JP2024032930A - disaster prevention system - Google Patents

disaster prevention system Download PDF

Info

Publication number
JP2024032930A
JP2024032930A JP2024013855A JP2024013855A JP2024032930A JP 2024032930 A JP2024032930 A JP 2024032930A JP 2024013855 A JP2024013855 A JP 2024013855A JP 2024013855 A JP2024013855 A JP 2024013855A JP 2024032930 A JP2024032930 A JP 2024032930A
Authority
JP
Japan
Prior art keywords
contamination
window
degree
fire detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024013855A
Other languages
Japanese (ja)
Inventor
秀成 松熊
Hidenari Matsukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2024013855A priority Critical patent/JP2024032930A/en
Publication of JP2024032930A publication Critical patent/JP2024032930A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Landscapes

  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

To appropriately determine the necessity of cleaning by grasping contamination states of translucent windows which are provided correspondingly to both right-side and left-side monitoring areas.SOLUTION: A disaster prevention system for monitoring occurrence of a fire in a monitoring area by disposing a fire detection device for each boundary of a plurality of continued monitoring areas, comprises a display unit which displays information relating to the fire detection device, and a control unit which causes the display unit to display the information. The fire detection device detects a first window contamination degree indicating a contamination state of a first translucent window and a second window contamination degree indicating a contamination state of a second translucent window. On the basis of the first window contamination degree and the second window contamination degree, the control unit causes the display unit to display a pair of the first window contamination degree and the second window contamination degree in the order of disposing a plurality of fire detection devices in such a manner that the first window contamination degree of one fire sensor and the second window contamination degree of the other fire sensor, the fire sensors being respectively disposed in adjacent boundaries, are displayed side by side.SELECTED DRAWING: Figure 7

Description

本発明は、防災受信盤から引き出された信号回線に接続された火災検知装置により、トンネル長手方向に所定間隔に区分された監視エリアの火災を監視する防災システムに関する。 The present invention relates to a disaster prevention system that monitors fires in monitoring areas divided at predetermined intervals in the longitudinal direction of a tunnel using a fire detection device connected to a signal line drawn out from a disaster prevention receiver.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知装置が設置され、防災受信盤から引き出された信号回線に接続されている。 Traditionally, in tunnels such as motorways, fire detection devices have been installed to monitor fires in order to protect people and vehicles from fire accidents that occur inside the tunnels, and are connected to signal lines drawn out from disaster prevention receiver panels. ing.

火災検知装置はトンネル長手方向に沿って例えば25m間隔、或いは50m間隔に区分された監視エリアの境界に設置され、火災検出装置は左右の両方向に検知エリアを持ち、隣接して配置された火災検知装置により同じ監視エリアの火災を重複して監視している。 The fire detection device is installed at the boundary of the monitoring area divided into, for example, 25m intervals or 50m intervals along the longitudinal direction of the tunnel.The fire detection device has detection areas in both left and right directions, and fire detection devices placed adjacent to each other The equipment is redundantly monitoring fires in the same monitoring area.

火災検知装置には左右の監視エリアに対応して左右に透光性窓が設けられており、透光性窓を介してトンネル内で発生する火災炎からの放射線、たとえば赤外線を監視している。 The fire detection device is equipped with translucent windows on the left and right corresponding to the left and right monitoring areas, and through the translucent windows it monitors radiation, such as infrared rays, from the fire flames generated inside the tunnel. .

トンネル内に設置している火災検知装置は、環境内を浮遊する汚損物質付着などにより時間の経過と共に透光性窓の汚れが増加することから、炎の監視機能を維持するために、透光性窓の汚れを監視しており、一定の期間毎に透光性窓の清掃を行っている。 Fire detection devices installed in tunnels are equipped with translucent windows to maintain the flame monitoring function, as dirt on translucent windows increases over time due to the adhesion of pollutants floating in the environment. The translucent windows are monitored for dirt, and the translucent windows are cleaned at regular intervals.

透光性窓の汚れ監視は、火災検知装置に設けた試験光源から定期的に試験光を、検知装置外部の検知出エリア側空間を経由し透光性窓に入射し受光素子で受光して、このときの受光レベルを初期無汚損時のそれと比較するなどして減光率を汚損度として求め、汚損度が所定の閾値を超えたら汚損信号を防災受信盤に送信して汚損警報を出力させている。火災検知装置の汚損警報が出力された場合には、汚損状態となった火災検知装置の透光性窓を清掃する対応が必要となる。 To monitor dirt on translucent windows, test light is periodically emitted from a test light source installed in the fire detection device, enters the translucent window via the detection output area side space outside the detector, and is received by the light receiving element. The light reception level at this time is compared with that at the initial non-contamination time to find the light attenuation rate as the degree of contamination, and when the degree of contamination exceeds a predetermined threshold, a contamination signal is sent to the disaster prevention receiver and a contamination alarm is output. I'm letting you do it. When a contamination alarm is output from a fire detection device, it is necessary to clean the translucent window of the fire detection device that has become contaminated.

また、汚損閾値に対しそれより低い汚損予兆閾値を設定し、汚損度が汚れ予兆閾値を超えた場合に汚損予兆信号を防災受信盤に送信して汚損予兆警報を出力させている。火災検知装置の汚損予兆警報については、汚損予兆状態となった火災検知装置の数が増加した場合に、定期清掃実施予定までの期間が長いときには、清掃作業の時期を早めるといった計画見直し等の対応が可能となる。 Further, a contamination sign threshold value lower than the contamination threshold value is set, and when the degree of contamination exceeds the contamination sign threshold value, a contamination sign signal is sent to the disaster prevention receiver panel to output a contamination sign alarm. Regarding contamination warnings for fire detection devices, if the number of fire detection devices that have become contamination warning increases and the period until regular cleaning is scheduled is long, measures such as revising the plan such as moving the cleaning schedule forward may be taken. becomes possible.

ところで、防災受信盤による火災検知装置の汚損監視の方法として、火災検知装置で検知した汚損度に基づき、正常、汚損予兆、汚損といった汚損状態の進行度合いをトンネル長さ方向の順に表示するようにしており、これによりトンネル全体の火災検知装置の汚損度合や汚損の傾向を把握することができる(特許文献1)。 By the way, as a method of monitoring the contamination of the fire detection device using the disaster prevention receiver, the degree of progress of the contamination state such as normal, contamination sign, and contamination is displayed in order in the tunnel length direction based on the degree of contamination detected by the fire detection device. As a result, it is possible to grasp the degree of contamination and the tendency of contamination of the fire detection device in the entire tunnel (Patent Document 1).

特開2000-315285号公報Japanese Patent Application Publication No. 2000-315285 特開2002-063664号公報Japanese Patent Application Publication No. 2002-063664

ところで、防災受信盤により火災検知装置で検知した汚損度に基づき、正常、汚損予兆、汚損といった汚損状態の進行度合いをトンネル長さ方向の順に表示するようにした防災システムにあっては、火災検知装置が左右の監視エリアに対応して設けられた右側透光性窓の左側透光性窓の汚損状態を区別しておらず、両方の透光性窓の汚損度が汚損予兆閾値に達していなければ正常、何れか一方の透光性窓が汚損予兆閾値を超えた場合は汚損予兆、更に、何れか一方の透光性窓が汚損閾値を超えた場合は汚損と判断して、汚損状態の進行度合いをトンネル長さ方向の順に表示している。 By the way, in a disaster prevention system that displays the degree of contamination progress in the tunnel length direction, such as normal, contamination sign, and contamination, based on the degree of contamination detected by a fire detection device using a disaster prevention receiver, fire detection The device does not distinguish between the contamination status of the right translucent window and the left translucent window, which are provided corresponding to the left and right monitoring areas, and the degree of contamination of both translucent windows must reach the contamination precursor threshold. If either translucent window exceeds the contamination threshold, it is considered to be a contamination sign.Furthermore, if either translucent window exceeds the contamination threshold, it is determined to be contamination, and the contamination state is determined. The degree of progress is displayed in order of tunnel length.

このような防災受信盤による火災検知装置の汚損状態の表示は、火災検知装置に設けられた透光性窓の清掃の必要性をみるためのものであるが、火災検知装置の透光性窓清掃の必要性を検討し、清掃作業を計画するにあたっては、汚損状態の進行度合いをトンネル長さ方向の順(配置順)に表示することが必ずしも効率的とは言えない面がある。また、従来の防災システムでは、左右の透光性窓を区別せずに汚損状態を表示しているため、清掃の必要性が正確に判断できない可能性がある。 This kind of display of the dirt status of the fire detection device by the disaster prevention receiver is to check the necessity of cleaning the translucent window installed in the fire detection device. When considering the necessity of cleaning and planning cleaning work, it may not necessarily be efficient to display the degree of progress of the contamination state in the order of tunnel length (order of arrangement). Furthermore, in conventional disaster prevention systems, the state of dirt is displayed without distinguishing between the left and right translucent windows, so there is a possibility that the need for cleaning cannot be accurately determined.

例えば、トンネル長手方向の順に汚損度を表示しても、どの検知装置が清掃の必要があるのか、あるいは清掃の緊急度が高いのかについては目視により探索するなどが必要になる。 For example, even if the degree of contamination is displayed in the order of the longitudinal direction of the tunnel, it is necessary to visually search for which detection device requires cleaning or which cleaning is more urgent.

また例えば、トンネル内に設置された火災検知装置の汚損状態は、トンネル内を流れる気流の方向により、左右に設けられた透光性窓の一方の汚損の進み具合が他方に比べ早まる場合があり、このため例えば、ある火災検知装置の一方の透光性窓が汚損予兆状態となっても、他方の透光性窓が正常な(非汚損あるいは汚れが軽度である)場合があり、このような場合に、防災受信盤には火災検知装置の透光性窓は汚損予兆状態にあるものとして表示され、この場合、両方の透光性窓が汚損予兆状態にある場合に比べ緊急度が高くないが、そのことがただちに把握できず効率的でない。 Also, for example, if a fire detection device installed in a tunnel is contaminated, one side of the translucent windows installed on the left and right may become contaminated more quickly than the other, depending on the direction of the airflow flowing inside the tunnel. Therefore, for example, even if one translucent window of a certain fire detection device is in a state of signs of contamination, the other translucent window may be normal (not contaminated or only slightly contaminated); In such a case, the fire detection device's translucent window will be displayed on the disaster prevention receiver as being in a sign of deterioration, and in this case, the level of emergency is higher than if both translucent windows are in a sign of deterioration. However, it is not possible to understand this immediately and it is not efficient.

また、同じ監視エリアを重複して監視している隣接して配置された火災検知装置において、同じ監視エリアを監視している一方の火災検知装置の透光性窓が汚損状態となっても、同じ監視エリアを監視している他方の火災検知装置の透光性窓が正常状態にあれば、その監視エリアに監視機能は正常状態にある火災検知装置の透光性窓による監視で維持されており、これが分かると汚損状態となった火災検知装置の清掃には比較的時間的な余裕があることにもなるが、この場合も従来の左右の透光性窓の汚損を考慮しない従来の表示にあっては、汚損状態となった火災検知装置の清掃を必要以上に急がざるを得ず、清掃の必要性が適切に判断できない可能性が残る。 In addition, even if the translucent window of one of the fire detection devices that monitors the same monitoring area becomes dirty in adjacent fire detection devices that monitor the same monitoring area redundantly, If the translucent window of the other fire detection device monitoring the same monitoring area is in a normal state, the monitoring function for that monitoring area is maintained by monitoring through the translucent window of the fire detection device that is in a normal state. If this is known, there will be relatively more time to clean the fire detection device that has become dirty. In this case, the contaminated fire detection device must be cleaned more quickly than necessary, and there remains a possibility that the necessity of cleaning cannot be appropriately determined.

