JP2023089258A - Fire detector and tunnel disaster prevention system - Google Patents

Fire detector and tunnel disaster prevention system Download PDF

Info

Publication number
JP2023089258A
JP2023089258A JP2023069786A JP2023069786A JP2023089258A JP 2023089258 A JP2023089258 A JP 2023089258A JP 2023069786 A JP2023069786 A JP 2023069786A JP 2023069786 A JP2023069786 A JP 2023069786A JP 2023089258 A JP2023089258 A JP 2023089258A
Authority
JP
Japan
Prior art keywords
failure
fire
flame
disaster prevention
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023069786A
Other languages
Japanese (ja)
Inventor
秀成 松熊
Hidenari Matsukuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2023069786A priority Critical patent/JP2023089258A/en
Publication of JP2023089258A publication Critical patent/JP2023089258A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Abstract

To provide a fire detector and a tunnel disaster prevention system capable of distinguishing and determining influences of failures for fire determination according to an abnormality in a reception light signal level obtained by a test conducted periodically and capable of finely and appropriately coping to prevent non-fire notification.SOLUTION: A fire detector 12 includes a failure diagnosis unit that distinguishes between a false report side failure and a loss report side failure according to a predetermined test result. The failure diagnosis unit 86 distinguishes a case when a flame reception light signal satisfies a first upper limit side determination condition, a case when a non-flame reception light signal satisfies a first lower limit side determination condition, or a case when a relative ratio between the frame reception light signal and the non-frame reception light signal satisfies a first relative ratio determination condition or their combinations as the false report side failure, and distinguishes a case when the flame reception light signal satisfies a second lower limit determination condition, a case when the non-flame reception light signal satisfies a predetermined second upper limit determination condition, or a case when the relative ratio between the flame reception light signal and the non-fame reception light signal satisfies a predetermined second relative ratio determination condition or their combinations as the loss report side failure.SELECTED DRAWING: Figure 4

Description

本発明は、トンネル内の火災を監視する火災検知器及びトンネル防災システムに関する。 The present invention relates to a fire detector and a tunnel disaster prevention system for monitoring fires in tunnels.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両等を守るため、火災を監視する火災検知器が設置され、防災受信盤から引き出された信号線に接続されている。 Conventionally, in order to protect people and vehicles from fire accidents that occur in tunnels, fire detectors are installed in tunnels such as automobile roads to monitor fires, and are connected to signal lines drawn from disaster prevention receivers. ing.

火災検知器は左右の両方向に検知エリアを持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detectors have detection areas in both the left and right directions, and along the longitudinal direction of the tunnel, the detection areas of the fire detectors placed adjacent to each other complementarily overlap, for example, at intervals of 25 m or 50 m. continuously spaced apart.

火災検知器は、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出するものであり、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射に伴い発生する赤外線波長帯域を含む複数の波長帯域における放射線強度を検出して、それら複数の波長帯域における検出値の相対比により炎の有無を検出する2波長式、3波長式等の火災検知器が知られている。 Fire detectors detect the presence or absence of flames by detecting the radiation energy generated by flaming combustion. 2-wavelength type, 3-wavelength type, etc. that detect the presence or absence of flame by detecting the radiation intensity in multiple wavelength bands including the infrared wavelength band generated along with the resonance radiation, and detecting the presence or absence of flame based on the relative ratio of the detected values in these multiple wavelength bands. of fire detectors are known.

例えば、2波長式の火災検知器にあっては、4.5μm付近の炎波長帯域と、例えば5.0μm付近の非炎波長帯域における各々の放射線エネルギーを光学波長バンドパスフィルタにより選択透過させて、4.5μm帯の炎検出センサと5.0μm帯の非炎検出センサにより放射線エネルギーを受光し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、4.5μm帯の炎受光信号レベル(炎受光値)と5.0μm帯の波長帯域の非炎受光信号レベル(非炎受光値)の相対比をとり、所定の閾値と比較することにより炎の有無を判定する。 For example, in a two-wavelength type fire detector, an optical wavelength bandpass filter selectively transmits radiation energy in a flame wavelength band around 4.5 μm and a non-flame wavelength band around 5.0 μm, for example. Radiation energy is received by a 4.5 μm band flame detection sensor and a 5.0 μm band non-flame detection sensor, photoelectrically converted, and subjected to predetermined processing such as amplification to generate an electrical signal corresponding to the amount of energy (hereinafter referred to as , referred to as a "light receiving signal"), and the relative ratio of the flame light receiving signal level (flame light receiving value) in the 4.5 µm band and the non-flame light receiving signal level (non-flame light receiving value) in the 5.0 µm band wavelength band is determined. The presence or absence of flame is determined by comparing with the threshold value of .

また、火災検知器は透光性窓を介してトンネル内で発生する火災炎からの放射線エネルギー、たとえば赤外線エネルギーを監視しており、炎の監視機能を維持するために、透光性窓の汚れを監視するための汚れ試験や受光センサの感度を点検するための感度試験を行っている。 Fire detectors also monitor radiation energy, such as infrared energy, from fire flames generated in tunnels through translucent windows. We are conducting a contamination test to monitor and a sensitivity test to check the sensitivity of the light-receiving sensor.

透光性窓の汚れ試験は、防災受信盤から定期的に送信される試験信号を受信した場合に、火災検知器に設けられた試験光源から試験光を透光性窓に入射し、受光センサで受光して減光率を求め、例えば減光率が所定の汚れ閾値を超えた場合に汚れ異常信号を防災受信盤に送信して汚れ警報を出力させている。また、火災検知器から減光率データを取得して防災受信盤側で閾値と比較して汚れを判断して汚れ警報を出力するシステムも知られている。 In the contamination test of the translucent window, when a test signal periodically transmitted from the disaster prevention receiving panel is received, the test light from the test light source provided in the fire detector is incident on the translucent window, and the light-receiving sensor to obtain the light attenuation rate. For example, when the light attenuation rate exceeds a predetermined dirt threshold value, a dirt abnormality signal is transmitted to the disaster prevention receiving panel to output a dirt alarm. There is also known a system that acquires light reduction rate data from a fire detector, compares it with a threshold value on the disaster prevention receiver side, judges dirtiness, and outputs a dirt alarm.

受光センサの感度試験は、防災受信盤から定期的に送信される試験信号を受信した場合に、別に内蔵した試験光源から炎を模擬した試験光を試験用光源から透光性窓を介さずに受光センサに入射して受光感度を検出し、受光感度が所定の閾値感度に低下するまでは、検出感度の逆数となる補正値で受光値を補正し、検出感度が所定の感度閾値に低下して補正限界となった場合には、受光素子の故障信号を防災受信盤に送信してセンサ故障警報を出力させている。 In the sensitivity test of the light receiving sensor, when a test signal periodically transmitted from the disaster prevention receiver board is received, a test light simulating a flame is emitted from a separate built-in test light source without passing through the translucent window. The light is incident on the light-receiving sensor and the light-receiving sensitivity is detected. Until the light-receiving sensitivity decreases to a predetermined threshold sensitivity, the light-receiving value is corrected with a correction value that is the reciprocal of the detection sensitivity, and the detection sensitivity decreases to the predetermined sensitivity threshold. When the correction limit is reached, a failure signal of the light-receiving element is transmitted to the disaster prevention receiving panel to output a sensor failure alarm.

また、受光センサの感度試験及び透光性窓の汚れ試験にあっては、受光信号レベル(受光値)が予め定めた上限閾値から下限閾値の間にあれば正常、そうでなければ故障予兆候補とし、更に、火災判断に用いる炎受光信号レベルと非炎受光信号レベルの相対比については、予め定めた上限閾値から下限閾値の間にあれば正常、そうでなければ故障予兆候補とし、所定の蓄積条件(例えば故障予兆候補の所定発生回数等)を充足したときに故障の可能性が高いことを示す故障予兆と判断して故障予兆信号を防災受信盤に送信するようにしている。 In the sensitivity test of the light-receiving sensor and the contamination test of the light-transmitting window, if the light-receiving signal level (light-receiving value) is between the predetermined upper threshold and the lower threshold, it is normal. Further, regarding the relative ratio of the flame received light signal level and the non-flame received light signal level used for fire judgment, if it is between a predetermined upper limit threshold and a lower limit threshold, it is normal, otherwise it is a failure sign candidate. When a storage condition (for example, a predetermined number of occurrences of failure predictor candidates, etc.) is satisfied, it is judged as a failure predictor indicating that there is a high possibility of failure, and a failure predictor signal is transmitted to the disaster prevention receiving panel.

特開2002-246962号公報JP-A-2002-246962 特開2016-128796号公報JP 2016-128796 A 特開2018-169893号公報JP 2018-169893 A 特開2003-067861号公報JP-A-2003-067861 特開2002-197580号公報Japanese Patent Application Laid-Open No. 2002-197580 特開2002-042262号公報Japanese Patent Application Laid-Open No. 2002-042262 特開平07-262464号公報JP-A-07-262464

ところで、従来の火災検知器にあっては、例えば運用期間が長くなった場合、感度試験によるセンサ故障や汚れ試験による汚れ異常が検出されることなく正常に運用されていると思われる状態で、突然、火災検知器が火災信号を出力して防災受信盤から非火災報が出される事態が発生する可能性があり、このような場合、それが非火災報であることを確認するまでは、警報表示板設備などにより進入禁止警報を行って車両のトンネル通行を禁止し、担当者が現場に出向いて確認する必要があり、トンネル通行を再開するまでに手間と時間がかかり、トンネル防災システムの信頼性を確保できないおそれがある。 By the way, in the case of a conventional fire detector, for example, when the operation period is long, it is assumed that it is operating normally without sensor failure due to the sensitivity test or contamination abnormality due to the contamination test. There is a possibility that the fire detector will suddenly output a fire signal and a non-fire alarm will be issued from the disaster prevention receiver panel. Vehicles are prohibited from passing through the tunnel by issuing warnings using warning display boards, etc., and the person in charge must go to the site to check the situation. Reliability may not be ensured.

また、従来の試験に伴う故障判断にあっては、炎受光信号と非炎受光信号の信号レベルや両者の相対比が上限閾値と下限閾値の間の範囲を外れた場合に一律に故障予兆候補と判断しているが、炎受光信号レベルや非炎受光信号レベルが故障等により上限閾値を上回ったときと下限閾値を下回ったときでは火災判断に対する影響は異なったものとなることが想定される。 In addition, in the failure judgment associated with the conventional test, when the signal level of the flame received signal and the non-flame received signal or the relative ratio of the two is out of the range between the upper limit threshold and the lower limit threshold, the failure sign candidate However, it is assumed that the fire judgment will be affected differently when the flame reception signal level or non-flame reception signal level exceeds the upper threshold due to a failure or the like and when it falls below the lower threshold. .

例えば、炎受光信号レベルが正常範囲にあるが、故障等により非炎受光信号レベルが感度低下して下限閾値を下回った場合には誤って火災と判断される可能性があり、また、非災受光信号レベルが正常範囲にあるが、炎受光信号レベルが故障等により感度低下して下限閾値を下回った場合には火災であっても火災と判断されない可能性がある。 For example, if the flame reception signal level is within the normal range, but the non-flame reception signal level falls below the lower limit threshold due to a malfunction, it may be mistakenly determined as a fire. Although the received light signal level is within the normal range, if the flame received signal level falls below the lower limit threshold due to a decrease in sensitivity due to a failure or the like, there is a possibility that even if there is a fire, it will not be determined as a fire.

しかしながら、従来の故障判断にあっては、上限閾値と下限閾値の間の範囲を外れた場合に一律に故障予兆候補と判断しており、火災判断に対する影響は考慮されておらず、故障状況に応じたきめ細かな対処はなされていなかった。 However, in the conventional failure judgment, when it is out of the range between the upper threshold and the lower threshold, it is uniformly judged as a failure sign candidate, and the influence on fire judgment is not taken into consideration. No detailed measures were taken.

本発明は、定期的に行われる試験で得られた受光信号レベルの異常から火災判断に対する故障の影響を識別判断して非火災報防止等についてきめ細かく適切な対処を可能とする火災検知器及びトンネル防災システムを提供することを目的とする。 The present invention is a fire detector and a tunnel that can discriminate and judge the influence of a failure on fire judgment from an abnormality in the received light signal level obtained in a test that is performed periodically, and make detailed and appropriate countermeasures such as prevention of non-fire alarms. The purpose is to provide a disaster prevention system.

(火災検知器)
本発明は、トンネル内の火災を監視する火災検知器に於いて、
所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部が設けられたことを特徴とする。
(fire detector)
The present invention relates to a fire detector for monitoring fires in tunnels,
It is characterized by providing a fault diagnosis section for distinguishing and judging between a fault on the false alarm side and a fault on the false alarm side according to a predetermined test result.

ここで、誤報側故障とは、火災(炎)でないにも関わらず火災と誤って判断され易い状態となる異常であり、失報側故障とは、火災(炎)であるにも関わらずこれを検知し難い状態となる異常である。 Here, the erroneous-side failure is an abnormality that is likely to be misidentified as a fire even though it is not a fire (flame). It is an abnormality that makes it difficult to detect

(誤報側故障と失報側故障)
火災検知器は、所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部を備え、
故障診断部は、試験時に得られた炎受光信号と非炎受光信号に基づき、
炎受光信号のレベルが所定の第1上限側判定条件を充足したとき、
非炎受光信号のレベルが所定の第1下限側判定条件を充足したとき、又は、
炎受光信号のレベルと非炎受光信号のレベルとの相対比が所定の第1相対比判定条件を充足したき、
或いは、これらの組み合わせを、誤報側故障と識別し、
炎受光信号のレベルが所定の第2下限側判定条件を充足したとき、
非炎受光信号のレベルが所定の第2上限側判定条件を充足したとき、又は、
炎受光信号のレベルと非炎受光信号のレベルとの相対比が所定の第2相対比判定条件を充足したとき、
或いは、これらの組み合わせを、失報側故障と識別する。
(False alarm side failure and false alarm side failure)
The fire detector has a failure diagnosis unit that distinguishes between a false alarm side failure and a non-report side failure according to a predetermined test result,
Based on the flame light receiving signal and the non-flame light receiving signal obtained during the test, the failure diagnosis unit
When the level of the flame receiving signal satisfies the predetermined first upper limit side judgment condition,
when the level of the non-flame received light signal satisfies a predetermined first lower limit judgment condition, or
When the relative ratio between the level of the flame-received signal and the level of the non-flame-received signal satisfies a predetermined first relative ratio judgment condition,
Alternatively, identifying a combination of these as false alarm side failures,
When the level of the flame receiving signal satisfies the predetermined second lower limit side judgment condition,
when the level of the non-flame received light signal satisfies a predetermined second upper limit side judgment condition, or
When the relative ratio between the level of the flame-receiving signal and the level of the non-flame-receiving signal satisfies a predetermined second relative ratio judgment condition,
Alternatively, these combinations are identified as failures on the failure side.

