in the detection area,
A fire is determined by a plurality of fire determination stages, and a fire is determined to be a fire in at least one of the plurality of fire determination stages, but a fire is not determined to be a fire in any of the remaining fire determination stages. If this occurs, it is determined that this is the first sign of failure,
A test is being conducted to determine the failure of the fire detection unit based on the light reception signal when the test light source is driven, and the level of the light reception signal from the test does not satisfy the predetermined normality judgment condition and the predetermined failure judgment condition. If this occurs, it is determined to be a sign of a second failure.
Self-confidence based on either or both of the number of occurrences of the first failure sign, which is the number of times the first failure sign has been determined, and the number of occurrences of the second failure sign, which is the number of times the second failure sign has been determined. determine gender,
When one or both of the number of occurrences of the first failure sign and the number of occurrences of the second failure sign satisfy a predetermined reliability judgment accumulation condition, it is determined that the reliability of the device has decreased. fire detector.
請求項2乃至4の何れかに記載の火災検知器に於いて、
自己の信頼性低下を判断する前記信頼性判断蓄積条件は、故障予兆の発生回数が2以上の所定回数となったときに充足したとする条件である特徴とする火災検知器。
In the fire detector according to any one of claims 2 to 4,
The fire detector is characterized in that the reliability judgment accumulation condition for judging a decrease in its own reliability is a condition that is satisfied when the number of occurrences of failure signs reaches a predetermined number of times of 2 or more.
請求項1乃至5の何れかに記載の火災検知器に於いて、
自己の信頼性低下を判断した場合に、当該判断した自己の信頼性低下の情報を含む信頼性低下信号を送信することを特徴とする火災検知器。
In the fire detector according to any one of claims 1 to 5,
A fire detector characterized in that, when determining that its own reliability has decreased, it transmits a reliability decrease signal that includes information on the determined decrease in its own reliability.
請求項1乃至6の何れかに記載の火災検知器に於いて、
自己の信頼性低下を判断した場合に、火災を判断した場合に送信する火災信号の送信を停止することを特徴とする火災検知器。
In the fire detector according to any one of claims 1 to 6,
A fire detector is characterized in that it stops transmitting a fire signal when it determines that a fire has occurred when it determines that its own reliability has decreased.
請求項1乃至7の何れかに記載の火災検知器に於いて、
自己の信頼性として、信頼性の度合により複数段階に分けて判断することを特徴とする火災検知器。
In the fire detector according to any one of claims 1 to 7,
A fire detector characterized by determining its own reliability in multiple stages depending on the degree of reliability.
請求項1乃至4の何れかに記載の火災検知器を防災受信盤に接続して検知エリアの火災を監視する防災システムに於いて、
前記防災受信盤は、前記火災検知器が自己の信頼性低下を判断して送信した信頼性低下信号を受信した場合に、当該火災検知器の火災と判断するための条件をより厳格な条件に変更して復旧し、当該火災検知器及び当該火災検知器の検知エリアを重複監視している隣接火災検知器の少なくとも一台から火災を判断した場合に送信される火災信号を受信したときに、前記所定の火災処理を行うことを特徴とする防災システム。
In a disaster prevention system that monitors fires in a detection area by connecting the fire detector according to any one of claims 1 to 4 to a disaster prevention receiving board,
When the fire detector receives a reliability reduction signal transmitted by the fire detector after determining that its own reliability has deteriorated, the disaster prevention receiver sets stricter conditions for determining that there is a fire in the fire detector. When a fire signal that is sent when a fire is determined from at least one of the adjacent fire detectors that redundantly monitors the fire detector and the detection area of the fire detector after being changed and restored, A disaster prevention system characterized by performing the predetermined fire treatment.
JP2023116420A 2018-12-19 2023-07-18 Disaster prevention system and fire detector Pending JP2023134692A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018236904 2018-12-19
JP2018236904 2018-12-19
JP2019081393A JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019081393A Division JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector

Publications (1)

Publication Number Publication Date
JP2023134692A true JP2023134692A (en) 2023-09-27

Family

ID=71139747

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019081393A Active JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector
JP2023116420A Pending JP2023134692A (en) 2018-12-19 2023-07-18 Disaster prevention system and fire detector
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019081393A Active JP7336248B2 (en) 2018-12-19 2019-04-23 Tunnel disaster prevention system and fire detector

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023133776A Pending JP2023156477A (en) 2018-12-19 2023-08-21 disaster prevention system

Country Status (1)

Country Link
JP (3) JP7336248B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042264A (en) 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP5046232B2 (en) 2007-07-23 2012-10-10 ホーチキ株式会社 Fire receiver and control method
JP6871013B2 (en) 2017-02-22 2021-05-12 ホーチキ株式会社 Disaster prevention system
JP6856427B2 (en) 2017-03-30 2021-04-07 ホーチキ株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP7336248B2 (en) 2023-08-31
JP2020102181A (en) 2020-07-02
JP2023156477A (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2018169893A5 (en)
JP7085670B2 (en) Disaster prevention system
CN104464158B (en) Fire alarm linkage control method and system
JP5791469B2 (en) Fire detector
JP2023089258A (en) Fire detector and tunnel disaster prevention system
JP2023055960A (en) Disaster prevention system and fire detector
KR102464640B1 (en) System for monitoring and managing fire based on internet of things
JP2024032930A (en) disaster prevention system
JP2023134692A (en) Disaster prevention system and fire detector
KR102327158B1 (en) Remote firefighting management system using CCTV image
JP2023156478A (en) disaster prevention system
JP7475114B2 (en) Monitoring system
JP7358071B2 (en) Monitoring system
KR20220007032A (en) System for Automatic Fire Detection working with Disconnected Detection Line
CN206259002U (en) A kind of redundant looped network circuit structure of hazardous gas detection system
JP6949175B2 (en) Tunnel disaster prevention system
JP2023015283A (en) disaster prevention system
JP2023052809A (en) disaster prevention system
KR102632390B1 (en) An earthquake coping safety maintenance system for water treatment facility
JP2021192309A (en) Disaster prevention system
KR20210129544A (en) IoT omitted
JP2020115382A (en) Tunnel disaster prevention system
JP2017021730A (en) Tunnel disaster prevention system
KR20140005299U (en) Infrared sensing system using commnunication unit for of on-line monitoring of operating status

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230731