本発明は、火災検知装置の左右両側の監視エリアに対応して設けられた透光性窓の汚損状態を把握して清掃の必要性を適切に判断可能とする防災システムを提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a disaster prevention system that can grasp the dirtiness of translucent windows provided corresponding to the monitoring areas on both the left and right sides of a fire detection device and appropriately determine the necessity of cleaning. shall be.

(防災監視システム)
本発明は、連続した複数の監視エリアの境界毎に火災検知装置を配置して監視エリアの火災発生を監視する防災システムであって、
火災検知装置に関する情報を表示する表示部と、
表示部に情報を表示させる制御部と、
を備え、
火災検知装置は、
火災検知装置が配置された監視エリアの境界に接して相互に隣接する監視エリアの各々に対応する第一透光性窓と第二透光性窓とを備え、
第一透光性窓及び第二透光性窓を介し、相互に隣接する監視エリアの各々からの光線を受光することにより、監視エリアの各々における火災発生の有無を判定し、
相互に隣接する監視エリアの一方に対応する第一透光性窓の汚損状態を示す第一窓汚損度と、相互に隣接する監視エリアの他方に対応する第二透光性窓の汚損状態を示す第二窓汚損度とを検知し、
制御部は、
複数の火災検知装置が検知した第一窓汚損度と第二窓汚損度とに基づき、表示部に、隣り合う境界にそれぞれ配置され、重複して監視している同一の監視エリアに対応した一方の火災検知装置の一方の第一窓汚損度と他方の火災検知装置の他方の第二窓汚損度とが並ぶように、一方の第一窓汚損度と他方の第二窓汚損度の組を、複数の火災検知装置の配置の並び順に表示させ、
第一窓汚損度及び第二窓汚損度として、汚損度が所定の汚損予兆閾値に達していない場合に正常状態を識別表示させ、汚損度が汚損予兆閾値に達している場合に汚損予兆状態を識別表示させ、汚損度が汚損予兆閾値よりも高い所定の汚損閾値に達している場合に汚損状態を識別表示させることを特徴とする。
(Disaster prevention monitoring system)
The present invention is a disaster prevention system that monitors the occurrence of fire in a monitoring area by arranging a fire detection device at each boundary of a plurality of continuous monitoring areas,
a display section that displays information regarding the fire detection device;
a control unit that displays information on a display unit;
Equipped with
The fire detection device is
comprising a first light-transmitting window and a second light-transmitting window corresponding to each of the mutually adjacent monitoring areas in contact with the border of the monitoring area in which the fire detection device is arranged;
By receiving light rays from each of the mutually adjacent monitoring areas through the first light-transmitting window and the second light-transmitting window, determining the presence or absence of a fire outbreak in each of the monitoring areas,
A first window contamination degree indicating the contamination state of the first translucent window corresponding to one of the mutually adjacent monitoring areas, and a contamination state of the second translucent window corresponding to the other mutually adjacent monitoring area. detecting the degree of contamination of the second window shown;
The control section is
Based on the degree of contamination of the first window and the degree of contamination of the second window detected by the plurality of fire detection devices, the display unit displays one window that corresponds to the same monitoring area that is placed on the adjacent boundary and is being monitored redundantly. The first window stain degree of one fire detection device and the second window stain degree of the other fire detection device are set so that the first window stain degree of one fire detection device and the second window stain degree of the other fire detection device are aligned. , display the arrangement of multiple fire detection devices in the order in which they are arranged,
As the first window contamination degree and the second window contamination degree, when the degree of contamination does not reach a predetermined contamination sign threshold, a normal state is identified and displayed, and when the degree of contamination has reached the contamination sign threshold, a contamination sign state is displayed. The present invention is characterized in that the soiling state is distinguished and displayed when the degree of soiling has reached a predetermined soiling threshold that is higher than the soiling precursor threshold.

本発明は、受信装置から引き出された信号回線に、所定方向に沿って所定間隔に区分された監視エリアの境界に配置された複数の火災検知装置が接続された防災システムに於いて、火災検知装置は、ふたつの監視エリアからの放射線を、各々に対応した透光性窓を介して受光して電気信号に変換し、当該電気信号に基づいて、対応する監視エリアにおける火災を判定した場合に火災判定信号を受信装置に送信する火災判定部と、一方の透光性窓の汚損状態を示す第一窓汚損度と他方の透光性窓の汚損状態を示す第二窓汚損度を検知して、これらに応じた汚損度検知信号を受信装置に送信する汚損検知部とを備え、受信装置は、火災検知装置から火災判定信号を受信して警報する火災監視制御部と、複数の火災検知装置から受信した第一窓汚損度と第二窓汚損度を、所定の順番に従って表示させる汚損表示制御部とを備えたため、例えば、トンネルの長手方向に沿って所定間隔に区分された監視エリアの境界に設置されて第一、第二の透光性窓に対応する監視エリアにおける火災を監視する複数の火災検知装置にあっては、受信装置で複数の火災検知装置に設けられた第一窓汚損度と第二窓汚損度が所定の順番に表示されることで、例えば、正常、汚損予兆、汚損といった汚損度合を第一、第二の透光性窓毎に捉え、透光性窓の清掃の必要性を適切に判断可能とする。 The present invention provides fire detection in a disaster prevention system in which a plurality of fire detection devices arranged at the boundaries of monitoring areas divided at predetermined intervals along a predetermined direction are connected to a signal line drawn out from a receiving device. The device receives radiation from two monitoring areas through the corresponding translucent windows, converts it into an electrical signal, and based on the electrical signal, determines whether there is a fire in the corresponding monitoring area. A fire determination unit that transmits a fire determination signal to a receiving device, and detects a first window contamination degree indicating a contamination state of one translucent window and a second window contamination degree indicating a contamination state of the other translucent window. and a contamination detection unit that transmits contamination degree detection signals according to these to the receiving device, and the receiving device includes a fire monitoring control unit that receives a fire judgment signal from the fire detection device and issues an alarm, and a plurality of fire detection units. It is equipped with a dirt display control unit that displays the first window dirt level and the second window dirt level received from the device in a predetermined order, so that, for example, a monitoring area divided at predetermined intervals along the longitudinal direction of a tunnel can be displayed. In the case of multiple fire detection devices that are installed at the boundary and monitor fires in the monitoring area corresponding to the first and second translucent windows, the receiving device detects the first window installed in the multiple fire detection devices. By displaying the degree of contamination and the degree of contamination of the second window in a predetermined order, for example, the degree of contamination such as normal, sign of contamination, and deterioration can be grasped for each of the first and second translucent windows, and the degree of contamination of the translucent window can be determined. It is possible to appropriately judge the necessity of cleaning.

(左窓と右窓に分けて汚損度の大きい順に表示することの効果)
また、受信装置の汚損表示制御部は、複数の火災検知装置の第一窓汚損度と第二窓汚損度に分けて汚損度の大きい順に表示させるようにしたため、火災検知装置の汚損度が第一、第二の透光性窓に分けて、汚損度が大きい順に表示され、清掃の必要性の高い透光性窓の汚損度が例えば先頭に表示されることで、清掃の必要性を適切に判断可能とする。
(Effect of displaying the left window and right window in descending order of degree of contamination)
In addition, the contamination display control unit of the receiving device displays the first window contamination degree and the second window contamination degree of the plurality of fire detection devices in descending order of contamination degree, so that the contamination degree of the fire detection device is the first one. The first and second translucent windows are displayed in descending order of degree of contamination, and the degree of contamination of the translucent window that requires cleaning is displayed first, so that the need for cleaning can be determined appropriately. It is possible to judge.

(左窓と右窓の汚損度を組み合わせ表示することの効果)
また、汚損表示制御部は、汚損度の大きい順に表示された第一窓汚損度に、対応する第二窓汚損度を組み合わせて表示させ、且つ汚損度の大きい順に表示された第二窓汚損度に、対応する第一窓汚損度を組み合わせて表示させるようにしたため、汚損度の大きい順に従って先頭に表示された例えば第一窓汚損度に対応して同じ火災検知装置の第二窓汚損度が表示されることで、第一、第二の汚損度を考慮して清掃の必要性を適切に判断可能とする。
(Effect of displaying the degree of contamination of the left window and right window in combination)
Further, the stain display control unit displays the first window stain degree displayed in descending order of the stain degree in combination with the corresponding second window stain degree, and displays the second window stain degree displayed in descending order of the stain degree. For example, the second window stain degree of the same fire detection device is displayed in combination with the corresponding first window stain degree, so that, for example, the second window stain degree of the same fire detection device is displayed in descending order of the stain degree. By displaying the information, it is possible to appropriately judge the necessity of cleaning in consideration of the first and second degrees of contamination.

(火災検知装置の並び順に汚損度を表示することの効果)
また、受信装置の汚損表示制御部は、複数の火災検知装置の第一窓汚損度と第二窓汚損度の組を、複数の火災検知装置の並び順に表示させるようにしたため、トンネル内での火災検知装置の並び方向に沿って第一窓汚損度と右窓汚損度の組が表示され、トンネル内の配置位置に対応した第一、第二の汚損度を考慮して清掃の必要性を適切に判断可能とする。
(Effects of displaying the degree of contamination in the order in which fire detection devices are arranged)
In addition, the contamination display control unit of the receiving device displays the combination of the first window contamination degree and the second window contamination degree of the plurality of fire detection devices in the order in which the plurality of fire detection devices are arranged. A pair of first and right window contamination degrees is displayed along the direction in which the fire detection devices are lined up, and the necessity of cleaning is determined by considering the first and second contamination degrees corresponding to the placement position in the tunnel. Make it possible to make appropriate decisions.

(汚損度の大きい順に左窓と右窓の汚損度を混在表示することの効果)
また、受信装置の汚損表示制御部は、複数の火災検知装置の第一窓汚損度と第二窓汚損度を、汚損度の大きい順に混在して表示させるようにしたため、第一窓汚損度と第二窓汚損度が汚損度の大きい順に並べて表示されることで、清掃の必要性の最も高い透光性窓を把握して、清掃の必要性を適切に判断可能とする。
(Effect of displaying the degree of contamination of the left window and the right window in a mixed manner in descending order of degree of contamination)
In addition, since the contamination display control unit of the receiving device displays the first window contamination degree and the second window contamination degree of multiple fire detection devices in a mixed manner in descending order of contamination degree, the first window contamination degree and By arranging and displaying the degree of contamination of the second window in descending order of degree of contamination, it is possible to grasp the translucent window that requires the most cleaning, and appropriately determine the necessity of cleaning.