(誤報側故障による故障予兆信号の送信)
故障診断部は、誤報側故障を識別判断した場合に、防災受信盤に故障予兆信号を送信する。
(Transmission of a failure sign signal due to failure on the false alarm side)
The failure diagnosis unit transmits a failure sign signal to the disaster prevention receiving panel when identifying and judging the failure on the false alarm side.

(故障識別判断に応じた火災判断条件の変更)
火災判断部は、故障診断部で識別した誤報側故障と失報側故障の識別結果に応じ、火災判断条件を変更する。
(Change of fire judgment condition according to failure identification judgment)
The fire determination unit changes the fire determination conditions according to the identification result of the false alarm side failure and the non-report side failure identified by the failure diagnosis unit.

(誤報側故障による蓄積条件の厳格化)
火災判断部は、誤報側故障を識別判断した場合に、火災を判断する所定の蓄積条件を厳格な所定の蓄積条件に変更する。
(Stricter accumulation conditions due to faults on the false alarm side)
The fire judgment unit changes the predetermined accumulation condition for judging a fire to a strict predetermined accumulation condition when identifying and judging the failure on the false alarm side.

(誤報側故障による蓄積条件の緩和)
火災判断部は、失報側故障を識別判断した場合に、火災を判断する所定の蓄積条件を緩和した所定の蓄積条件に変更する。
(Relaxation of accumulation conditions due to faults on the false alarm side)
The fire judgment unit changes the predetermined accumulation condition for judging a fire to a predetermined accumulation condition that is relaxed when it identifies and judges the failure on the side of failure to report.

(故障識別結果の送信)
故障診断部は、試験結果に応じて識別された誤報側故障と失報側故障の識別結果を防災受信盤に送信する。
(Transmission of failure identification results)
The fault diagnosis unit transmits the identification result of the fault on the false alarm side and the fault on the false alarm side identified according to the test result to the disaster prevention receiving panel.

(トンネル防災システム:失報側故障による隣接火災検知器の感度変更)
本発明は、防災受信盤に前述した誤報側故障と失報側故障とを識別判断する故障診断部を備えた火災検知器を接続して火災を監視するトンネル防災システムに於いて、
火災検知器は、隣接した他の火災検知器との間の検知エリアを相互に重複して監視しており、
防災受信盤は、火災検知器による失報側故障の識別結果に応じ、隣接して配置された他の火災検知器の検出感度を高めるように変更することを特徴とする。
(Tunnel disaster prevention system: Sensitivity change of adjacent fire detector due to failure on the unreported side)
The present invention relates to a tunnel disaster prevention system that monitors fires by connecting a fire detector equipped with a failure diagnosis section that distinguishes and judges between false alarm side failures and non-report side failures, to a disaster prevention receiving panel.
The fire detector monitors the detection area mutually overlapping with other adjacent fire detectors,
The disaster prevention receiving panel is characterized in that it is changed so as to increase the detection sensitivity of other fire detectors arranged adjacently according to the identification result of the failure on the side of failure by the fire detector.

(火災検知器の劣化判断)
防災受信盤は、火災検知器で識別された誤報側故障と失報側故障の発生頻度、継続期間、発生回数に基づき、火災検知器の劣化を判断して報知する。
(Deterioration judgment of fire detector)
The disaster prevention receiving panel judges the deterioration of the fire detector based on the occurrence frequency, duration, and number of occurrences of false alarm side failures and non-alarm side failures identified by the fire detectors, and notifies them.

(故障予兆判断)
防災受信盤は、火災検知器で識別された誤報側故障又は失報側故障の識別結果に基づき、火災検知器の故障予兆を判断して報知する。
(Determination of signs of failure)
The disaster prevention receiving panel judges and reports a sign of failure of the fire detector based on the identification result of the failure on the false alarm side or the failure on the unreported side identified by the fire detector.

(故障予兆判断と火災処理)
防災受信盤は、火災検知器の故障予兆を判断した場合、当該火災検知器から送信された火災信号を非火災報と判断して所定の火災処理を行わないようにする。
(Determination of signs of failure and fire treatment)
When the disaster prevention receiver board judges a sign of failure of the fire detector, it judges the fire signal transmitted from the fire detector as non-fire alarm and does not perform the predetermined fire processing.

(故障予兆の移報)
防災受信盤は、火災検知器の故障予兆を判断した場合、遠方監視制御設備に故障予兆移報信号を送信して報知させる。
(Transfer of failure sign)
When the disaster prevention receiving board judges a failure sign of the fire detector, it transmits a failure sign transfer signal to the remote monitoring and control equipment to notify it.

(基本的な効果)
本発明は、トンネル内の火災を監視する火災検知器に於いて、所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部が設けられため、誤報側故障であれば、火災(炎)でないにも関わらず火災と誤って判断されることで非火災報となり易い故障であることが分かることで、緊急度の高い故障と判断して対処することが可能となり、一方、失報側故障であれば、火災(炎)であるにも関わらず火災と判断されにくい故障であることが分かるので、失報を抑制する対処を行うことを可能とし、誤報側か失報側かの故障傾向が識別判断されることで、試験結果に基づく適切な故障判断と対処ができる。
(basic effect)
According to the present invention, a fire detector for monitoring a fire in a tunnel is provided with a failure diagnosis unit that distinguishes between a false alarm side failure and a non-report side failure according to a predetermined test result. If there is, it is possible to determine that a failure is a non-fire alarm due to being misjudged as a fire even though it is not a fire (flame). On the other hand, if it is a failure on the false alarm side, it can be seen that the failure is difficult to be judged as a fire even though it is a fire (flame), so it is possible to take measures to suppress the false alarm. By identifying and judging the failure tendency of the failure alarm side, appropriate failure judgment and countermeasures can be taken based on the test results.

(誤報側故障と失報側故障の効果)
また、火災検知器は、所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部を備え、故障診断部は、試験時に得られた炎受光信号と非炎受光信号に基づき、炎受光信号のレベルが所定の第1上限側判定条件を充足したとき、非炎受光信号のレベルが所定の第1下限側判定条件を充足したとき、又は、炎受光信号のレベルと非炎受光信号のレベルとの相対比が所定の第1相対比判定条件を充足したとき、或いは、これらの組み合わせを、誤報側故障と識別し、炎受光信号のレベルが所定の第2下限側判定条件を充足したとき、非炎受光信号のレベルが所定の第2上限側判定条件を充足したとき、又は、炎受光信号のレベルと非炎受光信号のレベルとの比が所定の第2相対比判定条件を充足したとき、或いは、これらの組み合わせを、失報側故障と識別するようにしたため、試験結果から適切に誤報側故障と失報側故障とを識別判断して対処できる。
(Effect of false alarm failure and false alarm failure)
In addition, the fire detector is provided with a failure diagnostic section that distinguishes between false alarm side failures and non-alarm side failures according to a predetermined test result. Based on the signal, when the level of the received flame signal satisfies a predetermined first upper limit side judgment condition, when the level of the non-flame received signal satisfies a predetermined first lower limit side judgment condition, or when the level of the flame received signal and the level of the non-flame received signal satisfies a predetermined first relative ratio determination condition, or a combination thereof is identified as a false alarm side failure, and the level of the flame received signal is a predetermined second lower limit. When the level of the non-flame light receiving signal satisfies the predetermined second upper limit side judgment condition, or when the ratio of the level of the flame light receiving signal to the level of the non-flame light receiving signal When the relative ratio determination condition is satisfied or a combination thereof is identified as the failure on the false alarm side, the failure on the false alarm side and the failure on the failure alarm side can be appropriately identified and determined from the test results.

(誤報側故障による故障予兆信号の送信による効果)
また、故障診断部は、誤報側故障を識別判断した場合、防災受信盤に故障予兆信号を送信するようにしたため、誤報側故障は火災検知器が誤って火災信号を送信して防災受信盤から非火災報が出されるという緊急度の高い故障となることから、誤報側故障を識別した場合は、速やかに防災受信盤に故障予兆信号を送信して非火災報の防止を可能とする。
(Effect of transmission of failure sign signal due to failure on false alarm side)
In addition, when the failure diagnosis unit identifies and judges a failure on the false alarm side, it sends a failure sign signal to the disaster prevention receiver. Since it is a failure with a high degree of urgency that a non-fire alarm is issued, when a failure on the false alarm side is identified, a failure sign signal is promptly sent to the disaster prevention receiver panel to prevent non-fire alarms.

(故障識別判断に応じた火災判断条件の変更による効果)
また、火災判断部は、故障診断部で識別した誤報側故障と失報側故障の識別結果に応じ、火災判断条件を変更するようにしたため、誤報側故障と失報側故障の識別結果に対応した感度変更等により、受光センサの故障に起因した誤報と失報を抑制可能とし、きめ細かな対処を可能とする。
(Effect of changing fire judgment condition according to failure identification judgment)
In addition, the fire determination unit changes the fire determination conditions according to the identification results of false alarm side failures and false alarm side failures identified by the failure diagnosis unit. By changing the sensitivity, etc., it is possible to suppress false alarms and missing alarms caused by the failure of the light receiving sensor, and to enable fine-tuned countermeasures.

(誤報側故障による蓄積条件の厳格化による効果)
また、火災判断部は、誤報側故障を識別判断した場合に、火災を判断する所定の蓄積条件を厳格な所定の蓄積条件に変更するようにし、例えば、火災判断の蓄積回数を増加させることで蓄積条件を厳格に変更して誤った火災判断による火災信号を送信しにくくし、非火災報を防止可能とする。
(Effect of stricter accumulation conditions due to faults on the false alarm side)
In addition, when the fire judgment unit identifies and judges a failure on the false alarm side, the predetermined accumulation condition for judging a fire is changed to a strict prescribed accumulation condition. To make it difficult to transmit a fire signal due to an erroneous fire judgment by strictly changing accumulation conditions, and to prevent non-fire alarms.

(誤報側故障による蓄積条件の緩和による効果)
また、火災判断部は、失報側故障を識別判断した場合に、火災を判断する所定の蓄積条件を緩和した所定の蓄積条件に変更するようにし、例えば、火災判断の蓄積回数を低下させることで蓄積条件を緩和して火災を検知し易くし、失報を防止可能とする。
(Effect of alleviating accumulation conditions due to faults on the false alarm side)
In addition, when the fire judgment unit identifies and judges the failure on the side of failure, the predetermined accumulation condition for judging a fire is changed to a relaxed prescribed accumulation condition, for example, the number of accumulated fire judgments is reduced. to make it easier to detect a fire by relaxing the accumulation condition, and to prevent misreporting.

(故障識別結果の送信による効果)
また、故障診断部は、試験結果に応じて識別された誤報側故障と失報側故障の識別結果を防災受信盤に送信するようにしたため、防災受信盤は火災検知器で識別判断した誤報側故障と失報側故障を故障情報として受信記憶し、必要に応じて故障情報を読み出して参照又は解析、更には、外部への持ち出し利用を可能とし、防災受信盤側での火災検知器の故障情報に基づく、点検や交換修理等の運用管理を適切に行うことを可能とする。
(Effect of sending fault identification results)
In addition, the failure diagnosis unit sends the identification result of false alarm side failure and non-alarm side failure identified according to the test results to the disaster prevention receiver panel. Receives and stores failures and unreported side failures as failure information, reads out the failure information as needed for reference or analysis, and can be taken outside for use. It is possible to appropriately perform operation management such as inspection and replacement/repair based on information.

(トンネル防災システム:失報側故障による隣接火災検知器の感度変更の効果)
本発明は、防災受信盤に前述した誤報側故障と失報側故障とを識別判断する故障診断部を備えた火災検知器を接続して火災を監視するトンネル防災システムに於いて、火災検知器は、隣接した他の火災検知器との間の検知エリアを相互補完的に重複して監視しており、防災受信盤は、火災検知器による失報側故障を識別判断した場合、隣接して配置された他の火災検知器の検出感度を高めるように変更するようにしたため、失報側故障が識別判断された火災検知器の火災監視を補償して、確実に火災を検知して対処することができる。
(Tunnel disaster prevention system: Effect of changing the sensitivity of the adjacent fire detector due to failure on the unreported side)
The present invention relates to a tunnel disaster prevention system that monitors fires by connecting a fire detector equipped with a failure diagnosis section that distinguishes and judges between false alarm side failures and non-report side failures to the disaster prevention receiving panel. , redundantly monitors the detection area between adjacent fire detectors in a mutually complementary manner. Since it was changed to increase the detection sensitivity of the other fire detectors, it compensates for the fire monitoring of the fire detector that identified and judged the failure on the unreported side, and reliably detects and responds to fires. be able to.