(重複監視する監視エリアの汚損度を並び順に表示することの効果)
また、受信装置の汚損表示制御部は、同一の監視エリアを重複して監視する何れか一方の火災検知装置の汚損度と他方の火災検知装置の汚損度とが隣接して並ぶように、複数の火災検知装置の第一窓汚損度と第二窓汚損度の組を、複数の火災検知装置並び順の順に表示させるようにしたため、隣接した2台の火災検知装置により重複して監視している同一の監視エリアに対するそれぞれの透光性窓に対応した一方の汚損度と他方の汚損度の関係が簡単且つ確実に分かり、例えば、一方の汚損度が汚損レベルに達していても、他方の汚損度が正常レベルに収まっていれば、その監視エリアは重複監視はできないが、汚損度が正常レベルにある他方の火災検知装置により正常に監視されており、一方の火災検知装置の汚損度が汚損レベルに達しても、清掃の必要性がひっ迫した状況にはないと判断することが可能となり、清掃の必要性を適切に判断可能とする。
(Effects of displaying the degree of contamination of monitoring areas that are monitored repeatedly in order)
In addition, the contamination display control unit of the receiving device is configured to display a plurality of fire detection devices so that the degree of contamination of one of the fire detection devices and the degree of contamination of the other fire detection device that monitor the same monitoring area are aligned adjacently. Since the combination of the first window stain degree and the second window stain degree of fire detection devices is displayed in the order in which multiple fire detection devices are arranged, redundant monitoring by two adjacent fire detection devices is not possible. The relationship between the degree of contamination of one and the degree of contamination of the other for each translucent window for the same monitoring area can be easily and reliably determined. If the degree of contamination is within the normal level, redundant monitoring cannot be performed on that monitoring area, but it is being normally monitored by the other fire detection device whose degree of contamination is at the normal level, and the degree of contamination of one fire detection device is within the normal level. Even if the level of contamination is reached, it can be determined that there is no urgent need for cleaning, and the necessity for cleaning can be appropriately determined.

(火災検知装置による汚損予兆と汚損の判別と受信装置での識別表示による効果)
また、火災検知装置の汚損検知部は、第一窓汚損度又は第二窓汚損度が所定の汚損予兆閾値に達している場合に受信装置に汚損予兆状態を示す汚損予兆信号を送信し、第一窓汚損度又は第二窓汚損度汚が汚損予兆閾値よりも高い所定の汚損閾値に達している場合に受信装置へ汚損信号を送信し、受信装置の汚損表示制御部は、汚損予兆信号に対応した左窓汚損度又は右窓汚損度に汚損予兆状態を識別表示させ、汚損信号に対応した第一窓汚損度又は第二窓汚損度に汚損状態を識別表示させるようにしたため、例えば、第一窓汚損度と第二窓汚損度に分けて汚損度の大きい順に表示した場合に、先頭に表示されている大きな汚損度が、汚損状態にあるか、汚損予兆状態にあるかが、各々の識別表示により簡単に把握でき、汚損度の高い順に表示した場合の清掃の必要性の判断を、より適切に行うことを可能とする。
(Identification of contamination signs and contamination by fire detection device and effects of identification display on receiving device)
Further, the contamination detection unit of the fire detection device transmits a contamination sign signal indicating a contamination sign state to the receiving device when the first window contamination degree or the second window contamination level reaches a predetermined contamination sign threshold, and When the first window contamination degree or the second window contamination level contamination reaches a predetermined contamination threshold higher than the contamination precursor threshold, a contamination signal is transmitted to the receiving device, and the contamination display control section of the receiving device receives the contamination precursor signal. The corresponding left window stain level or right window stain level is made to identify and display the sign of staining, and the first window stain level or second window stain level that corresponds to the stain signal is made to identify and display the stain state. When the degree of contamination of the first window and the degree of contamination of the second window are divided and displayed in descending order of degree of contamination, the highest degree of contamination displayed at the beginning indicates whether the degree of contamination is in the contamination state or in the sign of contamination. It can be easily grasped by identification display, and it is possible to more appropriately judge the necessity of cleaning when displayed in descending order of degree of contamination.

(受信装置での汚損予兆と汚損の判定と識別表示による効果)
また、受信装置の汚損表示制御部は、第一窓汚損度又は第二窓汚損度が所定の汚損予兆閾値に達している場合に、第一窓汚損度又は第二窓汚損度に汚損予兆状態を識別表示させ、第一窓汚損度又は第二窓汚損度が汚損予兆閾値よりも高い所定の汚損閾値に達している場合に、第一窓汚損度又は第二窓汚損度に汚損状態を識別表示させるようにしたため、大きな汚損度の表示が、汚損状態にあるか、汚損予兆状態にあるかが、各々の識別表示により簡単に把握でき、汚損度の高い順に表示した場合の清掃の必要性の判断を、より適切に行うことを可能とする。
(Effects of signs of contamination, determination of contamination, and identification display at the receiving device)
In addition, when the first window dirt level or the second window dirt level has reached a predetermined dirt sign threshold, the dirt display control unit of the receiving device causes the first window dirt level or the second window dirt level to become a dirt sign state. When the first window fouling level or the second window fouling level reaches a predetermined fouling threshold higher than the fouling sign threshold, the fouling state is identified as the first window fouling level or the second window fouling level. Because of the display, it is easy to understand whether a large degree of contamination is in a state of contamination or a sign of contamination by the respective identification display, and the need for cleaning is displayed in descending order of degree of contamination. This makes it possible to make more appropriate judgments.

また、汚損予兆状態と汚損状態の判断を受信装置で集中して行うことで、火災検知装置側の処理負担を低減可能とする。 Further, by centrally determining the contamination precursor state and the contamination state in the receiving device, it is possible to reduce the processing load on the fire detection device side.

トンネル内の火災監視を例にとって本発明による防災システムの概要を示した説明図An explanatory diagram showing an overview of the disaster prevention system according to the present invention, taking fire monitoring in a tunnel as an example. 火災検知装置により重複監視するトンネル内の警戒エリアを示した説明図Explanatory diagram showing the warning areas inside the tunnel that are monitored redundantly by fire detection equipment 火災検出装置の機能構成の概略を示したブロック図Block diagram showing an overview of the functional configuration of the fire detection device 火災検出装置の外観を示した説明図Explanatory diagram showing the appearance of the fire detection device 防災受信盤の機能構成の概略を示したブロック図Block diagram showing an overview of the functional configuration of the disaster prevention reception panel 防災受信盤のメモリに記憶された汚損情報を一覧で示した説明図Explanatory diagram showing a list of contamination information stored in the memory of the disaster prevention receiver 汚損表示の第1実施形態を示した説明図Explanatory diagram showing the first embodiment of stain indication 汚損表示の第2実施形態を示した説明図Explanatory diagram showing a second embodiment of soiling display 汚損表示の第3実施形態を示した説明図Explanatory diagram showing a third embodiment of soiling display 汚損表示の第4実施形態を示した説明図Explanatory diagram showing a fourth embodiment of soiling display 汚損表示の第5実施形態を示した説明図Explanatory diagram showing a fifth embodiment of soiling display 第5実施形態による他の表示形態を示した説明図Explanatory diagram showing other display forms according to the fifth embodiment 第5実施形態による他の表示形態を示した説明図Explanatory diagram showing other display forms according to the fifth embodiment

[防災システムの概要]
図1はトンネルの火災監視を例にとって本発明による防災システムの概要を示した説明図である。図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。
[Overview of disaster prevention system]
FIG. 1 is an explanatory diagram showing an overview of a disaster prevention system according to the present invention, taking tunnel fire monitoring as an example. As shown in FIG. 1, an upline tunnel 1a and a downline tunnel 1b are constructed as tunnels for a motorway.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば50メートル間隔で火災検知装置16が設置されている。火災検知装置16は、左右に透光性窓を備えた2組の受光部を有することで、トンネル長手方向上り側および下り側の左右両方向に監視エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知装置との監視エリアが重複するように連続的に配置される。 Inside the up-line tunnel 1a and the down-line tunnel 1b, fire detection devices 16 are installed at intervals of, for example, 50 meters along the wall surface in the longitudinal direction of the tunnel. The fire detection device 16 has two sets of light-receiving sections with translucent windows on the left and right sides, so that it has monitoring areas on both the left and right sides of the up and down sides of the tunnel longitudinal direction. The fire detection devices are arranged consecutively so that the monitoring areas overlap with those of adjacent fire detection devices.

受信装置として機能する防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源および信号回線12a,12bが引き出されて火災検知装置16が接続されており、火災検知装置16には固有のアドレスが並び順に予め設定されている。なお、火災検知装置16にはアドレスに替えて固有のID(識別子)を並び順に設定しても良い。 A fire detection device 16 is connected to the power supply and signal lines 12a, 12b connected to the uplink tunnel 1a and the downlink tunnel 1b from the disaster prevention receiving board 10 which functions as a receiving device. The addresses are set in advance in the order in which they are arranged. Note that instead of the address, a unique ID (identifier) may be set in the fire detection device 16 in the order of arrangement.

図2は火災検知装置により重複監視するトンネル内の監視エリアを示した説明図であり、図1の上り線トンネル1aを例にとっている。 FIG. 2 is an explanatory diagram showing a monitoring area in a tunnel that is redundantly monitored by a fire detection device, and takes the upline tunnel 1a in FIG. 1 as an example.

図2に示すように、上り線トンネル1aのトンネル側壁に沿って例えば50メートル間隔で火災検知装置16が設置されている。これはトンネル内を長手方向に50メートル間隔の監視エリアAR1,AR2,…ARi-1,ARi,ARi+1,・・・に区分けし、境界に火災検知装置16が設置されている。各監視エリアは例えば長手方向50m×短手方向20mといった大きさになる。 As shown in FIG. 2, fire detection devices 16 are installed along the tunnel side wall of the upline tunnel 1a at intervals of, for example, 50 meters. This divides the inside of the tunnel into monitoring areas AR1, AR2, . . . ARi-1, ARi, ARi+1, . Each monitoring area has a size of, for example, 50 m in the longitudinal direction x 20 m in the transverse direction.

火災検知装置16には、左右の監視エリアを個別に監視する左側透光性窓(第一窓)を備えた左窓受光部と右側透光性窓(第二窓)を備えた右窓受光部が設けられている。ここで、火災検知装置16の左右関係は、本実施形態においては、火災検知装置16を正面から見た状態で定めている。 The fire detection device 16 includes a left window light receiving section equipped with a left side light-transmitting window (first window) and a right window light receiving section equipped with a right side light-transmitting window (second window) for monitoring the left and right monitoring areas individually. A section has been established. Here, in this embodiment, the left-right relationship of the fire detection device 16 is determined based on the state in which the fire detection device 16 is viewed from the front.

例えば、監視エリアARiの左端に配置されたi番目の火災検知装置16と右端に配置されたi+1番目の火災検知装置16は、i番目の火災検知装置16の右窓受光部により監視エリアARiを監視し、同時に、i+1番目の火災検知装置16の左窓受光部により同じ監視エリアARiを重複して監視している。 For example, the i-th fire detection device 16 placed at the left end of the monitoring area ARi and the i+1-th fire detection device 16 placed at the right end detect the monitoring area ARi using the right window light receiving section of the i-th fire detection device 16. At the same time, the same monitoring area ARi is being monitored redundantly by the left window light receiving section of the i+1th fire detection device 16.

なお、トンネル入口側の最初の監視エリアAR1は、1番目の火災検知装置16の左窓受光部による単独監視となる。 Note that the first monitoring area AR1 on the tunnel entrance side is independently monitored by the left window light receiving section of the first fire detection device 16.

火災検知装置16は、左側又は右側の監視エリア内で起きた火災による炎からの放射線、例えば赤外線を、左窓受光部により観測して火災を監視すると共に、右窓受光部により観測して火災を監視しており、火災を検知した場合、予め設定された固有のアドレスと左窓検知か右窓検知かを示す識別情報を含む火災信号を防災受信盤10に送信する。 The fire detection device 16 monitors the fire by observing radiation, such as infrared rays, from the flames caused by a fire that occurred in the left or right monitoring area using the left window light receiving section, and also monitors the fire by observing it using the right window light receiving section. When a fire is detected, a fire signal including a preset unique address and identification information indicating whether left window detection or right window detection is detected is sent to the disaster prevention receiving board 10.

また、火災検知装置16は受光部に設けられた透光性窓の汚損を例えば1日に1回の周期で左右独立に検知しており、検知した汚損度と左窓検知か右窓検知かを示す識別情報を含む汚損検知信号を防災受信盤10に送信する。 In addition, the fire detection device 16 independently detects contamination of the translucent window provided in the light receiving section once a day, for example, on the left and right sides, and determines whether the detected degree of contamination is the left window detection or the right window detection. A contamination detection signal including identification information indicating the identity is transmitted to the disaster prevention receiving board 10.

更に、火災検知装置16は、周期的に検知した汚損度が所定の汚損予兆閾値を超えた場合に、汚損予兆情報と左窓検知か右窓検知かを示す識別情報を含む汚損予兆信号を防災受信盤10に送信し、汚損度が所定の汚損閾値を超えた場合に、汚損情報と左窓検知か右窓検知かを示す識別情報を含む汚損信号を防災受信盤10に送信する。 Furthermore, when the periodically detected degree of contamination exceeds a predetermined contamination sign threshold, the fire detection device 16 sends a contamination sign signal including defacement sign information and identification information indicating whether left window detection or right window detection is detected. When the degree of contamination exceeds a predetermined contamination threshold, a contamination signal containing contamination information and identification information indicating whether left window detection or right window detection is being detected is transmitted to disaster prevention reception panel 10.

[火災検知装置]
図3は火災検知装置の機能構成の概略を示したブロック図、図4は火災検知装置の外観を示した説明図である。
[Fire detection device]
FIG. 3 is a block diagram showing an outline of the functional configuration of the fire detection device, and FIG. 4 is an explanatory diagram showing the external appearance of the fire detection device.

図3に示すように、火災検知装置16は左窓火災検知部16Lと右窓火災検知部16Rを備えており、左窓火災検知部16Lに代表して示すように、受光センサを含む受光部38a,38b、これら各々に対応する増幅処理部40a,40b、制御部34及び伝送部35を備える。受光部38a,38bの前方には検知器カバーに設けた左側透光性窓36Lを配置しており、左側透光性窓36Lを介して外部の監視エリアからの光エネルギーを受光部38a,38bに入射している。 As shown in FIG. 3, the fire detection device 16 includes a left window fire detection section 16L and a right window fire detection section 16R. As shown in the left window fire detection section 16L, a light receiving section including a light receiving sensor 38a, 38b, amplification processing sections 40a, 40b corresponding to these, a control section 34, and a transmission section 35. A left translucent window 36L provided on the detector cover is arranged in front of the light receiving sections 38a, 38b, and light energy from the external monitoring area is transferred to the light receiving sections 38a, 38b through the left translucent window 36L. is incident on.

また、左側透光性窓36Lの汚損を監視するため、試験光源部42、汚損受光部44及び増幅部46で構成する汚損検知部が設けられている。 Further, in order to monitor the staining of the left translucent window 36L, a stain detection section including a test light source section 42, a stain light receiving section 44, and an amplification section 46 is provided.

ここで、図4に示すように、火災検知装置16は、筐体52の上部に設けられたセンサ収納部54に左側透光性窓36Lと右側透光性窓36Rが設けられ、左側透光性窓36Lと右側透光性窓36Rの内部の各々に、図3に示した左窓火災検知部16Lと右窓火災検知部16Rの受光部等が配置されている。また、左側透光性窓36Lと右側透光性窓36Rの近傍の、受光部を見通せる位置に、個別の試験光源部42を収納した2組の試験光源用透光窓56が設けられている。 Here, as shown in FIG. 4, the fire detection device 16 includes a left side light-transmitting window 36L and a right side light-transmitting window 36R in the sensor housing section 54 provided at the top of the housing 52. The light receiving sections of the left window fire detection section 16L and the right window fire detection section 16R shown in FIG. 3 are arranged inside the transparent window 36L and the right translucent window 36R, respectively. Further, two sets of test light source transmissive windows 56 housing individual test light source sections 42 are provided near the left translucent window 36L and the right translucent window 36R at positions where the light receiving section can be seen through. .

再び図3を参照するに、右窓火災検知部16Rも左窓火災検知部16Lと同じ構成であるが、制御部34は両者に共通するユニットとして設けられ、例えばハードウェアとしてCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。また、制御部34にはプログラムの実行により実現される機能として、火災判定部48と汚損処理部50が設けられる。 Referring again to FIG. 3, the right window fire detection section 16R has the same configuration as the left window fire detection section 16L, but the control section 34 is provided as a unit common to both, and includes, for example, a CPU, memory, and various other hardware components. A computer circuit or the like with input/output ports, etc. is used. Further, the control unit 34 is provided with a fire determination unit 48 and a stain processing unit 50 as functions realized by executing a program.

左窓火災検知部16Lは例えば2波長式の炎検知原理により火災を監視している。受光部38aは、左側透光性窓36Lを介して入射した光エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.4~4.5μmの放射線を光学波長バンドパスフィルタにより選択透過させて、受光センサにより該放射線のエネルギーを光電変換したうえで、増幅処理部40aにより増幅等所定の加工を施してエネルギー量に対応する受光信号にして制御部34へ出力する。 The left window fire detection section 16L monitors fire using, for example, a two-wavelength flame detection principle. The light receiving unit 38a uses an optical wavelength band-pass filter to collect radiation of 4.4 to 4.5 μm, which is a resonance radiation band of CO 2 peculiar to flames, from the light energy incident through the left translucent window 36L. After selectively transmitting the radiation, the energy of the radiation is photoelectrically converted by a light receiving sensor, and then a predetermined processing such as amplification is performed by the amplification processing section 40a to generate a light receiving signal corresponding to the amount of energy and output to the control section 34.

受光部38bは、左側透光性窓36Lを介して入射した光エネルギーの中から、5~6μmの放射エネルギーを光学波長バンドパスフィルタにより選択透過させて、受光センサにより該放射線のエネルギーを検知して光電変換したうえで、増幅処理部40bにより増幅等所定の加工を施してエネルギー量に対応する受光信号にして制御部34へ出力する。 The light receiving section 38b selectively transmits radiant energy of 5 to 6 μm out of the light energy incident through the left translucent window 36L through an optical wavelength band pass filter, and detects the energy of the radiation with a light receiving sensor. After performing photoelectric conversion, the amplification processing section 40b performs predetermined processing such as amplification, and outputs it to the control section 34 as a received light signal corresponding to the amount of energy.

制御部34に設けられた火災判定部48は、例えば、増幅処理部40a,40bから出力された受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定し、炎有りの判定により火災を検知した場合には、伝送部35に指示して、防災受信盤10からの自己アドレスに一致する呼出電文に対する応答電文に、火災判定情報と左窓検知を示す識別情報を設定することにより、火災判定信号として防災受信盤10へ送信する制御を行う。 The fire determination unit 48 provided in the control unit 34 determines the presence or absence of flame by, for example, taking the relative ratio of the light reception signal levels output from the amplification processing units 40a and 40b and comparing it with a predetermined threshold value. If a fire is detected based on the presence determination, the transmission unit 35 is instructed to include fire determination information and identification information indicating left window detection in a response message to a call message that matches the self-address from the disaster prevention receiver 10. By setting, control is performed to transmit a fire determination signal to the disaster prevention receiving board 10.

試験光源部42、汚損受光部44及び増幅部46で構成した汚損検知部は、制御部34の汚損処理部50からの指示により所定周期、例えば1日に1回の周期で試験光源部42を点滅して所定の試験光を発し、左側透光性窓36Lを介して汚損受光部44に入射しており、この試験光は汚損受光部44に設けた受光センサで電気信号に変換され、増幅部46で増幅して制御部34に、左側透光性窓36Lの汚損度に応じた汚損検知信号が出力される。 The contamination detection section, which is composed of the test light source section 42, the contamination light receiving section 44, and the amplification section 46, detects the test light source section 42 at a predetermined period, for example, once a day, according to instructions from the contamination processing section 50 of the control section 34. A predetermined test light is emitted in a blinking manner and enters the contamination light receiving section 44 through the left translucent window 36L, and this test light is converted into an electrical signal by the light receiving sensor provided in the contamination light receiving section 44 and amplified. The contamination detection signal is amplified by the section 46 and outputted to the control section 34 in accordance with the degree of contamination of the left translucent window 36L.

制御部34の汚損処理部50は、増幅部46からの汚損検知信号が得られた場合、予め記録された無汚損時の汚損検知信号レベルと汚損処理により得られた汚損検知信号レベルとを比較して現行率度を算出することで汚損度を検知する。検知した汚損度を、制御部34に指示して、自己アドレスに一致する呼出電文に対する応答電文に、汚損度の値を示す汚損情報と左窓検知を示す識別情報を設定することにより、汚損検知信号として防災受信盤10に送信する制御を行う。 When the contamination detection signal from the amplification unit 46 is obtained, the contamination processing unit 50 of the control unit 34 compares the contamination detection signal level recorded in advance with no contamination and the contamination detection signal level obtained by contamination processing. The degree of contamination is detected by calculating the current rate. Defacement detection is performed by instructing the control unit 34 about the detected degree of defacement and setting defacement information indicating the value of the defacement degree and identification information indicating left window detection in a response message to a call message that matches the self address. Control is performed to transmit a signal to the disaster prevention receiving board 10.

汚損処理部50による上記の汚損検知は、防災受信盤10からの定期的な(例えば1日に1回)の汚損処理実施指示信号を受けて実施され、汚損検知信号はこの応答信号として返送されるようにもできる。 The above contamination detection by the contamination processing unit 50 is carried out in response to a regular (for example, once a day) contamination treatment implementation instruction signal from the disaster prevention receiver 10, and the contamination detection signal is returned as a response signal. It can also be done as follows.

また、制御部34の汚損処理部50は、検知された汚損度が、所定の汚損予兆閾値を超えた場合に、伝送部35に指示して、自己アドレスに一致する呼出電文(或いは先の汚損処理実施指示信号)に対する応答電文に、汚損予兆情報と左窓検知を示す識別情報を設定することにより、汚損予兆信号として防災受信盤10へ送信する制御を行う。 Further, when the detected degree of contamination exceeds a predetermined contamination sign threshold, the contamination processing unit 50 of the control unit 34 instructs the transmission unit 35 to send a call message (or a previous contamination message) that matches its own address. By setting the defacement sign information and the identification information indicating left window detection in the response message to the processing execution instruction signal), control is performed to send the defacement sign signal to the disaster prevention receiver 10.