(火災検知器の劣化判断の効果)
また、防災受信盤は、火災検知器で識別された誤報側故障と失報側故障の発生頻度、継続期間、発生回数に基づき、火災検知器の劣化を判断して報知するようにしたため、例えば、誤報側故障の発生頻度、継続期間、発生回数等が高いときには劣化が進んでいると判断して、迅速な点検強化や交換計画の立案等を行うことができ、一方、失報側故障の発生頻度、継続期間、発生回数等が高いときには劣化が進んでいるが、隣接する火災検知器が健全であれば緊急性は比較的低いと判断し、余裕を持って点検強化や交換計画の立案等を行うことができる。
(Effect of Deterioration Judgment of Fire Detector)
In addition, the disaster prevention receiver panel judges and reports the deterioration of the fire detector based on the occurrence frequency, duration, and number of occurrences of false alarm side failures and non-alarm side failures identified by the fire detector. If the occurrence frequency, duration, number of occurrences, etc. of the failure on the false alarm side are high, it can be judged that the deterioration is progressing, and prompt strengthening of inspection and formulation of a replacement plan can be carried out. If the frequency, duration, number of occurrences, etc. are high, the deterioration is progressing, but if the adjacent fire detector is sound, it is judged that the urgency is relatively low, and there is plenty of time to strengthen inspections and formulate a replacement plan. etc.

(故障予兆判断の効果)
また、防災受信盤は、火災検知器で識別された誤報側故障又は失報側故障の識別結果に基づき、火災検知器の故障予兆、即ち信頼性低下を判断して報知するようにし、例えば、誤報側故障は緊急度が高いことから蓄積なしで故障予兆と判断して報知することで、点検強化や交換計画の立案等を可能とし、一方、失報側故障は隣接する火災検知器が健全であれば緊急度が比較的低いことから所定の蓄積条件を充足したときに故障予兆と判断して報知することで、必要な点検や交換計画の立案等を可能とする。
(Effect of Failure Prediction Judgment)
In addition, the disaster prevention receiving panel judges and reports a sign of failure of the fire detector, that is, a decrease in reliability, based on the identification result of the failure on the false alarm side or the failure on the unreported side identified by the fire detector. Since failures on the false alarm side are of high urgency, it is possible to strengthen inspections and formulate replacement plans by judging and reporting failure signs without storing them. If so, since the degree of urgency is relatively low, when a predetermined accumulation condition is satisfied, it is judged to be a sign of failure and notified, thereby making it possible to plan necessary inspections and replacement plans.

(故障予兆判断と火災処理による効果)
また、防災受信盤は、火災検知器の故障予兆を判断した場合、当該火災検知器から送信された火災信号を非火災報と判断して所定の火災処理を行わないようにしたため、火災検知器が誤った火災判断により火災信号を送信して、防災受信盤が火災信号を受信しても例えば車両進入禁止警報を含む火災処理を行わないようにすることで、非火災報による問題を解消する。
(Effects of fault prediction judgment and fire treatment)
In addition, when the disaster prevention receiver board judges a failure sign of a fire detector, it judges the fire signal sent from the fire detector as a non-fire alarm and does not perform the prescribed fire processing. will send a fire signal due to an erroneous fire judgment, and even if the disaster prevention receiver receives the fire signal, it will not perform fire processing, such as a vehicle entry prohibition alarm, to solve the problem caused by non-fire alarms. .

(故障予兆移報の効果)
また、防災受信盤は、火災検知器の故障予兆を判断した場合、遠方監視制御設備に故障予兆移報信号を送信して報知させるようにしたため、例えば、複数のトンネルを監視している遠方監視制御設備側の担当者は、火災検知器の信頼性が低下していることを知ることができ、この傾向から非火災報に発展し得る状態を認識することで、トンネル側の火災検知器による火災の監視状況を適切に把握して、トンネルの運用管理に利用可能とする
(Effect of failure sign transfer)
In addition, when the disaster prevention receiver board detects a failure sign of a fire detector, it sends a failure sign transfer signal to the remote monitoring and control equipment to notify it. The person in charge of the control equipment can know that the reliability of the fire detector is declining. Appropriately grasp the fire monitoring status and use it for tunnel operation management

トンネル防災システムの概要を示した説明図Explanatory diagram showing the outline of the tunnel disaster prevention system 火災検知器の検知エリアを示した説明図Explanatory diagram showing the detection area of the fire detector 火災検知器の外観を示した説明図Explanatory diagram showing the exterior of the fire detector 火災検知器の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the fire detector 火災検知器の制御動作を示したフローチャートFlowchart showing the control operation of the fire detector 図5のステップS1の火災判断処理の詳細を示したフローチャートA flow chart showing the details of the fire judgment process in step S1 of FIG. 図5のステップS5の故障診断処理の詳細を示したフローチャートA flow chart showing the details of the fault diagnosis process in step S5 of FIG. 防災受信盤の機能構成の概略を示したブロック図Block diagram showing the outline of the functional configuration of the disaster prevention receiver

[実施形態の基本的概念]
図1はトンネル防災システムの概要を示した説明図であり、図2は火災検知器の検知エリアを示した説明図である。本実施形態の基本的な概念は、防災受信盤10から上り線トンネル1a及び下り線トンネル1b内に引き出された信号線14a,14bに接続して火災を監視する火災検知器12であって、感度試験等の所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部が設けられたものである。
[Basic concept of the embodiment]
FIG. 1 is an explanatory diagram showing the outline of the tunnel disaster prevention system, and FIG. 2 is an explanatory diagram showing the detection area of the fire detector. The basic concept of this embodiment is a fire detector 12 that monitors fires by connecting to signal lines 14a and 14b drawn out from the disaster prevention receiving panel 10 into the upstream tunnel 1a and the downstream tunnel 1b, A fault diagnosis unit is provided for discriminating and judging whether a fault on the false alarm side or a fault on the false alarm side is determined according to the result of a predetermined test such as a sensitivity test.

故障診断部が識別判断する誤報側故障とは、火災(炎)でないにも関わらず火災と誤って判断され易い状態となる異常であり、また、失報側故障とは、火災(炎)であるにも関わらずこれを検知し難い状態となる異常である。 The false alarm side failure identified by the failure diagnosis unit is an abnormality that is likely to be misidentified as a fire even though it is not a fire (flame). This is an anomaly that is difficult to detect even though it exists.

このため故障診断部は、試験により得られた炎受光信号と非炎受光信号が、所定の上限値以上又は上限値を上回ったとき、非炎受光信号が所定の下限値以下又は下限値を下回ったとき、炎受光信号と非炎受光信号の比が所定の上限値以上又は上限値を上回ったとき、或いは、これらの組み合わせを、誤報側故障と識別判断し、また、故障診断部は、試験により得られた炎受光信号と非炎受光信号が、炎受光信号が所定の下限値以下又は下限値を下回ったとき、非炎受光信号が所定の上限値以上又は上限値を上回ったとき、炎受光信号と非炎受光信号の比が所定の下限値以下又は下限値を下回ったとき、或いは、これらの組み合わせを、失報側故障と識別判断する。 For this reason, when the flame light reception signal and the non-flame light reception signal obtained by the test exceed or exceed a predetermined upper limit value, the failure diagnosis section detects that the non-flame light reception signal is equal to or less than the predetermined lower limit value or falls below the predetermined lower limit value. When the ratio of the flame reception signal and the non-flame reception signal exceeds a predetermined upper limit value or above a predetermined upper limit value, or a combination of these, it is identified as a fault on the false alarm side, and the fault diagnosis section performs a test. When the flame light receiving signal and the non-flame light receiving signal obtained by the above are equal to or less than the predetermined lower limit value or less than the lower limit value, when the non-flame light receiving signal exceeds or exceed the predetermined upper limit value, the flame When the ratio of the received light signal and the non-flame received signal is equal to or less than a predetermined lower limit value, or falls below the lower limit value, or a combination thereof, it is discriminated as failure on the failure alarm side.

このような故障診断が行われることで、誤報側故障であれば、火災(炎)でないにも関わらず火災と誤って判断され非火災報となり易い故障であることが分かることで、緊急度の高い故障と判断して対処することが可能となり、一方、失報側故障であれば、火災(炎)であるにも関わらず火災と判断されにくい故障であることが分かるので、失報を抑制する対処を行うことを可能とし、誤報側か失報側かの故障傾向が識別判断されることで、試験結果に基づく適切な対処ができることになる。
以下、詳細に説明する。
By performing this kind of failure diagnosis, it is possible to know that a failure on the false alarm side is likely to be misjudged as a fire even though it is not a fire (flame), and is likely to result in a non-fire alarm. On the other hand, if it is a failure on the non-alert side, it can be understood that it is a failure that is difficult to judge as a fire even though it is a fire (flame), so it is possible to suppress the failure. It is possible to take appropriate measures based on the test results by distinguishing and judging whether the failure tendency is on the false alarm side or on the unreported side.
A detailed description will be given below.

[トンネル防災システムの概要]
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築されている。上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば25メートル又は50メートル間隔で火災検知器12が設置されている。
[Overview of Tunnel Disaster Prevention System]
As shown in FIG. 1, an up-line tunnel 1a and a down-line tunnel 1b are constructed as tunnels of a motorway. Inside the up line tunnel 1a and the down line tunnel 1b, fire detectors 12 are installed at intervals of, for example, 25 meters or 50 meters along the walls in the longitudinal direction of the tunnels.

火災検知器12は2組の火災検知部を備えることで、図2に示すように、トンネル長手方向上り側および下り側の両方向に検知エリア15を持ち、トンネルの長手方向に沿って、隣接して配置される火災検知器12との検知エリア15が例えば右眼13Rと左眼13Lで相互補完的に重なるように連続的に配置され、検知エリア15内で起きた火災による炎からの赤外線を観測して火災を検知する。 The fire detector 12 is provided with two sets of fire detection units, so that, as shown in FIG. The detection area 15 with the fire detector 12 arranged in each is arranged continuously so that the right eye 13R and the left eye 13L overlap each other in a mutually complementary manner, and the infrared rays from the flame caused by the fire occurring in the detection area 15 are detected. Fires are detected by observation.

また、上り線トンネル1aと下り線トンネル1bには、非常用施設として、火災通報のために手動通報装置や非常電話が設けられ、火災の消火や延焼防止のために消火栓装置が設けられ、更にトンネル躯体やダクト内を火災から防護するために水噴霧ヘッドから消火用水を散水させる水噴霧設備などが設置されるが、図示を省略している。 In addition, in the inbound line tunnel 1a and the outbound line tunnel 1b, as emergency facilities, a manual reporting device and an emergency telephone are provided for fire reporting, and a fire hydrant device is provided for extinguishing the fire and preventing the spread of the fire. In order to protect the inside of the tunnel frame and ducts from fire, a water spraying system for spraying fire extinguishing water from a water spraying head is installed, but illustration is omitted.

防災受信盤10からは上り線トンネル1aと下り線トンネル1bに対し電源線を含む信号線14a,14bを引き出して火災検知器12が接続されており、火災検知器12には固有のアドレスが設定されている。 Signal lines 14a and 14b, including power lines, are led out from the disaster prevention receiving panel 10 to the upstream tunnel 1a and downstream tunnel 1b, and a fire detector 12 is connected, and a unique address is set to the fire detector 12. It is

また、防災受信盤10に対しては、消火ポンプ設備16、ダクト用の冷却ポンプ設備18、IG子局設備20、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30等が設けられており、火災検知器12と防災受信盤10は信号線14a,14bを介して所謂R型伝送で通信する。 In addition, for the disaster prevention receiving panel 10, fire pump equipment 16, duct cooling pump equipment 18, IG slave station equipment 20, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 The fire detector 12 and the disaster prevention receiving panel 10 communicate with each other through signal lines 14a and 14b by so-called R-type transmission.

ここで、IG子局設備20は、防災受信盤10と外部に設けた上位設備である遠方監視制御設備32とネットワークを経由して結ぶ通信設備である。 Here, the IG slave station equipment 20 is communication equipment that connects the disaster prevention receiving panel 10 and the remote monitoring control equipment 32, which is an externally provided upper equipment, via a network.

換気設備22は、トンネル内の天井側に設置されているジェットファンの運転による高い吹き出し風速によってトンネル長手方向に換気の流れを起こす設備である。 The ventilation equipment 22 is equipment that causes a ventilation flow in the longitudinal direction of the tunnel by operating a jet fan installed on the ceiling side of the tunnel at a high blowing air velocity.

警報表示板設備24は、トンネル内の利用者に対して、火災に伴う進入禁止警報等のトンネル内の異常を、電光表示板に表示して知らせる設備である。ラジオ再放送設備26は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。テレビ監視設備28は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備30はトンネル内の照明機器を駆動して管理する設備である。 The warning display board facility 24 is a facility for notifying users in the tunnel of an abnormality in the tunnel, such as an entry prohibition warning due to a fire, by displaying it on an electric display board. The radio rebroadcast facility 26 is a facility for enabling drivers and others in tunnels to receive information from road administrators. The television monitoring equipment 28 is equipment for checking the scale and position of the fire, operating the water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance. The lighting equipment 30 is equipment for driving and managing the lighting equipment in the tunnel.

[火災検知器]
(火災検知器の外観)
図3は火災検知器の外観を示した説明図、図4は火災検知器の機能構成の概略を示したブロック図である。
[Fire detector]
(Appearance of fire detector)
FIG. 3 is an explanatory diagram showing the appearance of the fire detector, and FIG. 4 is a block diagram showing an outline of the functional configuration of the fire detector.