ここで、防災受信盤10に対して送信する汚損情報に汚損度を付す場合には、汚損予兆閾値との比較処理および汚損予兆の判定は防災受信盤10側で行ってもよい。この場合、汚損予兆閾値は防災受信盤10に設定登録される。 Here, when attaching a degree of defacement to the defacement information transmitted to the disaster prevention receiver 10, the comparison process with the defacement sign threshold and the determination of the defacement sign may be performed on the disaster prevention receiver 10 side. In this case, the contamination sign threshold is set and registered in the disaster prevention receiver 10.

また、制御部34の汚損処理部50は、増幅部46からの汚損検知信号に基づく汚損度が、汚損予兆閾値より高い所定の汚損閾値を超えた場合に、伝送部35に指示して、防災受信盤10からの、自己アドレスに一致する呼出電文に、汚損情報と左窓検知を示す識別情報を設定することにより、汚損信号として防災受信盤10へ送信する制御を行う。 Further, when the degree of contamination based on the contamination detection signal from the amplification unit 46 exceeds a predetermined contamination threshold higher than the contamination precursor threshold, the contamination processing unit 50 of the control unit 34 instructs the transmission unit 35 to By setting defacement information and identification information indicating detection of the left window in the calling message that matches the self-address from the receiver 10, control is performed to send it as a defacement signal to the disaster prevention receiver 10.

なお、防災受信盤10に対して送信する汚損情報に汚損度を付す場合には、汚損閾値との比較処理および汚損の判定は防災受信盤10側で行ってもよい。この場合、汚損閾値は防災受信盤10に設定登録される。 In addition, when attaching a degree of defacement to the defacement information transmitted to the disaster prevention receiving board 10, the comparison process with a defacement threshold value and the determination of defacement may be performed on the disaster prevention receiving board 10 side. In this case, the stain threshold is set and registered in the disaster prevention receiver 10.

ここで、制御部34の汚損処理部50は、増幅部46からの汚損検知信号に基づき汚損具合を示す左側透光性窓36Lの減光率を求め、この減光率を汚損度として防災受信盤10に送信すると共に、汚損予兆及び汚損の判定処理を行う。 Here, the contamination processing unit 50 of the control unit 34 determines the light attenuation rate of the left translucent window 36L that indicates the degree of contamination based on the contamination detection signal from the amplification unit 46, and uses this light attenuation rate as the degree of contamination for disaster prevention reception. In addition to transmitting the information to the board 10, a process for determining signs of contamination and contamination is performed.

汚損処理部50による左側透光性窓36Lの減光率の算出は、左側透光性窓36Lに汚損がない工場出荷時、火災監視開始時又は清掃終了時の汚損検知信号のレベルを基準レベルErとして記憶し、増幅部46から検知レベルEの汚損検知信号が得られる毎に、減光率Dを
D=1-(E/Er)
として算出する。
Calculation of the light attenuation rate of the left translucent window 36L by the contamination processing unit 50 uses the level of the contamination detection signal at the time of shipment from the factory when the left translucent window 36L is not soiled, at the start of fire monitoring, or at the end of cleaning as a reference level. Each time a contamination detection signal of detection level E is obtained from the amplifying section 46, the light attenuation rate D is calculated as D=1-(E/Er).
Calculated as

このようにして算出される減光率Dは、透光性窓36の汚損度合に比例して変動する値であり、以下の説明では、減光率を汚損度として説明する。 The light attenuation rate D calculated in this way is a value that changes in proportion to the degree of contamination of the translucent window 36, and in the following explanation, the light attenuation rate will be explained as the degree of contamination.

また、汚損処理部50で汚損予兆の判定に使用する汚損予兆閾値は、左側透光性窓36Lがやや汚損しているが受光部38a,38bによる監視エリアの全体の火災監視可能を維持できる(所定規模の火災を検知できる)所定の第1の汚損レベル、例えば減光率75パーセントに設定される。 In addition, the contamination sign threshold used by the contamination processing unit 50 to determine a contamination sign is such that although the left translucent window 36L is slightly soiled, fire monitoring of the entire monitoring area by the light receiving units 38a and 38b can be maintained ( A predetermined first contamination level (which can detect a fire of a predetermined size) is set, for example, a light attenuation rate of 75 percent.

更に、汚損処理部50で汚損の判定に使用する汚損閾値は、受光部による監視エリアの全体の監視ができなくなる、第1の汚損レベルより高い所定の第2の汚損レベル、例えば減光率85パーセントに設定される。 Furthermore, the contamination threshold value used in the contamination processing unit 50 to determine contamination is a predetermined second contamination level higher than the first contamination level, such as a light attenuation rate of 85, at which the entire monitoring area cannot be monitored by the light receiving unit. Set to percent.

このような汚損検知部50の処理は、右側透光性窓36Rの汚損に対しても同様となる。 Such processing by the stain detection section 50 is the same for stains on the right translucent window 36R.

[防災受信盤]
図5は防災受信盤の機能構成の概略を示したブロック図である。図5に示すように、防災受信盤10は制御部18を備え、制御部18は例えばプログラムの実行により実現される機能であり、火災監視制御部31と汚損表示制御部32の機能が設けられる。また、制御部18のハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
FIG. 5 is a block diagram schematically showing the functional configuration of the disaster prevention receiver. As shown in FIG. 5, the disaster prevention reception panel 10 includes a control unit 18, and the control unit 18 is a function realized by executing a program, for example, and is provided with the functions of a fire monitoring control unit 31 and a defacement display control unit 32. . Further, as the hardware of the control unit 18, a computer circuit having a CPU, memory, various input/output ports, etc. is used.

制御部18に対しては伝送部20a,20bが設けられ、伝送部20a,20bから引き出された信号回線12a,12bに上り線トンネル1aと下り線トンネル1bに設置された火災検知装置16がそれぞれ複数台接続されている。 Transmission units 20a and 20b are provided for the control unit 18, and fire detection devices 16 installed in the upstream tunnel 1a and the downstream tunnel 1b are connected to signal lines 12a and 12b drawn out from the transmission units 20a and 20b, respectively. Multiple devices are connected.

また、制御部18に対しスピーカ、警報表示灯等を備えた警報部22、液晶ディスプレイ等を備えた表示部24、プリンタ25、各種スイッチ等を備えた操作部26、外部監視設備と通信するIG子局設備を接続するモデム28が設けられ、更に、換気設備、警報表示板設備、ラジオ再放送設備、カメラ監視設備、照明設備及び消火ポンプ設備を接続したIO部30が設けられている。 Further, for the control unit 18, an alarm unit 22 equipped with a speaker, an alarm indicator light, etc., a display unit 24 equipped with a liquid crystal display, etc., a printer 25, an operation unit 26 equipped with various switches, etc., and an IG that communicates with external monitoring equipment. A modem 28 is provided to connect slave station equipment, and an IO section 30 is further provided to which ventilation equipment, alarm display board equipment, radio rebroadcast equipment, camera monitoring equipment, lighting equipment, and fire pump equipment are connected.

防災受信盤10の火災監視制御部31は、伝送部20a,20bを介して火災検知装置16のアドレスを順次指定したポーリングコマンドを含む呼出電文を繰り返し送信しており、火災検知装置16は自己アドレスに一致する呼出電文を受信すると、直前に検知した汚損度、汚損予兆、汚損等の検知情報と左窓検知か右窓検知かを示す識別情報を含む応答電文を返信する。 The fire monitoring control unit 31 of the disaster prevention receiver 10 repeatedly transmits a call message containing a polling command that sequentially specifies the address of the fire detection device 16 via the transmission units 20a and 20b, and the fire detection device 16 uses its own address. When receiving a call message matching the above, it returns a response message containing detection information such as the degree of contamination detected immediately before, a sign of contamination, contamination, etc., and identification information indicating whether left window detection or right window detection.

なお、防災受信盤10の火災監視制御部31は、火災検知装置16からの電文の受信により火災を判定した場合は警報部22に指示して火災警報を出力させると共にIO部30に指示して他設備に連動制御を行なわせる。 Incidentally, when the fire monitoring control section 31 of the disaster prevention reception panel 10 determines that a fire has occurred by receiving the message from the fire detection device 16, it instructs the alarm section 22 to output a fire alarm, and also instructs the IO section 30 to output a fire alarm. Allow other equipment to perform interlock control.

[防災受信盤による汚損監視]
(汚損情報の収集記憶)
防災受信盤10の汚損表示制御部32は、火災検知装置16から受信した応答電文に設定された汚損度情報と左窓検知か右窓検知かの識別情報に基づき、制御部18のメモリに図6に示す火災検知装置16の汚損情報100を記憶している。
[Contamination monitoring using disaster prevention receiver]
(Collection and memory of defacement information)
The defacement display control unit 32 of the disaster prevention receiver 10 stores the figure in the memory of the control unit 18 based on the defacement degree information set in the response message received from the fire detection device 16 and the identification information of left window detection or right window detection. Contamination information 100 of the fire detection device 16 shown in 6 is stored.

図6のメモリに記憶された汚損情報100は、火災検知装置16のアドレスに対応して図3の左窓火災検知部16Lで検知された左窓汚損度LDiと右窓火災検知部16Rで検知された左窓汚損度RDiが記憶されている。なお、iは火災検知装置16の任意のアドレスを示している。 The contamination information 100 stored in the memory in FIG. 6 corresponds to the address of the fire detection device 16, and the left window contamination level LDi detected by the left window fire detection unit 16L in FIG. The left window contamination degree RDi is stored. Note that i indicates an arbitrary address of the fire detection device 16.

ここで、図1に示した上り線トンネル1aと下り線トンネル1bのトンネル長を例えば各1キロメートルとすると、50メートル間隔で20台の火災検知装置16が配置されており、図6の汚損情報100にあっては、20台の火災検知装置16について設定されたアドレス01~20に対応して左窓汚損度LD01~LD20と右窓汚損度RD01~RD20が記憶された場合を例にとっている。また、左窓汚損度LD01~LD20と右窓汚損度RD01~RD20は、透光性窓の減光率を示すアナログ値となる。 Here, if the tunnel lengths of the up-line tunnel 1a and the down-line tunnel 1b shown in FIG. 100, a case is taken as an example in which the left window dirt levels LD01 to LD20 and the right window dirt levels RD01 to RD20 are stored corresponding to addresses 01 to 20 set for 20 fire detection devices 16. Furthermore, the left window staining degrees LD01 to LD20 and the right window staining degrees RD01 to RD20 are analog values indicating the light attenuation rate of the light-transmitting window.

汚損表示制御部32は、操作部26による汚損状態を確認するための所定の操作が行われた場合に、図6の汚損情報100に基づき、アドレスに対応した左窓汚損度と右窓汚損度の一覧を、所定の順番に従って表示部24の液晶ディスプレイに表示すると共に、プリンタ25により印刷出力させる制御を行う。 When a predetermined operation for checking the soiling state is performed using the operation section 26, the soiling display control section 32 displays the left window soiling degree and the right window soiling degree corresponding to the address based on the soiling information 100 in FIG. The list is displayed on the liquid crystal display of the display unit 24 in a predetermined order, and the printer 25 is controlled to print out the list.

また、防災受信盤10の汚損表示制御部32は、図6の汚損情報100に基づき、アドレスに対応した左窓汚損度と右窓汚損度の一覧を表示部24の液晶ディスプレイに表示させる場合や、プリンタ25により印刷出力させる場合に、左窓汚損度と右窓汚損度を汚損予兆や汚損に対応して色分け等により識別表示させる制御を行う。 Further, the defacement display control unit 32 of the disaster prevention reception panel 10 may display a list of the left window defacement degree and the right window defacement degree corresponding to the address on the liquid crystal display of the display unit 24 based on the defacement information 100 of FIG. When printing is performed by the printer 25, control is performed to distinguish and display the left window stain degree and the right window stain degree by color coding or the like in accordance with stain signs and stains.

このような汚損表示制御部32による汚損情報の表示制御の実施形態は以下のようになる。 An embodiment of display control of stain information by the stain display control section 32 is as follows.

(汚損表示の第1実施形態)
図7は汚損表示の第1実施形態を示した説明図である。図7に示すように、防災受信盤10の汚損表示制御部32による本実施形態の汚損表示102は、図6に示した汚損情報100に基づき、左窓汚損情報102と右窓汚損情報104に分けて表示している。表示は上り線、下り線ごとに行われるが、上り線側のみ図示する。
(First embodiment of defacement display)
FIG. 7 is an explanatory diagram showing a first embodiment of soiling display. As shown in FIG. 7, the defacement display 102 of this embodiment by the defacement display control unit 32 of the disaster prevention receiver 10 is based on the defacement information 100 shown in FIG. Displayed separately. Although the display is performed for each up line and down line, only the up line side is illustrated.

左窓汚損情報102は、上り線側火災検知装置16のアドレスAiに対応して左窓汚損度LDiを、汚損度の大きい順に並べている。また、右窓汚損情報104は、火災検知装置16のアドレスAiに対応して右窓汚損度RDiを、汚損度の大きい順に並べている。 The left window contamination information 102 arranges left window contamination degrees LDi in descending order of contamination degree in correspondence with the address Ai of the upstream fire detection device 16. In addition, the right window stain information 104 arranges the right window stain degrees RDi in descending order of the stain degrees corresponding to the addresses Ai of the fire detection device 16.

また、左窓汚損情報102について、汚損度が最大の先頭のアドレス15の左窓汚損度LD15は、対応する火災検知装置16から汚損信号が受信されていることから、斜線で示すように汚損状態にあることを識別表示している。また、汚損度が2番目から4番目のアドレス09,04,12の左窓汚損度LD09,LD04,LD12は、対応する火災検知装置16から汚損予兆信号が受信されていることから、砂地で示すように汚損予兆状態にあることを識別表示している。 Regarding the left window defacement information 102, the left window defacement degree LD15 of the first address 15 with the maximum defacement degree is a defaced state as shown by diagonal lines, since a defacement signal has been received from the corresponding fire detection device 16. It is identified that it is located in In addition, the left window contamination degrees LD09, LD04, and LD12 of addresses 09, 04, and 12, which have the second to fourth contamination degrees, are shown as sand because a contamination sign signal has been received from the corresponding fire detection device 16. This indicates that there is a sign of contamination.

また、右窓汚損情報104についても、汚損度が最大の先頭のアドレス07の右窓汚損度RD07は、対応する火災検知装置16から汚損信号が受信されていることから、斜線で示すように汚損状態にあることを識別表示している。また、汚損度が2番目から3番目のアドレス01,09の左窓汚損度RD01,RD09は、対応する火災検知装置16から汚損予兆信号が受信されていることから、砂地で示すように汚損予兆状態にあることを識別表示している。 Regarding the right window defacement information 104, the right window defacement degree RD07 of the first address 07 with the maximum defacement degree indicates that the right window is defaced as shown by diagonal lines because the defacement signal has been received from the corresponding fire detection device 16. The status is identified and displayed. In addition, the left window contamination degrees RD01 and RD09 of the addresses 01 and 09, which have the second to third contamination degrees, are signs of contamination, as shown by the sandy area, because a contamination sign signal has been received from the corresponding fire detection device 16. The status is identified and displayed.

汚損状態又は汚損予兆状態にあることの識別表示は、対応する表示部位の背景又は文字を所定の色とする。例えば、汚損状態は赤で識別し、汚損予兆は黄色で識別させる。 The identification of the soiled state or the soiled state is made by using a predetermined color for the background or text of the corresponding display area. For example, a state of contamination is identified by red, and signs of contamination are identified by yellow.

このように汚損度の大きい順に並べた左窓汚損情報102と右窓汚損情報104の表示を見ることで、左側透光性窓は、アドレス15の火災検知装置16について清掃の必要性が高まっており、右側透光性窓は、アドレス07の火災検知装置16について清掃の必要性が高まっていることが一目で把握でき、特に、両者については、斜線で示す汚損状態、即ち、減光率が85パーセントに達して警戒エリアの全域監視ができなくなっていることから、清掃の必要性が一層高いことが判断できる。 By looking at the display of the left window stain information 102 and the right window stain information 104 arranged in descending order of degree of stain, the need for cleaning of the fire detection device 16 at address 15 for the left translucent window is increased. On the right translucent window, it can be seen at a glance that the need for cleaning is increasing for the fire detection device 16 at address 07, and in particular, both of them are in a dirty state indicated by diagonal lines, that is, the light attenuation rate is low. Since it has reached 85% and it is no longer possible to monitor the entire warning area, it can be determined that cleaning is even more necessary.

一方、左側透光性窓についてはアドレス09,04,12の火災検知装置16が、右側透光性窓についてはアドレス01,15の火災検知装置16が、砂地で示す汚損予兆状態、即ち、減光率が85パーセント未満であるが75パーセントに達しており、清掃の必要性が次に高いと判断することできる。 On the other hand, the fire detection devices 16 at addresses 09, 04, and 12 for the left translucent window, and the fire detection devices 16 at addresses 01 and 15 for the right translucent window detect the contamination sign state indicated by the sandy ground, that is, the The light rate is less than 85%, but has reached 75%, and it can be determined that the need for cleaning is the next highest.

(汚損表示の第2実施形態)
図8は汚損表示の第2実施形態を示した説明図である。図8に示すように、防災受信盤10の汚損表示制御部32による本実施形態の汚損表示は、図7に示した左窓汚損表示102の左窓汚損度LDiに対し、同じ火災検知装置16における右窓汚損度RDiを組み合わせて表示している。表示は上り線、下り線ごとに行われるが、上り線側のみ図示する。
(Second embodiment of defacement display)
FIG. 8 is an explanatory diagram showing a second embodiment of soiling display. As shown in FIG. 8, the dirt display of this embodiment by the dirt display control unit 32 of the disaster prevention receiver 10 is different from the left window dirt degree LDi of the left window dirt display 102 shown in FIG. The right window contamination degree RDi is displayed in combination. Although the display is performed for each up line and down line, only the up line side is illustrated.

また、図7に示した左窓汚損表示102の左窓汚損度LDiに対し、同じ火災検知装置16における右窓汚損度RDiを組み合わせ対応させて表示している。 Furthermore, the left window stain degree LDi of the left window stain display 102 shown in FIG. 7 is displayed in combination with the right window stain degree RDi in the same fire detection device 16.

例えば、左窓汚損表示102の汚損度が最も高いアドレス15の左窓汚損度LD15に、同じアドレス15の右窓汚損度RD15を組み合わせて表示している。ここで、アドレス15の左窓汚損度LD15は汚損状態にあることから斜線で示す識別表示が行われ、また、同じアドレス15の右窓汚損度RD15は汚損予兆状態にあることから、砂地で示す識別表示が行われている。 For example, the left window stain degree LD15 of address 15, which has the highest degree of stain in the left window stain display 102, is displayed in combination with the right window stain degree RD15 of the same address 15. Here, the left window stain level LD15 at address 15 is in a dirty state, so it is displayed with diagonal lines, and the right window stain level RD15 at the same address 15 is in a sign of staining, so it is shown in sand. Identification is displayed.

この場合、アドレス15の左窓汚損度LD15は減光率が85パーセントに達して汚損状態にあり、また、アドレス15の右窓汚損度RD15は減光率が85パーセント未満であるが75パーセントに達して汚損予兆状態にあり、アドレス15の火災検知装置16については、清掃の必要性が相当高くなっていると一目で把握できる。 In this case, the left window pollution level LD15 at address 15 is in a dirty state with a light attenuation rate reaching 85%, and the right window pollution level RD15 at address 15 has a light attenuation rate of less than 85% but 75%. It can be seen at a glance that the fire detection device 16 at address 15 is in a state of sign of contamination, and that the need for cleaning is considerably high.

この点は、右窓汚損表示104をベースにした場合について同様であり、右窓汚損表示104で汚損度が最も高いアドレス07の右窓汚損度RD07に、同じアドレス07の左窓汚損度LL07を組み合わせて表示している。ここで、アドレス07の右窓汚損度RD07は汚損状態にあることから斜線で示す識別表示が行われ、また、同じアドレス07の左窓汚損度LD07は汚損度が低く正常な状態にあることが一目で把握できる。ここでも、アドレス15の火災検知装置16が清掃の必要性が相当高くなっていると一目で把握できる。 This point is the same for the case where the right window dirt display 104 is used as the base, and the right window dirt level LL07 of the same address 07 is set to the right window dirt level RD07 of address 07, which has the highest dirt level in the right window dirt display 104. Displayed in combination. Here, since the right window dirt level RD07 of address 07 is in a dirty state, an identification display shown with diagonal lines is performed, and the left window dirt level LD07 of the same address 07 has a low dirt level and is in a normal state. It can be understood at a glance. Here again, it can be seen at a glance that the fire detection device 16 at address 15 is in considerable need of cleaning.

(汚損表示の第3実施形態)
図9は汚損表示の第3実施形態を示した説明図である。図9に示すように、防災受信盤10の汚損表示制御部32による本実施形態の汚損表示106は、火災検知装置16のアドレスiの順番に、左窓汚損度LDiと右窓汚損度RDiの組を、並べて表示している。表示は上り線、下り線ごとに行われるが、上り線側のみ図示する。
(Third embodiment of defacement display)
FIG. 9 is an explanatory diagram showing a third embodiment of soiling display. As shown in FIG. 9, the defacement display 106 of the present embodiment by the defacement display control unit 32 of the disaster prevention reception panel 10 displays the left window defacement degree LDi and the right window defilement degree RDi in the order of the address i of the fire detection device 16. The groups are displayed side by side. Although the display is performed for each up line and down line, only the up line side is illustrated.

また、図7及び図8と同様に、汚損状態にある汚損度は斜線で示すように識別表示され、また、汚損予兆状態にある汚損度は砂地で示すように識別表示されており、汚損度のアナログ値を見なくとも、汚損の進み具合を直感的に把握できるようにしている。 In addition, similarly to FIGS. 7 and 8, the degree of contamination in the contamination state is identified and displayed as shown by diagonal lines, and the degree of contamination in the state of sign of contamination is identified and displayed as shown in sand, and the degree of contamination is This makes it possible to intuitively grasp the progress of contamination without looking at analog values.