図3に示すように、火災検知器12は、筐体46の上部(検知器カバー)に設けられたセンサ収納部48に、左右に分けて2組の透光性窓50R,50Lが設けられ、透光性窓50R,50L内の各々に、受光センサを備えた火災検知部が収容配置されている。また、透光性窓50R,50Lの近傍の、受光センサを見通せる位置に、透光性窓50R,50Lの汚れ試験に使用される外部試験光源を収納した2組の試験光源用透光窓52R,52Lが設けられている。 As shown in FIG. 3, the fire detector 12 is provided with two pairs of translucent windows 50R and 50L divided into left and right in a sensor housing portion 48 provided in the upper portion (detector cover) of a housing 46. , and light-transmissive windows 50R and 50L, respectively, housed and arranged fire detectors having light-receiving sensors. In addition, two sets of test light source translucent windows 52R each containing an external test light source used for stain test of the translucent windows 50R and 50L at a position near the translucent windows 50R and 50L, where the light receiving sensors can be seen. , 52L are provided.

以下の説明では、透光性窓50Rを右眼透光性窓50Rといい、透光性窓50Lを左眼透光性窓50Lという場合がある。 In the following description, the translucent window 50R may be called the right-eye translucent window 50R, and the translucent window 50L may be called the left-eye translucent window 50L.

(火災検知器の概略構成)
図4に示すように、火災検知器12には、検知器制御部54、伝送部56、電源部58、左右2組の火災検知部60R,60L、試験発光駆動部72、感度試験に用いられる内部試験光源74R,75Rと内部試験光源74L,75L、汚れ試験に用いられる外部試験光源76R,76Lが設けられている。以下の説明では、火災検知部60Rを右眼火災検知部60Rといい、火災検知部60Lを左眼火災検知部60Lという場合がある。
(Schematic configuration of fire detector)
As shown in FIG. 4, the fire detector 12 includes a detector control section 54, a transmission section 56, a power supply section 58, two pairs of left and right fire detection sections 60R and 60L, a test light emission drive section 72, and a sensitivity test. There are provided internal test light sources 74R, 75R, internal test light sources 74L, 75L, and external test light sources 76R, 76L used for soil testing. In the following description, the fire detection section 60R may be referred to as the right eye fire detection section 60R, and the fire detection section 60L may be referred to as the left eye fire detection section 60L.

検知器制御部54は、例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等が使用される。 The detector control unit 54 is a function realized by executing a program, for example, and a computer circuit or the like having a CPU, a memory, various input/output ports, etc. is used as hardware.

伝送部56は信号線14の伝送線Sと伝送コモン線SCにより図1に示した防災受信盤10の伝送部36に接続され、各種信号がR型伝送により送受信される。 The transmission unit 56 is connected to the transmission unit 36 of the disaster prevention receiving panel 10 shown in FIG. 1 by the transmission line S of the signal line 14 and the transmission common line SC, and various signals are transmitted and received by R-type transmission.

電源部58は信号線14に含まれる電源線Bと電源コモン線BCにより図1に示した防災受信盤10から電源供給を受け、例えば検知器制御部54、伝送部56、左右2組の火災検知部60R,60L、試験発光駆動部72に対し所定の電源電圧が供給されている。 The power supply unit 58 receives power from the disaster prevention receiving panel 10 shown in FIG. A predetermined power supply voltage is supplied to the detection units 60R and 60L and the test light emission driving unit 72. FIG.

試験発光駆動部72には、感度試験に使用する内部試験光源74R,75R,74L,75Lが接続され、また、汚れ試験に使用する外部試験光源76R,76Lが接続され、それぞれ発光素子としてクリプトンランプが設けられている。 Internal test light sources 74R, 75R, 74L, and 75L used for sensitivity tests are connected to the test light emission driving section 72, and external test light sources 76R and 76L used for contamination tests are connected. is provided.

(火災検知部)
火災検知部60R,60Lは、炎検出センサ64、非炎検出センサ68、増幅処理部66,70を備える。例えば右眼火災検知部60Rを例にとると、炎検出センサ64と非炎検出センサ68の前面には検知器カバーに設けた右眼透光性窓50Rが配置されており、右眼透光性窓50Rを介して外部の検知エリアからの赤外線エネルギーが炎検出センサ64と非炎検出センサ68に入射されている。
(Fire detector)
The fire detection units 60R, 60L include a flame detection sensor 64, a non-flame detection sensor 68, and amplification processing units 66,70. Taking the right-eye fire detection unit 60R as an example, a right-eye translucent window 50R provided in the detector cover is arranged in front of the flame detection sensor 64 and the non-flame detection sensor 68. Infrared energy from an external detection area is incident on the flame detection sensor 64 and the non-flame detection sensor 68 through the thermal window 50R.

右眼火災検知部60Rは、例えば2波長式の炎検知により火災を監視している。炎検出センサ64は、右眼透光性窓50Rを介して入射した赤外線エネルギーの中から、炎に特有なCO2の共鳴放射帯である4.4~4.5μmの波長帯域を光学波長バンドパスフィルタにより選択透過させて、受光センサ素子により該赤外線線のエネルギーを検出して光電変換したうえで、増幅処理部66により増幅等所定の加工を施してエネルギー量に対応する炎受光信号E1Rにして検知器制御部54へ出力する。ここで、炎検出センサ64と増幅処理部66は炎受光部を構成している。 The right eye fire detection unit 60R monitors fire by, for example, two-wavelength flame detection. The flame detection sensor 64 detects the wavelength band of 4.4 to 4.5 μm, which is the resonance radiation band of CO2 peculiar to flame, from the infrared energy incident through the right-eye translucent window 50R as an optical wavelength bandpass. It is selectively transmitted by a filter, the energy of the infrared ray is detected by a light receiving sensor element, and photoelectrically converted. Output to the detector control unit 54 . Here, the flame detection sensor 64 and the amplification processor 66 constitute a flame receiver.

非炎検出センサ68は、左眼透光性窓50Lを介して入射した赤外線エネルギーの中から、5~6μmの波長帯域を光学波長バンドパスフィルタにより選択透過させて、受光センサ素子により該赤外線のエネルギーを検出して光電変換したうえで、増幅処理部70により増幅等所定の加工を施してエネルギー量に対応する非炎受光信号E2Rにして検知器制御部54へ出力する。ここで、非炎検出センサ68と増幅処理部70は非炎受光部を構成している。 The non-flame detection sensor 68 selectively transmits a wavelength band of 5 to 6 μm from the infrared energy incident through the left-eye translucent window 50L by an optical wavelength band-pass filter, and detects the infrared rays by a light receiving sensor element. After the energy is detected and photoelectrically converted, the signal is subjected to predetermined processing such as amplification by the amplification processing unit 70 and output to the detector control unit 54 as a non-flame received signal E2R corresponding to the amount of energy. Here, the non-flame detection sensor 68 and the amplification processing section 70 constitute a non-flame light receiving section.

増幅処理部66,70には、プリアンプ、炎のゆらぎ周波数帯域を選択通過させるフィルタ及びパワーアンプ等が設けられている。 The amplification processing units 66 and 70 are provided with a preamplifier, a filter for selectively passing the flame fluctuation frequency band, a power amplifier, and the like.

(火災判断)
検知器制御部54には、プログラムの実行により実現される機能として、火災判断部80の機能が設けられている。火災判断部80は、例えば、右眼火災検知部60Rの増幅処理部66,70から出力された炎受光信号E1Rと非炎受光信号E2Rの受光値(受光信号レベル)の相対比E1R/E2Rをとり、所定の閾値と比較することにより炎の有無を判定し、炎有りの判定により火災を検知した場合には、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号として火災検知情報を設定した火災信号を防災受信盤10へ送信させる制御を行う。なお、以下の説明では、炎受光信号E1Rの信号レベルを炎受光値E1R、非炎受光信号E2Rの信号レベルを非炎受光値E2Rという場合がある。各レベルは、例えば受光信号の所定時間(例えば2秒間)ごとの積分値等としても良い。左眼火災検知部60Lにおいても同様に行う。
(fire judgment)
The detector control section 54 is provided with the function of the fire determination section 80 as a function realized by executing the program. The fire judgment unit 80 calculates, for example, the relative ratio E1R/E2R of the light reception values (light reception signal levels) of the flame light reception signal E1R and the non-flame light reception signal E2R output from the amplification processing units 66 and 70 of the right eye fire detection unit 60R. Then, the presence or absence of flame is determined by comparing it with a predetermined threshold value, and when the fire is detected by determining the presence of flame, the transmission unit 56 is instructed to respond to the call signal matching the self-address as a response signal to the fire. Control is performed to transmit a fire signal in which detection information is set to the disaster prevention receiving panel 10 . In the following description, the signal level of the flame light receiving signal E1R may be referred to as the flame light receiving value E1R, and the signal level of the non-flame light receiving signal E2R may be referred to as the non-flame light receiving value E2R. Each level may be, for example, an integral value of the received light signal every predetermined time (for example, two seconds). The left eye fire detection section 60L performs similarly.

火災炎からの赤外線は、4.4~4.5μmの帯域が強く放射され、これに対し5~6μmの帯域の放射が比較的弱く、一方、車輛や人体の通過等に伴う性外線放射はその反対であることが知られており、上述のように構成することで火災を識別検知するようにしている。 Infrared radiation from fire flames is strongly radiated in the 4.4 to 4.5 μm band, and relatively weak in the 5 to 6 μm band. It is known to be the opposite, and the configuration described above is used to identify and detect fires.

(感度試験)
検知器制御部54には、プログラムの実行により実現される機能として、感度試験部82が設けられている。感度試験部82は試験部として機能する。感度試験部82は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験信号を受信した場合に動作し、試験発光駆動部72に指示して、内部試験光源74R,75R,74L,75Lを順番に発光駆動して火災検知部60R,60Lの感度試験を行わせる。なお、内部試験光源74R,75Rと内部試験光源74L,75Lは、それぞれ1つの光源で共用しても良い。
(Sensitivity test)
The detector control section 54 is provided with a sensitivity test section 82 as a function realized by executing a program. The sensitivity test section 82 functions as a test section. The sensitivity test section 82 operates when it receives a test signal designating its own address from the disaster prevention receiver board 10 via the transmission section 56, and instructs the test light emission driving section 72 to 74L and 75L are driven to emit light in order to perform the sensitivity test of the fire detection units 60R and 60L. The internal test light sources 74R, 75R and the internal test light sources 74L, 75L may be shared by one light source.

例えば右眼火災検知部60Rにおける炎検出センサ64と増幅処理部66で構成された炎受光部の感度試験を例にとると、試験発光駆動部72は内部試験光源74R,75Rを発光駆動することにより、火災炎を模擬した炎疑似光を炎検出センサ64及び非炎検出センサ68に入射させる。内部試験光源74R,75Rからの炎疑似光は、炎検出センサ64で受光する炎に固有な4.4~4.5μm及び非炎検出センサ68で受光する5~6μmの放射エネルギーを含み、且つ、炎に固有な例えば1~8Hzのゆらぎ周波数をもつ光とされている。 For example, taking the sensitivity test of the flame detection unit composed of the flame detection sensor 64 and the amplification processing unit 66 in the right eye fire detection unit 60R, the test light emission drive unit 72 drives the internal test light sources 74R and 75R to emit light. , the flame imitation light simulating the fire flame is made incident on the flame detection sensor 64 and the non-flame detection sensor 68 . The flame-simulated light from the internal test light sources 74R, 75R includes radiant energy of 4.4-4.5 μm specific to flame received by the flame detection sensor 64 and 5-6 μm radiant energy received by the non-flame detection sensor 68, and , the light having a fluctuation frequency of, for example, 1 to 8 Hz, which is unique to the flame.

感度試験部82は、炎検出センサ64と増幅処理部66で構成された炎受光部と、非炎検出センサ68と増幅処理部70で構成された非炎受光部毎に感度試験を行う。 The sensitivity test section 82 performs a sensitivity test for each of the flame light receiving section composed of the flame detection sensor 64 and the amplification processing section 66 and the non-flame light receiving section composed of the non-flame detection sensor 68 and the amplification processing section 70 .

例えば、炎検出センサ64と増幅処理部66で構成された炎受光部の感度試験は、工場出荷時に初期設定された基準受光値E1Rrefがメモリに記憶されており、異常がなければ感度試験で得られる炎受光値E1Rは基準受光値E1Rrefに略一致しており、炎受光値E1Rを基準受光値E1Rrefで割った検出感度は概ね1となっている。運用期間の経過等に伴い例えば炎検出センサ64の性能が低下し、感度が低下する場合は、炎受光値E1Rは徐々に低下し、例えば検出感度は0.9,0.8,0.7・・・といった値になる。 For example, in the sensitivity test of the flame light receiving unit composed of the flame detection sensor 64 and the amplification processing unit 66, the reference light receiving value E1Rref, which is initially set at the time of shipment from the factory, is stored in the memory. The detected flame received light value E1R substantially matches the reference received light value E1Rref, and the detection sensitivity obtained by dividing the flame received light value E1R by the reference received light value E1Rref is approximately 1. If, for example, the performance of the flame detection sensor 64 deteriorates and the sensitivity decreases with the passage of the operating period, the flame light reception value E1R gradually decreases, and the detection sensitivity is 0.9, 0.8, 0.7, for example. It becomes a value such as

このように検出感度が1以下に低下した場合、感度試験部82は感度試験により検出感度を求めると共に、検出感度の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される炎受光値E1Rに補正値を乗算して感度補正を行い、火災判断部80は感度補正された受光値により火災を判断する。 When the detection sensitivity decreases to 1 or less in this way, the sensitivity test unit 82 obtains the detection sensitivity by the sensitivity test, obtains a correction value that is the reciprocal of the detection sensitivity, stores it in the memory, and detects it in the subsequent operation state. The flame light reception value E1R is multiplied by the correction value to perform sensitivity correction, and the fire judgment unit 80 judges a fire based on the sensitivity-corrected light reception value.

また、感度試験部82には、感度補正限界に対応した感度閾値、例えば感度閾値0.5が予め設定されており、感度試験で求められた検出感度が感度閾値以下又は感度閾値を下回った場合にセンサ部64の感度異常による故障と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号にセンサ故障情報を設定して防災受信盤10へ送信させる制御を行う。なお、センサ故障の判断を確実なものとするため、感度試験部82は複数回連続して感度異常による故障と判断される蓄積条件を充足した場合に、センサ故障を設定した応答信号を送信させても良い。なお、故障に伴う異常出力等により検出感度が増加する場合も同様にして補正し、限界に達すると異常とする。 Further, a sensitivity threshold corresponding to the sensitivity correction limit, for example, a sensitivity threshold of 0.5 is preset in the sensitivity test unit 82, and when the detection sensitivity obtained by the sensitivity test is equal to or less than the sensitivity threshold Then, it determines that the sensor unit 64 has malfunctioned due to sensitivity abnormality, and instructs the transmission unit 56 to set the sensor failure information in the response signal to the call signal that matches the own address and transmit it to the disaster prevention receiver panel 10 . In order to make sure that the sensor is faulty, the sensitivity test section 82 sends a response signal indicating that the sensor is faulty when the accumulation condition is satisfied for a plurality of consecutive times to determine that the sensor is faulty due to abnormal sensitivity. can be If the detection sensitivity increases due to an abnormal output or the like due to a failure, it is corrected in the same way, and if it reaches its limit, it is determined to be abnormal.

右眼火災検知部60Rにおける非炎検出センサ68と増幅処理部70で構成された非炎受光部の感度試験も、試験発光駆動部72は内部試験光源75Rを発光駆動することにより、同様にして感度試験が行われる。 The sensitivity test of the non-flame light receiving section composed of the non-flame detection sensor 68 and the amplification processing section 70 in the right eye fire detection section 60R is performed in the same manner by the test light emission driving section 72 driving the internal test light source 75R to emit light. A sensitivity test is performed.

また、左眼火災検知部60Lにおける炎検出センサ64と増幅処理部66で構成される炎受光部と、非炎検出センサ68と増幅処理部70で構成される非炎受光部の感度試験についても、試験発光駆動部72により内部試験光源74L,75Lを発光駆動することにより、同様にして感度試験が行われる。 In addition, the sensitivity test of the flame light receiving section composed of the flame detection sensor 64 and the amplification processing section 66 and the non-flame light receiving section composed of the non-flame detection sensor 68 and the amplification processing section 70 in the left eye fire detection section 60L. A sensitivity test is similarly performed by driving the internal test light sources 74L and 75L to emit light by the test light emission driving section 72. FIG.

更に、感度試験部82は、防災受信盤10からの試験信号を受信して行った右眼火災検知部60R及び左眼火災検知部60Lの感度試験により検出された炎受光値E1R,E1Lと非炎受光値E2R,E2Lを記憶し、故障診断部86による故障の識別判断で使用する。このような感度異常は、検出センサの故障だけではなく、例えば増幅回路部66の回路故障による場合もある。 Furthermore, the sensitivity test section 82 receives the test signal from the disaster prevention receiver panel 10 and performs the sensitivity test of the right eye fire detection section 60R and the left eye fire detection section 60L. The flame light reception values E2R and E2L are stored and used by the fault diagnosis unit 86 to determine fault identification. Such sensitivity abnormality may be caused not only by a failure of the detection sensor but also by a circuit failure of the amplifier circuit section 66, for example.

(汚れ試験)
検知器制御部54には、プログラムの実行により実現される機能として、汚れ試験部84が設けられている。汚れ試験部84も試験部として機能する。汚れ試験部84は、伝送部56を介して防災受信盤10から自身のアドレスを指定した試験信号を受信した場合に動作し、試験発光駆動部72に指示して、外部試験光源76R,76Lを順番に発光駆動して透光性窓50R,50Lの汚れ試験を行わせる。
(dirt test)
The detector control section 54 is provided with a contamination test section 84 as a function realized by executing a program. The contamination test section 84 also functions as a test section. The contamination test section 84 operates when it receives a test signal specifying its own address from the disaster prevention receiver 10 via the transmission section 56, and instructs the test light emission driving section 72 to turn on the external test light sources 76R and 76L. The contamination test of the translucent windows 50R and 50L is performed by sequentially emitting light.

例えば透光性窓50Rの汚れ試験を例にとると、試験発光駆動部72は外部試験光源76Rを発光駆動することにより、火災炎に相当する炎疑似光を、透光性窓50Rを介して炎検出センサ64に入射させる。外部試験光源76Rからの炎疑似光は、炎検出センサ64で受光する炎に固有な4.4~4.5μm及び非炎検出センサ68で受光する5~6μmの放射エネルギーを含み、且つ、炎に固有な例えば1~8Hzのゆらぎ周波数をもつ光とされている。 For example, taking a contamination test on the translucent window 50R, the test light emission drive unit 72 drives the external test light source 76R to emit a flame imitation light corresponding to a fire flame through the translucent window 50R. The light is made incident on the flame detection sensor 64 . The flame-like light from the external test light source 76R includes radiant energy of 4.4-4.5 μm specific to the flame received by the flame detection sensor 64 and 5-6 μm of radiant energy received by the non-flame detection sensor 68, and light having a fluctuation frequency of, for example, 1 to 8 Hz, which is peculiar to .

透光性窓50Rは工場出荷時に汚れはなく、光の透過性能は最大である。この状態で、汚れ試験で得られた炎受光値E1R,E2Rが基準受光値E1Rref,E2Rrefとしてメモリに記憶されており、減光率の演算に利用される。 The translucent window 50R is clean at the time of shipment from the factory and has the maximum light transmission performance. In this state, the flame light reception values E1R and E2R obtained in the dirt test are stored in the memory as the reference light reception values E1Rref and E2Rref, and are used to calculate the light attenuation rate.

システム立上げ時の汚れ試験で得られる炎受光値E1Rと非炎受光値E2Rは基準受光値E1Rref,E2Rrefに略一致しており、基準受光値から炎受光値を減算した値を基準受光値で割った減光率は概ね0となっている。運用期間が経過していくと、透光性窓50Rに汚れが付着し、減光率は、例えば0.1,0.2,0.3・・・いうように徐々に増加していく。 The flame received light value E1R and the non-flame received light value E2R obtained in the contamination test at the time of system start-up approximately match the reference received light values E1Rref and E2Rref. The light attenuation rate obtained by dividing is approximately 0. As the operating period elapses, dirt adheres to the translucent window 50R, and the light attenuation rate gradually increases, for example, 0.1, 0.2, 0.3, and so on.

このように減光率が増加した場合、汚れ試験部84は汚れ試験により減光率を求めると共に、(1-減光率)の逆数となる補正値を求めてメモリに記憶させ、その後の運用状態で検出される受光値(感度試験の補正値により補正された受光値)を補正値により除算して汚れ補正を行い、火災判断部80は汚れ補正された受光値により火災を判断する。なお、運用状態で検出される受光値は、前述した感度試験で得られた補正値および汚れ試験で得られた補正値の両方に基づいて補正されることになる。 When the light attenuation rate increases in this way, the contamination test unit 84 obtains the light attenuation rate by the contamination test and also obtains a correction value that is the reciprocal of (1-light attenuation rate) and stores it in the memory for subsequent operation. Dirt correction is performed by dividing the light reception value detected in the state (light reception value corrected by the correction value of the sensitivity test) by the correction value, and the fire judgment unit 80 judges a fire from the dirt-corrected light reception value. The received light value detected in the operating state is corrected based on both the correction value obtained in the sensitivity test and the correction value obtained in the contamination test.

また、汚れ試験部84には、汚れ補正限界に対応した減光率となる汚れ閾値、例えば汚れ閾値0.2が予め設定されており、感度試験で求められた減光率が汚れ閾値以上又は汚れ閾値を上回った場合に透光性窓50Rの汚れ補正が限界に達した汚れ異常と判断し、伝送部56に指示して、自己アドレスに一致する呼出信号に対する応答信号に汚れ異常情報を設定して防災受信盤10へ送信させる制御を行う。左眼火災検知部60Lにおいても同様に行う。 Further, a dirt threshold, for example, a dirt threshold of 0.2, which is a light attenuation rate corresponding to the dirt correction limit, is set in advance in the dirt test section 84. When the contamination threshold is exceeded, it is determined that the contamination correction of the light-transmitting window 50R has reached its limit, and the transmission unit 56 is instructed to set the contamination abnormality information in the response signal to the call signal matching the own address. and control to transmit to the disaster prevention receiving board 10. The left eye fire detection section 60L performs similarly.

更に、汚れ試験部84は、防災受信盤10からの試験信号を受信して行った透光性窓50R,50Lの汚れ試験により検出された炎受光値E1と非炎受光値E2を記憶しており、感度補正部82による感度補正に使用される。 Further, the contamination test unit 84 stores the flame light reception value E1 and the non-flame light reception value E2 detected by the contamination test of the translucent windows 50R and 50L, which is performed by receiving the test signal from the disaster prevention receiver panel 10. and is used for sensitivity correction by the sensitivity correction unit 82 .

汚れ閾値よりも減光率が低い例えば0.3を汚れ予告閾値として設定し、汚れ試験時の減光率が汚れ予告閾値の0.3に達しており、しかし汚れ閾値の0.2に達してにいないときには、汚れ補正限界に近づいていることを示す汚れ予告の異常情報を防災受信盤10に送信するようにしても良い。ここで、減光率が汚れ閾値0.2に達したときの汚れ異常、及び、減光率が汚れ予告閾値0.3に達したときの汚れ予告の異常情報は、各々、故障診断情報の一つとすることができる。 For example, 0.3, which is lower than the contamination threshold, is set as the contamination warning threshold. When it is not ready, it is also possible to transmit to the disaster prevention receiving panel 10 the abnormality information of the contamination advance notice indicating that the contamination correction limit is approaching. Here, the dirt abnormality when the light attenuation rate reaches the dirt threshold value of 0.2 and the dirt warning abnormality information when the light attenuation rate reaches the dirt warning threshold value of 0.3 are each included in the failure diagnosis information. can be one.

(故障診断部)
検知器制御部54には、プログラムの実行により実現される機能として、故障診断部86の機能が設けられている。
(Failure Diagnosis Department)
The detector control section 54 is provided with a function of a fault diagnosis section 86 as a function realized by executing a program.

故障診断部86は、例えば、感度試験部82が防災受信盤10からの試験信号を受信して行った例えば右眼火災検知部60Rの感度試験により検出して記憶している炎受光値E1Rと非炎受光値E2Rを読出し、炎受光値E1Rと非炎受光値E2Rの各々について、誤報側故障か失報側故障かを識別判断する。 The failure diagnosis unit 86 detects and stores the flame light reception value E1R, which is detected and stored by, for example, the sensitivity test of the right eye fire detection unit 60R performed by the sensitivity test unit 82 after receiving the test signal from the disaster prevention receiving panel 10. The non-flame received light value E2R is read out, and it is discriminated whether the flame received light value E1R and the non-flame received light value E2R are faults on the false alarm side or on the false alarm side.

ここで、誤報側故障とは、火災(炎)でないにも関わらず火災と誤って判断され易い状態となる異常であり、失報側故障とは、火災(炎)であるにも関わらず火災が検知され難い状態になる異常である。 Here, the erroneous-side failure is an abnormality in which it is likely to be misidentified as a fire even though it is not a fire (flame). is an abnormality that makes it difficult to detect

故障診断部86による誤報側故障か失報側故障かの識別判断は次のようになる。まず、故障診断部86による誤報側故障の識別判断は、
(A1) 炎受光値E1Rが所定の上限閾値E1Rmax以上又は上限閾値E1Rmaxを上回ったとき、
(A2) 非炎受光値E2Rが所定の下限閾値E2Rmin以下又は下限閾値E2Rminを下回ったとき、
(A3) 炎受光値E1Rと非炎受光値E2Rの相対比RR=(E1R/E2R)が所定の上限閾値RRmax以上又は上限閾値RRmaxを上回ったとき、
(A4) (A1)~(A3)の組み合わせ、
の何れかの場合となる。
The identification judgment of the failure on the false alarm side or the failure on the false alarm side by the failure diagnosis unit 86 is as follows. First, the identification judgment of the fault on the false alarm side by the fault diagnosis unit 86 is as follows.
(A1) When the received flame value E1R exceeds a predetermined upper threshold value E1Rmax or exceeds the upper threshold value E1Rmax,
(A2) When the non-flame received light value E2R is equal to or lower than a predetermined lower threshold value E2Rmin or lower than the lower threshold value E2Rmin,
(A3) When the relative ratio RR=(E1R/E2R) between the flame received light value E1R and the non-flame received light value E2R is greater than or equal to a predetermined upper limit threshold RRmax or exceeds the upper limit threshold RRmax,
(A4) a combination of (A1) to (A3);
in either case.

一方、故障診断部86による失報側故障の識別判断は、
(B1) 炎受光値E1Rが所定の下限閾値E1Rmin以下又は下限閾値E1Rminを下回ったとき、
(B2) 非炎受光値E2Rが所定の上限閾値E2Rmax以上又は上限閾値E2Rmaxを上回ったとき、
(B3) 炎受光値E1Rと非炎受光値E2Rの相対比RR=(E1R/E2R)が所定の下限閾値RRmin以下又は下限閾値RRminを下回ったとき、
(B4) (B1)~(B3)の組み合わせ、
の何れかの場合となる。左眼火災検知部60Lにおいても同様に行う。
On the other hand, the identification judgment of the failure on the failure alarm side by the failure diagnosis unit 86 is as follows.
(B1) When the received flame value E1R is equal to or lower than a predetermined lower threshold value E1Rmin or lower than the lower threshold value E1Rmin,
(B2) When the non-flame received light value E2R exceeds a predetermined upper limit threshold E2Rmax or exceeds the upper limit threshold E2Rmax,
(B3) When the relative ratio RR=(E1R/E2R) between the flame received light value E1R and the non-flame received light value E2R is equal to or less than the predetermined lower limit threshold RRmin or below the lower limit threshold RRmin,
(B4) a combination of (B1) to (B3);
in either case. The left eye fire detection section 60L performs similarly.