ここで、汚損状態と汚損予兆状態の識別表示は、汚損または汚損予兆状態にある左窓汚損度LDiと右窓汚損度RDiに対し行っているが、これに対応したアドレスiについても、汚損状態又は汚損予兆状態の識別表示を行っている。この識別表示として、例えばアドレス15のように、左窓汚損度LD15が汚損状態で右窓汚損度RD15が汚損予兆状態の場合は、高い方の汚損度LD15に対する汚損状態の識別表示を優先して行っている。 Here, the identification display of the contamination state and the contamination sign state is performed for the left window contamination degree LDi and the right window contamination degree RDi that are in the contamination or contamination sign state, but the corresponding address i is also displayed in the contamination state. Or an identification display indicating signs of contamination is provided. As for this identification display, for example, when the left window dirt level LD15 is a dirt state and the right window dirt level RD15 is a dirt sign state, as in address 15, priority is given to the identification display of the dirt state for the higher dirt level LD15. Is going.

このような汚損表示106は、図6に示したメモリに記憶している汚損情報100をそのまま読出して表示して、汚損状態と汚損予兆状態を識別表示させたものであり、トンネル内における火災検知装置16の並び順に、各火災検知装置16における左右の透光性窓の汚損度を把握して、清掃の必要性が判断可能となる。 Such a contamination display 106 reads and displays the contamination information 100 stored in the memory shown in FIG. The degree of contamination of the left and right translucent windows in each fire detection device 16 is determined in the order in which the devices 16 are arranged, and the necessity of cleaning can be determined.

(汚損表示の第4実施形態)
図10は汚損表示の第4実施形態を示した説明図である。図10に示すように、防災受信盤10の汚損表示制御部32による本実施形態の汚損表示108は、左窓汚損度LDiと右窓汚損度RDiを、汚損度の大きい順に混在して表示させており、汚損表示108のアドレスには、火災検知装置16のアドレスiと左窓火災検知部を示す識別符号L又は右窓火災検知部を示す識別符号を組み合わせたアドレスiL又はiRが表示されている。なお、表示は上り線、下り線ごとに行われるが、上り線側のみ図示する。
(Fourth embodiment of defacement display)
FIG. 10 is an explanatory diagram showing a fourth embodiment of soiling display. As shown in FIG. 10, the stain display 108 of this embodiment by the stain display control unit 32 of the disaster prevention receiver 10 displays the left window stain degree LDi and the right window stain degree RDi in a mixed manner in descending order of stain degree. The address of the defacement display 108 displays an address iL or iR, which is a combination of the address i of the fire detection device 16 and the identification code L indicating the left window fire detection section or the identification code indicating the right window fire detection section. There is. Although the display is performed for each up line and down line, only the up line side is illustrated.

この例では、アドレス15Lの左窓汚損度LD15が最大であり、次がアドレス07Rの右窓汚損度RD07であり、両方とも汚損状態となる斜線の識別表示であるが、アドレス15の火災検知装置16の方がより清掃の必要性が高いことが判断できる。 In this example, the left window deterioration level LD15 at address 15L is the highest, and the next is the right window deterioration degree RD07 at address 07R, and both are diagonally lined identification indicating that they are defaced, but the fire detection device at address 15 It can be determined that cleaning is more necessary for No. 16.

(汚損表示の第5実施形態)
図11は汚損表示の第5実施形態を示した説明図である。図11に示すように、防災受信盤10の汚損表示制御部32による本実施形態の汚損表示110は、同一の監視エリアARiを重複して監視するi番目の火災検知装置16の左窓汚損度LDiとi+1番目の火災検知装置16の右窓汚損度RLi+1とが隣接して並ぶように、アドレスiの順に表示させる制御を行う。表示は上り線、下り線ごとに行われるが、上り線側のみ図示する。
(Fifth embodiment of defacement display)
FIG. 11 is an explanatory diagram showing a fifth embodiment of soiling display. As shown in FIG. 11, the defacement display 110 of the present embodiment by the defacement display control unit 32 of the disaster prevention receiver 10 indicates the degree of defacement of the left window of the i-th fire detection device 16 that monitors the same monitoring area ARi redundantly. Control is performed to display them in the order of address i so that LDi and the right window contamination level RLi+1 of the i+1th fire detection device 16 are arranged adjacently. Although the display is performed for each up line and down line, only the up line side is illustrated.

例えばアドレス01の火災検知装置16とアドレス02の火災検知装置16は、同一の監視エリアAR12を重複して監視していることから、アドレス01の右窓汚損度RD01とアドレス02の左窓汚損度LD2が隣接して並ぶように配置される。この関係は隣接して同一の監視エリアを重複して監視する他の火災検知装置16についても同様となる。 For example, the fire detection device 16 at address 01 and the fire detection device 16 at address 02 monitor the same monitoring area AR12 redundantly, so the right window pollution level RD01 at address 01 and the left window pollution level RD01 at address 02 The LD2s are arranged adjacent to each other. This relationship holds true for other fire detection devices 16 that monitor the same monitoring area adjacently.

また、図7及び図8と同様に、汚損状態にある汚損度は斜線で示すように識別表示され、汚損予兆状態にある汚損度は砂地で示すように識別表示されており、汚損度のアナログ値を見なくとも、汚損の進み具合を一見して把握できるようにしている。 In addition, similar to FIGS. 7 and 8, the degree of contamination in the contamination state is identified and displayed as shown by diagonal lines, and the degree of contamination in the state of sign of contamination is identified and displayed as shown by sandy areas, and the analogue of the degree of contamination is This makes it possible to grasp the progress of contamination at a glance without looking at the values.

このような汚損表示110によれば、隣接した2台の火災検知装置16により重複して監視している同一の監視エリアに対するそれぞれの透光性窓(火災検知部)に対応した一方の汚損度と他方の汚損度の関係が簡単且つ確実に分かる。例えば、アドレス07の右窓汚損度RD07は斜線で示す汚損状態となっているが、同じ監視エリアAR08を重複して監視しているアドレス08の右窓汚損度RD08は正常レベルにあり、清掃の必要性がひっ迫した状況にはないと一目して判断することが可能となる。 According to such a contamination display 110, one degree of contamination corresponds to each translucent window (fire detection unit) for the same monitoring area that is redundantly monitored by two adjacent fire detection devices 16. The relationship between the degree of contamination and the degree of contamination of the other can be easily and reliably understood. For example, the right window contamination degree RD07 of address 07 is in a dirty state as indicated by diagonal lines, but the right window contamination degree RD08 of address 08, which is monitoring the same monitoring area AR08 redundantly, is at a normal level and requires cleaning. It becomes possible to judge at a glance that there is no urgent need.

この点は、左窓汚損度LD15が汚損状態に達しているアドレス15についても、同じ監視エリアAR15を重複して監視しているアドレス14の左窓汚損度LD16は正常レベルにあり、同様に、清掃の必要性がひっ迫した状況にはないと容易に判断することが可能となる。 In this respect, even for the address 15 whose left window pollution degree LD15 has reached the soiled state, the left window pollution degree LD16 of the address 14 which is monitoring the same monitoring area AR15 in duplicate is at a normal level, and similarly, It becomes possible to easily determine that there is no urgent need for cleaning.

図12の汚損表示120は、トンネル長手方向を横方向として汚損情報100を火災検知装置16のアドレス順に表示した実施形態を示している。 The defacement display 120 in FIG. 12 shows an embodiment in which the defacement information 100 is displayed in the order of the addresses of the fire detection devices 16 with the longitudinal direction of the tunnel as the horizontal direction.

図13の汚損表示130は、トンネル内の監視エリアAR1,AR2,・・・に対応して汚損情報100を火災検知装置16のアドレス順に表示した実施形態を示している。 The defacement display 130 in FIG. 13 shows an embodiment in which defacement information 100 is displayed in the order of the addresses of the fire detection devices 16 corresponding to the monitoring areas AR1, AR2, . . . in the tunnel.

なお、図11乃至図13の汚損表示110、120、130を液晶ディスプレイで画面表示する際に、1画面に収まらない場合は、切替え表示やスクロール表示等の表示方法をとることになる。 Note that when displaying the defacement displays 110, 120, and 130 of FIGS. 11 to 13 on a liquid crystal display, if the display does not fit on one screen, a display method such as switching display or scroll display will be used.

(汚損表示の第6実施形態)
防災受信盤10に設けられた汚損表示制御部32による汚損表示の第6実施形態として、図7乃至図13に示した第1乃至第5実施形態による汚損表示を、操作部26による所定の操作により、必要に応じて選択して表示させるようにしても良い。
(Sixth embodiment of defacement display)
As a sixth embodiment of the defacement display by the defacement display control unit 32 provided in the disaster prevention reception panel 10, the defacement display according to the first to fifth embodiments shown in FIGS. Accordingly, they may be selected and displayed as necessary.

[本発明の変形例]
(火災検知装置)
上記の実施形態は2波長方式の火災検知装置を例にとっているが、これに限定されず、他の方式でも良い。例えば、前述した2波長に加え、CO2の共鳴放射帯である4.4~4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検知し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検知器としても良い。
[Modification of the present invention]
(Fire detection device)
Although the above embodiment takes a two-wavelength type fire detection device as an example, the present invention is not limited to this, and other types may be used. For example, in addition to the two wavelengths mentioned above, radiation energy in a wavelength band near 3.8 μm, which is on the shorter wavelength side of the 4.4 to 4.5 μm band that is the resonant radiation band of CO 2 , is calculated as in the two-wavelength method. It is also possible to use a three-wavelength flame detector that detects the flame using the following method and determines the presence or absence of flame based on the relative ratio of each light reception signal in these three wavelength bands.

(汚損予兆状態と汚損状態の検知)
上記の実施形態は、火災検知装置で予兆予報状態と予報状態を検知して防災受信盤に送信しているが、これに限定されない。例えば、防災受信盤で火災検知装置の左窓汚損度と右窓汚損度を収集して記憶していることから、防災受信盤の汚損表示制御部により、左窓汚損度又は右窓汚損度が所定の汚損予兆閾値に達している場合に、左窓汚損度又は右窓汚損度に汚損予兆状態を識別表示させ、また、左窓汚損度又は右窓汚損度が汚損予兆閾値よりも高い所定の汚損閾値に達している場合に、左窓汚損度又は右窓汚損度に汚損状態を識別表示させる良いにしても良い。これにより火災検知器装置側での処理負担を低減可能とする。
(Detection of signs of contamination and contamination conditions)
In the above embodiment, the fire detection device detects the predictive forecast state and the forecast state and transmits them to the disaster prevention receiving board, but the present invention is not limited to this. For example, since the disaster prevention reception board collects and stores the left window pollution degree and right window pollution degree of the fire detection device, the disaster prevention reception board's pollution display control unit can display the left window pollution degree or the right window pollution degree. When a predetermined contamination sign threshold is reached, the left window contamination level or the right window contamination level is made to identify and display the contamination sign state, and when the left window contamination degree or the right window contamination level is higher than the contamination indication threshold. When the stain threshold has been reached, the stain state may be displayed to identify the left window stain degree or the right window stain degree. This makes it possible to reduce the processing load on the fire detector device side.