また、故障診断部86は、誤報側故障を識別判断した場合、防災受信盤10に故障予兆信号を送信する制御を行う。誤報側故障は火災検知器12が誤って火災信号を送信して防災受信盤10から非火災報が出されるという緊急度の高い故障となることから、誤報側故障を識別判断した場合は、速やかに防災受信盤10に故障予兆信号を送信して非火災報を防止するための処理制御を可能とする。 Further, the failure diagnosis unit 86 performs control to transmit a failure sign signal to the disaster prevention receiving panel 10 when identifying and judging a failure on the false alarm side. A failure on the false alarm side is a failure with a high degree of urgency, in which the fire detector 12 erroneously sends a fire signal and a non-fire alarm is issued from the disaster prevention receiver 10. In addition, a failure predictor signal is transmitted to the disaster prevention receiving panel 10 to enable processing control for preventing non-fire alarms.

また、故障診断部86は、誤報側故障又は失報側故障の識別判断結果を火災判断部80に通知し、火災判断条件を変更させる制御を行う。火災判断部80は、故障診断部86で誤報側故障が識別判断された場合、火災を判断する所定の蓄積条件を厳格な所定の蓄積条件に変更する。例えば、火災判断部80は、火災判断の蓄積回数を増加させることで蓄積条件を厳格にするように変更する。これにより誤報側故障により誤った火災判断により火災信号を送信する可能性が高くなっていることから、蓄積条件を厳格な条件に変更して誤った火災判断による火災信号を送信しにくくし、防災受信盤10による非火災報を防止可能とする。 Further, the failure diagnosis unit 86 notifies the fire determination unit 80 of the identification determination result of the false alarm side failure or the false alarm side failure, and performs control to change the fire determination conditions. When the failure diagnosis unit 86 identifies and determines a failure on the false alarm side, the fire determination unit 80 changes the predetermined accumulation condition for determining fire to a strict predetermined accumulation condition. For example, the fire determination unit 80 increases the number of accumulated fire determinations, thereby changing the accumulation condition to be stricter. As a result, there is a high possibility that a fire signal will be sent due to an erroneous fire judgment due to a fault on the false alarm side. To prevent a non-fire alarm from a receiving panel 10.例文帳に追加

また、火災判断部80は、故障診断部86で失報側故障が識別判断された場合、火災を判断する蓄積条件を緩和した蓄積条件に変更する。例えば、火災判断部80は、火災判断の蓄積回数を低下させることで蓄積条件を緩和するように変更する。これは失報側故障により火災を検知し難くなっていることから、蓄積条件を緩和して火災判断による火災信号を送信し易くし、防災受信盤10による失報を防止可能とする。 In addition, when the failure diagnosis unit 86 identifies and determines a failure on the side of failure, the fire determination unit 80 changes the accumulation condition for judging a fire to a relaxed accumulation condition. For example, the fire judgment unit 80 reduces the accumulated number of fire judgments, thereby relaxing the accumulation condition. Since it is difficult to detect a fire due to a failure on the side of the alarm, the accumulation condition is eased to make it easier to transmit a fire signal based on the fire judgment, thereby preventing the alarm from the disaster prevention receiving panel 10.例文帳に追加

また、故障診断部86は、試験結果に応じて識別された誤報側故障と失報側故障の識別判断結果を防災受信盤10に送信する制御を行う。故障診断部86は識別された誤報側故障と失報側故障の識別判断結果を故障診断情報として記憶しており、例えば、感度試験の終了時に防災受信盤10に送信し、又は、防災受信盤10からの読出し要求を受けたときにログ情報として記憶している故障診断情報を読み出して送信する制御を行う。このとき、あわせて汚れ試験部84による汚れ試験時の受光値をログ情報に含めることができる。 In addition, the failure diagnosis section 86 performs control for transmitting to the disaster prevention receiving panel 10 the result of discrimination between the false alarm side failure and the non-report side failure identified according to the test result. The fault diagnosis unit 86 stores the identification judgment result of the identified fault on the false alarm side and the fault on the false alarm side as fault diagnosis information. When receiving a read request from 10, control is performed to read out and transmit failure diagnosis information stored as log information. At this time, the log information can also include the received light value during the contamination test by the contamination test section 84 .

このため防災受信盤10は、火災検知器12で試験により得られた誤報側故障と失報側故障の識別判断結果となる故障診断情報を受信して記憶し、必要に応じて故障診断情報を読み出して参照又は解析、更には、外部への持ち出し利用を可能とし、防災受信盤10側での火災検知器12の故障情報に基づく、点検や交換修理等の運用管理を適切に行うことを可能とする。 For this reason, the disaster prevention receiving panel 10 receives and stores failure diagnosis information, which is the result of discriminating between false alarm side failures and non-report side failures, obtained by testing with the fire detector 12, and stores the failure diagnosis information as necessary. It is possible to read out and refer to or analyze, and furthermore, take it out and use it outside, and it is possible to appropriately perform operation management such as inspection, replacement and repair based on the failure information of the fire detector 12 on the disaster prevention receiver 10 side. and

また、故障診断部86は、汚れ試験部84が防災受信盤10からの試験信号を受信して行った透光性窓50R,50Lの汚れ試験により検出して記憶している炎受光値E1と非炎受光値E2を読み出し、炎受光値E1と非炎受光値E2の各々について、感度試験の場合と同様に、故障を識別判断し、識別結果に応じた処理制御を行うことができる。なお、汚れに関する異常は失報側故障と同様に扱うことができる。汚れ異常を知った管理者は透光性窓を清掃して対応すれば良く、隣接する火災検知器が健全であればこの清掃時期に猶予を設けることもできる。 In addition, the failure diagnosis section 86 detects and stores the flame light reception value E1 detected by the contamination test of the translucent windows 50R and 50L performed by the contamination test section 84 upon receiving the test signal from the disaster prevention receiver panel 10, and The non-flame received light value E2 can be read out, failures can be identified and determined for each of the flame received light value E1 and the non-flame received light value E2 in the same manner as in the sensitivity test, and processing control can be performed according to the identification result. Abnormalities related to contamination can be handled in the same manner as failures on the failure side. The administrator who has learned of the contamination problem can deal with it by cleaning the translucent window, and if the adjacent fire detector is sound, it is possible to provide a grace period for this cleaning.

[火災検知器の制御動作]
(制御動作の概要)
図5は火災検知器の制御動作を示したフローチャートである。図5に示すように、火災検知器12の検知器制御部54は、ステップS1で火災判断部80による火災判断処理を行っており、ステップS2で防災受信盤10からの試験信号の受信を判別するとステップS3に進み、感度試験部82による感度試験を行い、続いて、ステップS4に進んで汚れ試験部84による汚れ試験を行い、これらの試験が済むとステップS5に進み、試験により得られた受光値に基づき故障診断部86による故障診断処理を行う。
[Control operation of fire detector]
(Outline of control operation)
FIG. 5 is a flow chart showing the control operation of the fire detector. As shown in FIG. 5, the detector control section 54 of the fire detector 12 performs fire judgment processing by the fire judgment section 80 in step S1, and determines reception of the test signal from the disaster prevention receiving panel 10 in step S2. Then, the process proceeds to step S3 to perform a sensitivity test by the sensitivity test section 82, then to step S4 to perform a contamination test by the contamination test section 84. When these tests are completed, the process proceeds to step S5, where the A fault diagnosis process is performed by the fault diagnosis unit 86 based on the received light value.

(火災判断処理)
図6は図5のステップS1の火災判断処理の詳細を示したフローチャートであり、火災判断部80の制御動作となる。
(Fire judgment processing)
FIG. 6 is a flow chart showing the details of the fire judgment processing in step S1 of FIG.

図6に示すように、火災判断部80は、図4の例えば右眼火災検知部60Rを例にとると、ステップS11で増幅処理部66,70から出力された炎受光信号E1Rと非炎受光信号E2RをAD変換により読込み、ステップS12で炎受光信号E1が所定値以上であればステップS13に進み、炎受光信号E1Rと非炎受光信号E2Rの相対比(E1R/E2R)を算出し、所定値以上の場合は第1段階の火災判定を充足したとしてステップS14に進む。 As shown in FIG. 6, the fire determination unit 80, taking the right eye fire detection unit 60R of FIG. The signal E2R is read by AD conversion, and if the flame reception signal E1 is equal to or greater than a predetermined value in step S12, the process proceeds to step S13, where the relative ratio (E1R/E2R) between the flame reception signal E1R and the non-flame reception signal E2R is calculated, and a predetermined value is obtained. If it is equal to or greater than the value, it is determined that the fire determination in the first stage is satisfied and the process proceeds to step S14.

続いて、火災判断部80はステップS14で炎受光信号E1Rの高速フーリエ変換(FFT演算)を行い、ステップS15で例えば8Hz以下の低周波側と8~16Hzの高周波側の成分の比が所定値以上であれば第2段階の火災判定を充足したとしてステップS16に進み、所定の蓄積条件としてステップS11~S15による第1段階及び第2段階の火災判定が所定の蓄積回数だけ連続して成立したかの蓄積条件の通過の有無を判定する。 Subsequently, in step S14, the fire determination unit 80 performs a fast Fourier transform (FFT operation) on the received flame signal E1R. If the above conditions are met, the process advances to step S16 assuming that the fire determination of the second stage is satisfied, and the fire determination of the first stage and the second stage by steps S11 to S15 as a predetermined accumulation condition has been established consecutively for a predetermined number of times of accumulation. It is determined whether or not the accumulation condition is passed.

続いて、火災判断部80は、ステップS16で蓄積条件としての蓄積回数を充足することを判断すると、ステップS17に進んで火災を断定し、火災信号を防災受信盤10に送信して火災処理を行わせる。続いて、ステップS18で防災受信盤10からの火災復旧信号の受信を判別するとステップS19で火災蓄積回数をクリアして復旧し、初期のステップS11に戻る。左眼火災検知部60Lについても並行して同様に行われる。 Subsequently, when the fire determination unit 80 determines in step S16 that the number of times of accumulation as the accumulation condition is satisfied, the process proceeds to step S17 to determine a fire, transmit a fire signal to the disaster prevention receiving panel 10, and perform fire processing. let it happen Subsequently, when it is determined in step S18 that a fire restoration signal has been received from the disaster prevention receiving panel 10, the number of accumulated fires is cleared in step S19 for restoration, and the process returns to the initial step S11. The left eye fire detection unit 60L is similarly performed in parallel.

(故障診断処理)
図7は図5のステップS5の故障診断処理の詳細を示したフローチャートであり、故障診断部86の制御動作となる。
(Failure diagnosis processing)
FIG. 7 is a flow chart showing the details of the failure diagnosis processing in step S5 of FIG.

図7に示すように、故障診断部86は、右眼火災検知部60Rを例にとると、ステップS21で例えば感度試験により検出記憶された試験結果しての炎受光値E1Rと非炎受光値E2Rを読込み、ステップS22で炎受光値E1Rが正常範囲(上限閾値E1Rmaxと下限閾値E1Rminの間の範囲)か否か判別し、正常範囲にないときはステップS23に進み、上限閾値E1Rmax以上であればステップS31に進んで誤報側故障と識別する。また、故障診断部86は、ステップS23で炎受光値E1Rが上限閾値E1Rmax以上でないときはステップS24に進み、炎受光値E1が下限閾値E1Rmin以下であればステップS32に進み、失報側故障と識別する。 As shown in FIG. 7, taking the right eye fire detection unit 60R as an example, the failure diagnosis unit 86 detects and stores the flame received light value E1R and the non-flame received light value as the test results detected and stored by the sensitivity test in step S21. E2R is read, and in step S22, it is determined whether or not the received flame value E1R is within the normal range (range between the upper threshold value E1Rmax and the lower threshold value E1Rmin). If so, the process proceeds to step S31 to discriminate it as a fault on the false alarm side. If the received flame value E1R is not equal to or greater than the upper limit threshold value E1Rmax in step S23, the failure diagnosis unit 86 proceeds to step S24. Identify.

故障診断部86は続いてステップS25に進み、非炎受光値E2が正常範囲(上限閾値E2Rmaxと下限閾値E2Rminの間の範囲)か否か判別し、正常範囲にないときはステップS26に進み、上限閾値E2Rmax以上であればステップS32に進んで失報側故障と識別する。故障診断部86は、ステップS26で非炎受光値E2が上限閾値E2Rmax以上でないときはステップS27に進み、ステップS27で非炎受光値E2Rが下限閾値E2Rmin以下であればステップS31に進み、誤報側故障と識別する。 The failure diagnosis unit 86 then proceeds to step S25 to determine whether or not the non-flame received light value E2 is within the normal range (the range between the upper threshold value E2Rmax and the lower threshold value E2Rmin). If it is equal to or higher than the upper limit threshold E2Rmax, the process proceeds to step S32 to discriminate as a failure on the side of failure. If the non-flame received light value E2 is not equal to or greater than the upper threshold value E2Rmax in step S26, the failure diagnosis unit 86 proceeds to step S27. Identify as faulty.

続いて、故障診断部86は、ステップS28に進んで相対比RR=(E1R/E2R)を算出し、相対比Rが正常範囲(上限閾値Rmaxと下限閾値Rminの間の範囲)か否か判別し、正常範囲にないときはステップS29に進み、上限閾値RRmax以上であればステップS31に進んで誤報側故障と識別する。故障診断部86は、ステップS29で相対比RRが上限閾値RRmax以上でないときはステップS30に進み、ステップS30で相対比RRが下限閾値RRmin以下であればステップS32に進み、失報側故障と識別する。左眼火災検知部60Lにおいても並行して同様に行う。 Subsequently, the failure diagnosis unit 86 advances to step S28 to calculate the relative ratio RR=(E1R/E2R), and determines whether the relative ratio R is within the normal range (the range between the upper limit threshold value Rmax and the lower limit threshold value Rmin). If it is not within the normal range, the process proceeds to step S29, and if it is equal to or greater than the upper limit threshold value RRmax, the process proceeds to step S31 to discriminate the failure on the false alarm side. If the relative ratio RR is not equal to or greater than the upper limit threshold value RRmax in step S29, the fault diagnosis unit 86 proceeds to step S30, and if the relative ratio RR is equal to or less than the lower limit threshold value RRmin in step S30, the fault diagnosis unit 86 proceeds to step S32 to identify a failure on the side of failure to report. do. The left eye fire detection unit 60L performs the same operation in parallel.

なお、図6の故障診断処理は、前述した(A1)~(A3)の誤報側故障の識別と、(B1)~(B3)の失報側故障の識別を例にとっているが、これらを組み合わせた故障診断としても良い。また、故障診断部86は汚れ試験により検出して記憶された炎受光値E1Rと非炎受光値E2Rについても、減光率を使用した前述の概略に沿って所定の故障診
断処理を行う。
Note that the fault diagnosis processing in FIG. It may also be used as a fault diagnosis. Further, the failure diagnosis section 86 performs a predetermined failure diagnosis process on the flame received light value E1R and the non-flame received light value E2R detected by the contamination test and stored in accordance with the outline described above using the light attenuation rate.

[防災受信盤]
(防災受信盤の概略構成)
図8は防災受信盤の機能構成の概略を示したブロック図である。図8に示すように、防災受信盤10は受信制御部34を備え、受信制御部34は例えばプログラムの実行により実現される機能であり、ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
[Disaster prevention receiver]
(Schematic configuration of disaster prevention receiving panel)
FIG. 8 is a block diagram showing an outline of the functional configuration of the disaster prevention receiving panel. As shown in FIG. 8, the disaster prevention receiving board 10 includes a reception control unit 34. The reception control unit 34 is a function realized by executing a program, for example. using a computer circuit or the like with

受信制御部34に対しては伝送部36a,36bが設けられ、伝送部36a,36bから引き出した信号線14a,14bに上り線トンネル1aと下り線トンネル1bに設置した火災検知器12がそれぞれ複数台接続されている。 Transmission units 36a and 36b are provided for the reception control unit 34, and a plurality of fire detectors 12 installed in the up line tunnel 1a and the down line tunnel 1b are connected to the signal lines 14a and 14b drawn from the transmission units 36a and 36b, respectively. is connected.

また、受信制御部34に対しスピーカ、警報表示灯等を備えた警報部38、液晶ディスプレイ、プリンタ等を備えた表示部40、各種スイッチ等を備えた操作部42、IG子局設備20を接続するモデム44が設けられ、更に、図1に示した消火ポンプ設備16、冷却ポンプ設備18、換気設備22、警報表示板設備24、ラジオ再放送設備26、テレビ監視設備28及び照明設備30が接続されたIO部45が設けられている。 In addition, to the reception control unit 34, an alarm unit 38 equipped with a speaker, an alarm indicator lamp, etc., a display unit 40 equipped with a liquid crystal display, a printer, etc., an operation unit 42 equipped with various switches, etc., and an IG slave station equipment 20 are connected. A modem 44 is provided, and the fire pump equipment 16, cooling pump equipment 18, ventilation equipment 22, alarm display board equipment 24, radio rebroadcast equipment 26, television monitoring equipment 28 and lighting equipment 30 shown in FIG. 1 are connected. IO unit 45 is provided.

受信制御部34は、伝送部36a,36bに指示して火災検知器12のアドレスを順次指定したポーリングコマンドを含む呼出信号を繰り返し送信しており、火災検知器12は自己アドレスに一致する呼出信号を受信すると、火災検知、試験結果等の自己の状態情報を含む応答信号を返信する。なお、以下の説明では、火災検知の旨の情報を含む応答信号を火災信号という場合がある。火災信号は、火災を検知したときに火災検知器12から防災受信盤10へ割込信号として送信するようにしても良い。 The reception control unit 34 instructs the transmission units 36a and 36b to repeatedly transmit a call signal including a polling command sequentially specifying the address of the fire detector 12, and the fire detector 12 receives a call signal matching its own address. , it returns a response signal containing its own status information such as fire detection and test results. In the following description, a response signal including information indicating that a fire has been detected may be referred to as a fire signal. The fire signal may be transmitted as an interrupt signal from the fire detector 12 to the disaster prevention receiving panel 10 when a fire is detected.

また、防災受信盤10の受信制御部34は、火災検知器12から火災信号の受信を検知した場合は警報部38により火災警報を出力させると共にIO部45を介し他設備の連動制御を指示する制御を行う。 In addition, when the reception control unit 34 of the disaster prevention receiver 10 detects the reception of the fire signal from the fire detector 12, the alarm unit 38 outputs a fire alarm and instructs interlocking control of other equipment via the IO unit 45. control.

また、受信制御部34は、システムの立上げ時あるいは運用中の所定の周期毎に、火災検知器12のアドレスを順次指定した試験指示コマンドを設定した試験信号を送信し、火災検知器12に感度試験、汚れ試験を行わせ、それぞれの試験結果を応答させる制御を行う。必要に応じ、故障診断情報や各試験時の各受光値等の付加情報を含めて送信するようにする。また、操作部42により特定の火災検知器12のアドレスを指定した試験操作により、個別の火災検知器12に対し試験信号を送信して試験を行わせることもできる。 In addition, the reception control unit 34 transmits a test signal in which a test instruction command sequentially specifying the address of the fire detector 12 is set when the system is started up or at predetermined intervals during operation, and the fire detector 12 receives the test signal. A sensitivity test and a contamination test are performed, and control is performed to respond with the respective test results. If necessary, additional information such as failure diagnosis information and each light receiving value at each test is included in the transmission. In addition, it is also possible to send a test signal to an individual fire detector 12 to perform a test by performing a test operation in which the address of a specific fire detector 12 is designated by the operation unit 42 .

また、受信制御部34は火災検知器12の感度試験で得られた故障の応答信号を受信した場合、火災検知器12のアドレスを特定した故障警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 Further, when the reception control unit 34 receives a failure response signal obtained by the sensitivity test of the fire detector 12, the failure alarm specifying the address of the fire detector 12 is generated by the alarm sound of the alarm unit 38 and the display unit 40. Controls to notify by display and printing.

また、受信制御部34は火災検知器12の感度試験により得られた汚れ異常の応答信号を受信した場合、火災検知器12のアドレスを特定した汚れ警報を警報部38の警報音、表示部40のディスプレイ表示、印刷により報知させる制御を行う。 Further, when the reception control unit 34 receives the response signal of the contamination abnormality obtained by the sensitivity test of the fire detector 12, the contamination alarm specifying the address of the fire detector 12 is generated by the alarm sound of the alarm unit 38 and the display unit 40. display, and control to notify by printing.

また、受信制御部34は、火災検知器12の感度試験及び汚れ試験により得られた故障又は汚損等の異常の応答信号を受信した場合、モデム44から図1に示したIG子局設備20を介して遠方監視制御設備32に送信し、故障警報又は異常警報を報知させる制御を行う。 In addition, when the reception control unit 34 receives a response signal indicating an abnormality such as a failure or contamination obtained by the sensitivity test and contamination test of the fire detector 12, the IG slave station equipment 20 shown in FIG. It is transmitted to the remote monitoring and control equipment 32 via the remote monitoring and control equipment 32, and performs control to issue a failure alarm or abnormality alarm.

また、受信制御部34は、例えば表示部40のディスプレイを利用した操作部42の操作に基づき、火災検知器12に設定されている感度異常、汚れ異常を判断するための閾値を変更させる制御を行う。この閾値を変更させる制御は、火災検知器12の閾値を一斉に変更させることもできるし、アドレスを指定して特定の火災検知器12の閾値を変更させることもできる。もちろん、操作部42の操作によらず自動判別、自動制御により閾値変更するようにしても良い。 In addition, the reception control unit 34 performs control to change the threshold value for judging whether the fire detector 12 has abnormal sensitivity or contamination based on the operation of the operation unit 42 using the display of the display unit 40, for example. conduct. This control for changing the threshold value can change the threshold value of all the fire detectors 12 all at once, or can change the threshold value of a specific fire detector 12 by designating an address. Of course, the threshold value may be changed by automatic determination and automatic control without depending on the operation of the operation unit 42 .

(火災検知器の故障診断結果に基づく制御機能)
受信制御部34は、上り線トンネル1a及び下り線トンネル1bに設置された複数の火災検知器12が、隣接した他の火災検知器12との間の検知エリアを相互補完的に重複して監視していることから、火災検知器12から故障診断情報として受信した受信した失報側故障の識別結果に応じ、隣接して配置された他の火災検知器12の検出感度を高めるように変更する制御を行う。
(Control function based on failure diagnosis result of fire detector)
The reception control unit 34 mutually complements and redundantly monitors the detection areas between the plurality of fire detectors 12 installed in the up line tunnel 1a and the down line tunnel 1b and other adjacent fire detectors 12. Therefore, the detection sensitivity of the other fire detectors 12 arranged adjacently is changed so as to be increased according to the identification result of the failure on the side of failure received as failure diagnosis information from the fire detector 12. control.

このため、火災検知器12の失報側故障が識別された場合には、同じ検知エリアを監視している他の火災検知器12の検出感度を高められることで、失報側故障が識別された火災検知器12の火災監視を補償して、確実に火災を検知して対処することができる。 Therefore, when the failure of the fire detector 12 is identified, the failure of the fire detector 12 can be identified by increasing the detection sensitivity of the other fire detectors 12 monitoring the same detection area. By compensating for the fire monitoring of the fire detector 12, the fire can be reliably detected and dealt with.

また、受信制御部34は、火災検知器12から故障診断情報として受信した誤報側故障と失報側故障の発生頻度、継続期間、発生回数に基づき、火災検知器12の劣化を判断して報知する制御を行う。受信制御部34は、例えば、誤報側故障の発生頻度、継続期間、発生回数等が高いときには劣化が進んでいると判断して報知し、これにより担当者は迅速な点検強化や交換計画の立案等を行うことができる。また、受信制御部34は、失報側故障の発生頻度、継続期間、発生回数等が高いときには劣化が進んでいるが、隣接する火災検知器が健全である場合は緊急性は比較的低いと判断して劣化予兆を報知し、担当者は余裕を持って点検強化や交換計画の立案等を行うことが可能となる。 In addition, the reception control unit 34 judges the deterioration of the fire detector 12 based on the occurrence frequency, duration, and number of occurrences of false alarm side failures and non-report side failures received as failure diagnosis information from the fire detector 12, and notifies. to control. For example, when the occurrence frequency, duration, and number of occurrences of the false alarm side failure are high, the reception control unit 34 judges that the deterioration is progressing and notifies it, so that the person in charge can quickly strengthen inspection and formulate a replacement plan. etc. Further, the reception control unit 34 assumes that when the occurrence frequency, duration, number of occurrences, etc. of the failure on the failure alarm side is high, the deterioration progresses, but when the adjacent fire detector is sound, the urgency is relatively low. It is possible to make judgments and report signs of deterioration, so that the person in charge can strengthen inspections and formulate replacement plans with plenty of time to spare.

また、受信制御部34は、火災検知器12から故障診断情報として受信した誤報側故障又は失報側故障に基づき、例えば、誤報側故障又は失報側故障の発生回数をカウントし、所定の閾値回数に達したとき蓄積条件を充足したとして火災検知器12の故障予兆と判断して報知する制御を行う。 Further, the reception control unit 34 counts, for example, the number of occurrences of the false alarm side failure or the false alarm side failure based on the false alarm side failure or the false alarm side failure received as the failure diagnosis information from the fire detector 12, and a predetermined threshold When the number of times is reached, it is determined that the accumulation condition is satisfied, and it is judged as a sign of failure of the fire detector 12, and control is performed to notify.

この場合、受信制御部34は、誤報側故障は緊急度が高いことから、例えば蓄積なしで故障予兆と判断して報知することで、担当者による点検強化や交換計画の立案等を可能とし、一方、失報側故障は隣接する火災検知器が健全である場合は緊急度が比較的低いことから所定の蓄積条件を充足したときに故障予兆と判断して報知することで、担当者による必要な点検や交換計画の立案等を可能とする。 In this case, since the erroneous failure is of high urgency, the reception control unit 34, for example, judges it as a failure sign without storing it and notifies it. On the other hand, failures on the non-reporting side are relatively low in urgency if the adjacent fire detectors are sound. This makes it possible to make detailed inspections and make replacement plans.

また、受信制御部34は、火災検知器12の故障予兆(信頼性低下)を判断した状態で(火災検知器12から故障予兆信号を受信した場合を含む)、故障予兆と判断した火災検知器12から火災信号を受信したとき、非火災報と判断してトンネル進入禁止警報を含む所定の火災処理を行わないようする。このため、故障予兆と判断された火災検知器12が誤った火災判断により火災信号を送信してきても、例えば車両進入禁止警報を含む火災処理を行わないようにすることで、車輛の急停止に伴う事故の発生や渋滞の発生などの、非火災報に伴う問題を解消する。

また、受信制御部34は、火災検知器12の故障予兆を判断した場合(火災検知器12から故障予兆信号を受信した場合を含む)、図1に示した遠方監視制御設備32に故障予兆移報信号を送信して報知させる制御を行う。これにより、複数のトンネルを監視している遠方監視制御設備32側の担当者は、火災検知器12の信頼性が低下していることを知ることができ、トンネル側の火災検知器12による火災の監視状況を適切に把握して、トンネルの運用管理に活用できる。
In addition, the reception control unit 34 determines that a failure sign (reliability reduction) of the fire detector 12 has been determined (including the case where a failure sign signal is received from the fire detector 12). When a fire signal is received from 12, it is judged as a non-fire report, and predetermined fire processing including a tunnel entry prohibition warning is not performed. For this reason, even if the fire detector 12, which is judged to be a sign of failure, transmits a fire signal due to an erroneous fire judgment, fire processing including, for example, a vehicle entry prohibition warning is not performed, thereby preventing the vehicle from suddenly stopping. Eliminates problems associated with non-fire alarms, such as the occurrence of accidents and traffic jams.