なお、左窓と右窓とは、例えば左側受光部から右側受光部を覆うように湾曲した1枚の透光性窓であってもよい。この場合、左側火災検知部(受光部)のセンサ前方に該当する部分が本実施形態の左側透光性窓、右側火災検知部(受光部)のセンサ前方に該当する部分が右側透光性窓に相当する。 Note that the left window and the right window may be, for example, a single translucent window curved so as to cover the left side light receiving section and the right side light receiving section. In this case, the part corresponding to the front of the sensor of the left fire detection part (light receiving part) is the left translucent window of this embodiment, and the part corresponding to the front of the sensor of the right fire detection part (light receiving part) is the right translucent window. corresponds to

(汚損度の表示内容)
上記の実施形態は、防災受信盤の汚損表示制御部は、左窓汚損度及び右窓汚損度を、汚損度のアナログ値(減光率)として表示しているが、これに限定されない。例えば、汚損度の度合を多段階に示す文字、符号、図形又は色彩により表示させるようにしても良い。このように汚損度の度合を文字、符号、図形又は色彩により多段階に表示することにより、汚損の度合を直感的に把握して、清掃の必要性を判断可能とする。
(Display contents of degree of contamination)
In the above embodiment, the stain display control unit of the disaster prevention receiver displays the left window stain degree and the right window stain degree as an analog value (light attenuation rate) of the stain degree, but the present invention is not limited to this. For example, the degree of contamination may be displayed in multiple stages using characters, symbols, figures, or colors. By displaying the degree of contamination in multiple stages using letters, symbols, figures, or colors, it is possible to intuitively grasp the degree of contamination and determine the necessity of cleaning.

なお、図7乃至図13に示した汚損表示の各実施形態において、汚損度の数値表示は必須でなく、省略してもよい。汚損度の数値表示を省略した場合でも、清掃の緊急度や優先度が簡単かつ効率的に把握できる点に変わりなく、本発明の目的を達することができる。 In addition, in each embodiment of the stain display shown in FIGS. 7 to 13, the numerical display of the degree of stain is not essential and may be omitted. Even if numerical display of the degree of contamination is omitted, the object of the present invention can still be achieved in that the urgency and priority of cleaning can be easily and efficiently grasped.

また、図7乃至図13に示した汚損表示の各実施形態において、清掃逼迫度の高い監視エリアの順に汚損度又は汚損度の度合を表示しても良い。 Furthermore, in each of the embodiments of soiling display shown in FIGS. 7 to 13, the degree of soiling or the degree of soiling may be displayed in the order of monitoring areas with the highest degree of cleaning severity.

(その他)監視エリア
また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Others) Monitoring Area Furthermore, the present invention includes appropriate modifications that do not impair its objects and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12a,12b:信号回線
16:火災検知装置
16L:左窓火災検知部
16R:右窓火災検知部
18,34:制御部
20a,20b,35:伝送部
31:火災監視制御部
32:汚損表示制御部
36L:左側透光性窓
36R:右側透光性窓
38a,38b:受光部
40a,40b:増幅処理部
42:試験光源部
44:汚損受光部
46:増幅部
48:火災判定部
50:汚損処理部
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention reception boards 12a, 12b: Signal line 16: Fire detection device 16L: Left window fire detection section 16R: Right window fire detection section 18, 34: Control section 20a, 20b, 35: Transmission section 31: Fire monitoring control section 32: Contamination display control section 36L: Left translucent window 36R: Right translucent window 38a, 38b: Light receiving section 40a, 40b: Amplification processing section 42: Test light source section 44: Contamination light receiving section 46: Amplification section 48: Fire determination section 50: Contamination processing section

Claims (1)

連続した複数の監視エリアの境界毎に火災検知装置を配置して前記監視エリアの火災発生を監視する防災システムであって、
前記火災検知装置に関する情報を表示する表示部と、
前記表示部に前記情報を表示させる制御部と、
を備え、
前記火災検知装置は、
前記火災検知装置が配置された前記監視エリアの境界に接して相互に隣接する前記監視エリアの各々に対応する第一透光性窓と第二透光性窓とを備え、
前記第一透光性窓及び前記第二透光性窓を介し、相互に隣接する前記監視エリアの各々からの光線を受光することにより、前記監視エリアの各々における火災発生の有無を判定し、
相互に隣接する前記監視エリアの一方に対応する前記第一透光性窓の汚損状態を示す第一窓汚損度と、相互に隣接する前記監視エリアの他方に対応する前記第二透光性窓の汚損状態を示す第二窓汚損度とを検知し、
前記制御部は、
前記複数の火災検知装置が検知した前記第一窓汚損度と前記第二窓汚損度とに基づき、前記表示部に、隣り合う前記境界にそれぞれ配置され、重複して監視している同一の監視エリアに対応した一方の前記火災検知装置の一方の第一窓汚損度と他方の前記火災検知装置の他方の第二窓汚損度とが並ぶように、前記一方の第一窓汚損度と前記他方の第二窓汚損度の組を、前記複数の火災検知装置の配置の並び順に表示させ、
前記第一窓汚損度及び前記第二窓汚損度として、汚損度が所定の汚損予兆閾値に達していない場合に正常状態を識別表示させ、汚損度が前記汚損予兆閾値に達している場合に汚損予兆状態を識別表示させ、汚損度が前記汚損予兆閾値よりも高い所定の汚損閾値に達している場合に汚損状態を識別表示させることを特徴とする防災システム。
A disaster prevention system that monitors the occurrence of fire in the monitoring areas by placing a fire detection device at each boundary of a plurality of continuous monitoring areas,
a display unit that displays information regarding the fire detection device;
a control unit that causes the display unit to display the information;
Equipped with
The fire detection device includes:
comprising a first light-transmitting window and a second light-transmitting window corresponding to each of the monitoring areas adjacent to each other in contact with the boundary of the monitoring area where the fire detection device is arranged;
Determining the presence or absence of a fire outbreak in each of the monitoring areas by receiving light rays from each of the mutually adjacent monitoring areas through the first light-transmitting window and the second light-transmitting window;
a first window contamination degree indicating a state of contamination of the first translucent window corresponding to one of the mutually adjacent monitoring areas; and a second window contamination corresponding to the other of the mutually adjacent monitoring areas. detecting the degree of contamination of the second window indicating the contamination state of the second window;
The control unit includes:
Based on the first window contamination degree and the second window contamination degree detected by the plurality of fire detection devices, the display section displays the same monitors that are respectively arranged at the adjacent boundaries and are monitoring redundantly. The degree of contamination of the first window of one of the first windows and the degree of contamination of the second window of the other fire detection device are aligned so that the degree of contamination of the first window of one of the fire detection devices corresponding to the area and the degree of contamination of the second window of the other of the fire detection devices are aligned. displaying the second window contamination level set in the order of arrangement of the plurality of fire detection devices;
As the first window stain degree and the second window stain degree, when the stain degree does not reach a predetermined stain precursor threshold value, a normal state is identified and displayed, and when the stain degree has reached the stain prediction threshold value, the stain is displayed. 1. A disaster prevention system characterized in that a predictive state is identified and displayed, and the defaced state is identified and displayed when the degree of contamination reaches a predetermined contamination threshold higher than the defacement predictive threshold.
JP2024013855A 2017-05-24 2024-02-01 disaster prevention system Pending JP2024032930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024013855A JP2024032930A (en) 2017-05-24 2024-02-01 disaster prevention system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017102732A JP6887312B2 (en) 2017-05-24 2017-05-24 Disaster prevention system
JP2021083786A JP7100743B2 (en) 2017-05-24 2021-05-18 Disaster prevention system
JP2022106851A JP7431284B2 (en) 2017-05-24 2022-07-01 disaster prevention system
JP2024013855A JP2024032930A (en) 2017-05-24 2024-02-01 disaster prevention system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022106851A Division JP7431284B2 (en) 2017-05-24 2022-07-01 disaster prevention system

Publications (1)

Publication Number Publication Date
JP2024032930A true JP2024032930A (en) 2024-03-12

Family

ID=64663474

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017102732A Active JP6887312B2 (en) 2017-05-24 2017-05-24 Disaster prevention system
JP2021083786A Active JP7100743B2 (en) 2017-05-24 2021-05-18 Disaster prevention system
JP2022106851A Active JP7431284B2 (en) 2017-05-24 2022-07-01 disaster prevention system
JP2024013855A Pending JP2024032930A (en) 2017-05-24 2024-02-01 disaster prevention system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017102732A Active JP6887312B2 (en) 2017-05-24 2017-05-24 Disaster prevention system
JP2021083786A Active JP7100743B2 (en) 2017-05-24 2021-05-18 Disaster prevention system
JP2022106851A Active JP7431284B2 (en) 2017-05-24 2022-07-01 disaster prevention system

Country Status (1)

Country Link
JP (4) JP6887312B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280812B2 (en) * 2019-12-03 2023-05-24 能美防災株式会社 fire detection system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438151B2 (en) * 1995-11-20 2003-08-18 松下電工株式会社 Disaster prevention monitoring system
JP2000067338A (en) * 1998-08-21 2000-03-03 Nittan Co Ltd Abnormality display device
JP3741404B2 (en) * 1999-04-30 2006-02-01 能美防災株式会社 Fire detector and disaster prevention system
JP2002042264A (en) * 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP2002063664A (en) * 2000-08-17 2002-02-28 Hochiki Corp Disaster prevention monitoring system and disaster prevention receiving panel
JP4633915B2 (en) * 2000-11-17 2011-02-16 ホーチキ株式会社 Disaster prevention reception board
CN103578216B (en) * 2012-07-26 2018-01-02 能美防灾株式会社 Fire detecting system
JP6605885B2 (en) * 2015-09-02 2019-11-13 ホーチキ株式会社 Fire detector

Also Published As

Publication number Publication date
JP2018197990A (en) 2018-12-13
JP7431284B2 (en) 2024-02-14
JP2022121650A (en) 2022-08-19
JP7100743B2 (en) 2022-07-13
JP6887312B2 (en) 2021-06-16
JP2021119539A (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP7432658B2 (en) disaster prevention system
JP2024032930A (en) disaster prevention system
JP7253583B2 (en) disaster prevention system
JP6605885B2 (en) Fire detector
KR101311950B1 (en) Fire detecing and alarm system
JP2018169893A5 (en)
JP7249380B2 (en) Fire prevention system and fire detector
JP6642400B2 (en) Light detection device and equipment management system
JP2018136726A5 (en)
JP7503171B2 (en) Fire detectors and tunnel disaster prevention systems
CN202549029U (en) Visible intelligent fire alarm system for large-sized shopping mall
CN203179211U (en) Fire alarm combination apparatus
JP2023156477A (en) disaster prevention system
KR101264591B1 (en) Fire detection apparatus and system
KR102516509B1 (en) Device for monitoring and managing gas detectors
JP6811512B2 (en) Fire detector
CN206259002U (en) A kind of redundant looped network circuit structure of hazardous gas detection system
JP7336252B2 (en) Tunnel disaster prevention system
ITTO20120498A1 (en) ALARM SYSTEM FOR AN AREA TO MONITOR, IN PARTICULAR A COMMERCIAL OR INDUSTRIAL AREA, AS A CONSTRUCTION SITE.
JP7358071B2 (en) Monitoring system
JP2020187400A (en) Monitoring system
JP2023052809A (en) disaster prevention system
CN104103149A (en) Warning device and warning method
JPH02284296A (en) Electroluminescent count read and display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240301