Further, when the reception control unit 34 determines a failure sign of the fire detector 12 (including a case where a failure sign signal is received from the fire detector 12), the reception control unit 34 transfers the failure sign to the remote monitoring and control equipment 32 shown in FIG. It controls the transmission of the information signal and the notification. As a result, the person in charge of the remote monitoring and control equipment 32 who is monitoring a plurality of tunnels can know that the reliability of the fire detector 12 is declining, and the fire caused by the fire detector 12 on the tunnel side can be detected. It is possible to appropriately grasp the monitoring status of the tunnel and use it for tunnel operation management.

このような故障予兆は、火災検知器12の火災検知部に不具合が発生している場合だけでなく、設置環境の、例えば検知エリア15に赤外線発生源が存在している場合に、この赤外線が試験光に不要に混入することにより生ずる場合もあり、故障予兆を知った管理者は、必要に応じ不要な赤外線源を確認して撤去する等の対処も可能になる。 Such a sign of failure is not only when the fire detection part of the fire detector 12 is malfunctioning, but also when there is an infrared source in the installation environment, for example, in the detection area 15. In some cases, it is caused by unnecessarily mixed in the test light, and the administrator who knows the sign of failure can take measures such as checking and removing unnecessary infrared sources as necessary.

[本発明の変形例]
(火災検知器)
上記の実施形態は、2波長方式の火災検知器を例にとっているが、他の方式でも良く、例えば、前述した2波長に加え、CO2の共鳴放射帯である4.5μm帯の短波長側の例えば、2.3μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検知し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検知器としても良い。
[Modification of the present invention]
(fire detector)
In the above embodiment, a two-wavelength type fire detector is taken as an example, but other types may be used. For example, a three-wavelength type flame detector that detects radiation energy in a wavelength band near 2.3 μm in the same manner as the two-wavelength type, and determines the presence or absence of a flame based on the relative ratio of the received light signals in these three wavelength bands. It is good as

(P型のトンネル防災システム)
また、本発明は火災検知器を防災受信盤からの信号線単位に接続したP型のトンネル防災システムでも適用できる。この場合、火災検知器は自己で処理制御し、故障予兆をパルス信号で防災受信盤に送るようにすれば良い。
(P-type tunnel disaster prevention system)
The present invention can also be applied to a P-type tunnel disaster prevention system in which a fire detector is connected to each signal line from a disaster prevention receiving panel. In this case, the fire detector should carry out processing control by itself and send a failure sign as a pulse signal to the disaster prevention receiving panel.

(その他)
また本発明は、トンネル防災システム以外の防災システムにも適用することができる。
(others)
The present invention can also be applied to disaster prevention systems other than tunnel disaster prevention systems.

また本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。 The present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:火災検知器
14a,14b:信号線
16:消火ポンプ設備
18:冷却ポンプ設備
20:IG子局設備
22:換気設備
24:警報表示板設備
26:ラジオ再放送設備
28:テレビ監視設備
30:照明設備
32:遠方監視制御設備
34:受信制御部
36,36b,56:伝送部
46:筐体
48:センサ収納部
50R,50L:透光性窓
52R,52L:試験光源用透光窓
54:検知器制御部
56:伝送部
58:電源部
60R,60L:火災検知部
64:炎検出センサ
66,70:増幅処理部
68:非炎検出センサ
72:試験発光駆動部
74R,74L,75R,75L:内部試験光源
76R,76L:外部試験光源
80:火災判断部
82:感度試験部
84:汚れ試験部
86:故障診断部
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiver panel 12: Fire detectors 14a, 14b: Signal line 16: Fire pump equipment 18: Cooling pump equipment 20: IG slave station equipment 22: Ventilation equipment 24: Alarm display Board equipment 26: Radio rebroadcast equipment 28: Television monitoring equipment 30: Lighting equipment 32: Remote monitoring control equipment 34: Reception control units 36, 36b, 56: Transmission unit 46: Housing 48: Sensor storage units 50R, 50L: Transparent Optical windows 52R, 52L: Test light source transparent window 54: Detector control unit 56: Transmission unit 58: Power supply unit 60R, 60L: Fire detection unit 64: Flame detection sensors 66, 70: Amplification processing unit 68: Non-flame Detection sensor 72: Test light emission drive units 74R, 74L, 75R, 75L: Internal test light sources 76R, 76L: External test light sources 80: Fire determination unit 82: Sensitivity test unit 84: Dirt test unit 86: Failure diagnosis unit

Claims (8)

所定の試験結果に応じ、誤報側故障と失報側故障とを識別判断する故障診断部を備えた火災検知器であって、
前記故障診断部は、試験時に得られた炎受光信号と非炎受光信号に基づき、
前記炎受光信号のレベルが所定の第1上限側判定条件を充足したとき、
前記非炎受光信号のレベルが所定の第1下限側判定条件を充足したとき、又は、
前記炎受光信号のレベルと前記非炎受光信号のレベルとの相対比が所定の第1相対比判定条件を充足したとき、
或いは、これらの組み合わせを、前記誤報側故障と識別し、
前記炎受光信号のレベルが所定の第2下限側判定条件を充足したとき、
前記非炎受光信号のレベルが所定の第2上限側判定条件を充足したとき、又は、
前記炎受光信号のレベルと前記非炎受光信号のレベルとの相対比が所定の第2相対比判定条件を充足したとき、
或いは、これらの組み合わせを、前記失報側故障と識別することを特徴とする火災検知器。
A fire detector equipped with a failure diagnosis unit that distinguishes between a false alarm side failure and a false alarm side failure according to a predetermined test result,
Based on the flame light reception signal and the non-flame light reception signal obtained during the test, the failure diagnosis unit
When the level of the flame receiving signal satisfies a predetermined first upper limit side judgment condition,
when the level of the non-flame light reception signal satisfies a predetermined first lower limit judgment condition, or
When the relative ratio between the level of the flame-receiving signal and the level of the non-flame-receiving signal satisfies a predetermined first relative ratio judgment condition,
Alternatively, identifying a combination of these as the false alarm side failure,
When the level of the flame receiving signal satisfies a predetermined second lower limit judgment condition,
when the level of the non-flame received light signal satisfies a predetermined second upper limit judgment condition, or
When the relative ratio between the level of the flame-receiving signal and the level of the non-flame-receiving signal satisfies a predetermined second relative ratio criterion,
Alternatively, a fire detector characterized in that a combination of these is identified as the failure on the failure to report side.
請求項1記載の火災検知器に於いて、
前記故障診断部は、前記誤報側故障を識別判断した場合に、防災受信盤に故障予兆信号を送信することを特徴とする火災検知器。
The fire detector according to claim 1,
The fire detector according to claim 1, wherein the failure diagnostic unit transmits a failure sign signal to a disaster prevention receiving panel when the failure on the false alarm side is identified and determined.
請求項1記載の火災検知器に於いて、
前記故障診断部は、前記試験結果に応じて識別された前記誤報側故障と前記失報側故障の識別結果を防災受信盤に送信することを特徴とする火災検知器。
The fire detector according to claim 1,
The fire detector according to claim 1, wherein the fault diagnosis section transmits to a disaster prevention receiving panel a result of identification of the fault on the false alarm side and the fault on the non-report side identified according to the test result.
防災受信盤に請求項1乃至3何れかに記載の火災検知器を接続して火災を監視するトンネル防災システムあって、
前記火災検知器は、隣接した他の火災検知器との間の検知エリアを相互に重複して監視しており、
前記防災受信盤は、前記火災検知器による前記失報側故障の識別結果に応じ、前記隣接して配置された他の火災検知器の検出感度を高めるように変更することを特徴とするトンネル防災システム。
A tunnel disaster prevention system that monitors fire by connecting the fire detector according to any one of claims 1 to 3 to a disaster prevention receiver,
The fire detectors mutually overlap and monitor detection areas between other adjacent fire detectors,
The tunnel disaster prevention receiving panel is characterized in that, according to the identification result of the failure on the unreported side by the fire detector, the disaster prevention receiving panel is changed so as to increase the detection sensitivity of the other fire detectors arranged adjacently. system.
請求項4記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災検知器で識別された前記誤報側故障と前記失報側故障の発生頻度、継続期間、発生回数に基づき、前記火災検知器の劣化を判断して報知することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 4,
The disaster prevention receiving panel judges deterioration of the fire detector based on the occurrence frequency, duration, and number of occurrences of the false alarm side failure and the non-alarm side failure identified by the fire detector, and issues a notification. Characteristic tunnel disaster prevention system.
請求項4記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災検知器で識別された前記誤報側故障又は前記失報側故障の識別結果に基づき、前記火災検知器の故障予兆を判断して報知することを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 4,
The disaster prevention receiving panel judges and notifies a sign of failure of the fire detector based on the identification result of the failure on the false alarm side or the failure on the unreported side identified by the fire detector. system.
請求項6記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災検知器の故障予兆を判断した場合に、当該火災検知器から送信された火災信号を非火災報と判断して所定の火災処理を行わないようにすることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 6,
The disaster prevention receiver board determines that the fire signal transmitted from the fire detector is a non-fire alarm and does not perform a predetermined fire process when judging a sign of failure of the fire detector. Tunnel disaster prevention system.
請求項7記載のトンネル防災システムに於いて、
前記防災受信盤は、前記火災検知器の故障予兆を判断した場合に、遠方監視制御設備に故障予兆移報信号を送信して報知させることを特徴とするトンネル防災システム。
In the tunnel disaster prevention system according to claim 7,
The tunnel disaster prevention system, wherein the disaster prevention receiving panel transmits a failure sign transfer signal to remote monitoring and control equipment to inform the remote monitoring and control equipment when it determines that the fire detector has failed.
JP2023069786A 2018-12-26 2023-04-21 Fire detector and tunnel disaster prevention system Pending JP2023089258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023069786A JP2023089258A (en) 2018-12-26 2023-04-21 Fire detector and tunnel disaster prevention system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241890A JP7268999B2 (en) 2018-12-26 2018-12-26 Fire detector and tunnel disaster prevention system
JP2023069786A JP2023089258A (en) 2018-12-26 2023-04-21 Fire detector and tunnel disaster prevention system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018241890A Division JP7268999B2 (en) 2018-12-26 2018-12-26 Fire detector and tunnel disaster prevention system

Publications (1)

Publication Number Publication Date
JP2023089258A true JP2023089258A (en) 2023-06-27

Family

ID=71449039

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018241890A Active JP7268999B2 (en) 2018-12-26 2018-12-26 Fire detector and tunnel disaster prevention system
JP2023069786A Pending JP2023089258A (en) 2018-12-26 2023-04-21 Fire detector and tunnel disaster prevention system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018241890A Active JP7268999B2 (en) 2018-12-26 2018-12-26 Fire detector and tunnel disaster prevention system

Country Status (1)

Country Link
JP (2) JP7268999B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970804A (en) * 2020-08-05 2020-11-20 北京交跃通达检测科技有限公司 Method and device for detecting fault illuminating lamp
CN112967472A (en) * 2021-04-15 2021-06-15 河北工业大学 Multi-strategy tunnel optical interception system and use method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217585B2 (en) * 1994-03-18 2001-10-09 能美防災株式会社 Fire detector and fire receiver
JP2002042264A (en) * 2000-07-28 2002-02-08 Hochiki Corp Optical fire detector and disaster prevention supervisory system
JP3980816B2 (en) * 2000-07-31 2007-09-26 ホーチキ株式会社 Fire detector
JP4873512B2 (en) * 2000-11-22 2012-02-08 ホーチキ株式会社 Fire detector initial setting device
JP5409448B2 (en) * 2010-03-10 2014-02-05 能美防災株式会社 Disaster prevention system
JP5911139B2 (en) * 2012-07-26 2016-04-27 能美防災株式会社 Fire detection system
JP6871013B2 (en) * 2017-02-22 2021-05-12 ホーチキ株式会社 Disaster prevention system
JP6856427B2 (en) * 2017-03-30 2021-04-07 ホーチキ株式会社 Tunnel disaster prevention system

Also Published As

Publication number Publication date
JP7268999B2 (en) 2023-05-08
JP2020106875A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7253583B2 (en) disaster prevention system
JP2023089258A (en) Fire detector and tunnel disaster prevention system
JP6013027B2 (en) Fire alarm system, fire alarm method for fire alarm system, and fire alarm program for fire alarm system
JP2018169893A5 (en)
JP7432658B2 (en) disaster prevention system
KR101911371B1 (en) Function Extension Type Fire Detector
JP7249380B2 (en) Fire prevention system and fire detector
KR101950793B1 (en) A system for detecting fire automatic
KR101264591B1 (en) Fire detection apparatus and system
JP7441919B2 (en) disaster prevention system
JP7475114B2 (en) Monitoring system
JP7336248B2 (en) Tunnel disaster prevention system and fire detector
JP7100743B2 (en) Disaster prevention system
JP7336252B2 (en) Tunnel disaster prevention system
KR20040087995A (en) Network Fire Prevention System and Service Method
JP2020187400A (en) Monitoring system
JP2023052809A (en) disaster prevention system
JP6622538B2 (en) Disaster prevention monitoring system
JP2023015283A (en) disaster prevention system
JP7358071B2 (en) Monitoring system
KR20230072321A (en) Isolator for dividing the communication line of fire detecting system in case of the line has a shoir circuit
KR20190127152A (en) Cross circuit supervisory machine used in firefighting tracks and the method of operating the same
KR200388889Y1 (en) Auto fire sensor system
JP2021157672A (en) Fire monitoring system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519